1
|
Putro E, Carnevale A, Marangio C, Fulci V, Paolini R, Molfetta R. New Insight into Intestinal Mast Cells Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:5594. [PMID: 38891782 PMCID: PMC11171657 DOI: 10.3390/ijms25115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array of receptors, MCs act as tissue sentinels, able to detect the presence of bacteria and parasites and to respond to different environmental stimuli. MCs originate from bone marrow (BM) progenitors that enter the circulation and mature in peripheral organs under the influence of microenvironment factors, thus differentiating into heterogeneous tissue-specific subsets. Even though MC activation has been traditionally linked to IgE-mediated allergic reactions, a role for these cells in other pathological conditions including tumor progression has recently emerged. However, several aspects of MC biology remain to be clarified. The advent of single-cell RNA sequencing platforms has provided the opportunity to understand MCs' origin and differentiation as well as their phenotype and functions within different tissues, including the gut. This review recapitulates how single-cell transcriptomic studies provided insight into MC development as well as into the functional role of intestinal MC subsets in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Rossella Paolini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (A.C.); (C.M.); (V.F.); (R.M.)
| | | |
Collapse
|
2
|
Nakazawa M, Tochinai R, Fujii W, Komori M, Yonezawa T, Momoi Y, Maeda S. Protective role of protease-activated receptor-2 in anaphylaxis model mice. PLoS One 2024; 19:e0283915. [PMID: 38635782 PMCID: PMC11025949 DOI: 10.1371/journal.pone.0283915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Anaphylaxis is a severe life-threatening hypersensitivity reaction induced by mast cell degranulation. Among the various mediators of mast cells, little is known about the role of tryptase. Therefore, we aimed to elucidate the role of protease-activating receptor-2 (PAR-2), a receptor activated by tryptase, in murine anaphylactic models using PAR-2-deficient mice and newly generated tryptase-deficient mice. Anaphylaxis was induced by IgE-dependent and IgE-independent mast cell degranulation in mice. PAR-2 deficiency exacerbated the decrease in body temperature and hypotension during anaphylaxis; however, the number of skin mast cells, degree of mast cell degranulation, and systemic and local vascular hyperpermeability were comparable in PAR-2 knockout and wild-type mice. Nitric oxide, which is produced by endothelial nitric oxide synthase (eNOS), is an indispensable vasodilator in anaphylaxis. In the lungs of anaphylactic mice, PAR-2 deficiency promoted eNOS expression and phosphorylation, suggesting a protective effect of PAR-2 against anaphylaxis by downregulating eNOS activation and expression. Based on the hypothesis that the ligand for PAR-2 in anaphylaxis is mast cell tryptase, tryptase-deficient mice were generated using CRISPR-Cas9. In wild-type mice, the PAR-2 antagonist exacerbated the body temperature drop due to anaphylaxis; however, the effect of the PAR-2 antagonist was abolished in tryptase-deficient mice. These results suggest that tryptase is a possible ligand of PAR-2 in anaphylaxis and that the tryptase/PAR-2 pathway attenuates the anaphylactic response in mice.
Collapse
Affiliation(s)
- Maho Nakazawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mao Komori
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Molfetta R, Lecce M, Milito ND, Putro E, Pietropaolo G, Marangio C, Scarno G, Moretti M, De Smaele E, Santini T, Bernardini G, Sciumè G, Santoni A, Paolini R. SCF and IL-33 regulate mouse mast cell phenotypic and functional plasticity supporting a pro-inflammatory microenvironment. Cell Death Dis 2023; 14:616. [PMID: 37730723 PMCID: PMC10511458 DOI: 10.1038/s41419-023-06139-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Mast cells (MCs) are multifaceted innate immune cells often present in the tumor microenvironment (TME). Several recent findings support their contribution to the transition from chronic inflammation to cancer. However, MC-derived mediators can either favor tumor progression, inducing the spread of the tumor, or exert anti-tumorigenic functions, limiting tumor growth. This apparent controversial role likely depends on the plastic nature of MCs that under different microenvironmental stimuli can rapidly change their phenotype and functions. Thus, the exact effect of unique MC subset(s) during tumor progression is far from being understood. Using a murine model of colitis-associated colorectal cancer, we initially characterized the MC population within the TME and in non-lesional colonic areas, by multicolor flow cytometry and confocal microscopy. Our results demonstrated that tumor-associated MCs harbor a main connective tissue phenotype and release high amounts of Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. This MC phenotype correlates with the presence of high levels of Stem Cell Factor (SCF) and IL-33 inside the tumor. Thus, we investigated the effect of SCF and IL-33 on primary MC cultures and underscored their ability to shape MC phenotype eliciting the production of pro-inflammatory cytokines. Our findings support the conclusion that during colonic transformation a sustained stimulation by SCF and IL-33 promotes the accumulation of a prevalent connective tissue-like MC subset that through the secretion of IL-6 and TNF-α maintains a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| | - Mario Lecce
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Leibniz Institute for Immunotherapy-Division of functional immune cell modulation, Franz-Josef-Strausse, D-93053, Regensburg, Germany
| | - Nadia D Milito
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Erisa Putro
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Caterina Marangio
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Gianluca Scarno
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- IRCCS Neuromed, Pozzilli, 86077, Isernia, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
4
|
Plum T, Binzberger R, Thiele R, Shang F, Postrach D, Fung C, Fortea M, Stakenborg N, Wang Z, Tappe-Theodor A, Poth T, MacLaren DAA, Boeckxstaens G, Kuner R, Pitzer C, Monyer H, Xin C, Bonventre JV, Tanaka S, Voehringer D, Vanden Berghe P, Strid J, Feyerabend TB, Rodewald HR. Mast cells link immune sensing to antigen-avoidance behaviour. Nature 2023; 620:634-642. [PMID: 37438525 PMCID: PMC10432277 DOI: 10.1038/s41586-023-06188-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 05/10/2023] [Indexed: 07/14/2023]
Abstract
The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.
Collapse
Affiliation(s)
- Thomas Plum
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany.
| | - Rebecca Binzberger
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Robin Thiele
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Fuwei Shang
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Daniel Postrach
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Candice Fung
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Marina Fortea
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Zheng Wang
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Duncan A A MacLaren
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Rohini Kuner
- Pharmacology Institute, Heidelberg University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Cuiyan Xin
- Division of Renal Medicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Thorsten B Feyerabend
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
5
|
The Controversial Role of Intestinal Mast Cells in Colon Cancer. Cells 2023; 12:cells12030459. [PMID: 36766801 PMCID: PMC9914221 DOI: 10.3390/cells12030459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Mast cells are tissue-resident sentinels involved in large number of physiological and pathological processes, such as infection and allergic response, thanks to the expression of a wide array of receptors. Mast cells are also frequently observed in a tumor microenvironment, suggesting their contribution in the transition from chronic inflammation to cancer. In particular, the link between inflammation and colorectal cancer development is becoming increasingly clear. It has long been recognized that patients with inflammatory bowel disease have an increased risk of developing colon cancer. Evidence from experimental animals also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. However, the exact role of mast cells in tumor initiation and growth remains controversial: mast cell-derived mediators can either exert pro-tumorigenic functions, causing the progression and spread of the tumor, or anti-tumorigenic functions, limiting the tumor's growth. Here, we review the multifaceted and often contrasting findings regarding the role of the intestinal mast cells in colon cancer progression focusing on the molecular pathways mainly involved in the regulation of mast cell plasticity/functions during tumor progression.
Collapse
|
6
|
Zhang Z, Ernst PB, Kiyono H, Kurashima Y. Utilizing mast cells in a positive manner to overcome inflammatory and allergic diseases. Front Immunol 2022; 13:937120. [PMID: 36189267 PMCID: PMC9518231 DOI: 10.3389/fimmu.2022.937120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells widely distributed in the body, accompanied by diverse phenotypes and functions. Committed mast cell precursors (MCPs) leave the bone marrow and enter the blood circulation, homing to peripheral sites under the control of various molecules from different microenvironments, where they eventually differentiate and mature. Partly attributable to the unique maturation mechanism, MCs display high functional heterogeneity and potentially plastic phenotypes. High plasticity also means that MCs can exhibit different subtypes to cope with different microenvironments, which we call “the peripheral immune education system”. Under the peripheral immune education system, MCs showed a new character from previous cognition in some cases, namely regulation of allergy and inflammation. In this review, we focus on the mucosal tissues, such as the gastrointestinal tract, to gain insights into the mechanism underlying the migration of MCs to the gut or other organs and their heterogeneity, which is driven by different microenvironments. In particular, the immunosuppressive properties of MCs let us consider that positively utilizing MCs may be a new way to overcome inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Peter B Ernst
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, San Diego, CA, United States
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
| | - Hiroshi Kiyono
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Empowering Next Generation Allergist/immunologist toward Global Excellence Task Force toward 2030 (ENGAGE)-Task Force, Tokyo, Japan
| |
Collapse
|
7
|
West PW, Bulfone-Paus S. Mast cell tissue heterogeneity and specificity of immune cell recruitment. Front Immunol 2022; 13:932090. [PMID: 35967445 PMCID: PMC9374002 DOI: 10.3389/fimmu.2022.932090] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cells occupy a unique niche within tissues as long lived perpetrators of IgE mediated hypersensitivity and anaphylaxis, as well as other immune responses. However, mast cells are not identical in different tissues and the impact of this tissue heterogeneity on the interaction with other immune cells and on defined immune responses is still unclear. In this review, we synthesize the characteristics of mast cell heterogeneity in the gut and the skin. Furthermore, we attempt to connect mast cell heterogeneity with functional diversity by exploring differences in mast cell-induced immune cell recruitment in these two model organs. The differential expression of certain receptors on mast cells of different tissues, notably tissue-specific expression patterns of integrins, complement receptors and MRGPRX2, could indicate that tissue environment-dependent factors skew mast cell-immune cell interactions, for example by regulating the expression of these receptors.
Collapse
Affiliation(s)
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
8
|
Torres-Atencio I, Campble A, Goodridge A, Martin M. Uncovering the Mast Cell Response to Mycobacterium tuberculosis. Front Immunol 2022; 13:886044. [PMID: 35720353 PMCID: PMC9201906 DOI: 10.3389/fimmu.2022.886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The immunologic mechanisms that contribute to the response to Mycobacterium tuberculosis infection still represent a challenge in the clinical management and scientific understanding of tuberculosis disease. In this scenario, the role of the different cells involved in the host response, either in terms of innate or adaptive immunity, remains key for defeating this disease. Among this coordinated cell response, mast cells remain key for defeating tuberculosis infection and disease. Together with its effector’s molecules, membrane receptors as well as its anatomical locations, mast cells play a crucial role in the establishment and perpetuation of the inflammatory response that leads to the generation of the granuloma during tuberculosis. This review highlights the current evidences that support the notion of mast cells as key link to reinforce the advancements in tuberculosis diagnosis, disease progression, and novel therapeutic strategies. Special focus on mast cells capacity for the modulation of the inflammatory response among patients suffering multidrug resistant tuberculosis or in co-infections such as current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ivonne Torres-Atencio
- Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Panama, Panama.,Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Ariadne Campble
- Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Amador Goodridge
- Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Laboratory of Clinical and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
9
|
Salama MAM, Mostafa NE, Abd El-Aal NF, Moawad HSF, Hammad SK, Adel R, Mostafa EM. Efficacy of Zingiber officinale and Cinnamomum zeylanicum extracts against experimental Trichinella spiralis infection. J Parasit Dis 2022; 46:24-36. [PMID: 35299906 PMCID: PMC8901936 DOI: 10.1007/s12639-021-01412-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023] Open
Abstract
Trichinellosis is a re-emerging zoonotic disease that has become a public health concern since its reported human outbreaks in many countries. The traditional therapy has many adverse effects in addition to the developing resistance. So, this necessitates finding effective natural alternatives. The current study targeted to assess the potential therapeutic effects of Zingiber officinale and Cinnamomum zeylanicum in comparison to albendazole, a conventional therapy for treatment of trichinosis. Sixty mice were classified into five groups (12 mice each), non-infected control, infected control, combined albendazole and prednisolone, Zingiber officinale, and Cinnamomum zeylanicum treated groups. Mice sacrifice was performed on the 7th and 35th days post infection for intestinal and muscular phases respectively. Efficiency of the used preparations was assessed by parasitological, histopathological, immunohistochemical, biochemical studies in addition to ultrastructural evaluation using transmission electron microscopy. A significant reduction in the mean number of T. spiralis adult worms and larvae was observed in Zingiber officinale and Cinnamomum zeylanicum treated groups, (64.5%, 50.8%) and (68%, 54.6%) respectively. Also, both extracts showed moderate cytoplasmic reactivity for TGF-β1, (69.3% & 67.8%) respectively. The highest reduction in serum TNF- α level was observed in Zingiber officinale treated group during the muscle phase (58.4%) while in the intestinal phase was 50%. The ultrastructural study revealed degenerative effects on both adults and larvae in addition to obvious improvement of the histopathological changes in the small intestine and muscles. We concluded that these herbal extracts especially Zingiber officinale can be considered a practical and successful alternative for the treatment of trichinellosis.
Collapse
Affiliation(s)
- Marwa Ahmed Mohamed Salama
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nahed E. Mostafa
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa Fathy Abd El-Aal
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Howayda Said Fouad Moawad
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar Kamel Hammad
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha Adel
- grid.31451.320000 0001 2158 2757Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman M. Mostafa
- grid.31451.320000 0001 2158 2757Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Kaieda S, Fujimoto K, Todoroki K, Abe Y, Kusukawa J, Hoshino T, Ida H. Mast cells can produce transforming growth factor β1 and promote tissue fibrosis during the development of Sjögren's syndrome-related sialadenitis. Mod Rheumatol 2021; 32:761-769. [PMID: 34915577 DOI: 10.1093/mr/roab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES This study investigated the associations of mast cells with immune-mediated inflammation and fibrosis in patients with primary Sjögren's syndrome (pSS); it also explored the underlying pathophysiology of pSS-related sialadenitis. METHODS Twenty-two patients with pSS and 10 patients with sicca (control individuals) underwent labial salivary gland biopsies. Sections were subjected to staining and immunofluorescence analyses. HMC-1 human mast cells were cocultured with fibroblasts in vitro; fibroblasts were also grown in HMC-1 conditioned medium. mRNA levels of collagen Type I (Col1a) and transforming growth factor (TGF)β1 were analysed in cultured cells. RESULTS Mast cell numbers in labial salivary glands were significantly greater in patients with pSS than in control individuals. In salivary glands from patients with pSS, mast cell number was significantly correlated with fibrosis extent; moreover, mast cells were located near fibrous tissue and expressed TGFβ1. Col1a and TGFβ1 mRNAs were upregulated in cocultured fibroblasts and HMC-1 cells, respectively. Fibroblasts cultured in HMC-1 conditioned medium exhibited upregulation of Col1a mRNA; this was abrogated by TGFβ1 neutralizing antibodies. CONCLUSIONS Mast cell numbers were elevated in patients with pSS-related sialadenitis; these cells were located near fibroblasts and expressed TGFβ1. TGFβ1 could induce collagen synthesis in fibroblasts, which might contribute to fibrosis.
Collapse
Affiliation(s)
- Shinjiro Kaieda
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Kyoko Fujimoto
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Keita Todoroki
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Yushi Abe
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Tomoaki Hoshino
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroaki Ida
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
11
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
12
|
Kang SA, Yu HS. Acceleration of Trichinella spiralis worm expulsion by leukotriene B4 receptor binding inhibition. Parasite Immunol 2021; 43:e12843. [PMID: 33977540 DOI: 10.1111/pim.12843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
AIMS Helminth infection typically induces a Th2 inflammatory response that is characterized by eosinophilia, high levels of IgE and mast cells. LTB4 is generated from innate immune cells, such as neutrophils, macrophages and mast cells, in response to a range of stimuli. It mainly acts on myeloid leukocytes, inducing the activation of integrins, adhesion to endothelium walls, and chemotaxis. METHODS AND RESULTS The objective of the present study was to determine the role of the LTB4 receptor in Trichinella spiralis expulsion. We treated mice with the LTB4 receptor antagonist before infection with T. spiralis. We observed that the number of mast cells and worm infection decreased following treatment with the BLT antagonist during the intestinal phase. We also demonstrated that blocking the LTB4 receptor inhibited neutrophil and eosinophil infiltration. CONCLUSIONS Further studies are required to investigate the specific mechanism of mast cell number decrease and worm infection and the in vitro interactions between LTB4 and worm expulsion.
Collapse
Affiliation(s)
- Shin Ae Kang
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan-si, Rep. of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan-si, Rep. of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan-si, Rep. of Korea
| |
Collapse
|
13
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Svanberg S, Li Z, Öhlund P, Roy A, Åbrink M. Mast Cells Limit Ear Swelling Independently of the Chymase Mouse Mast Cell Protease 4 in an MC903-Induced Atopic Dermatitis-Like Mouse Model. Int J Mol Sci 2020; 21:ijms21176311. [PMID: 32878208 PMCID: PMC7503626 DOI: 10.3390/ijms21176311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Atopic dermatitis (AD) is a complex, often lifelong allergic disease with severe pruritus affecting around 10% of both humans and dogs. To investigate the role of mast cells (MCs) and MC-specific proteases on the immunopathogenesis of AD, a vitamin D3-analog (MC903) was used to induce clinical AD-like symptoms in c-kit-dependent MC-deficient Wsh−/− and the MC protease-deficient mMCP-4−/−, mMCP-6−/−, and CPA3−/− mouse strains. MC903-treatment on the ear lobe increased clinical scores and ear-thickening, along with increased MC and granulocyte infiltration and activity, as well as increased levels of interleukin 33 (IL-33) locally and thymic stromal lymphopoietin (TSLP) both locally and systemically. The MC-deficient Wsh−/− mice showed significantly increased clinical score and ear thickening albeit having lower ear tissue levels of IL-33 and TSLP as well as lower serum levels of TSLP as compared to the WT mice. In contrast, although having significantly increased IL-33 ear tissue levels the chymase-deficient mMCP-4−/− mice showed similar clinical score, ear thickening, and TSLP levels in ear tissue and serum as the WT mice, whereas mMCP-6 and CPA3 -deficient mice showed a slightly reduced ear thickening and granulocyte infiltration. Our results suggest that MCs promote and control the level of MC903-induced AD-like inflammation.
Collapse
Affiliation(s)
- Sofie Svanberg
- Evidensia Djurkliniken Öjebyn, Öjagatan 81, 94331 Öjebyn, Sweden;
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
| | - Zhiqiang Li
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
- Department of Immunology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
| | - Pontus Öhlund
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden;
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
- Correspondence: ; Tel.: +46-70-673-6569
| |
Collapse
|
15
|
Magnúsdóttir EI, Grujic M, Bergman J, Pejler G, Lagerström MC. Mouse connective tissue mast cell proteases tryptase and carboxypeptidase A3 play protective roles in itch induced by endothelin-1. J Neuroinflammation 2020; 17:123. [PMID: 32321525 PMCID: PMC7175568 DOI: 10.1186/s12974-020-01795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background Itch is an unpleasant sensation that can be debilitating, especially if it is chronic and of non-histaminergic origin, as treatment options are limited. Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor that also has the ability to induce a burning, non-histaminergic pruritus when exogenously administered, by activating the endothelin A receptor (ETAR) on primary afferents. ET-1 is released endogenously by several cell-types found in the skin, including macrophages and keratinocytes. Mast cells express ETARs and can thereby be degranulated by ET-1, and mast cell proteases chymase and carboxypeptidase A3 (CPA3) are known to either generate or degrade ET-1, respectively, suggesting a role for mast cell proteases in the regulation of ET-1-induced itch. The mouse mast cell proteases (mMCPs) mMCP4 (chymase), mMCP6 (tryptase), and CPA3 are found in connective tissue type mast cells and are the closest functional homologs to human mast cell proteases, but little is known about their role in endothelin-induced itch. Methods In this study, we evaluated the effects of mast cell protease deficiency on scratching behavior induced by ET-1. To investigate this, mMCP knock-out and transgenic mice were injected intradermally with ET-1 and their scratching behavior was recorded and analyzed. Results CPA3-deficient mice and mice lacking all three proteases demonstrated highly elevated levels of scratching behavior compared with wild-type controls. A modest increase in the number of scratching bouts was also seen in mMCP6-deficient mice, while mMCP4-deficiency did not have any effect. Conclusion Altogether, these findings identify a prominent role for the mast cell proteases, in particular CPA3, in the protection against itch induced by ET-1.
Collapse
Affiliation(s)
- Elín I Magnúsdóttir
- Department of Neuroscience, Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jessica Bergman
- Department of Neuroscience, Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin C Lagerström
- Department of Neuroscience, Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden.
| |
Collapse
|
16
|
Gastrointestinal Manifestations of Hypereosinophilic Syndromes and Mast Cell Disorders: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 57:194-212. [PMID: 30003499 DOI: 10.1007/s12016-018-8695-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypereosinophilic syndrome and mastocytosis are relatively rare proliferative diseases encountered in the general population. However, allergists frequently consider these disorders in the differential of patients presenting with gastrointestinal, pulmonary, cutaneous, and allergic symptoms. Gastrointestinal symptoms are some of the most frequent and/or debilitating aspects of both disease states and in many cases lead to poor quality of life and functional limitation for the patient. They are the third most common clinical manifestation in hypereosinophilic syndrome and have been found to be the most distressful aspect of the disorder in those with systemic mastocytosis. Both eosinophils and mast cells play integral parts in normal gut physiology, but when and how exactly their effector functionality translates into clinically significant disease remains unclear, and the available literature regarding their pathophysiology remains sparse. Eosinophils and mast cells even, in fact, may not necessarily function in isolation from each other but can participate in bidirectional crosstalk. Both are affected by similar mediators and can also influence one another in a paracrine fashion. Their interactions include both production of soluble mediators for specific eosinophil and mast cell receptors (for example, eosinophil recruitment and activation by mast cells releasing histamine and eotaxin) as well as direct physical contact. The mechanistic relationship between clonal forms of hypereosinophilia and systemic mastocytosis has also been explored. The nature of gastrointestinal symptomatology in the setting of both hypereosinophilic syndrome and mast cell disease is frequently manifold, heterogeneous, and the lack of better targeted therapy makes diagnosis and management challenging, especially when faced with a substantial differential. Currently, the management of these gastrointestinal symptoms relies on the treatment of the overall disease process. In hypereosinophilia patients, systemic corticosteroids are mainstay, although steroid-sparing agents such as hydroxyurea, IFN-α, methotrexate, cyclosporine, imatinib, and mepolizumab have been utilized with varying success. In mastocytosis patients, anti-mediator therapy with antihistamines and mast cell stabilization with cromolyn sodium can be considered treatments of choice, followed by other therapies yet to be thoroughly studied, including the role of the low-histamine diet, corticosteroids, and treatment of associated IBS symptoms. Given that both eosinophils and mast cells may have joint pathophysiologic roles, they have the potential to be a combined target for therapeutic intervention in disease states exhibiting eosinophil or mast cell involvement.
Collapse
|
17
|
Akula S, Paivandy A, Fu Z, Thorpe M, Pejler G, Hellman L. Quantitative In-Depth Analysis of the Mouse Mast Cell Transcriptome Reveals Organ-Specific Mast Cell Heterogeneity. Cells 2020; 9:cells9010211. [PMID: 31947690 PMCID: PMC7016716 DOI: 10.3390/cells9010211] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are primarily resident hematopoietic tissue cells that are localized at external and internal surfaces of the body where they act in the first line of defense. MCs are found in all studied vertebrates and have also been identified in tunicates, an early chordate. To obtain a detailed insight into the biology of MCs, here we analyzed the transcriptome of MCs from different mouse organs by RNA-seq and PCR-based transcriptomics. We show that MCs at different tissue locations differ substantially in their levels of transcripts coding for the most abundant MC granule proteins, even within the connective tissue type, or mucosal MC niches. We also demonstrate that transcript levels for the major granule proteins, including the various MC-restricted proteases and the heparin core protein, can be several orders of magnitude higher than those coding for various surface receptors and enzymes involved in protease activation, as well as enzymes involved in the synthesis of heparin, histamine, leukotrienes, and prostaglandins. Interestingly, our analyses revealed an almost complete absence in MCs of transcripts coding for cytokines at baseline conditions, indicating that cytokines are primarily produced by activated MCs. Bone marrow-derived MCs (BMMCs) are often used as equivalents of tissue MCs. Here, we show that these cells differ substantially from tissue MCs with regard to their transcriptome. Notably, they showed a transcriptome indicative of relatively immature cells, both with respect to the expression of granule proteases and of various enzymes involved in the processing/synthesis of granule compounds, indicating that care should be taken when extrapolating findings from BMMCs to the in vivo function of tissue-resident MCs. Furthermore, the latter finding indicates that the development of fully mature tissue-resident MCs requires a cytokine milieu beyond what is needed for in vitro differentiation of BMMCs. Altogether, this study provides a comprehensive quantitative view of the transcriptome profile of MCs resident at different tissue locations that builds nicely on previous studies of both the mouse and human transcriptome, and form a solid base for future evolutionary studies of the role of MCs in vertebrate immunity.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, BMC, Box 589, SE-751 23 Uppsala, Sweden; (A.P.); (G.P.)
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, BMC, Box 589, SE-751 23 Uppsala, Sweden; (A.P.); (G.P.)
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
18
|
Ohneda K, Ohmori S, Yamamoto M. Mouse Tryptase Gene Expression is Coordinately Regulated by GATA1 and GATA2 in Bone Marrow-Derived Mast Cells. Int J Mol Sci 2019; 20:ijms20184603. [PMID: 31533351 PMCID: PMC6770354 DOI: 10.3390/ijms20184603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Mast cell tryptases have crucial roles in allergic and inflammatory diseases. The mouse tryptase genes represent a cluster of loci on chromosome 16p3.3. While their functional studies have been extensively performed, transcriptional regulation of tryptase genes is poorly understood. In this study, we examined the molecular basis of the tryptase gene expression in bone marrow-derived mast cells (BMMCs) of C57BL/6 mice and in MEDMC-BRC6 mast cells. The expression of the Tpsb2 and Tpsg1 genes, which reside at the 3′-end of the tryptase locus, is significantly decreased by the reduction of the GATA transcription factors GATA1 or GATA2. Chromatin immunoprecipitation assays have shown that the GATA factors bind at multiple regions within the locus, including 1.0 and 72.8 kb upstream of the Tpsb2 gene, and that GATA1 and GATA2 facilitate each other’s DNA binding activity to these regions. Deletion of the −72.8 kb region by genome editing significantly reduced the Tpsb2 and Tpsg1 mRNA levels in MEDMC-BRC6 cells. Furthermore, binding of CTCF and the cohesin subunit Rad21 was found upstream of the −72.8 kb region and was significantly reduced in the absence of GATA1. These results suggest that mouse tryptase gene expression is coordinately regulated by GATA1 and GATA2 in BMMCs.
Collapse
Affiliation(s)
- Kinuko Ohneda
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
- Correspondence: ; Tel.: +81-22-274-5990
| | - Shin’ya Ohmori
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8573, Japan;
| |
Collapse
|
19
|
Rabelo Melo F, Santosh Martin S, Sommerhoff CP, Pejler G. Exosome-mediated uptake of mast cell tryptase into the nucleus of melanoma cells: a novel axis for regulating tumor cell proliferation and gene expression. Cell Death Dis 2019; 10:659. [PMID: 31506436 PMCID: PMC6736983 DOI: 10.1038/s41419-019-1879-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
It is well established that mast cell accumulation accompanies most malignancies. However, the knowledge of how mast cells functionally impact on tumors is still rudimentary. Here we addressed this issue and show that mast cells have anti-proliferative activity on melanoma cells and that this effect is dependent on tryptase, a tetrameric protease stored in mast cell granules. Mechanistically, tryptase was found to be endocytosed by melanoma cells as cargo of DNA-coated exosomes released from melanoma cells, followed by transport to the nucleus. In the nucleus, tryptase executed clipping of histone 3 and degradation of Lamin B1, accompanied by extensive nuclear remodeling. Moreover, tryptase degraded hnRNP A2/B1, a protein involved in mRNA stabilization and interaction with non-coding RNAs. This was followed by downregulated expression of the oncogene EGR1 and of multiple non-coding RNAs, including oncogenic species. Altogether, these findings establish a new principle for regulation of tumor cell proliferation.
Collapse
Affiliation(s)
- Fabio Rabelo Melo
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden.
| | | | | | - Gunnar Pejler
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden. .,Swedish University of Agricultural Sciences, Department of Anatomy, Physiology and Biochemistry, Uppsala, Sweden.
| |
Collapse
|
20
|
Li Z, Peirasmaki D, Svärd S, Åbrink M. Giardia excretory-secretory proteins modulate the enzymatic activities of mast cell chymase and tryptase. Mol Immunol 2019; 114:535-544. [PMID: 31518857 DOI: 10.1016/j.molimm.2019.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mast cells are involved in the host immune response controlling infection with the non-invasive intestinal protozoan parasite Giardia intestinalis. Experimental infections in rodents with G. intestinalis showed increased intestinal expression of mucosal and connective mast cell specific proteases suggesting that both mucosal and connective tissue mast cells are recruited and activated during infection. During infection Giardia excretory-secretory proteins (ESPs) with immunomodulatory capacity are released. However, studies investigating potential interactions between Giardia ESPs and the connective tissue mast cell specific serine proteases, i.e. human chymase and mouse mast cell protease (mMCP)-4 and, human and mouse tryptase (mMCP-6) remain scarce. RESULTS We first investigated if soluble Giardia proteins (sGPs), which over-lap extensively in protein content with ESP fractions, from the isolates GS, WB and H3, could induce mast cell activation. sGPs induced a minor activation of bone marrow derived mucosal-like mast cells, as indicated by increased IL-6 secretion and no degranulation. Furthermore, sGPs were highly resistant to degradation by human tryptase while human chymase degraded a 65 kDa sGP and, wild-type mouse ear tissue extracts degraded several protein bands in the 10 to 75 kDa range. In striking contrast, sGPs and ESPs were found to increase the enzymatic activity of human and mouse tryptase and to reduce the activity of human and mouse chymase. CONCLUSION Our finding suggests that Giardia ssp. via enhancement or reduction of mast cell protease activity may modulate mast cell-driven intestinal immune responses. ESP-mediated modulation of the mast cell specific proteases may also increase degradation of tight junctions, which may be beneficial for Giardia ssp. during infection.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden.
| |
Collapse
|
21
|
Intestinal Mucosal Mast Cells: Key Modulators of Barrier Function and Homeostasis. Cells 2019; 8:cells8020135. [PMID: 30744042 PMCID: PMC6407111 DOI: 10.3390/cells8020135] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract harbours the largest population of mast cells in the body; this highly specialised leukocyte cell type is able to adapt its phenotype and function to the microenvironment in which it resides. Mast cells react to external and internal stimuli thanks to the variety of receptors they express, and carry out effector and regulatory tasks by means of the mediators of different natures they produce. Mast cells are fundamental elements of the intestinal barrier as they regulate epithelial function and integrity, modulate both innate and adaptive mucosal immunity, and maintain neuro-immune interactions, which are key to functioning of the gut. Disruption of the intestinal barrier is associated with increased passage of luminal antigens into the mucosa, which further facilitates mucosal mast cell activation, inflammatory responses, and altered mast cell⁻enteric nerve interaction. Despite intensive research showing gut dysfunction to be associated with increased intestinal permeability and mucosal mast cell activation, the specific mechanisms linking mast cell activity with altered intestinal barrier in human disease remain unclear. This review describes the role played by mast cells in control of the intestinal mucosal barrier and their contribution to digestive diseases.
Collapse
|
22
|
Xu JY, Xiong YY, Lu XT, Yang YJ. Regulation of Type 2 Immunity in Myocardial Infarction. Front Immunol 2019; 10:62. [PMID: 30761134 PMCID: PMC6362944 DOI: 10.3389/fimmu.2019.00062] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 immunity participates in the pathogeneses of helminth infection and allergic diseases. Emerging evidence indicates that the components of type 2 immunity are also involved in maintaining metabolic hemostasis and facilitating the healing process after tissue injury. Numerous preclinical studies have suggested regulation of type 2 immunity-related cytokines, such as interleukin-4, -13, and -33, and cell types, such as M2 macrophages, mast cells, and eosinophils, affects cardiac functions after myocardial infarction (MI), providing new insights into the importance of immune modulation in the infarcted heart. This review provides an overview of the functions of these cytokines and cells in the setting of MI as well as their potential to predict the severity and prognosis of MI.
Collapse
Affiliation(s)
- Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao-Tong Lu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Frossi B, Mion F, Sibilano R, Danelli L, Pucillo CEM. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 2019; 282:35-46. [PMID: 29431204 DOI: 10.1111/imr.12636] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| | - Francesca Mion
- Department of Medicine, University of Udine, Udine, Italy
| | - Riccardo Sibilano
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Luca Danelli
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | | |
Collapse
|
24
|
The resistance against Trichinella spiralis infection induced by primary infection with respiratory syncytial virus. Parasitology 2018; 146:634-642. [PMID: 30394235 DOI: 10.1017/s0031182018001889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human infections with Trichinella spiralis and respiratory syncytial virus (RSV) are common, as T. spiralis infections are re-emerging in various parts of the world and RSV infections remain a threat for infants. Yet, studies investigating the relationship pertaining to the two are severely lacking. In particular, immune response induction via RSV and T. spiralis remain largely elusive. Here, we investigated the resistance against T. spiralis infection induced upon primary infection with RSV. RSV, notorious for causing severe inflammatory reaction in the lungs, were intranasally infected, followed with a T. spiralis infection in mice. Our results revealed that primary RSV infection in mice significantly raised T. spiralis-specific and total IgE, IgG and its subclass antibody responses upon T. spiralis challenge infection (RSV-Ts). Blood eosinophil levels were decreased in RSV-Ts, accompanied with significant increase in both Th1 and Th2 cytokines. Antibodies generated against RSV in RSV-infected mice were found to react with T. spiralis excretory/secretory antigen, showing several bands determined through immunoblotting. RSV-Ts also had a marked reduction of T. spiralis worm burden in diaphragm. These results indicate that immune responses induced by RSV infection contribute to resistance against subsequent T. spiralis infection.
Collapse
|
25
|
Nagashima M, Koyanagi M, Arimura Y. Comparative Analysis of Bone Marrow-derived Mast Cell Differentiation in C57BL/6 and BALB/c Mice. Immunol Invest 2018; 48:303-320. [PMID: 30335529 DOI: 10.1080/08820139.2018.1523924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Allergic diseases have increased in the last three decades. Mast cells play a critical role in allergic diseases along with allergen-specific immunoglobulin E (IgE). Following mast cell degranulation elicited by ligation of the IgE-FcεRI receptor complex with allergen, allergic reactions are followed by various symptoms such as vascular hyperpermeability, mucous secretion, itching, sneezing, wheezing, rashes, fever, and anaphylactic shock. Susceptibility or inclination to allergy varies depending on individual genetic traits and living environment, and it has long been believed that such an inclination is determined by an immunologic balance of T helper cell types. Mouse strains also have different susceptibilities to allergy. Similar to T helper cells and macrophages, it is not known whether mast cells can also be divided into two different types between mouse strains. In this study, we prepared bone marrow-derived mast cells from BALB/c and C57BL/6 mice and examined their cellular properties. Cellular response to IL-3 and the process of mast cell differentiation from bone marrow cells were different on the basis of cell surface marker molecules. BALB/c-derived cells more efficiently exhibited degranulation than did C57BL/6-derived cells following both calcium ionophore and receptor crosslinking. These functional differences persisted even after a longer cell culture for 8 weeks, suggesting a difference in cell-autonomous characteristics. These results support the concept that mast cells also have different cell types dependent on their genetic background. Abbreviations: Ab: antibody; BMMC: bone marrow-derived mast cell; DNP: dinitrophenyl; FACS: fluorescence-activated cell sorter; FCS: fetal calf serum; FITC: fluorescein isothiocyanate; FSC: forward scatter; HRP: horseradish peroxidase; HSA: human serum albumin; Ig: immunoglobulin; IL: interleukin; MIP-2: macrophage inflammatory protein-2; MCP: mast cell protease; PE: phycoerythrin; PerCP: Peridinin chlorophyll protein complex; SNP: single nucleotide polymorphisms; SSC: side scatter; Th: T helper; TNF-α: tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Miki Nagashima
- a Host Defense for Animals , Nippon Veterinary and Life Science University , Musashino-shi, Tokyo , Japan
| | - Madoka Koyanagi
- a Host Defense for Animals , Nippon Veterinary and Life Science University , Musashino-shi, Tokyo , Japan
| | - Yutaka Arimura
- a Host Defense for Animals , Nippon Veterinary and Life Science University , Musashino-shi, Tokyo , Japan
| |
Collapse
|
26
|
Magnúsdóttir EI, Grujic M, Roers A, Hartmann K, Pejler G, Lagerström MC. Mouse mast cells and mast cell proteases do not play a significant role in acute tissue injury pain induced by formalin. Mol Pain 2018; 14:1744806918808161. [PMID: 30280636 PMCID: PMC6247485 DOI: 10.1177/1744806918808161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Subcutaneous formalin injections are used as a model for tissue injury-induced pain where formalin induces pain and inflammation indirectly by crosslinking proteins and directly through activation of the transient receptor potential A1 receptor on primary afferents. Activation of primary afferents leads to both central and peripheral release of neurotransmitters. Mast cells are found in close proximity to peripheral sensory nerve endings and express receptors for neurotransmitters released by the primary afferents, contributing to the neuro/immune interface. Mast cell proteases are found in large quantities within mast cell granules and are released continuously in small amounts and upon mast cell activation. They have a wide repertoire of proposed substrates, including Substance P and calcitonin gene-related peptide, but knowledge of their in vivo function is limited. We evaluated the role of mouse mast cell proteases (mMCPs) in tissue injury pain responses induced by formalin, using transgenic mice lacking either mMCP4, mMCP6, or carboxypeptidase A3 (CPA3), or mast cells in their entirety. Further, we investigated the role of mast cells in heat hypersensitivity following a nerve growth factor injection. No statistical difference was observed between the respective mast cell protease knockout lines and wild-type controls in the formalin test. Mast cell deficiency did not have an effect on formalin-induced nociceptive responses nor nerve growth factor-induced heat hypersensitivity. Our data thus show that mMCP4, mMCP6, and CPA3 as well as mast cells as a whole, do not play a significant role in the pain responses associated with acute tissue injury and inflammation in the formalin test. Our data also indicate that mast cells are not essential to heat hypersensitivity induced by nerve growth factor.
Collapse
Affiliation(s)
- Elín I Magnúsdóttir
- 1 Department of Neuroscience, Developmental Genetics Unit, Uppsala University, Uppsala, Sweden
| | - Mirjana Grujic
- 2 Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Axel Roers
- 3 Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Karin Hartmann
- 4 Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Gunnar Pejler
- 2 Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,5 Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin C Lagerström
- 1 Department of Neuroscience, Developmental Genetics Unit, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Yamanishi Y, Miyake K, Iki M, Tsutsui H, Karasuyama H. Recent advances in understanding basophil-mediated Th2 immune responses. Immunol Rev 2018; 278:237-245. [PMID: 28658549 DOI: 10.1111/imr.12548] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
Basophils, the least common granulocytes, represent only ~0.5% of peripheral blood leukocytes. Because of the small number and some similarity with mast cells, the functional significance of basophils remained questionable for a long time. Recent studies using newly-developed analytical tools have revealed crucial and non-redundant roles for basophils in various immune responses, particularly Th2 immunity including allergy and protective immunity against parasitic infections. In this review, we discuss the mechanisms how basophils mediate Th2 immune responses and the nature of basophil-derived factors involved in them. Activated basophils release serine proteases, mouse mast cell protease 8 (mMCP-8), and mMCP-11, that are preferentially expressed by basophils rather than mast cells in spite of their names. These proteases elicit microvascular hyperpermeability and leukocyte infiltration in affected tissues, leading to inflammation. Basophil-derived IL-4 also contributes to eosinophil infiltration while it acts on tissue-infiltrating inflammatory monocytes to promote their differentiation into M2 macrophages that in turn dampen inflammation. Although basophils produce little or no MHC class II (MHC-II) proteins, they can acquire peptide-MHC-II complexes from dendritic cells via trogocytosis and present them together with IL-4 to naive CD4 T cells, leading to Th2 cell differentiation. Thus, basophils contribute to Th2 immunity at various levels.
Collapse
Affiliation(s)
- Yoshinori Yamanishi
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Kensuke Miyake
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Misako Iki
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Hidemitsu Tsutsui
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| |
Collapse
|
28
|
The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung. Oncotarget 2018; 8:25066-25079. [PMID: 28212574 PMCID: PMC5421910 DOI: 10.18632/oncotarget.15339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 11/25/2022] Open
Abstract
Mast cell secretory granules are densely packed with various bioactive mediators including proteases of chymase, tryptase and CPA3 type. Previous studies have indicated that mast cells can affect the outcome of melanoma but the contribution of the mast cell granule proteases to such effects has not been clear. Here we addressed this issue by assessing mice lacking either the chymase Mcpt4, the tryptase Mcpt6 or carboxypeptidase A3 (Cpa3), as well as mice simultaneously lacking all three proteases, in a model of melanoma dissemination from blood to the lung. Although mice with individual deficiency in the respective proteases did not differ significantly from wildtype mice in the extent of melanoma colonization, mice with multiple protease deficiency (Mcpt4/Mcpt6/Cpa3-deficient) exhibited a higher extent of melanoma colonization in lungs as compared to wildtype animals. This was supported by higher expression of melanoma-specific genes in lungs of Mcpt4/Mcpt6/CPA3-deficient vs. wildtype mice. Cytokine profiling showed that the levels of CXCL16, a chemokine with effects on T cell populations and NKT cells, were significantly lower in lungs of Mcpt4/Mcpt6/Cpa3-deficient animals vs. controls, suggesting that multiple mast cell protease deficiency might affect T cell or NKT cell populations. In line with this, we found that the Mcpt4/Mcpt6/Cpa3-deficiency was associated with a reduction in cells expressing CD1d, a MHC class 1-like molecule that is crucial for presenting antigen to invariant NKT (iNKT) cells. Together, these findings indicate a protective role of mast cell-specific proteases in melanoma dissemination, and suggest that this effect involves a CXCL16/CD1d/NKT cell axis.
Collapse
|
29
|
Acidic pH is essential for maintaining mast cell secretory granule homeostasis. Cell Death Dis 2017; 8:e2785. [PMID: 28492555 PMCID: PMC5584528 DOI: 10.1038/cddis.2017.206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/30/2022]
Abstract
It has been recognized for a long time that the secretory granules of mast cells are acidic, but the functional importance of maintaining an acidic pH in the mast cell granules is not fully understood. Here we addressed this issue by examining the effects of raising the pH of the mast cell secretory granules. Mast cells were incubated with bafilomycin A1, an inhibitor of the vacuolar-type ATPase proton pump. Supporting a role of vacuolar-type ATPase in mast cell granule acidification, bafilomycin A1 treatment caused a robust increase in granule pH. This was accompanied by marked effects on mast cell granules, including swelling and acquisition of vacuole-like morphology. Moreover, bafilomycin A1 caused extensive, yet selective effects on the granule content. These included aberrant processing of pro-carboxypeptidase A3 and a reduction in the level of intracellular histamine, the latter being accompanied by an increase in extracellular histamine. In contrast, the storage of β-hexosaminidase, a prototype lysosomal hydrolase known to be stored in mast cell granules, was not affected by abrogation of granule acidification. Moreover, bafilomycin A1 caused a reduction of tryptase enzymatic activity and appearance of tryptase degradation products. Tryptase inhibition prevented the formation of such degradation products, suggesting that the pH elevation causes tryptase to undergo autoproteolysis. Taken together, our findings reveal that mast cell secretory granule homeostasis is critically dependent on an acidic milieu.
Collapse
|
30
|
Stevens RL, McNeil HP, Wensing LA, Shin K, Wong GW, Hansbro PM, Krilis SA. Experimental Arthritis Is Dependent on Mouse Mast Cell Protease-5. J Biol Chem 2017; 292:5392-5404. [PMID: 28193842 DOI: 10.1074/jbc.m116.773416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
The constitutive heparin+ (HP) mast cells (MCs) in mice express mouse MC protease (mMCP)-5 and carboxypeptidase A (mMC-CPA). The amino acid sequence of mMCP-5 is most similar to that of human chymase-1, as are the nucleotide sequences of their genes and transcripts. Using a homologous recombination approach, a C57BL/6 mouse line was created that possessed a disrupted mMCP-5 gene. The resulting mice were fertile and had no obvious developmental abnormality. Lack of mMCP-5 protein did not alter the granulation of the IL-3/IL-9-dependent mMCP-2+ MCs in the jejunal mucosa of Trichinella spiralis-infected mice. In contrast, the constitutive HP+ MCs in the tongues of mMCP-5-null mice were poorly granulated and lacked mMC-CPA protein. Bone marrow-derived MCs were readily developed from the transgenic mice using IL-3. Although these MCs contained high levels of mMC-CPA mRNA, they also lacked the latter exopeptidase. mMCP-5 protein is therefore needed to target translated mMC-CPA to the secretory granule along with HP-containing serglycin proteoglycans. Alternately, mMCP-5 is needed to protect mMC-CPA from autolysis in the cell's granules. Fibronectin was identified as a target of mMCP-5, and the exocytosis of mMCP-5 from the MCs in the mouse's peritoneal cavity resulted in the expression of metalloproteinase protease-9, which has been implicated in arthritis. In support of the latter finding, experimental arthritis was markedly reduced in mMCP-5-null mice relative to wild-type mice in two disease models.
Collapse
Affiliation(s)
- Richard L Stevens
- From the Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2217, Australia, .,the Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - H Patrick McNeil
- the Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia
| | - Lislaine A Wensing
- From the Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2217, Australia.,the Department of Immunology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508900, Brazil
| | - Kichul Shin
- the Division of Rheumatology, Seoul Metropolitan Government, Seoul National University (SMG-SNU), Boramae Medical Center, Seoul 07061, Korea
| | - G William Wong
- the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Philip M Hansbro
- the Centre for Asthma & Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2308, Australia
| | - Steven A Krilis
- From the Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2217, Australia.,the Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
31
|
Melo FR, Wallerman O, Paivandy A, Calounova G, Gustafson AM, Sabari BR, Zabucchi G, Allis CD, Pejler G. Tryptase-catalyzed core histone truncation: A novel epigenetic regulatory mechanism in mast cells. J Allergy Clin Immunol 2017; 140:474-485. [PMID: 28108335 DOI: 10.1016/j.jaci.2016.11.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/28/2016] [Accepted: 11/29/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mast cells are key effector cells in allergic reactions. When activated to degranulate, they release a plethora of bioactive compounds from their secretory granules, including mast cell-restricted proteases such as tryptase. In a previous study, we showed that tryptase, in addition to its intragranular location, can be found within the nuclei of mast cells where it truncates core histones at their N-terminal ends. OBJECTIVE Considering that the N-terminal portions of the core histones constitute sites for posttranslational modifications of major epigenetic impact, we evaluated whether histone truncation by tryptase could have an impact on epigenetic events in mast cells. METHODS Mast cells were cultured from wild-type and tryptase null mice, followed by an assessment of their profile of epigenetic histone modifications and their phenotypic characteristics. RESULTS We show that tryptase truncates nucleosomal histone 3 and histone 2B (H2B) and that its absence results in accumulation of the epigenetic mark, lysine 5-acetylated H2B. Intriguingly, the accumulation of lysine 5-acetylated H2B was cell age-dependent and was associated with a profound upregulation of markers of non-mast cell lineages, loss of proliferative control, chromatin remodeling as well as extensive morphological alterations. CONCLUSIONS These findings introduce tryptase-catalyzed histone clipping as a novel epigenetic regulatory mechanism, which in the mast cell context may be crucial for maintaining cellular identity.
Collapse
Affiliation(s)
- Fabio R Melo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gabriela Calounova
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ann-Marie Gustafson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Benjamin R Sabari
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY
| | | | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
32
|
Basophil tryptase mMCP-11 plays a crucial role in IgE-mediated, delayed-onset allergic inflammation in mice. Blood 2016; 128:2909-2918. [DOI: 10.1182/blood-2016-07-729392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022] Open
Abstract
Key Points
Mice deficient for basophil tryptase mMCP-11 showed ameliorated IgE-mediated allergic inflammation with reduced leukocyte infiltration. This is the first demonstration that the basophil-derived protease plays a crucial role in allergic inflammation.
Collapse
|
33
|
Tsutsui H, Yamanishi Y, Ohtsuka H, Sato S, Yoshikawa S, Karasuyama H. The Basophil-specific Protease mMCP-8 Provokes an Inflammatory Response in the Skin with Microvascular Hyperpermeability and Leukocyte Infiltration. J Biol Chem 2016; 292:1061-1067. [PMID: 27932459 DOI: 10.1074/jbc.m116.754648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/28/2016] [Indexed: 01/12/2023] Open
Abstract
Basophils have often been erroneously considered to be minor relatives or blood-circulating precursors of tissue-resident mast cells because of some phenotypic similarity between them, including basophilic secretory granules in the cytoplasm. However, recent studies revealed that the repertoire of serine proteases stored in secretory granules is distinct in them. Particularly, mouse mast cell protease 8 (mMCP-8) is specifically expressed by basophils but not mast cells despite its name. Therefore, mMCP-8 is commonly used as a basophil-specific marker, but its functional property remains uncertain. Here we prepared recombinant mMCP-8 and examined its activity in vitro and in vivo Purified recombinant mMCP-8 showed heat-sensitive proteolytic activity when α-tubulin was used as a substrate. One intradermal shot of mMCP-8, not heat-inactivated, induced cutaneous swelling with increased microvascular permeability in a cyclooxygenase-dependent manner. Moreover, repeated intradermal injection of mMCP-8 promoted skin infiltration of leukocytes, predominantly neutrophils and, to a lesser extent, monocytes and eosinophils, in conjunction with up-regulation of chemokine expression in the skin lesion. These results suggest that mMCP-8 is an important effector molecule in basophil-elicited inflammation, providing novel insights into how basophils exert a crucial and non-redundant role, distinct from that played by mast cells, in immune responses.
Collapse
Affiliation(s)
- Hidemitsu Tsutsui
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Yoshinori Yamanishi
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hiromi Ohtsuka
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Shingo Sato
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Soichiro Yoshikawa
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hajime Karasuyama
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
34
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
35
|
Roy A, Sawesi O, Pettersson U, Dagälv A, Kjellén L, Lundén A, Åbrink M. Serglycin proteoglycans limit enteropathy in Trichinella spiralis-infected mice. BMC Immunol 2016; 17:15. [PMID: 27267469 PMCID: PMC4897876 DOI: 10.1186/s12865-016-0155-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/01/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Serglycin proteoglycans are essential for maturation of secretory granules and for the correct granular storage of cationic proteases in hematopoietic cells, e.g. mast cells. However, little is known about the in vivo functions of serglycin proteoglycans during infection. Here we investigated the potential role of serglycin proteoglycans in host defense after infection with the nematode Trichinella spiralis. RESULTS Twelve days post infection lack of serglycin proteoglycans caused significantly increased enteropathy. The serglycin-deficient mice showed significantly increased intestinal worm burden, reduced recruitment of mast cells to the intestinal crypts, decreased levels of the mast cell proteases MCPT5 and MCPT6 in intestinal tissue, decreased serum levels of TNF-α, IL-1β, IL-10 and IL-13, increased levels of IL-4 and total IgE in serum, and increased intestinal levels of the neutrophil markers myeloperoxidase and elastase, as compared to wild type mice. At five weeks post infection, increased larvae burden and inflammation were seen in the muscle tissue of the serglycin-deficient mice. CONCLUSIONS Our results demonstrate that the serglycin-deficient mice were more susceptible to T. spiralis infection and displayed an unbalanced immune response compared to wild type mice. These findings point to an essential regulatory role of serglycin proteoglycans in immunity.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Osama Sawesi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Ulrika Pettersson
- Department of Pathology and Wildlife Diseases, The National Veterinary Institute, Uppsala, Sweden
| | - Anders Dagälv
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, The National Veterinary Institute, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden.
| |
Collapse
|
36
|
Mukai K, Tsai M, Starkl P, Marichal T, Galli SJ. IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol 2016; 38:581-603. [PMID: 27225312 DOI: 10.1007/s00281-016-0565-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
IgE-dependent mast cell activation is a major effector mechanism underlying the pathology associated with allergic disorders. The most dramatic of these IgE-associated disorders is the fatal anaphylaxis which can occur in some people who have developed IgE antibodies to otherwise innocuous antigens, such as those contained in certain foods and medicines. Why would such a highly "maladaptive" immune response develop in evolution and be retained to the present day? Host defense against parasites has long been considered the only beneficial function that might be conferred by IgE and mast cells. However, recent studies have provided evidence that, in addition to participating in host resistance to certain parasites, mast cells and IgE are critical components of innate (mast cells) and adaptive (mast cells and IgE) immune responses that can enhance host defense against the toxicity of certain arthropod and animal venoms, including enhancing the survival of mice injected with such venoms. Yet, in some people, developing IgE antibodies to insect or snake venoms puts them at risk for having a potentially fatal anaphylactic reaction upon subsequent exposure to such venoms. Delineating the mechanisms underlying beneficial versus detrimental innate and adaptive immune responses associated with mast cell activation and IgE is likely to enhance our ability to identify potential therapeutic targets in such settings, not only for reducing the pathology associated with allergic disorders but perhaps also for enhancing immune protection against pathogens and animal venoms.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Philipp Starkl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305-5324, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
37
|
Vangansewinkel T, Geurts N, Quanten K, Nelissen S, Lemmens S, Geboes L, Dooley D, Vidal PM, Pejler G, Hendrix S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6. FASEB J 2016; 30:2040-57. [PMID: 26917739 DOI: 10.1096/fj.201500114r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/28/2016] [Indexed: 12/12/2022]
Abstract
An important barrier for axon regeneration and recovery after traumatic spinal cord injury (SCI) is attributed to the scar that is formed at the lesion site. Here, we investigated the effect of mouse mast cell protease (mMCP) 6, a mast cell (MC)-specific tryptase, on scarring and functional recovery after a spinal cord hemisection injury. Functional recovery was significantly impaired in both MC-deficient and mMCP6-knockout (mMCP6(-/-)) mice after SCI compared with wild-type control mice. This decrease in locomotor performance was associated with an increased lesion size and excessive scarring at the injury site. Axon growth-inhibitory chondroitin sulfate proteoglycans and the extracellular matrix components fibronectin, laminin, and collagen IV were significantly up-regulated in MC-deficient and mMCP6(-/-) mice, with an increase in scar volume between 23 and 32%. A degradation assay revealed that mMCP6 directly cleaves fibronectin and collagen IV in vitro In addition, gene expression levels of the scar components fibronectin, aggrecan, and collagen IV were increased up to 6.8-fold in mMCP6(-/-) mice in the subacute phase after injury. These data indicate that endogenous mMCP6 has scar-suppressing properties after SCI via indirect cleavage of axon growth-inhibitory scar components and alteration of the gene expression profile of these factors.-Vangansewinkel, T., Geurts, N., Quanten, K., Nelissen, S., Lemmens, S., Geboes, L., Dooley, D., Vidal, P. M., Pejler, G., Hendrix, S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.
Collapse
Affiliation(s)
- Tim Vangansewinkel
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Geurts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Kirsten Quanten
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sofie Nelissen
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Stefanie Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Lies Geboes
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Pia M Vidal
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden; and Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium;
| |
Collapse
|
38
|
Activated mast cells promote differentiation of B cells into effector cells. Sci Rep 2016; 6:20531. [PMID: 26847186 PMCID: PMC4742803 DOI: 10.1038/srep20531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM+ B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells.
Collapse
|
39
|
Drube S, Weber F, Loschinski R, Beyer M, Rothe M, Rabenhorst A, Göpfert C, Meininger I, Diamanti MA, Stegner D, Häfner N, Böttcher M, Reinecke K, Herdegen T, Greten FR, Nieswandt B, Hartmann K, Krämer OH, Kamradt T. Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells. Oncotarget 2016; 6:5354-68. [PMID: 25749030 PMCID: PMC4467154 DOI: 10.18632/oncotarget.3022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 01/16/2023] Open
Abstract
Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca²⁺-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term "subthreshold IKK activation".This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33.We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo.Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Mandy Beyer
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Anja Rabenhorst
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, 50937 Köln, Germany
| | - Christiane Göpfert
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Isabel Meininger
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, 60596 Frankfurt, Germany
| | - David Stegner
- Rudolf Virchow Centrum für experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, 07743 Jena, Germany
| | - Martin Böttcher
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Kirstin Reinecke
- Institut für Experimentelle und Klinische Pharmakologie, Universität Schleswig-Holstein, 24105 Kiel, Germany
| | - Thomas Herdegen
- Institut für Experimentelle und Klinische Pharmakologie, Universität Schleswig-Holstein, 24105 Kiel, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Centrum für experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, 50937 Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, 55131 Mainz, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| |
Collapse
|
40
|
Opportunistic pathogen Candida albicans elicits a temporal response in primary human mast cells. Sci Rep 2015; 5:12287. [PMID: 26192381 PMCID: PMC4507480 DOI: 10.1038/srep12287] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/19/2015] [Indexed: 12/29/2022] Open
Abstract
Immunosuppressed patients are frequently afflicted with severe mycoses caused by opportunistic fungal pathogens. Besides being a commensal, colonizing predominantly skin and mucosal surfaces, Candida albicans is the most common human fungal pathogen. Mast cells are present in tissues prone to fungal colonization being expectedly among the first immune cells to get into contact with C. albicans. However, mast cell-fungus interaction remains a neglected area of study. Here we show that human mast cells mounted specific responses towards C. albicans. Collectively, mast cell responses included the launch of initial, intermediate and late phase components determined by the secretion of granular proteins and cytokines. Initially mast cells reduced fungal viability and occasionally internalized yeasts. C. albicans could evade ingestion by intracellular growth leading to cellular death. Furthermore, secreted factors in the supernatants of infected cells recruited neutrophils, but not monocytes. Late stages were marked by the release of cytokines that are known to be anti-inflammatory suggesting a modulation of initial responses. C. albicans-infected mast cells formed extracellular DNA traps, which ensnared but did not kill the fungus. Our results suggest that mast cells serve as tissue sentinels modulating antifungal immune responses during C. albicans infection. Consequently, these findings open new doors for understanding fungal pathogenicity.
Collapse
|
41
|
Fang Y, Xiang Z. Roles and relevance of mast cells in infection and vaccination. J Biomed Res 2015; 30:253-63. [PMID: 26565602 PMCID: PMC4946316 DOI: 10.7555/jbr.30.20150038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/08/2015] [Accepted: 04/26/2015] [Indexed: 01/06/2023] Open
Abstract
In addition to their well-established role in allergy mast cells have been described as contributing to functional regulation of both innate and adaptive immune responses in host defense. Mast cells are of hematopoietic origin but typically complete their differentiation in tissues where they express immune regulatory functions by releasing diverse mediators and cytokines. Mast cells are abundant at mucosal tissues which are portals of entry for common infectious agents in addition to allergens. Here, we review the current understanding of the participation of mast cells in defense against infection. We also discuss possibilities of exploiting mast cell activation to provide adequate adjuvant activity that is needed in high-quality vaccination against infectious diseases.
Collapse
Affiliation(s)
- Yu Fang
- Department of Microbiology and Immunology; Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg 40530, Sweden.
| |
Collapse
|
42
|
The Role of Mast Cell Specific Chymases and Tryptases in Tumor Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:142359. [PMID: 26146612 PMCID: PMC4471246 DOI: 10.1155/2015/142359] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/13/2015] [Indexed: 01/24/2023]
Abstract
An association between mast cells and tumor angiogenesis is known to exist, but the exact role that mast cells play in this process is still unclear. It is thought that the mediators released by mast cells are important in neovascularization. However, it is not known how individual mediators are involved in this process. The major constituents of mast cell secretory granules are the mast cell specific proteases chymase, tryptase, and carboxypeptidase A3. Several previous studies aimed to understand the way in which specific mast cell granule constituents act to induce tumor angiogenesis. A body of evidence indicates that mast cell proteases are the pivotal players in inducing tumor angiogenesis. In this review, the likely mechanisms by which tryptase and chymase can act directly or indirectly to induce tumor angiogenesis are discussed. Finally, information presented here in this review indicates that mast cell proteases significantly influence angiogenesis thus affecting tumor growth and progression. This also suggests that these proteases could serve as novel therapeutic targets for the treatment of various types of cancer.
Collapse
|
43
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
44
|
Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol 2015; 126:45-127. [PMID: 25727288 DOI: 10.1016/bs.ai.2014.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such "controversial" results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Elena Tchougounova
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
45
|
|
46
|
Abstract
Mast cells (MCs) are tissue-based immune cells that participate to both innate and adaptive immunities as well as to tissue-remodelling processes. Their evolutionary history appears as a fascinating process, whose outline we can only partly reconstruct according to current remnant evidence. MCs have been identified in all vertebrate classes, and a cell population with the overall characteristics of higher vertebrate MCs is identifiable even in the most evolutionarily advanced fish species. In invertebrates, cells related to vertebrate MCs have been recognized in ascidians, a class of urochordates which appeared approximately 500 million years ago. These comprise the granular hemocyte with intermediate characteristics of basophils and MCs and the "test cell" (see below). Both types of cells contain histamine and heparin, and provide defensive functions. The test cell releases tryptase after stimulation with compound 48/80. A leukocyte ancestor operating in the context of a primitive local innate immunity probably represents the MC phylogenetic progenitor. This cell was likely involved in phagocytic and killing activity against pathogens and operated as a general inducer of inflammation. This early type of defensive cell possibly expressed concomitant tissue-reparative functions. With the advent of recombinase activating gene (RAG)-mediated adaptive immunity in the Cambrian era, some 550 million years ago, and the emergence of early vertebrates, MC progenitors differentiated towards a more complex cellular entity. Early MCs probably appeared in the last common ancestor we shared with hagfish, lamprey, and sharks about 450-500 million years ago.
Collapse
|
47
|
|
48
|
Abstract
Mast cells (MCs) are tissue-resident immune cells that carry out protective roles against pathogens. In disease states, such as inflammatory bowel disease, these granulocytes release a diverse array of mediators that contribute to inflammatory processes. They also participate in wound repair and tissue remodeling. In this review, the composition of MCs and how their phenotypes can be altered during inflammation of the gastrointestinal tract is detailed. Animal and human clinical studies that have implicated the participation of MCs in inflammatory bowel disease are reviewed, including the contribution of the cell's mediators to clinical symptoms, stress-triggered inflammation, and fistula and strictures. Studies that have focused on negating the proinflammatory roles of MCs and their mediators in animal models suggest new targets for therapies for patients with inflammatory bowel disease.
Collapse
|
49
|
Cui Y, Dahlin JS, Feinstein R, Bankova LG, Xing W, Shin K, Gurish MF, Hallgren J. Mouse mast cell protease-6 and MHC are involved in the development of experimental asthma. THE JOURNAL OF IMMUNOLOGY 2014; 193:4783-4789. [PMID: 25320274 DOI: 10.4049/jimmunol.1302947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Allergic asthma is a complex disease with a strong genetic component where mast cells play a major role by the release of proinflammatory mediators. In the mouse, mast cell protease-6 (mMCP-6) closely resembles the human version of mast cell tryptase, β-tryptase. The gene that encodes mMCP-6, Tpsb2, resides close by the H-2 complex (MHC gene) on chromosome 17. Thus, when the original mMCP-6 knockout mice were backcrossed to the BALB/c strain, these mice were carrying the 129/Sv haplotype of MHC (mMCP-6(-/-)/H-2bc). Further backcrossing yielded mMCP-6(-/-) mice with the BALB/c MHC locus. BALB/c mice were compared with mMCP-6(-/-) and mMCP-6(-/-)/H-2bc mice in a mouse model of experimental asthma. Although OVA-sensitized and challenged wild type mice displayed a striking airway hyperresponsiveness (AHR), mMCP-6(-/-) mice had less AHR that was comparable with that of mMCP-6(-/-)/H-2bc mice, suggesting that mMCP-6 is required for a full-blown AHR. The mMCP-6(-/-)/H-2bc mice had strikingly reduced lung inflammation, IgE responses, and Th2 cell responses upon sensitization and challenge, whereas the mMCP-6(-/-) mice responded similarly to the wild type mice but with a minor decrease in bronchoalveolar lavage eosinophils. These findings suggest that inflammatory Th2 responses are highly dependent on the MHC-haplotype and that they can develop essentially independently of mMCP-6, whereas mMCP-6 plays a key role in the development of AHR.
Collapse
Affiliation(s)
- Yue Cui
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim S Dahlin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ricardo Feinstein
- Department of Pathology and Wildlife Diseases, The National Veterinary Institute, Uppsala, Sweden
| | - Lora G Bankova
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Xing
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kichul Shin
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Michael F Gurish
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 397] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|