1
|
Vanli S, Kurtoglu F, Alan BS, Akcakavak G, Ozdemir O. Investigation of the effects of Theranekron and Sorafenib treatments on carcinogenesis, apoptosis and biochemical profile in hepatocellular carcinoma in rats. Toxicol Mech Methods 2024; 34:750-760. [PMID: 38577837 DOI: 10.1080/15376516.2024.2332909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
This study aimed to investigate the effects of Tarantula cubensis alcohol extract (TCAE, Theranekron) and Sorafenib (S) treatments on carcinogenesis, apoptosis and biochemical profile of rats with experimentally induced hepatocellular carcinoma (HCC). In the presented study, 58 male rats were divided into 7 groups; Negative Control (NC, n = 6), NC + TCAE (NCT, n = 6), NC + Sorafenib (NCS, n = 6), Positive Control (PC, n = 10), Positive Control + TCAE (PCT, n = 10), Positive Control + Sorafenib (PCS, n = 10), Positive Control + TCAE + Sorafenib (PCTS, n = 10). The active ingredients Diethylnitrosamine (DEN, 120 mg/kg, single dose) and Nitrosomorpholine (NMOR, 50 ppm, 21 weeks orally) were used to induce HCC in rats. At the end of the experiment, the animals were euthanized under appropriate conditions and samples were collected for biochemical and pathological investigations. In the PC group, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) levels were higher (p < 0.001) and urea levels were lower (p < 0.001) compared to all other groups. Treatment groups reorganized the relevant markers (ALT, AST, GGT, and urea). A significant increase was detected in Caspase-10, Caspase-3 and Granzyme-B (GrzB) (p < 0.001) in blood and Caspase-10 and GrzB (p < 0.05) in liver tissue in PCT, PCS and PCTS groups compared to the PC group. Histopathological examination revealed that the PC group showed cancer morphology, and the treatment groups caused a decrease in tumor incidence and size. Our current findings suggest that the mechanism of action of TCAE in HCC is through the NKs/CTLs-GrzB-Casp10-Casp3 signaling pathway and can be used in combination with chemotherapy drugs for the development of future drug designs.
Collapse
Affiliation(s)
- Serdar Vanli
- Ministry of Agriculture and Forestry, Ilgin District Directorate of Agriculture and Forestry, Konya, Turkey
| | - Firuze Kurtoglu
- Department of Biochemistry, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| | - Beyza S Alan
- Department of Biochemistry, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| | - Gokhan Akcakavak
- Department of Pathology, Faculty of Veterinary Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Ozgur Ozdemir
- Department of Pathology, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| |
Collapse
|
2
|
Raghav A, Jeong GB. Phase I-IV Drug Trials on Hepatocellular Carcinoma in Asian Populations: A Systematic Review of Ten Years of Studies. Int J Mol Sci 2024; 25:9286. [PMID: 39273237 PMCID: PMC11395253 DOI: 10.3390/ijms25179286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Despite advances in the treatment of hepatocellular carcinoma (HCC) over the last few decades, treatment opportunities for patients with HCC remain limited. HCC is the most common form of liver cancer, accounting for approximately 90% of all cases worldwide. Moreover, apart from the current pharmacological interventions, hepatic resection and liver transplantation are the mainstay curative approaches for patients with HCC. This systematic review included phase I, II, III, and IV clinical trials (CTs) and randomized controlled trials (RCTs) on current treatments for patients with HCC in Asian populations (2013-2023). A total of 427 articles were screened, and 184 non-duplicate publications were identified. After screening the titles and abstracts, 96 publications were excluded, and another 28 were excluded after full-text screening. The remaining 60 eligible RCTs/CTs were finally included. A total of 60 clinical trials fulfilled our inclusion criteria with 36 drugs used as monotherapy or combination therapy for HCC. Most studies used sorafenib alone or in combination with any of the treatment regimens. Lenvatinib or atezolizumab with bevacizumab was used for HCC after initial sorafenib treatment. Eighteen studies compared the efficacy of sorafenib with that of other drugs, including lenvatinib, cabozantinib, tepotinib, tigatuzumab, linifanib, erlotinib, resminostat, brivanib, tislelizumab, selumetinib, and refametinib. This study provides comprehensive insights into effective treatment interventions for HCC in Asian populations. The overall assessment indicates that sorafenib, used alone or in combination with atezolizumab and bevacizumab, has been the first treatment choice in the past decade to achieve better outcomes in patients with HCC in Asian populations.
Collapse
Affiliation(s)
- Alok Raghav
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Goo Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Fite EL, Makary MS. Transarterial Chemoembolization Treatment Paradigms for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2430. [PMID: 39001491 PMCID: PMC11240648 DOI: 10.3390/cancers16132430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of liver cancer cases worldwide and is currently the most quickly increasing cause of cancer-related deaths in the United States. The 5-year survival rate for primary liver cancer is estimated to be below 20%, and HCC mortality is expected to increase by 41% by 2040. Currently, surgical resection is the first-line approach to definitive treatment of early-stage HCC. However, the majority of patients present with late-stage, unresectable disease due to the asymptomatic nature of early HCC. For patients who present with unresectable HCC, locoregional therapies such as transarterial chemoembolization (TACE) represent an alternative approach to HCC treatment. TACE is a minimally invasive, catheter-based technique that allows for targeted delivery of chemotherapy to tumor sites while occluding tumor-feeding blood vessels. In appropriately selected patients, outcomes for TACE therapy have been shown to be more favorable than supportive care or conservative management. The increasing incidence and mortality of HCC, in addition to the late-stage presentation of most HCC patients, demonstrates the need to expand the role of locoregional therapies in the treatment of HCC. TACE represents an appealing approach to HCC management, including disease control, palliation, and potentially curative-intent strategies. In this review, we will describe the current utility of TACE in the treatment of HCC, characterize the outcomes of patients treated with TACE across different HCC stages, and outline future applications of TACE in the treatment paradigm.
Collapse
Affiliation(s)
- Elliott L Fite
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mina S Makary
- Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Mestareehi A. Global Gene Expression Profiling and Bioinformatics Analysis Reveal Downregulated Biomarkers as Potential Indicators for Hepatocellular Carcinoma. ACS OMEGA 2024; 9:26075-26096. [PMID: 38911766 PMCID: PMC11191119 DOI: 10.1021/acsomega.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Objective: The study aimed to elucidate the significance of CLEC4G, CAMK2β, SLC22A1, CBFA2T3, and STAB2 in the prognosis of hepatocellular carcinoma (HCC) patients and their associated molecular biological characteristics. Additionally, the research sought to identify new potential biomarkers with therapeutic and diagnostic relevance for clinical applications. Methods and Materials: We utilized a publicly available high throughput phosphoproteomics and proteomics data set of HCC to focus on the analysis of 12 downregulated phosphoproteins in HCC. Our approach integrates bioinformatic analysis with pathway analysis, encompassing gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the construction of a protein-protein interaction (PPI) network. Results: In total, we quantified 11547 phosphorylation sites associated with 4043 phosphoproteins from a cohort of 159 HCC patients. Within this extensive data set, our specific focus was on 19 phosphorylation sites displaying significant downregulation (log2 FC ≤ -2 with p-values < 0.0001). Remarkably, our investigation revealed distinct pathways exhibiting differential regulation across multiple dimensions, including the genomic, transcriptomic, proteomic, and phosphoproteomic levels. These pathways encompass a wide range of critical cellular processes, including cellular component organization, cell cycle control, signaling pathways, transcriptional and translational control, and metabolism. Furthermore, our bioinformatics analysis unveiled noteworthy insights into the subcellular localizations, biological processes, and molecular functions associated with these proteins and phosphoproteins. Within the context of the PPI network, we identified 12 key genes CLEC4G, STAB2, ADH1A, ADH1B, CAMK2B, ADH4, CHGB, PYGL, ADH1C, AKAP12, CBFA2T3, and SLC22A1 as the top highly interconnected hub genes. Conclusions: The findings related to CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 indicate their reduced expression in HCC, which is associated with an unfavorable prognosis. Furthermore, the results of KEGG and GO pathway analyses suggest that these genes may impact liver cancer by engaging various targets and pathways, ultimately promoting the progression of hepatocellular carcinoma. These results underscore the significant potential of CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 as key contributors to HCC development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance our understanding of the intricate molecular mechanisms underlying hepatocellular carcinoma.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan
- School
of Medicine, The Ohio State University, Columbus, Ohio 43202, United States
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|
5
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Insights in Molecular Therapies for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1831. [PMID: 38791911 PMCID: PMC11120383 DOI: 10.3390/cancers16101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data and clinical trials (MEDLINE), as well as published congress contributions and active recruiting clinical trials on targeted therapies in hepatocellular carcinoma. Combinations of different agents and medical therapy along with radiological interventions were analyzed for the setting of advanced HCC. Those settings were also analyzed in combination with adjuvant situations after resection or radiological treatments. We summarized the current knowledge for each therapeutic setting and combination that currently is or has been under clinical evaluation. We further discuss the results in the background of current treatment guidelines. In addition, we review the pathophysiological mechanisms and pathways for each of these investigated targets and drugs to further elucidate the molecular background and underlying mechanisms of action. Established and recommended targeted treatment options that already exist for patients are considered for systemic treatment: atezolizumab/bevacizumab, durvalumab/tremelimumab, sorafenib, lenvatinib, cabozantinib, regorafenib, and ramucirumab. Combination treatment for systemic treatment and local ablative treatment or transarterial chemoembolization and adjuvant and neoadjuvant treatment strategies are under clinical investigation.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| |
Collapse
|
6
|
Wu TKH, Hui RWH, Mak LY, Fung J, Seto WK, Yuen MF. Hepatocellular carcinoma: Advances in systemic therapies. F1000Res 2024; 13:104. [PMID: 38766497 PMCID: PMC11099512 DOI: 10.12688/f1000research.145493.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is traditionally associated with limited treatment options and a poor prognosis. Sorafenib, a multiple tyrosine kinase inhibitor, was introduced in 2007 as a first-in-class systemic agent for advanced HCC. After sorafenib, a range of targeted therapies and immunotherapies have demonstrated survival benefits in the past 5 years, revolutionizing the treatment landscape of advanced HCC. More recently, evidence of novel combinations of systemic agents with distinct mechanisms has emerged. In particular, combination trials on atezolizumab plus bevacizumab and durvalumab plus tremelimumab have shown encouraging efficacy. Hence, international societies have revamped their guidelines to incorporate new recommendations for these novel systemic agents. Aside from treatment in advanced HCC, the indications for systemic therapy are expanding. For example, the combination of systemic therapeutics with locoregional therapy (trans-arterial chemoembolization or stereotactic body radiation therapy) has demonstrated promising early results in downstaging HCC. Recent trials have also explored the role of systemic therapy as neoadjuvant treatment for borderline-resectable HCC or as adjuvant treatment to reduce recurrence risk after curative resection. Despite encouraging results from clinical trials, the real-world efficacy of systemic agents in specific patient subgroups (such as patients with advanced cirrhosis, high bleeding risk, renal impairment, or cardiometabolic diseases) remains uncertain. The effect of liver disease etiology on systemic treatment efficacy warrants further research. With an increased understanding of the pathophysiological pathways and accumulation of clinical data, personalized treatment decisions will be possible, and the field of systemic treatment for HCC will continue to evolve.
Collapse
Affiliation(s)
- Trevor Kwan-Hung Wu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
7
|
Ferreira IC, Torrejón E, Abecasis B, Alexandre BM, Gomes RA, Verslype C, van Pelt J, Barbas A, Simão D, Bandeiras TM, Bortoluzzi A, Rebelo SP. Aldehyde Dehydrogenase 2 (ALDH2): A novel sorafenib target in hepatocellular carcinoma unraveled by the proteome-wide cellular thermal shift assay. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100154. [PMID: 38521503 DOI: 10.1016/j.slasd.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Sorafenib is a multikinase inhibitor indicated for first-line treatment of unresectable hepatocellular carcinoma. Despite its widespread use in the clinic, the existing knowledge of sorafenib mode-of-action remains incomplete. To build upon the current understanding, we used the Cellular Thermal Shift Assay (CETSA) coupled to Mass Spectrometry (CETSA-MS) to monitor compound binding to its target proteins in the cellular context on a proteome-wide scale. Among the potential sorafenib targets, we identified aldehyde dehydrogenase 2 (ALDH2), an enzyme that plays a major role in alcohol metabolism. We validated the interaction of sorafenib with ALDH2 by orthogonal methods using pure recombinant protein, proving that this interaction is not mediated by other cellular components. Moreover, we showed that sorafenib inhibits ALDH2 activity, supporting a functional role for this interaction. Finally, we were able to demonstrate that both ALDH2 protein expression and activity were reduced in sorafenib-resistant cells compared to the parental cell line. Overall, our study allowed the identification of ALDH2 as a novel sorafenib target and sheds light on its potential role in both hepatocellular carcinoma and sorafenib resistance condition.
Collapse
Affiliation(s)
- Inês C Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Estefania Torrejón
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bernardo Abecasis
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Bruno M Alexandre
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo A Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Chris Verslype
- Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Jos van Pelt
- Department of Oncology, Laboratory of Clinical Digestive Oncology, KU, Leuven, Belgium
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Bayer Portugal, Carnaxide, Portugal
| | - Daniel Simão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alessio Bortoluzzi
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| |
Collapse
|
8
|
Nevola R, Delle Femine A, Rosato V, Kondili LA, Alfano M, Mastrocinque D, Imbriani S, Perillo P, Beccia D, Villani A, Ruocco R, Criscuolo L, La Montagna M, Russo A, Marrone A, Sasso FC, Marfella R, Rinaldi L, Esposito N, Barberis G, Claar E. Neoadjuvant and Adjuvant Systemic Therapies in Loco-Regional Treatments for Hepatocellular Carcinoma: Are We at the Dawn of a New Era? Cancers (Basel) 2023; 15:cancers15112950. [PMID: 37296912 DOI: 10.3390/cancers15112950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Despite maximizing techniques and patient selection, liver resection and ablation for HCC are still associated with high rates of recurrence. To date, HCC is the only cancer with no proven adjuvant or neoadjuvant therapy used in association to potentially curative treatment. Perioperative combination treatments are urgently needed to reduce recurrence rates and improve overall survival. Immunotherapy has demonstrated encouraging results in the setting of adjuvant and neoadjuvant treatments for non-hepatic malignancies. Conclusive data are not yet available in the context of liver neoplasms. However, growing evidence suggests that immunotherapy, and in particular immune checkpoint inhibitors, could represent the cornerstone of an epochal change in the treatment of HCC, improving recurrence rates and overall survival through combination treatments. Furthermore, the identification of predictive biomarkers of treatment response could drive the management of HCC into the era of a precision medicine. The purpose of this review is to analyze the state of the art in the setting of adjuvant and neoadjuvant therapies for HCC in association with loco-regional treatments in patients not eligible for liver transplantation and to hypothesize future scenarios.
Collapse
Affiliation(s)
- Riccardo Nevola
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Augusto Delle Femine
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | | | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Angela Villani
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Rachele Ruocco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Livio Criscuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| |
Collapse
|
9
|
Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, Hamedi E, Yousefi F, Salmani F, Zandieh MA, Nabavi N, Rabiee N, Ertas YN, Salimimoghadam S, Rashidi M, Rahmanian P, Hushmandi K, Yu W. Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application. Int J Biol Macromol 2023; 242:124935. [PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
Collapse
Affiliation(s)
- Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mohtashamian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health & Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
10
|
Suknoppakit P, Wangteeraprasert A, Simanurak O, Somran J, Parhira S, Pekthong D, Srisawang P. Calotropis gigantea stem bark extract activates HepG2 cell apoptosis through ROS and its effect on cytochrome P450. Heliyon 2023; 9:e16375. [PMID: 37251821 PMCID: PMC10220234 DOI: 10.1016/j.heliyon.2023.e16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
The 95% ethanolic extract of the dry powder of Calotropis gigantea (C. gigantea) stem bark was separated by fractionation with different solutions to yield 4 fractions: dichloromethane (CGDCM), ethyl acetate (CGEtOAc), and water (CGW). This research focused on CGDCM-induced apoptosis in HepG2 cells with IC50 and above-IC50 values, which provide useful information for future anticancer applications. CGDCM had lower cytotoxicity on normal lung fibroblast IMR-90 cells than on HepG2 cells. Apoptotic induction of CGDCM was mediated by decreased fatty acid and ATP synthesis while increasing reactive oxygen species production. The effects of the four extracts on the activity of the four major CYP450 isoforms (CYP1A2, CYP2C9, CYP2E1 and CYP3A4) were determined using the CYP-specific model activity of each isoform. All four fractions of the extract were shown to be poor inhibitors of CYP1A2 and CYP2E1 (IC50 > 1000 μg/mL) and moderate inhibitors of CYP3A4 (IC50 = 56.54-296.9 μg/mL). CGDCM and CGW exerted moderate inhibition activities on CYP2C9 (IC50 = 59.56 and 46.38 μg/mL, respectively), but CGEtOH and CGEtOAc exhibited strong inhibition activities (IC50 = 12.11 and 20.43 μg/mL, respectively). It is proposed that C. gigantea extracts at high doses have potential for further studies to develop alternative anticancer applications. Inhibiting CYP2C9 activity may also lead to drug-herb interactions.
Collapse
Affiliation(s)
- Pennapha Suknoppakit
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
11
|
Kološa K, Žegura B, Štampar M, Filipič M, Novak M. Adverse Toxic Effects of Tyrosine Kinase Inhibitors on Non-Target Zebrafish Liver (ZFL) Cells. Int J Mol Sci 2023; 24:ijms24043894. [PMID: 36835302 PMCID: PMC9965539 DOI: 10.3390/ijms24043894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past 20 years, numerous tyrosine kinase inhibitors (TKIs) have been introduced for targeted therapy of various types of malignancies. Due to frequent and increasing use, leading to eventual excretion with body fluids, their residues have been found in hospital and household wastewaters as well as surface water. However, the effects of TKI residues in the environment on aquatic organisms are poorly described. In the present study, we investigated the cytotoxic and genotoxic effects of five selected TKIs, namely erlotinib (ERL), dasatinib (DAS), nilotinib (NIL), regorafenib (REG), and sorafenib (SOR), using the in vitro zebrafish liver cell (ZFL) model. Cytotoxicity was determined using the MTS assay and propidium iodide (PI) live/dead staining by flow cytometry. DAS, SOR, and REG decreased ZFL cell viability dose- and time-dependently, with DAS being the most cytotoxic TKI studied. ERL and NIL did not affect viability at concentrations up to their maximum solubility; however, NIL was the only TKI that significantly decreased the proportion of PI negative cells as determined by the flow cytometry. Cell cycle progression analyses showed that DAS, ERL, REG, and SOR caused the cell cycle arrest of ZFL cells in the G0/G1 phase, with a concomitant decrease of cells in the S-phase fraction. No data could be obtained for NIL due to severe DNA fragmentation. The genotoxic activity of the investigated TKIs was evaluated using comet and cytokinesis block micronucleus (CBMN) assays. The dose-dependent induction of DNA single strand breaks was induced by NIL (≥2 μM), DAS (≥0.006 μM), and REG (≥0.8 μM), with DAS being the most potent. None of the TKIs studied induced micronuclei formation. These results suggest that normal non-target fish liver cells are sensitive to the TKIs studied in a concentration range similar to those previously reported for human cancer cell lines. Although the TKI concentrations that induced adverse effects in exposed ZFL cells are several orders of magnitude higher than those currently expected in the aquatic environment, the observed DNA damage and cell cycle effects suggest that residues of TKIs in the environment may pose a hazard to non-intentionally exposed organisms living in environments contaminated with TKIs.
Collapse
Affiliation(s)
- Katja Kološa
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence:
| | - Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Chen YT, Masbuchin AN, Fang YH, Hsu LW, Wu SN, Yen CJ, Liu YW, Hsiao YW, Wang JM, Rohman MS, Liu PY. Pentraxin 3 regulates tyrosine kinase inhibitor-associated cardiomyocyte contraction and mitochondrial dysfunction via ERK/JNK signalling pathways. Biomed Pharmacother 2023; 157:113962. [PMID: 36370523 DOI: 10.1016/j.biopha.2022.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) patients suffer varying degrees of heart dysfunction after tyrosine kinase inhibitor (TKI) treatment. Interestingly, HCC patients often have higher levels of pentraxin 3 (PTX3), and PTX3 inhibition was found to improve left ventricular dysfunction in animal models. OBJECTIVES We sought to assess the therapeutic potential of PTX3 inhibition on TKI-associated cardiotoxicity. METHODS We used a human embryonic stem cell line, RUES2, to generate cardiomyocyte cultures (RUES2-CM) for functional testing. We also assessed heart function and PTX3 expression levels in 16 HCC patients who received TKI treatment, 3 HCC patients who did not receive TKIs, and 7 healthy volunteers. RESULTS Significantly higher PTX3 expression was noted in HCC patients with TKI treatment versus those without, and 38% of male and 33% of female patients had QTc prolongation after TKI treatment. Treatment of cardiomyocyte cultures with sorafenib also increased PTX3 expression and induced cytoskeletal remodelling, contraction reduction, sodium current inhibition, and mitochondrial respiratory dysfunction. PTX3 colocalised with CD44 in cardiomyocytes, and cardiomyocyte contraction, mitochondrial respiratory function, and regular cytoskeletal and apoptotic protein expression were restored with PTX3 inhibition. CD44 knockdown confirmed PTX3/CD44 signalling. These results suggest a possible mechanism in which sorafenib treatment increases PTX3 expression, thereby resulting in reduced extracellular signal-regulated kinase (ERK) 1/2 expression that affects cardiomyocyte contraction, while also activating c-Jun N-terminal kinase (JNK) downstream pathways to disrupt mitochondrial respiration and trigger apoptosis. CONCLUSIONS TKI-induced cardiotoxicity may be partly mediated by the upregulation of PTX3, and thus PTX3 inhibition has potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC.
| | - Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC; Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia.
| | - Yi-Hsien Fang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC.
| | - Ling-Wei Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC.
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| | - Chia-Jui Yen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC; Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC.
| | - Yen-Wen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC; Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC.
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC.
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia.
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC; Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, ROC; Center of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan, ROC.
| |
Collapse
|
13
|
Butt NUH, Baytas SN. Advancements in Hepatocellular Carcinoma: Potential Preclinical Drugs and their Future. Curr Pharm Des 2023; 29:2-14. [PMID: 36529919 DOI: 10.2174/1381612829666221216114350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the foremost causes of tumor-affiliated demises globally. The HCC treatment has undergone numerous developments in terms of both drug and non-drug treatments. The United States Food and Drug Administration (FDA) has authorized the usage of a variety of drugs for the treatment of HCC in recent years, involving multi-kinase inhibitors (lenvatinib, regorafenib, ramucirumab, and cabozantinib), immune checkpoint inhibitors (ICIs) (pembrolizumab and nivolumab), and combination therapies like atezolizumab along with bevacizumab. There are currently over a thousand ongoing clinical and preclinical studies for novel HCC drugs, which portrays a competent setting in the field. This review discusses the i. FDA-approved HCC drugs, their molecular targets, safety profiles, and potential disadvantages; ii. The intrial agents/drugs, their molecular targets, and possible benefits compared to alternatives, and iii. The current and future status of potential preclinical drugs with novel therapeutic targets for HCC. Consequently, existing drug treatments and novel strategies with their balanced consumption could ensure a promising future for a universal remedy of HCC in the near future.
Collapse
Affiliation(s)
- Noor-Ul-Huda Butt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkiye
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkiye
| |
Collapse
|
14
|
Tümen D, Heumann P, Gülow K, Demirci CN, Cosma LS, Müller M, Kandulski A. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022; 10:3202. [PMID: 36551958 PMCID: PMC9775527 DOI: 10.3390/biomedicines10123202] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent liver cancer with high lethality and low five-year survival rates leading to a substantial worldwide burden for healthcare systems. HCC initiation and progression are favored by different etiological risk factors including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, non-/and alcoholic fatty liver disease (N/AFLD), and tobacco smoking. In molecular pathogenesis, endogenous alteration in genetics (TP53, TERT, CTNNB1, etc.), epigenetics (DNA-methylation, miRNA, lncRNA, etc.), and dysregulation of key signaling pathways (Wnt/β-catenin, JAK/STAT, etc.) strongly contribute to the development of HCC. The multitude and complexity of different pathomechanisms also reflect the difficulties in tailored medical therapy of HCC. Treatment options for HCC are strictly dependent on tumor staging and liver function, which are structured by the updated Barcelona Clinic Liver Cancer classification system. Surgical resection, local ablative techniques, and liver transplantation are valid and curative therapeutic options for early tumor stages. For multifocal and metastatic diseases, systemic therapy is recommended. While Sorafenib had been the standalone HCC first-line therapy for decades, recent developments had led to the approval of new treatment options as first-line as well as second-line treatment. Anti-PD-L1 directed combination therapies either with anti-VEGF directed agents or with anti-CTLA-4 active substances have been implemented as the new treatment standard in the first-line setting. However, data from clinical trials indicate different responses on specific therapeutic regimens depending on the underlying pathogenesis of hepatocellular cancer. Therefore, histopathological examinations have been re-emphasized by current international clinical guidelines in addition to the standardized radiological diagnosis using contrast-enhanced cross-sectional imaging. In this review, we emphasize the current knowledge on molecular pathogenesis of hepatocellular carcinoma. On this occasion, the treatment sequences for early and advanced tumor stages according to the recently updated Barcelona Clinic Liver Cancer classification system and the current algorithm of systemic therapy (first-, second-, and third-line treatment) are summarized. Furthermore, we discuss novel precautional and pre-therapeutic approaches including therapeutic vaccination, adoptive cell transfer, locoregional therapy enhancement, and non-coding RNA-based therapy as promising treatment options. These novel treatments may prolong overall survival rates in regard with quality of life and liver function as mainstay of HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Inhibition of USP1 activates ER stress through Ubi-protein aggregation to induce autophagy and apoptosis in HCC. Cell Death Dis 2022; 13:951. [PMID: 36357365 PMCID: PMC9649627 DOI: 10.1038/s41419-022-05341-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022]
Abstract
The deubiquitinating enzyme USP1 (ubiquitin-specific protease 1) plays a role in the progression of various tumors, emerging as a potential therapeutic target. This study aimed to determine the role of USP1 as a therapeutic target in hepatocellular carcinoma (HCC). We detected USP1 expression in the tumor and adjacent tissues of patients with HCC using immunohistochemical staining. We evaluated the effect of the USP1 inhibitor ML-323 on HCC cell proliferation and cell cycle using a CCK-8 cell-counting kit and plate cloning assays, and propidium iodide, respectively. Apoptosis was detected by annexin V-FITC/Propidium Iodide (PI) staining and caspase 3 (casp3) activity. Transmission electron microscopy and LC3B immunofluorescence were used to detect autophagy. Western blotting was used to detect the accumulation of ubiquitinated proteins, the expression of endoplasmic reticulum (ER) stress-related proteins, and the AMPK-ULK1/ATG13 signaling pathway. We demonstrated that ML-323 inhibits the growth of HCC cells and induces G1 phase cell cycle arrest by regulating cyclin expression. ML-323 treatment resulted in the accumulation of ubiquitinated proteins, induced ER stress, and triggered Noxa-dependent apoptosis, which was regulated by the Activating Transcription Factor 4(ATF4). Moreover, active ER stress induces protective autophagy by increasing AMPK phosphorylation; therefore, we inhibited ER stress using 4-Phenylbutyric acid (4-PBA), which resulted in ER stress reduction, apoptosis, and autophagy in ML-323-treated HCC cells. In addition, blocking autophagy using the AMPK inhibitor compound C (CC), chloroquine (CQ), or bafilomycin A1 (BafA1) enhanced the cytotoxic effect of ML-323. Our findings revealed that targeting USP1 may be a potential strategy for the treatment of HCC.
Collapse
|
16
|
Abdu S, Juaid N, Amin A, Moulay M, Miled N. Therapeutic Effects of Crocin Alone or in Combination with Sorafenib against Hepatocellular Carcinoma: In Vivo & In Vitro Insights. Antioxidants (Basel) 2022; 11:antiox11091645. [PMID: 36139719 PMCID: PMC9495549 DOI: 10.3390/antiox11091645] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the therapeutic effects of the phytochemical crocin alone or in combination with sorafenib both in rats chemically induced with hepatocellular carcinoma (HCC) and in human liver cancer cell line (HepG2). Male rats were randomly divided into five groups, namely, control group, HCC induced group, and groups treated with sorafenib, crocin or both crocin and sorafenib. HCC was induced in rats with a single intraperitoneal injection of diethylnitrosamine (DEN), then 2-acetylaminofluorene (2-AAF). The HCC-induced rats showed a significant decrease in body weight compared to animals treated with either or both examined drugs. Serum inflammatory markers (C-reactive protein (CRP); interleukin-6 (IL-6); lactate dehydrogenase (LDH), and oxidative stress markers were significantly increased in the HCC group and were restored upon treatment with either or both of therapeutic molecules. Morphologically, the HCC-induced rats manifested most histopathological features of liver cancer. Treatment with either or both of crocin and sorafenib successfully restored normal liver architecture. The expression of key genes involved in carcinogenesis (TNFα, p53, VEGF and NF-κB) was highly augmented upon HCC induction and was attenuated post-treatment with either or both examined drugs. Treatment with both crocin and sorafenib improved the histopathological and inflammation parameters as compared to single treatments. The in vivo anti-cancer effects of crocin and/or sorafenib were supported by their respective cytotoxicity on HepG2 cells. Crocin and sorafenib displayed an anti-tumor synergetic effect on HepG2 cells. The present findings demonstrated that a treatment regimen with crocin and sorafenib reduced liver toxicity, impeded HCC development, and improved the liver functions.
Collapse
Affiliation(s)
- Suzan Abdu
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Nouf Juaid
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
- Correspondence: (N.J.); (N.M.)
| | - Amr Amin
- Biology Department, UAE University, Al Ain 15551, United Arab Emirates
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Mohamed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah 22252, Saudi Arabia
| | - Nabil Miled
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
- Functional Genomics and Plant Physiology Research Unit, Higher Institute of Biotechnology Sfax, University of Sfax, BP261 Road Soukra Km4, Sfax 3038, Tunisia
- Correspondence: (N.J.); (N.M.)
| |
Collapse
|
17
|
Esawie M, L Louka M, Hasanin AH, El-Kholy AA, Said Ali H. High-glucose-induced hyperosmolar stress sensitizes HepG2 cell lines to sorafenib. Gene 2022; 844:146828. [PMID: 35998844 DOI: 10.1016/j.gene.2022.146828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
Sorafenib is an FDA approved chemotherapeutic against hepatocellular carcinoma (HCC) yet associated with various resistance mechanisms. The role of high glucose status on sorafenib action is still to be elucidated. This study clarifies such interaction, taking HepG2 cell lines as HCC models, MALAT1 and H19 as molecular players. HepG2 cell lines were purchased and classified into 8 groups. High glucose status was set by using d-glucose (33 mM) with insulin (1 µM). Mannitol (27.5 mM) was used as a negative osmotic control. Sorafenib was prepared at 15 µM and 20 µM. Cellular viability was assessed with MTT viability assay. Then, with trypan blue viability assay, the results were double checked and HepG2 morphology was examined by optical microscopy. MALAT1 and H19 RQs were assessed by real time PCR (RT-PCR). Results show that in comparison with sorafenib impact on HepG2, high glucose status drops cellular viability to 83.13 % (p < 0.01). With hyperosmolar mannitol, it decreases cellular viability to 72.89 % (p < 0.001). Regarding the molecular impact, hyperosmolar mannitol with sorafenib elevates both MALAT1 and H19 RQs. Yet, high glucose status elevates MALAT1and declines H19 (p < 0.05 and p < 0.001 for MALAT1 and H19 comparisons respectively). Therefore, the impact of high glucose status could be, in part, attributed to the hyperosmolar stress it induces on HepG2. Also, hyperosmolar mannitol, owing to its cytotoxic impact, is recommended for further confirmatory studies either as a separate therapeutic or as an adjuvant to sorafenib.
Collapse
Affiliation(s)
- Mohammed Esawie
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain-Shams University, Egypt.
| | - Manal L Louka
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain-Shams University, Egypt
| | - Amany H Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain-Shams University, Egypt
| | - Amal A El-Kholy
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain-Shams University, Egypt
| | - Hebatalla Said Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain-Shams University, Egypt
| |
Collapse
|
18
|
Li S, Pei W, Yuan W, Yu D, Song H, Zhang H. Multi-omics joint analysis reveals the mechanism of action of the traditional Chinese medicine Marsdenia tenacissima (Roxb.) Moon in the treatment of hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115285. [PMID: 35429621 DOI: 10.1016/j.jep.2022.115285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia tenacissima (Roxb.) Moon, (M. tenacissima) a traditional herbal medicine, has been used for thousands of years. It is noted in Dian Nan Ben Cao that M. tenacissima is bitter in flavor and cold in property, and extracts possess diverse pharmacological effects, including immunomodulation and anti-tumor activities. AIM OF THE STUDY The anti-tumor effects of M. tenacissima extracts (MTE) have been repeatedly confirmed, and this medicine has also been extensively applied in cancer treatment or prognostic adjuvant therapy, with significant curative effect. This study aims to comprehensively analyze the anti-tumor mechanism of M. tenacissima starting from the key features of traditional Chinese medicine and by studying the main active components individually to identify anti-tumor targets in the context of hepatocellular carcinoma. MATERIALS AND METHODS Molecular network profiling and multi-omic joint analyses were conducted using an H22 mouse model of hepatocellular carcinoma to determine the main active ingredients in MTE and the underlying anti-tumor mechanisms. RESULTS Tenacissosides I, H, and G (TI,TH and TG) were found to be the likely active ingredients of MTE in the treatment of hepatocellular carcinoma. These compounds were shown to promote apoptosis, inhibit angiogenesis and improve immune function through targeting P53, JAK-1 and HIF1α, respectively. CONCLUSIONS For the first time, based on the theory that multiple components and multiple targets synergistically exert the beneficial effects of a traditional Chinese medicine, this paper comprehensively analyzes the mechanisms of action of M. tenacissima and provides a novel strategy for the subsequent development of anti-tumor therapies.
Collapse
Affiliation(s)
- Siyu Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, PR China
| | - Wenhan Pei
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, PR China
| | - Wei Yuan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, PR China
| | - Dan Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, PR China
| | - Huanjie Song
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, PR China
| | - Hui Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, PR China.
| |
Collapse
|
19
|
Udoh UAS, Banerjee M, Rajan PK, Sanabria JD, Smith G, Schade M, Sanabria JA, Nakafuku Y, Sodhi K, Pierre SV, Shapiro JI, Sanabria JR. Tumor-Suppressor Role of the α1-Na/K-ATPase Signalosome in NASH Related Hepatocellular Carcinoma †. Int J Mol Sci 2022; 23:ijms23137359. [PMID: 35806364 PMCID: PMC9266688 DOI: 10.3390/ijms23137359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, with an estimate of 0.84 million cases every year. In Western countries, because of the obesity epidemic, non-alcoholic steatohepatitis (NASH) has become the major cause of HCC. Intriguingly, the molecular mechanisms underlying tumorigenesis of HCC from NASH are largely unknown. We hypothesized that the growing uncoupled metabolism during NASH progression to HCC, manifested by lower cell redox status and an apoptotic ‘switch’ activity, follows a dysregulation of α1-Na/K-ATPase (NKA)/Src signalosome. Our results suggested that in NASH-related malignancy, α1-NKA signaling causes upregulation of the anti-apoptotic protein survivin and downregulation of the pro-apoptotic protein Smac/DIABLO via the activation of the PI3K → Akt pro-survival pathway with concomitant inhibition of the FoxO3 circuit, favoring cell division and primary liver carcinogenesis. Signalosome normalization using an inhibitory peptide resets apoptotic activity in malignant cells, with a significant decrease in tumor burden in vivo. Therefore, α1-NKA signalosome exercises in HCC the characteristic of a tumor suppressor, suggesting α1-NKA as a putative target for clinical therapy.
Collapse
Affiliation(s)
- Utibe-Abasi S. Udoh
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Moumita Banerjee
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Pradeep K. Rajan
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Juan D. Sanabria
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Gary Smith
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Mathew Schade
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Jacqueline A. Sanabria
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Yuto Nakafuku
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Komal Sodhi
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Joseph I. Shapiro
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
| | - Juan R. Sanabria
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (U.-A.S.U.); (M.B.); (P.K.R.); (J.D.S.); (G.S.); (M.S.); (J.A.S.); (Y.N.); (K.S.); (J.I.S.)
- Marshall Institute for Interdisciplinary Research, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25703, USA;
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: or
| |
Collapse
|
20
|
Expression of Cellular and Extracellular TERRA, TERC and TERT in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23116183. [PMID: 35682861 PMCID: PMC9181112 DOI: 10.3390/ijms23116183] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/14/2023] Open
Abstract
Non-coding RNAs are transcribed from telomeres and the telomeric repeat-containing RNAs (TERRA) are implicated in telomere homeostasis and in cancer. In this study, we aimed to assess in hepatocellular carcinoma (HCC) the cellular and extracellular expression of TERRA, the telomerase RNA subunit (TERC) and the telomerase catalytic subunit (TERT). We determined by qPCR the expression level of TERRA 1_2_10_13q, TERRA 15q, TERRA XpYp, TERC and of TERT mRNA in HCC tissues and in the plasma of HCC patients. Further, we profiled the same transcripts in the HCC cell lines, HA22T/VGH and SKHep1C3, and in the extracellular vesicles (EVs) derived from their secretomes. We found that the expression of TERRA and TERT mRNA was significantly deregulated in HCC, being TERRA downregulated and TERT mRNA upregulated in HCC tissues vs. the peritumoral (PT) ones, and the receiver operating characteristic (ROC) curve analyses revealed a significant ability in discriminating HCC from PT tissue. Further, the determinations of circulating TERRA and TERC showed higher amounts of these transcripts in the plasma of HCC patients vs. controls and ROC analyses gave significant results. The expression characterization of the cultured HCC cells showed their ability to produce and secrete TERRA and TERC into the EVs; the ability to produce TERT mRNA that was not detectable in the EVs; and the ability to respond to sorafenib treatment increasing TERRA expression. Our results highlight that: (i) both cellular and extracellular expressions of TERRA and TERC are dysregulated in HCC as well as the cellular expression of TERT mRNA and (ii) the combined detection of TERRA and TERC in plasma may represent a promising approach for non-invasive diagnostic molecular indicators of HCC.
Collapse
|
21
|
Shahzad K, Asad M, Asiri AM, Irfan M, Iqbal MA. In-vitro anticancer profile of recent ruthenium complexes against liver cancer. REV INORG CHEM 2022. [DOI: 10.1515/revic-2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ruthenium complexes are considered as the most favorable alternatives to traditional platinum-based cancer drugs owing to their acceptable toxicity level, selectivity, variant oxidation states and ability to treat platinum-resistant cancer cells. They have similar ligand exchange kinetics as platinum drugs but can be tailored according to our desire by ligands influence. In the current study, we illustrate the in-vitro anticancer profile of some ruthenium complexes (2016–2021) against human hepatocellular carcinoma (HepG2). The anticancer activity of ruthenium complexes is determined by comparing their IC50 values with one another and positive controls. Fortunately, some ruthenium complexes including 3, 4, 6, 14, 15, 20, 42, and 48 exhibit surpassed in-vitro anticancer profile than that of positive controls promising as potential candidates against liver cancer. We also explored the structure-activity relationship (SAR) which is a key factor in the rational designing and synthesis of new ruthenium drugs. It covers the factors affecting anticancer activity including lipophilicity, planarity, area and bulkiness, the steric influence of different ligands, and electronic effects induced by ligands, stability, aqueous solubility and bioavailability to the target sites. The data reported here will provide strong support in the plausible design and synthesis of ruthenium anticancer drugs in the upcoming days.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Muhammad Irfan
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
- Organometallic and Coordination Chemistry Laboratory , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
22
|
Diagnosis and Management of Atypical Chronic Myeloid Leukemia with a t(2;13)(q33;q12) Translocation. Case Rep Hematol 2022; 2022:4628183. [PMID: 35571528 PMCID: PMC9095402 DOI: 10.1155/2022/4628183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/12/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Atypical chronic myeloid leukemia (aCML) is a rare myeloproliferative disorder that shares clinical features with chronic myeloid leukemia but lacks the classic t(9;22) BCR-ABL1 translocation and features prominent dysgranulopoiesis and granulocytic dysplasia. Challenges of this diagnosis include clinical and biologic heterogeneity, the high risk of transformation to acute myeloid leukemia, and the lack of standard treatment options. Allogeneic hematopoietic stem cell transplant is likely the preferred treatment, but this can be limited by patient psychosocial support, age, concomitant medical conditions, and availability of an appropriate donor. We report the case of a 61-year-old male with no significant past medical history diagnosed with aCML with a rare t(2;13)(q33;q12). He presented with weight loss, night sweats, splenomegaly, hyperleukocytosis, a leukoerythroblastic differential with a predominant neutrophilia, anemia, and thrombocytopenia. Subsequent peripheral blood and bone marrow studies lead to the diagnosis of aCML. He was recommended to undergo an allogeneic stem cell transplant evaluation and declined. He was initially treated with hydroxyurea and imatinib to which he responded for approximately three years. After clinical progression, he was treated with sorafenib, a multiprotein kinase inhibitor more commonly used in the treatment of hepatocellular and renal cell carcinoma due to its off target FLT3 inhibition. The patient achieved complete hematologic response which has been sustained for 7 years with tolerable side effects.
Collapse
|
23
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Broad Transcriptomic Impact of Sorafenib and Its Relation to the Antitumoral Properties in Liver Cancer Cells. Cancers (Basel) 2022; 14:cancers14051204. [PMID: 35267509 PMCID: PMC8909169 DOI: 10.3390/cancers14051204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is the fourth most frequent cause of cancer-related mortality worldwide. While ablation, resection and orthotopic liver transplantation are indicated at an early stage of the disease, Sorafenib (Sfb) is the current most administrated first-line treatment for advanced HCC, even though its therapeutic benefit is limited due to the appearance of resistance. Deep knowledge on the molecular consequences of Sfb-treatment is essentially required for optimizing novel therapeutic strategies to improve the outcomes for patients with advanced HCC. In this study, we analyzed differential gene expression changes in two well characterized liver cancer cell lines upon a Sfb-treatment, demonstrating that both lines responded similarly to the treatment. Our results provide valuable information on the molecular action of Sfb on diverse cellular fundamental processes such as DNA repair, translation and proteostasis and identify rationalization issues that could provide a different therapeutic perspective to Sfb. Abstract Hepatocellular carcinoma (HCC) is one of the most frequent and essentially incurable cancers in its advanced stages. The tyrosine kinase inhibitor Sorafenib (Sfb) remains the globally accepted treatment for advanced HCC. However, the extent of its therapeutic benefit is limited. Sfb exerts antitumor activity through its cytotoxic, anti-proliferative and pro-apoptotic roles in HCC cells. To better understand the molecular mechanisms underlying these effects, we used RNA sequencing to generate comprehensive transcriptome profiles of HepG2 and SNU423, hepatoblastoma- (HB) and HCC-derived cell lines, respectively, following a Sfb treatment at a pharmacological dose. This resulted in similar alterations of gene expression in both cell lines. Genes functionally related to membrane trafficking, stress-responsible and unfolded protein responses, circadian clock and activation of apoptosis were predominantly upregulated, while genes involved in cell growth and cycle, DNA replication and repair, ribosome biogenesis, translation initiation and proteostasis were downregulated. Our results suggest that Sfb causes primary effects on cellular stress that lead to upregulation of selective responses to compensate for its negative effect and restore homeostasis. No significant differences were found specifically affecting each cell line, indicating the robustness of the Sfb mechanism of action despite the heterogeneity of liver cancer. We discuss our results on terms of providing rationalization for possible strategies to improve Sfb clinical outcomes.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), E-28029 Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), E-28029 Madrid, Spain
- Correspondence: (J.M.); (J.d.l.C.); Tel.: +34-955-923-122 (J.M.); +34-923-126 (J.d.l.C.)
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
- Correspondence: (J.M.); (J.d.l.C.); Tel.: +34-955-923-122 (J.M.); +34-923-126 (J.d.l.C.)
| |
Collapse
|
24
|
Alqahtani SA, Colombo MG. Current status of first-line therapy, anti-angiogenic therapy and its combinations of other agents for unresectable hepatocellular carcinoma. World J Gastrointest Oncol 2021; 13:2038-2049. [PMID: 35070040 PMCID: PMC8713315 DOI: 10.4251/wjgo.v13.i12.2038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is a frequently diagnosed malignancy with rapidly increasing incidence and mortality rates. Unfortunately, many of these patients are diagnosed in the advanced stages when locoregional treatments are not appropriate. Before 2008, no effective drug treatments existed to prolong survival, until the breakthrough multi-tyrosine kinase inhibitor (TKI) sorafenib was developed. It remained the standard treatment option for advanced HCC for 10 years, with a battery of other candidate drugs in clinical trials failing to produce similar efficacy results. In 2018, the REFLECT trial introduced another multi-TKI, lenvatinib, which has non-inferior overall survival compared with sorafenib. Thus, offering patients and their treating physicians two effective treatment options. Recently, immunotherapy-based drugs, such as atezolizumab and bevacizumab, have shown promising results in patients with unresectable HCC. This review summarizes clinical trial and real-world data studies of sorafenib and lenvatinib in patients with unresectable HCC. We offer guidance on the optimal choice between the two treatments and discuss the potential of immunotherapy-based combination; when more data become available, this will likely make the choice between sorafenib and lenvatinib somewhat obsolete.
Collapse
Affiliation(s)
- Saleh A Alqahtani
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD 21287, United States
- Liver Transplant Center, and Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | | |
Collapse
|
25
|
As Sobeai HM, Alohaydib M, Alhoshani AR, Alhazzani K, Almutairi MM, Saleh T, Gewirtz DA, Alotiabi MR. Sorafenib, rapamycin, and venetoclax attenuate doxorubicin-induced senescence and promote apoptosis in HCT116 cells. Saudi Pharm J 2021; 30:91-101. [PMID: 35145348 PMCID: PMC8802130 DOI: 10.1016/j.jsps.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Emerging evidence has shown that the therapy-induced senescent growth arrest in cancer cells is of durable nature whereby a subset of cells can reinstate proliferative capacity. Promising new drugs named senolytics selectively target senescent cells and commit them into apoptosis. Accordingly, senolytics have been proposed as adjuvant cancer treatment to cull senescent tumor cells, and thus, screening for agents that exhibit senolytic properties is highly warranted. Our study aimed to investigate three agents, sorafenib, rapamycin, and venetoclax for their senolytic potential in doxorubicin-induced senescence in HCT116 cells. HCT116 cells were treated with one of the three agents, sorafenib (5 µM), rapamycin (100 nM), or venetoclax (10 µM), in the absence or presence of doxorubicin (1 µM). Senescence was evaluated using microscopy-based and flow cytometry-based Senescence-associated-β-galactosidase staining (SA-β-gal), while apoptosis was assessed using annexin V-FITC/PI, and Muse caspase-3/-7 activity assays. We screened for potential genes through which the three drugs exerted senolytic-like action using the Human Cancer Pathway Finder PCR array. The three agents reduced doxorubicin-induced senescent cell subpopulations and significantly enhanced the apoptotic effect of doxorubicin compared with those treated only with doxorubicin. The senescence genes IGFBP5 and BMI1 and the apoptosis genes CASP7 and CASP9 emerged as candidate genes through which the three drugs exhibited senolytic-like properties. These results suggest that the attenuation of doxorubicin-induced senescence might have shifted HCT116 cells to apoptosis by exposure to the tested pharmacological agents. Our work argues for the use of senolytics to reduce senescence-mediated resistance in tumor cells and to enhance chemotherapy efficacy.
Collapse
Affiliation(s)
- Homood M. As Sobeai
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Munirah Alohaydib
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali R. Alhoshani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashal M. Almutairi
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - David A. Gewirtz
- Departments of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Moureq R. Alotiabi
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding author.
| |
Collapse
|
26
|
Jiang X, Zhang W, Li L, Xie S. Integrated Transcriptomic Analysis Revealed Hub Genes and Pathways Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Pathol Oncol Res 2021; 27:1609985. [PMID: 34737677 PMCID: PMC8560649 DOI: 10.3389/pore.2021.1609985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC), a high mortality malignancy, has become a worldwide public health concern. Acquired resistance to the multikinase inhibitor sorafenib challenges its clinical efficacy and the survival benefits it provides to patients with advanced HCC. This study aimed to identify critical genes and pathways associated with sorafenib resistance in HCC using integrated bioinformatics analysis. Differentially expressed genes (DEGs) were identified using four HCC gene expression profiles (including 34 sorafenib-resistant and 29 sorafenib-sensitive samples) based on the robust rank aggregation method and R software. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and small molecules reversing sorafenib resistance were searched for using the connectivity map (CMAP) database. Pearson correlation and survival analyses of hub genes were performed using cBioPortal and Gene Expression Profiling and Interactive Analysis (GEPIA). Finally, the expression levels of hub genes in sorafenib-resistant HCC cells were verified using quantitative polymerase chain reaction (q-PCR). A total of 165 integrated DEGs (66 upregulated and 99 downregulated in sorafenib resistant samples compared sorafenib sensitive ones) primarily enriched in negative regulation of endopeptidase activity, extracellular exosome, and protease binding were identified. Some pathways were commonly shared between the integrated DEGs. Seven promising therapeutic agents and 13 hub genes were identified. These findings provide a strategy and theoretical basis for overcoming sorafenib resistance in HCC patients.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Lifeng Li
- Department of Radiology, Changsha Central Hospital, Changsha, China
| | - Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Bieniek A, Wiśniewski M, Czarnecka J, Wierzbicki J, Ziętek M, Nowacki M, Grzanka D, Kloskowski T, Roszek K. Porphyrin Based 2D-MOF Structures as Dual-Kinetic Sorafenib Nanocarriers for Hepatoma Treatment. Int J Mol Sci 2021; 22:ijms222011161. [PMID: 34681820 PMCID: PMC8536990 DOI: 10.3390/ijms222011161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
The existing clinical protocols of hepatoma treatment require improvement of drug efficacy that can be achieved by harnessing nanomedicine. Porphyrin-based, paddle-wheel framework (PPF) structures were obtained and tested as dual-kinetic Sorafenib (SOR) nanocarriers against hepatoma. We experimentally proved that sloughing of PPF structures combined with gradual dissolving are effective mechanisms for releasing the drug from the nanocarrier. By controlling the PPF degradation and size of adsorbed SOR deposits, we were able to augment SOR anticancer effects, both in vitro and in vivo, due to the dual kinetic behavior of SOR@PPF. Obtained drug delivery systems with slow and fast release of SOR influenced effectively, although in a different way, the cancer cells proliferation (reflected with EC50 and ERK 1/2 phosphorylation level). The in vivo studies proved that fast-released SOR@PPF reduces the tumor size considerably, while the slow-released SOR@PPF much better prevents from lymph nodes involvement and distant metastases.
Collapse
Affiliation(s)
- Adam Bieniek
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
- Correspondence: (M.W.); (K.R.)
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Jędrzej Wierzbicki
- Student’s Scientific Society, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellońska Street 13/15, 85-067 Bydgoszcz, Poland;
| | - Marcin Ziętek
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland; (M.Z.); (M.N.)
- Lower Silesian Comprehensive Cancer Center, Department of Surgical Oncology, Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Maciej Nowacki
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland; (M.Z.); (M.N.)
- Department of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie 9 Street, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Pathology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie 9 Street, 85-094 Bydgoszcz, Poland;
| | - Tomasz Kloskowski
- Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-094 Bydgoszcz, Poland;
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
- Correspondence: (M.W.); (K.R.)
| |
Collapse
|
28
|
Moldogazieva NT, Zavadskiy SP, Sologova SS, Mokhosoev IM, Terentiev AA. Predictive biomarkers for systemic therapy of hepatocellular carcinoma. Expert Rev Mol Diagn 2021; 21:1147-1164. [PMID: 34582293 DOI: 10.1080/14737159.2021.1987217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third cancer-related cause of death worldwide. In recent years, several systemic therapy drugs including sorafenib, lenvatinib, regorafenib, cabozantinib, ramucicurab, nivilumab, and pembrolizumab have been approved by FDA for advanced HCC. However, their insufficient efficacy, toxicity, and drug resistance require clinically applicable and validated predictive biomarkers.Areas covered: Our review covers the recent advancements in the identification of proteomic/genomic/epigenomic/transcriptomic biomarkers for predicting HCC treatment efficacy with the use of multi-kinase inhibitors (MKIs), CDK4/6 inhibitors, and immune checkpoint inhibitors (ICIs). Alpha-fetoprotein, des-carboxyprothrombin, vascular endothelial growth factor, angiopoietin-2, and dysregulated MTOR, VEGFR2, c-KIT, RAF1, PDGFRβ have the potential of proteomic/genomic biomarkers for sorafenib treatment. Alanine aminotransferase, aspartate aminotransferase, and albumin-bilirubin grade can predict the efficacy of other MKIs. Rb, p16, and Ki-67, and genes involved in cell cycle regulation, CDK1-4, CCND1, CDKN1A, and CDKN2A have been proposed for CD4/6 inhibitors, while dysregulated TERT, CTNNB1, TP53 FGF19, and TP53 are found to be predictors for ICI efficacy.Expert opinion: There are still limited clinically applicable and validated predictive biomarkers to identify HCC patients who benefit from systemic therapy. Further prospective biomarker validation studies for HCC personalized systemic therapy are required.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.m. Sechenov First Moscow State Medical University (Sechenov University);, Moscow, Russia
| | - Sergey P Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Susanna S Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Innokenty M Mokhosoev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
29
|
Li Q, Song T. Association Between Adjuvant Sorafenib and the Prognosis of Patients With Hepatocellular Carcinoma at a High Risk of Recurrence After Radical Resection. Front Oncol 2021; 11:633033. [PMID: 34631511 PMCID: PMC8495215 DOI: 10.3389/fonc.2021.633033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/30/2021] [Indexed: 01/27/2023] Open
Abstract
Background The use of sorafenib in the adjuvant management of hepatocellular carcinoma (HCC) is controversial. Aim To analyze the effects of adjuvant sorafenib therapy in patients with HCC at high recurrence risk after radical resection. Methods This was a retrospective study of patients who underwent radical resection (R0 resection) for HCC at the Cancer Hospital of Tianjin Medical University between August 2009 and August 2017. All patients had microvascular invasion and were evaluated for portal vein tumor thrombus. The outcomes were overall survival (OS), recurrence-free survival (RFS), and survival after recurrence. Propensity score matching (PSM) was used. Results Before matching, there were 56 and 167 patients in the sorafenib and non-sorafenib groups. After PSM, there were 42 patients/group, and there were no significant differences in patient characteristics (all P>0.05). After PSM, compared with the non-sorafenib group, the sorafenib group showed longer median OS (34 vs. 26 months, P=0.032) and survival after recurrence (16 vs. 9 months, P=0.002), but no difference in RFS (14 vs. 11 months, P=0.564). Adjuvant sorafenib was the only factor independently associated with OS (HR=0.619, 95% CI: 0377–0.994, P=0.047). No factors were independently associated with RFS (all P>0.05). Conclusion Although adjuvant sorafenib therapy for patients with HCC and high recurrence risk does not reduce the recurrence risk of HCC, it might be associated with longer survival and a lower risk of death.
Collapse
Affiliation(s)
- Qingli Li
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
30
|
Mansour GH, El-Magd MA, Mahfouz DH, Abdelhamid IA, Mohamed MF, Ibrahim NS, Hady A Abdel Wahab A, Elzayat EM. Bee venom and its active component Melittin synergistically potentiate the anticancer effect of Sorafenib against HepG2 cells. Bioorg Chem 2021; 116:105329. [PMID: 34544028 DOI: 10.1016/j.bioorg.2021.105329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
There are current attempts to find a safe substitute or adjuvant for Sorafenib (Sorf), the standard treatment for advanced hepatocellular carcinoma (HCC), as it triggers very harsh side effects and drug-resistance. The therapeutic properties of Bee Venom (BV) and its active component, Melittin (Mel), make them suitable candidates as potential anti-cancer agents per-se or as adjuvants for cancer chemotherapy. Hence, this study aimed to evaluate the combining effect of BV and Mel with Sorf on HepG2 cells and to investigate their molecular mechanisms of action. Docking between Mel and different tumor-markers was performed. The cytotoxicity of BV, Mel and Sorf on HepG2 and THLE-2 cells was conducted. Combinations of BV/Sorf and Mel/Sorf were performed in non-constant ratios on HepG2. Expression of major cancer-related genes and oxidative stress status was evaluated and the cell cycle was analyzed. The computational analysis showed that Mel can bind to and inhibit XIAP, Bcl2, MDM2, CDK2 and MMP12. Single treatments of BV, Mel and Sorf on HepG2 showed lower IC50than on THLE-2. All combinations revealed a synergistic effect at a combination index (CI) < 1. Significant upregulation (p < 0.05) of p53, Bax, Cas3, Cas7 and PTEN and significant downregulation (p < 0.05) of Bcl-2, Cyclin-D1, Rac1, Nf-κB, HIF-1a, VEGF and MMP9 were observed. The oxidative stress markers including MDA, SOD, CAT and GPx showed insignificant changes, while the cell cycle was arrested at G2/M phase. In conclusion, BV and Mel have a synergistic anticancer effect with Sorf on HepG2 that may represent a new enhancing strategy for HCC treatment.
Collapse
Affiliation(s)
- Ghada H Mansour
- Biotechnology, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Mohammed A El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Dalia H Mahfouz
- Biotechnology, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Magda F Mohamed
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Chemistry Department, College of Science and Arts, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Nada S Ibrahim
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Emad M Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
31
|
Augello G, Emma MR, Azzolina A, Puleio R, Condorelli L, Cusimano A, Giannitrapani L, McCubrey JA, Iovanna JL, Cervello M. The NUPR1/p73 axis contributes to sorafenib resistance in hepatocellular carcinoma. Cancer Lett 2021; 519:250-262. [PMID: 34314755 DOI: 10.1016/j.canlet.2021.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
The multikinase inhibitor sorafenib was the first drug approved by the FDA for treating patients with advanced hepatocellular carcinoma (HCC). However, sorafenib resistance remains a major challenge for improving the effectiveness of HCC treatment. Previously, we identified several genes modulated after sorafenib treatment of human HCC cells, including the stress-inducible nuclear protein 1 (NUPR1) gene. Multiple studies have shown that NUPR1 regulates autophagy, apoptosis, and chemoresistance. Here, we demonstrate that treatment of HCC cells with sorafenib resulted in the activation of autophagic flux. NUPR1 knock-down (KD) in HCC cells was associated with increased p62 expression, suggesting an impairment of autophagic flux, and with a significant increase of cell sensitivity to sorafenib. In NUPR1 KD cells, reduced levels of NUPR1 were associated with the increased expression of p73 as well as its downstream transcription targets PUMA, NOXA, and p21. Simultaneous silencing of p73 and NUPR1 in HCC cells resulted in increased resistance to sorafenib, as compared to the single KD of either gene. Conversely, pharmacological activation of p73, via the novel p73 small molecule activator NSC59984, determined synergistic anti-tumor effects in sorafenib-treated HCC cells. The combination of NSC59984 and sorafenib, when compared to either treatment alone, synergistically suppressed tumor growth of HCC cells in vivo. Our data suggest that the activation of the p73 pathway achieved by NUPR1 KD potentiates sorafenib-induced anti-tumor effects in HCC cells. Moreover, combined pharmacological therapy with the p73 activator NSC59984 and sorafenib could represent a novel approach for HCC treatment.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Maria Rita Emma
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - Lucia Condorelli
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.
| |
Collapse
|
32
|
Wei J, Wang B, Gao X, Sun D. Prognostic Value of a Novel Signature With Nine Hepatitis C Virus-Induced Genes in Hepatic Cancer by Mining GEO and TCGA Databases. Front Cell Dev Biol 2021; 9:648279. [PMID: 34336819 PMCID: PMC8322788 DOI: 10.3389/fcell.2021.648279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/25/2021] [Indexed: 01/29/2023] Open
Abstract
Background Hepatitis C virus-induced genes (HCVIGs) play a critical role in regulating tumor development in hepatic cancer. The role of HCVIGs in hepatic cancer remains unknown. This study aimed to construct a prognostic signature and assess the value of the risk model for predicting the prognosis of hepatic cancer. Methods Differentially expressed HCVIGs were identified in hepatic cancer data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases using the library (“limma”) package of R software. The protein–protein interaction (PPI) network was constructed using the Cytoscape software. Functional enrichment analysis was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Univariate and multivariate Cox proportional hazard regression analyses were applied to screen for prognostic HCVIGs. The signature of HCVIGs was constructed. Gene Set Enrichment Analysis (GSEA) compared the low-risk and high-risk groups. Finally, the International Cancer Genome Consortium (ICGC) database was used to validate this prognostic signature. Polymerase chain reaction (PCR) was performed to validate the expression of nine HCVIGs in the hepatic cancer cell lines. Results A total of 143 differentially expressed HCVIGs were identified in TCGA hepatic cancer dataset. Functional enrichment analysis showed that DNA replication was associated with the development of hepatic cancer. The risk score signature was constructed based on the expression of ZIC2, SLC7A11, PSRC1, TMEM106C, TRAIP, DTYMK, FAM72D, TRIP13, and CENPM. In this study, the risk score was an independent prognostic factor in the multivariate Cox regression analysis [hazard ratio (HR) = 1.433, 95% CI = 1.280–1.605, P < 0.001]. The overall survival curve revealed that the high-risk group had a poor prognosis. The Kaplan–Meier Plotter online database showed that the survival time of hepatic cancer patients with overexpression of HCVIGs in this signature was significantly shorter. The prognostic signature-associated GO and KEGG pathways were significantly enriched in the risk group. This prognostic signature was validated using external data from the ICGC databases. The expression of nine prognostic genes was validated in HepG2 and LO-2. Conclusion This study evaluates a potential prognostic signature and provides a way to explore the mechanism of HCVIGs in hepatic cancer.
Collapse
Affiliation(s)
- Jianming Wei
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Wang
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xibo Gao
- Department of Dermatology, Tianjin Children's Hospital, Tianjin, China
| | - Daqing Sun
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
33
|
Manganelli M, Grossi I, Ferracin M, Guerriero P, Negrini M, Ghidini M, Senti C, Ratti M, Pizzo C, Passalacqua R, Molfino S, Baiocchi G, Portolani N, Marchina E, De Petro G, Salvi A. Longitudinal Circulating Levels of miR-23b-3p, miR-126-3p and lncRNA GAS5 in HCC Patients Treated with Sorafenib. Biomedicines 2021; 9:813. [PMID: 34356875 PMCID: PMC8301380 DOI: 10.3390/biomedicines9070813] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) is the most frequent primary tumor of the liver and the third cause of cancer-related deaths. The multikinase inhibitor sorafenib is a systemic drug for unresectable HCC. The identification of molecular biomarkers for the early diagnosis of HCC and responsiveness to treatment are needed. In this work, we performed an exploratory study to investigate the longitudinal levels of cell-free long ncRNA GAS5 and microRNAs miR-126-3p and -23b-3p in a cohort of 7 patients during the period of treatment with sorafenib. We used qPCR to measure the amounts of GAS5 and miR-126-3p and droplet digital PCR (ddPCR) to measure the levels of miR-23b-3p. Patients treated with sorafenib displayed variable levels of GAS5, miR-126-3p and miR-23b-3p at different time-points of follow-up. miR-23b-3p was further measured by ddPCR in 37 healthy individuals and 25 untreated HCC patients. The amount of miR-23b-3p in the plasma of untreated HCC patients was significantly downregulated if compared to healthy individuals. The ROC curve analysis underlined its diagnostic relevance. In conclusion, our results highlight a potential clinical significance of circulating miR-23b-3p and an exploratory observation on the longitudinal plasmatic levels of GAS5, miR-126-3p and miR-23b-3p during sorafenib treatment.
Collapse
Affiliation(s)
- Michele Manganelli
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy; (M.M.); (I.G.); (E.M.)
| | - Ilaria Grossi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy; (M.M.); (I.G.); (E.M.)
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Paola Guerriero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (P.G.); (M.N.)
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (P.G.); (M.N.)
| | - Michele Ghidini
- Department of Oncology, Azienda Socio Sanitaria Territoriale of Cremona, 26100 Cremona, Italy; (M.G.); (C.S.); (M.R.); (C.P.); (R.P.)
| | - Chiara Senti
- Department of Oncology, Azienda Socio Sanitaria Territoriale of Cremona, 26100 Cremona, Italy; (M.G.); (C.S.); (M.R.); (C.P.); (R.P.)
| | - Margherita Ratti
- Department of Oncology, Azienda Socio Sanitaria Territoriale of Cremona, 26100 Cremona, Italy; (M.G.); (C.S.); (M.R.); (C.P.); (R.P.)
| | - Claudio Pizzo
- Department of Oncology, Azienda Socio Sanitaria Territoriale of Cremona, 26100 Cremona, Italy; (M.G.); (C.S.); (M.R.); (C.P.); (R.P.)
| | - Rodolfo Passalacqua
- Department of Oncology, Azienda Socio Sanitaria Territoriale of Cremona, 26100 Cremona, Italy; (M.G.); (C.S.); (M.R.); (C.P.); (R.P.)
| | - Sarah Molfino
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, 25123 Brescia, Italy; (S.M.); (G.B.); (N.P.)
| | - Gianluca Baiocchi
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, 25123 Brescia, Italy; (S.M.); (G.B.); (N.P.)
| | - Nazario Portolani
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, 25123 Brescia, Italy; (S.M.); (G.B.); (N.P.)
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy; (M.M.); (I.G.); (E.M.)
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy; (M.M.); (I.G.); (E.M.)
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy; (M.M.); (I.G.); (E.M.)
| |
Collapse
|
34
|
A Z, J SW, A M, E L, I W, W R, J JG. LY294002 and sorafenib as inhibitors of intracellular survival pathways in the elimination of human glioma cells by programmed cell death. Cell Tissue Res 2021; 386:17-28. [PMID: 34236519 PMCID: PMC8526469 DOI: 10.1007/s00441-021-03481-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/02/2021] [Indexed: 11/05/2022]
Abstract
Gliomas are aggressive brain tumors with very high resistance to chemotherapy throughout the overexpression of multiple intracellular survival pathways. Therefore, the aim of the present study was to investigate for the first time the anticancer activity of LY294002, phosphatidylinositol 3-kinase (PI3K) inhibitor and sorafenib, and rapidly accelerated fibrosarcoma kinase (Raf) inhibitor in the elimination of human glioma cells by programmed cell death. MOGGCCM (anaplastic astrocytoma, III) and T98G (glioblastoma multiforme, IV) cell lines incubated with LY294002 and/or sorafenib were used in the experiments. Simultaneous treatment with both drugs was more effective in the elimination of cancer cells on the way of apoptosis with no significant necrotic effect than single application. It was correlated with decreasing the mitochondrial membrane potential and activation of caspase 3 and 9. The expression of Raf and PI3K was also inhibited. Blocking of those kinases expression by specific siRNA revealed significant apoptosis induction, exceeding the level observed after LY294002 and sorafenib treatment in non-transfected lines but only in MOGGCCM cells. Our results indicated that combination of LY294002 and sorafenib was very efficient in apoptosis induction in glioma cells. Anaplastic astrocytoma cells turned out to be more sensitive for apoptosis induction than glioblastoma multiforme after blocking PI3K and Raf expression with siRNA.
Collapse
Affiliation(s)
- Zając A
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland.
| | - Sumorek-Wiadro J
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Maciejczyk A
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Langner E
- Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland
| | - Wertel I
- 1st Department of Gynecology, University School of Medicine, Lublin, Poland
| | - Rzeski W
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland.,Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland
| | - Jakubowicz-Gil J
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
35
|
Cammarota A, D'Alessio A, Pressiani T, Rimassa L, Personeni N. Systemic Treatment for Older Patients with Unresectable Hepatocellular Carcinoma. Drugs Aging 2021; 38:579-591. [PMID: 34152589 DOI: 10.1007/s40266-021-00871-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/25/2022]
Abstract
The incidence rate of hepatocellular carcinoma is growing and age at diagnosis is increasing; however, despite the unprecedented wealth of therapeutic options for advanced HCC, its optimal management in some categories, such as older adults, is yet to be defined. Even though age is not an exclusion criterion per se, most of the landmark trials enrolled a limited number of senior patients, raising some concerns on the potential benefit of active treatments in this group. The identification of more vulnerable patients remains a crucial issue in clinical practice. In fact, the suitability assessment for systemic therapy through performance status metrics might underestimate or conversely overestimate the fitness of older patients, failing to detect other relevant impairments. Thus, the assessment of frailty through geriatric screening scales is largely necessary. In addition, most of the available data relate to the use of sorafenib, while very little is known about the most recent therapeutic agents. Age subgroup analyses provided by many of the pivotal trials did not find significant efficacy or safety differences across ages; however, the most widely used cut-off age of 65 years may not be very informative for the current older population. Regarding immunotherapy, the clinical benefit reported with immune checkpoint inhibitors reassures their safe use in senior patients and supports further investigations to assess their efficacy in this population.
Collapse
Affiliation(s)
- Antonella Cammarota
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.,Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Antonio D'Alessio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.,Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy. .,Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy.
| | - Nicola Personeni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.,Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| |
Collapse
|
36
|
Gnocchi D, Castellaneta F, Cesari G, Fiore G, Sabbà C, Mazzocca A. Treatment of liver cancer cells with ethyl acetate extract of Crithmum maritimum permits reducing sorafenib dose and toxicity maintaining its efficacy. J Pharm Pharmacol 2021; 73:1369-1376. [PMID: 34014301 DOI: 10.1093/jpp/rgab070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is one of the most frequent tumours worldwide and available drugs are inadequate for therapeutic results and tolerability. Hence, novel effective therapeutic tools with fewer side effects are of paramount importance. We have previously shown that Crithmum maritimum ethyl acetate extract exerts a cytostatic effect in HCC cells. Here, we tested whether C. maritimum ethyl acetate extract in combination with half sorafenib IC50 dose ameliorated efficacy and toxicity of sorafenib in inhibiting liver cancer cell growth. Moreover, we investigated the mechanisms involved. METHODS Two HCC cell lines (Huh7 and HepG2) were treated with C. maritimum ethyl acetate extract and half IC50 sorafenib dose usually employed in vitro. Then, cell proliferation, growth kinetics and cell toxicity were analysed together with an investigation of the cellular mechanisms involved, focusing on cell cycle regulation and apoptosis. KEY FINDINGS Results show that combined treatment with C. maritimum ethyl acetate extract and half IC50 sorafenib dose decreased cell proliferation comparably to full-dose sorafenib without increasing cell toxicity as confirmed by the effect on cell cycle regulation and apoptosis. CONCLUSIONS These results provide scientific support for the possibility of an effective integrative therapeutic approach for HCC with fewer side effects on patients.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Francesca Castellaneta
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Gianluigi Cesari
- International Centre for Advanced Mediterranean Agronomic Studies - CHIEAM, Valenzano (BA), Italy
| | - Giorgio Fiore
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| |
Collapse
|
37
|
Synthesis of sorafenib analogues incorporating a 1,2,3-triazole ring and cytotoxicity towards hepatocellular carcinoma cell lines. Bioorg Chem 2021; 112:104831. [PMID: 33831675 DOI: 10.1016/j.bioorg.2021.104831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023]
Abstract
A series of 1,2,3-triazole-containing Sorafenib analogues, in which the aryl urea moiety of Sorafenib (1) was replaced with a 1,2,3-triazole ring linking a substituted phenoxy fragment, were prepared successfully via Huisgen 1,3-dipolar cycloaddition and nucleophilic aromatic substitution. The studies of cytotoxicity towards human hepatocellular carcinoma (HCC) cell lines, HepG2 and Huh7, indicated that p-tert-butylphenoxy analogue 2m showed significant inhibitory activity against Huh7 with IC50 = 5.67 ± 0.57 µM. More importantly, 2m showed low cytotoxicity against human embryonal lung fibroblast cell line, MRC-5, with IC50 > 100 µM, suggesting its highly selective cytotoxic activity (SI > 17.6) towards Huh7 which is much superior to that of Sorafenib (SI = 6.73). The molecular docking studies revealed that the analogue 2m bound B-RAF near the binding position of Sorafenib, while it interacted VEGFR2 efficiently at the same binding position of Sorafenib. However, 2m exhibited moderate inhibitory activity toward B-RAF, implying that its anti-Huh7 effect might not strictly relate to inhibition of B-RAF. Wound healing and BrdU cell proliferation assays confirmed anti-cell migration and anti-cell proliferative activities towards Huh7. With its inhibitory efficiency and high safety profile, 2m has been identified as a promising candidate for the treatment of HCC.
Collapse
|
38
|
Park C, Oh J, Lee WM, Koh HR, Sohn UD, Ham SW, Oh K. Inhibition of NUPR1-Karyopherin β1 Binding Increases Anticancer Drug Sensitivity. Int J Mol Sci 2021; 22:ijms22062794. [PMID: 33801927 PMCID: PMC8000408 DOI: 10.3390/ijms22062794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Nuclear protein-1 (NUPR1, also known as p8/Com-1) is a transcription factor involved in the regulation of cellular stress responses, including serum starvation and drug stimulation. Methods: We investigated the mechanism of NUPR1 nuclear translocation involving karyopherin β1 (KPNB1), using a single-molecule binding assay and confocal microscopy. The cellular effects associated with NUPR1–KPNB1 inhibition were investigated by gene expression profiling and cell cycle analysis. Results: The single-molecule binding assay revealed that KPNB1 bound to NUPR1 with a binding affinity of 0.75 nM and that this binding was blocked by the aminothiazole ATZ-502. Following doxorubicin-only treatment, NUPR1 was translocated to the nucleus in more than 90% and NUPR1 translocation was blocked by the ATZ-502 combination treatment in MDA-MB-231 with no change in NUPR1 expression, providing strong evidence that NUPR1 nuclear translocation was directly inhibited by the ATZ-502 treatment. Inhibition of KPNB1 and NUPR1 binding was associated with a synergistic anticancer effect (up to 19.6-fold) in various cancer cell lines. NUPR1-related genes were also downregulated following the doxorubicin–ATZ-502 combination treatment. Conclusion: Our current findings clearly demonstrate that NUPR1 translocation into the nucleus requires karyopherin β1 binding. Inhibition of the KPNB1 and NUPR1 interaction may constitute a new cancer therapeutic approach that can increase the drug efficacy while reducing the side effects.
Collapse
Affiliation(s)
- Chanhee Park
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (C.P.); (W.M.L.); (U.D.S.)
- Institute of Gastroenterology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun, Seoul 03772, Korea
| | - Jiwon Oh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (J.O.); (H.R.K.)
| | - Won Mo Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (C.P.); (W.M.L.); (U.D.S.)
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (J.O.); (H.R.K.)
| | - Uy Dong Sohn
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (C.P.); (W.M.L.); (U.D.S.)
| | - Seung Wook Ham
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (J.O.); (H.R.K.)
- Correspondence: (S.W.H.); (K.O.)
| | - Kyungsoo Oh
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Korea; (C.P.); (W.M.L.); (U.D.S.)
- Correspondence: (S.W.H.); (K.O.)
| |
Collapse
|
39
|
Synthesis and Characterization of Chitosan-Based Nanodelivery Systems to Enhance the Anticancer Effect of Sorafenib Drug in Hepatocellular Carcinoma and Colorectal Adenocarcinoma Cells. NANOMATERIALS 2021; 11:nano11020497. [PMID: 33669332 PMCID: PMC7920308 DOI: 10.3390/nano11020497] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
The formation of two nanodelivery systems, Sorafenib (SF)-loaded chitosan (SF-CS) and their folate-coated (SF-CS-FA) nanoparticles (NPs), were developed to enhance SF drug delivery on human Hepatocellular Carcinoma (HepG2) and Colorectal Adenocarcinoma (HT29) cell lines. The ionic gelation method was adopted to synthesize the NPs. The characterizations were performed by DLS, FESEM, TEM, XRD, TGA, FTIR, and UV-visible spectroscopy. It was found that 83.7 ± 2.4% and 87.9 ± 1.1% of encapsulation efficiency; 18.2 ± 1.3% and 19.9 ± 1.4% of loading content; 76.3 ± 13.7 nm and 81.6 ± 12.9 nm of hydrodynamic size; 60–80 nm and 70–100 nm of TEM; and FESEM sizes of near-spherical shape were observed, respectively, for SF-CS and SF-CS-FA nanoparticles. The SF showed excellent release from the nanoparticles under pH 4.8 PBS solution, indicating a good delivery system for tumor cells. The cytotoxicity study revealed their better anticancer action towards HepG2 and HT29 cell lines compared to the free sorafenib. Moreover, both NPs systems showed negligible toxicity to normal Human Dermal Fibroblast adult cells (HDFa). This is towards an enhanced anticancer drug delivery system with sustained-release properties for better cancer management.
Collapse
|
40
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
41
|
Younis MA, Khalil IA, Elewa YHA, Kon Y, Harashima H. Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo. J Control Release 2021; 331:335-349. [PMID: 33484779 DOI: 10.1016/j.jconrel.2021.01.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease with limited therapeutic choices. The stroma-rich tumor microenvironment hinders the in vivo delivery of most nanomedicines. Ultra-small lipid nanoparticles (usLNPs) were designed for the selective co-delivery of the cytotoxic drug, sorafenib (SOR), and siRNA against the Midkine gene (MK-siRNA) to HCC in mice. The usLNPs composed of a novel pH-sensitive lipid, a diversity of phospholipids and a highly-selective targeting peptide. A microfluidic device, iLiNP, was used and a variety of factors were controlled to tune particle size aiming at maximizing tumor penetration efficiency. Optimizing the composition and physico-chemical properties of the usLNPs resulted in an enhanced tumor accumulation, selectivity and in vivo gene silencing. The optimized usLNPs exerted potent gene silencing in the tumor (median effective dose, ED50~0.1 mg/Kg) with limited effect on the healthy liver. The novel combination synergistically-eradicated HCC in mice (~85%) at a surprisingly-low dose of SOR (2.5 mg/Kg) which could not be achieved via individual monotherapy. Toxicity studies revealed the biosafety of the usLNPs upon either acute or chronic treatment. Furthermore, the SOR-resistant HCC established in mice was eradicated by 70% using this approach. We conclude that our strategy is promising for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Ikramy A Khalil
- Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
42
|
Polidoro MA, Mikulak J, Cazzetta V, Lleo A, Mavilio D, Torzilli G, Donadon M. Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells. World J Gastroenterol 2020; 26:4900-4918. [PMID: 32952338 PMCID: PMC7476172 DOI: 10.3748/wjg.v26.i33.4900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, several studies have been focused on elucidate the role of tumor microenvironment (TME) in cancer development and progression. Within TME, cells from adaptive and innate immune system are one of the main abundant components. The dynamic interactions between immune and cancer cells lead to the activation of complex molecular mechanisms that sustain tumor growth. This important cross-talk has been elucidate for several kind of tumors and occurs also in patients with liver cancer, such as hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Liver is well-known to be an important immunological organ with unique microenvironment. Here, in normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as liver sinusoidal endothelial cells and Kupffer cells, favoring self-tolerance against gut antigens. The presence of underling liver immunosuppressive microenvironment highlights the importance to dissect the interaction between HCC and iCCA cells with immune infiltrating cells, in order to understand how this cross-talk promotes tumor growth. Deeper attention is, in fact, focused on immune-based therapy for these tumors, as promising approach to counteract the intrinsic anti-tumor activity of this microenvironment. In this review, we will examine the key pathways underlying TME cell-cell communications, with deeper focus on the role of natural killer cells in primary liver tumors, such as HCC and iCCA, as new opportunities for immune-based therapeutic strategies.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Ana Lleo
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Internal Medicine, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| |
Collapse
|
43
|
Locoregional Therapy Approaches for Hepatocellular Carcinoma: Recent Advances and Management Strategies. Cancers (Basel) 2020; 12:cancers12071914. [PMID: 32679897 PMCID: PMC7409274 DOI: 10.3390/cancers12071914] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and third leading cause of cancer-related mortality worldwide. While surgical resection and transplantation are the standard first-line treatments for early-stage HCC, most patients do not fulfill criteria for surgery. Fortunately, catheter-directed and percutaneous locoregional approaches have evolved as major treatment modalities for unresectable HCC. Improved outcomes have been achieved with novel techniques which can be employed for diverse applications ranging from curative-intent for small localized tumors, to downstaging or bridging to resection and transplantation for early and intermediate disease, and locoregional control and palliation for advanced disease. This review explores recent advances in liver-directed techniques for HCC including bland transarterial embolization, chemoembolization, radioembolization, and ablative therapies, with a focus on patient selection, procedural technique, periprocedural management, and outcomes.
Collapse
|
44
|
Abstract
OBJECTIVES Immunomodulatory drugs (IMDs) are crucial for treating autoimmune, inflammatory, and oncologic conditions. Data regarding the safety of IMDs in people living with HIV (PLWH) are limited. We describe outcomes in all PLWH prescribed these agents from 2000--2019 at two academic medical centers. DESIGN Retrospective cohort study. METHODS We systematically identified and reviewed charts of all PLWH receiving IMDs. We defined a treatment episode as an uninterrupted period on an IMD regimen. We quantified infections, blips (detectable plasma HIV RNA following an undetectable result), and virologic failure (progression from plasma HIV RNA <200 copies/ml to two consecutive values >200 copies/ml despite ART). RESULTS Seventy-seven patients contributed 110 treatment episodes. Rheumatologic comorbidities were the most frequent indication. The most common IMD classes were TNF inhibitors, antimetabolites, and checkpoint inhibitors. Ninety percent of treatment episodes involved concomitant ART. Median pretreatment CD4 T-cell count was 609 cells/μl (IQR 375--861). Among 51 treatment episodes on ART with undetectable pretreatment plasma HIV RNA, HIV became detectable within 1 year in 21 of 51 cases (41.2%); there were no instances of virologic failure. Compared with other agents, treatment episodes involving checkpoint inhibitors were more likely to involve a blip (77.8 vs. 33.3%, P = 0.015). Thirteen treatment episodes (11.8%) were associated with concomitant infection; none was attributed to IMDs by the treating clinician. CONCLUSION PLWH treated with IMDs should be monitored carefully for virologic blips and incident infections. Checkpoint inhibitors may be associated with a higher rate of viral blips, although the clinical significance is unclear.
Collapse
|
45
|
Jiang S, Wang R, Zhang X, Wu F, Li S, Yuan Y. Combination treatment of gemcitabine and sorafenib exerts a synergistic inhibitory effect on non-small cell lung cancer in vitro and in vivo via the epithelial-to-mesenchymal transition process. Oncol Lett 2020; 20:346-356. [PMID: 32537024 PMCID: PMC7291674 DOI: 10.3892/ol.2020.11536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 03/02/2020] [Indexed: 01/13/2023] Open
Abstract
Standard chemotherapy is commonly used in clinical practice for the treatment of non-small cell lung cancer (NSCLC). However, its therapeutic efficacy remains low. Combination therapy for cancer treatment has attracted attention in recent years. The present study aimed to investigate the antitumor effect of the combination treatment with gemcitabine and sorafenib on NSCLC in vitro and in vivo, and to determine its underlying molecular mechanisms. The anti-NSCLC effects of combination therapy were analyzed by flow cytometry analysis, MTT, western blotting, reverse transcription-quantitative PCR, wound healing and Transwell invasion assays. A549 cells subjected to combination treatment with gemcitabine and sorafenib demonstrated a more irregular cellular morphology and lower cell viability compared with the monotherapy groups. Combination of gemcitabine and sorafenib significantly induced cell cycle arrest and apoptosis in A549 cells. Additionally, combination therapy was demonstrated to restrain the migration and invasion of tumor cells by suppressing epithelial-to-mesenchymal transition (EMT) of A549 cells. In vivo analyses confirmed that co-treatment with gemcitabine and sorafenib decreased NSCLC tumor growth and tumor weight in nude mice. Taken together, the results of the present study suggested that combination treatment with gemcitabine and sorafenib exerted a synergistic inhibitory effect on NSCLC in vitro and in vivo via the EMT process.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Xuan Zhang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Feihua Wu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Shengnan Li
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
46
|
Abstract
Hepatocellular carcinoma remains a deadly disease with poor prognosis in patients with unresectable cancer. Trans-arterial chemoembolization is the primary locoregional therapy for intermediate-stage hepatocellular carcinoma, with an estimated median overall survival of less than two years. For almost a decade, sorafenib has been the only standard systemic treatment for metastatic disease or tumors which progress or are considered unsuitable for locoregional therapy. Major breakthroughs have been made over the past few years in the management of hepatocellular carcinoma, especially in medical therapies for advanced disease. In this article, recent advances in intra-arterial therapy, multi-kinase inhibitors, and immunotherapy will be reviewed.
Collapse
Affiliation(s)
- Kwan-Lung Ko
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
47
|
Rodríguez-Hernández MA, de la Cruz-Ojeda P, Gallego P, Navarro-Villarán E, Staňková P, Del Campo JA, Kučera O, Elkalaf M, Maseko TE, Červinková Z, Muntané J. Dose-dependent regulation of mitochondrial function and cell death pathway by sorafenib in liver cancer cells. Biochem Pharmacol 2020; 176:113902. [PMID: 32156660 DOI: 10.1016/j.bcp.2020.113902] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/03/2020] [Indexed: 01/14/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the fourth most frequent cause of cancer-related death worldwide. Sorafenib is the first line recommended therapy for patients with locally advanced/metastatic HCC. The low response rate is attributed to intrinsic resistance of HCC cells to Sorafenib. The potential resistance to Sorafenib-induced cell death is multifactorial and involves all hallmarks of cancer. However, the presence of sub-therapeutic dose can negatively influence the antitumoral properties of the drug. In this sense, the present study showed that the sub-optimal Sorafenib concentration (10 nM) was associated with activation of caspase-9, AMP-activated protein kinase (AMPK), sustained autophagy, peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α) and mitochondrial function in HepG2 cells. The increased mitochondrial respiration by Sorafenib (10 nM) was also observed in permeabilized HepG2 cells, but not in isolated rat mitochondria, which suggests the involvement of an upstream component in this regulatory mechanism. The basal glycolysis was dose dependently increased at early time point studied (6 h). Interestingly, Sorafenib increased nitric oxide (NO) generation that played an inhibitory role in mitochondrial respiration in sub-therapeutic dose of Sorafenib. The administration of sustained therapeutic dose of Sorafenib (10 µM, 24 h) induced mitochondrial dysfunction and dropped basal glycolysis derived acidification, as well as increased oxidative stress and apoptosis in HepG2. In conclusion, the accurate control of the administered dose of Sorafenib is relevant for the potential prosurvival or proapoptotic properties induced by the drug in liver cancer cells.
Collapse
Affiliation(s)
- María A Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Paloma Gallego
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Pavla Staňková
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic; COST-European Cooperation in Science & Technology, Mitoeagle Action number: CA15203, Brussels, Belgium
| | - José A Del Campo
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic; COST-European Cooperation in Science & Technology, Mitoeagle Action number: CA15203, Brussels, Belgium
| | - Moustafa Elkalaf
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Tumisang E Maseko
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic; COST-European Cooperation in Science & Technology, Mitoeagle Action number: CA15203, Brussels, Belgium
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; COST-European Cooperation in Science & Technology, Mitoeagle Action number: CA15203, Brussels, Belgium; Department of General Surgery, "Virgen del Rocío" University Hospital/IBiS/CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
48
|
Dattachoudhury S, Sharma R, Kumar A, Jaganathan BG. Sorafenib Inhibits Proliferation, Migration and Invasion of Breast Cancer Cells. Oncology 2020; 98:478-486. [PMID: 32434184 DOI: 10.1159/000505521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Metastatic breast cancer has poor prognosis due to limited therapeutic options. Protein kinase dysregulations have a major role in breast cancer progression and metastasis. In this study, we investigated the anti-cancer activity of sorafenib, a multikinase inhibitor, which targets receptor tyrosine kinases in breast cancer. Although treatment with sorafenib has increased the patient survival and inhibited metastatic migration in hepatocellular carcinoma, its role in breast cancer migration, metastasis, and intracellular signaling modulation is unknown. METHODS Breast cancer cell lines MCF7 and MDA-MB-231 were treated with sorafenib and its effect on proliferation, migration, invasion and gene expression was analyzed. RESULTS We found that sorafenib has an anti-proliferative and cytotoxic effect on breast cancer cells. Importantly, sorafenib inhibited the migration and invasion of breast cancer cells in vitro. Mechanistically, sorafenib increased mitochondrial superoxide production, suppressed breast cancer stem cell self-renewal, inhibited epithelial mesenchymal transition and ERK signaling. CONCLUSION Thus, sorafenib has anti-cancer activity against breast cancer cells and could improve the survival of breast cancer patients by inhibiting their invasive and metastatic properties.
Collapse
Affiliation(s)
- Sreeja Dattachoudhury
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Renu Sharma
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Atul Kumar
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India,
| |
Collapse
|
49
|
Moawad AW, Szklaruk J, Lall C, Blair KJ, Kaseb AO, Kamath A, Rohren SA, Elsayes KM. Angiogenesis in Hepatocellular Carcinoma; Pathophysiology, Targeted Therapy, and Role of Imaging. J Hepatocell Carcinoma 2020; 7:77-89. [PMID: 32426302 PMCID: PMC7188073 DOI: 10.2147/jhc.s224471] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, usually occurring on a background of liver cirrhosis. HCC is a highly vascular tumor in which angiogenesis plays a major role in tumor growth and spread. Tumor-induced angiogenesis is usually related to a complex interplay between multiple factors and pathways, with vascular endothelial growth factor being a major player in angiogenesis. In the past decade, understanding of tumor-induced angiogenesis has led to the emergence of novel anti-angiogenic therapies, which act by reducing neo-angiogenesis, and improving patient survival. Currently, Sorafenib and Lenvatinib are being used as the first-line treatment for advanced unresectable HCC. However, a disadvantage of these agents is the presence of numerous side effects. A major challenge in the management of HCC patients being treated with anti-angiogenic therapy is effective monitoring of treatment response, which decides whether to continue treatment or to seek second-line treatment. Several criteria can be used to assess response to treatment, such as quantitative perfusion on cross-sectional imaging and novel/emerging MRI techniques, including a host of known and emerging biomarkers and radiogenomics. This review addresses the pathophysiology of angiogenesis in HCC, accurate imaging assessment of angiogenesis, monitoring effects of anti-angiogenic therapy to guide future treatment and assessing prognosis.
Collapse
Affiliation(s)
- Ahmed W Moawad
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Janio Szklaruk
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Chandana Lall
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Katherine J Blair
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Amita Kamath
- Department of Radiology, Icahn School of Medicine at Mount Sinai West, New York, NY, USA
| | - Scott A Rohren
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Khaled M Elsayes
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
Downregulation of thioredoxin-1-dependent CD95 S-nitrosation by Sorafenib reduces liver cancer. Redox Biol 2020; 34:101528. [PMID: 32388267 PMCID: PMC7210585 DOI: 10.1016/j.redox.2020.101528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents 80% of the primary hepatic neoplasms. It is the sixth most frequent neoplasm, the fourth cause of cancer-related death, and 7% of registered malignancies. Sorafenib is the first line molecular targeted therapy for patients in advanced stage of HCC. The present study shows that Sorafenib exerts free radical scavenging properties associated with the downregulation of nuclear factor E2-related factor 2 (Nrf2)-regulated thioredoxin 1 (Trx1) expression in liver cancer cells. The experimental downregulation and/or overexpression strategies showed that Trx1 induced activation of nitric oxide synthase (NOS) type 3 (NOS3) and S-nitrosation (SNO) of CD95 receptor leading to an increase of caspase-8 activity and cell proliferation, as well as reduction of caspase-3 activity in liver cancer cells. In addition, Sorafenib transiently increased mRNA expression and activity of S-nitrosoglutathione reductase (GSNOR) in HepG2 cells. Different experimental models of hepatocarcinogenesis based on the subcutaneous implantation of HepG2 cells in nude mice, as well as the induction of HCC by diethylnitrosamine (DEN) confirmed the relevance of Trx1 downregulation during the proapoptotic and antiproliferative properties induced by Sorafenib. In conclusion, the induction of apoptosis and antiproliferative properties by Sorafenib were related to Trx1 downregulation that appeared to play a relevant role on SNO of NOS3 and CD95 in HepG2 cells. The transient increase of GSNOR might also participate in the deactivation of CD95-dependent proliferative signaling in liver cancer cells. Sorafenib induces mitochondrial ROS generation, but also acts as nucleophilic scavenger. Sorafenib reduces Nrf2-depenent Trx1 expression, and SNO–NOS3 and SNO-CD95 ratios. Sorafenib-related antitumoral in vivo activity involves diminution of Trx1 and SNO-CD95.
Collapse
|