1
|
Singh A, Chimata AV, Deshpande P, Bajpai S, Sangeeth A, Rajput M, Singh A. SARS-CoV2 Nsp3 protein triggers cell death and exacerbates amyloid β42-mediated neurodegeneration. Neural Regen Res 2024; 19:1385-1392. [PMID: 37905889 DOI: 10.4103/1673-5374.382989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202406000-00044/inline-graphic1/v/2023-10-30T152229Z/r/image-tiff
Infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus, responsible for the coronavirus disease 2019 (COVID-19) pandemic, induces symptoms including increased inflammatory response, severe acute respiratory syndrome (SARS), cognitive dysfunction like brain fog, and cardiovascular defects. Long-term effects of SARS-CoV2 COVID-19 syndrome referred to as post-COVID-19 syndrome on age-related progressive neurodegenerative disorders such as Alzheimer’s disease remain understudied. Using the targeted misexpression of individual SARS-CoV2 proteins in the retinal neurons of the Drosophila
melanogaster eye, we found that misexpression of nonstructural protein 3 (Nsp3), a papain-like protease, ablates the eye and generates dark necrotic spots. Targeted misexpression of Nsp3 in the eye triggers reactive oxygen species production and leads to apoptosis as shown by cell death reporters, terminal deoxynucleotidyl transferase (TdT) dUTP Nick-end labeling (TUNEL) assay, and dihydroethidium staining. Furthermore, Nsp3 misexpression activates both apoptosis and autophagy mechanism(s) to regulate tissue homeostasis. Transient expression of SARS-CoV2 Nsp3 in murine neuroblastoma, Neuro-2a cells, significantly reduced the metabolic activity of these cells and triggers cell death. Misexpression of SARS-CoV2 Nsp3 in an Alzheimer’s disease transgenic fly eye model (glass multiple repeats [GMR]>amyloid β42) further enhances the neurodegenerative rough eye phenotype due to increased cell death. These findings suggest that SARS-CoV2 utilizes Nsp3 protein to potentiate cell death response in a neurodegenerative disease background that has high pre-existing levels of neuroinflammation and cell death.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
| | | | | | - Soumya Bajpai
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Anjali Sangeeth
- Department of Biology, University of Dayton, Dayton, OH, USA
| | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
2
|
Wu K, Liu S. Hippocampal dopamine as a key regulator for learning deficits in Parkinson's disease. Neural Regen Res 2024; 19:1193-1194. [PMID: 37905860 DOI: 10.4103/1673-5374.385860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Kun Wu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China (Wu K, Liu S)
| | - Shuai Liu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China (Wu K, Liu S)
- Shanghai Changning Mental Health Center, Shanghai, China (Liu S)
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China (Liu S)
| |
Collapse
|
3
|
Hierro-Bujalance C, Garcia-Alloza M. Empagliflozin reduces brain pathology in Alzheimer's disease and type 2 diabetes. Neural Regen Res 2024; 19:1189-1190. [PMID: 37905858 DOI: 10.4103/1673-5374.385865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/20/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain (Hierro-Bujalance C, Garcia-Alloza M)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain (Hierro-Bujalance C, Garcia-Alloza M)
- Salus Infirmorum-Universidad de Cadiz, Cadiz, Spain (Hierro-Bujalance C)
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain (Hierro-Bujalance C, Garcia-Alloza M)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain (Hierro-Bujalance C, Garcia-Alloza M)
| |
Collapse
|
4
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CTO, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
5
|
Romano R, Bucci C. Antisense therapy: a potential breakthrough in the treatment of neurodegenerative diseases. Neural Regen Res 2024; 19:1027-1035. [PMID: 37862205 DOI: 10.4103/1673-5374.385285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system. Currently, there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide. Therefore, it is necessary to find new therapeutic approaches, and antisense therapies offer this possibility, having the great advantage of not modifying cellular genome and potentially being safer. Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases. The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases, with a focus on those antisense therapies that have already received the approval of the U.S. Food and Drug Administration.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
6
|
Zhou H, Lou Y, Chen L, Kang Y, Liu L, Cai Z, Anderson DB, Wang W, Zhang C, Wang J, Ning G, Gao Y, He B, Ding W, Wang Y, Mei W, Song Y, Zhou Y, Xia M, Wang H, Zhao J, Yin G, Zhang T, Jing F, Zhu R, Meng B, Duan L, Zhang Z, Wu D, Cai Z, Huang L, Yin Z, Li K, Lu S, Feng S. Epidemiological and clinical features, treatment status, and economic burden of traumatic spinal cord injury in China: a hospital-based retrospective study. Neural Regen Res 2024; 19:1126-1133. [PMID: 37862218 DOI: 10.4103/1673-5374.382257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Traumatic spinal cord injury is potentially catastrophic and can lead to permanent disability or even death. China has the largest population of patients with traumatic spinal cord injury. Previous studies of traumatic spinal cord injury in China have mostly been regional in scope; national-level studies have been rare. To the best of our knowledge, no national-level study of treatment status and economic burden has been performed. This retrospective study aimed to examine the epidemiological and clinical features, treatment status, and economic burden of traumatic spinal cord injury in China at the national level. We included 13,465 traumatic spinal cord injury patients who were injured between January 2013 and December 2018 and treated in 30 hospitals in 11 provinces/municipalities representing all geographical divisions of China. Patient epidemiological and clinical features, treatment status, and total and daily costs were recorded. Trends in the percentage of traumatic spinal cord injuries among all hospitalized patients and among patients hospitalized in the orthopedic department and cost of care were assessed by annual percentage change using the Joinpoint Regression Program. The percentage of traumatic spinal cord injuries among all hospitalized patients and among patients hospitalized in the orthopedic department did not significantly change overall (annual percentage change, -0.5% and 2.1%, respectively). A total of 10,053 (74.7%) patients underwent surgery. Only 2.8% of patients who underwent surgery did so within 24 hours of injury. A total of 2005 (14.9%) patients were treated with high-dose (≥ 500 mg) methylprednisolone sodium succinate/methylprednisolone (MPSS/MP); 615 (4.6%) received it within 8 hours. The total cost for acute traumatic spinal cord injury decreased over the study period (-4.7%), while daily cost did not significantly change (1.0% increase). Our findings indicate that public health initiatives should aim at improving hospitals' ability to complete early surgery within 24 hours, which is associated with improved sensorimotor recovery, increasing the awareness rate of clinical guidelines related to high-dose MPSS/MP to reduce the use of the treatment with insufficient evidence.
Collapse
Affiliation(s)
- Hengxing Zhou
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine; Department of Orthopedics, Shandong University Center for Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yongfu Lou
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong; Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Lingxiao Chen
- Department of Orthopedics, Shandong University Center for Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Faculty of Medicine and Health, The Back Pain Research Team, Sydney Musculoskeletal Health, The Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Yi Kang
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Lu Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhiwei Cai
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - David B Anderson
- Faculty of Medicine and Health, School of Health Sciences, University of Sydney; Sydney Spine Institute, Burwood, Sydney, NSW, Australia
| | - Wei Wang
- Department of Orthopedics, Shandong University Center for Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Chi Zhang
- Department of Orthopedics, Shandong University Center for Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Jinghua Wang
- Laboratory of Epidemiology, Tianjin Neurological Institute, Department of Neurology, Tianjin Medical University General Hospital & Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Yanzheng Gao
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wenyuan Ding
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yisheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wei Mei
- Department of Spine Surgery, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan Province, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Maosheng Xia
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huan Wang
- Department of Spinal Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Zhang
- Department of Spinal Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Jing
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Bin Meng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Zhongmin Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhanhai Yin
- Department of Orthopedics, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Kainan Li
- Department of Orthopedic Surgery, Affiliated Hospital of Chengdu University, Chengdu, Sichuan Province, China
| | - Shibao Lu
- Department of Orthopedics, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China; National Geriatric Diseases Research Center, Beijing, China
| | - Shiqing Feng
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine; Department of Orthopedics, Shandong University Center for Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong; Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| |
Collapse
|
7
|
Zhao J, Liu S, Xiang X, Zhu X. Versatile strategies for adult neurogenesis: avenues to repair the injured brain. Neural Regen Res 2024; 19:774-780. [PMID: 37843211 PMCID: PMC10664121 DOI: 10.4103/1673-5374.382224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 10/17/2023] Open
Abstract
Brain injuries due to trauma or stroke are major causes of adult death and disability. Unfortunately, few interventions are effective for post-injury repair of brain tissue. After a long debate on whether endogenous neurogenesis actually happens in the adult human brain, there is now substantial evidence to support its occurrence. Although neurogenesis is usually significantly stimulated by injury, the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient. Alternatively, exogenous stem cell transplantation has shown promising results in animal models, but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use. Recently, a high focus was placed on glia-to-neuron conversion under single-factor regulation. Despite some inspiring results, the validity of this strategy is still controversial. In this review, we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury. We also discuss their advantages and drawbacks, as to provide a comprehensive account of their potentials for further studies.
Collapse
Affiliation(s)
- Junyi Zhao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Siyu Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xianyuan Xiang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong Province, China
| |
Collapse
|
8
|
Sato Y, Tadokoro T, Yamana H, Akai H, Takuma K, Fujita N, Nakahara M, Oura K, Fujita K, Tani J, Kamada H, Morishita A, Kobara H, Kagawa S, Haba R, Okano K, Masaki T. Hepatocellular carcinoma treated with radical resection after endoscopic diagnosis of the extent of bile duct invasion: A case report. DEN Open 2024; 4:e265. [PMID: 37416500 PMCID: PMC10320744 DOI: 10.1002/deo2.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Hepatocellular carcinoma invasion of the bile duct is rare and has a poor prognosis. A 77-year-old man presented at the emergency department with persistent pain in the right hypochondrium. Blood tests and imaging studies revealed a 70-mm occupying lesion in the right lobe of the liver and dilated intrahepatic bile ducts. He was diagnosed with obstructive jaundice and cholangitis. Imaging studies showed an internal mass with poor contrast effects. A liver biopsy was performed to confirm the diagnosis and hepatocellular carcinoma was suspected. Endoscopic retrograde cholangiopancreatography, endoscopic ultrasound, and peroral cholangioscopy were performed to determine the treatment strategy. The bile duct invasion did not extend to the porta hepatis; therefore, right hepatic lobectomy and radical resection were performed. Bile duct invasion in hepatocellular carcinoma is rare and often difficult to diagnose by computed tomography or conventional endoscopic retrograde cholangiopancreatography. However, endoscopic ultrasound and peroral cholangioscopy enable safe and accurate diagnosis of the extent of invasion.
Collapse
Affiliation(s)
- Yudai Sato
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Tomoko Tadokoro
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Hiroki Yamana
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Hiraki Akai
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Kei Takuma
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Naoki Fujita
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Mai Nakahara
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Kyoko Oura
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Koji Fujita
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Joji Tani
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Hideki Kamada
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Asahiro Morishita
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Hideki Kobara
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| | - Seiko Kagawa
- Department of PathologyKagawa UniversityKagawaJapan
| | - Reiji Haba
- Department of PathologyKagawa UniversityKagawaJapan
| | - Keiichi Okano
- Department of Gastroenterological SurgeryKagawa UniversityKagawaJapan
| | - Tsutomu Masaki
- Department of Gastroenterology and NeurologyKagawa UniversityKagawaJapan
| |
Collapse
|
9
|
Deng J, Sun C, Zheng Y, Gao J, Cui X, Wang Y, Zhang L, Tang P. In vivo imaging of the neuronal response to spinal cord injury: a narrative review. Neural Regen Res 2024; 19:811-817. [PMID: 37843216 PMCID: PMC10664102 DOI: 10.4103/1673-5374.382225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 10/17/2023] Open
Abstract
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury (SCI). However, this subject has been neglected in part because appropriate tools are lacking. Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease. This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques, and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI. We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations. Finally, we identify the challenges and possible solutions for spinal cord neuron imaging.
Collapse
Affiliation(s)
- Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Ying Zheng
- Medical School of Chinese PLA, Beijing, China
| | - Jianpeng Gao
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
10
|
Cao Y, Li R, Bai L. Vagal sensory pathway for the gut-brain communication. Semin Cell Dev Biol 2024; 156:228-243. [PMID: 37558522 DOI: 10.1016/j.semcdb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023]
Abstract
The communication between the gut and brain is crucial for regulating various essential physiological functions, such as energy balance, fluid homeostasis, immune response, and emotion. The vagal sensory pathway plays an indispensable role in connecting the gut to the brain. Recently, our knowledge of the vagal gut-brain axis has significantly advanced through molecular genetic studies, revealing a diverse range of vagal sensory cell types with distinct peripheral innervations, response profiles, and physiological functions. Here, we review the current understanding of how vagal sensory neurons contribute to gut-brain communication. First, we highlight recent transcriptomic and genetic approaches that have characterized different vagal sensory cell types. Then, we focus on discussing how different subtypes encode numerous gut-derived signals and how their activities are translated into physiological and behavioral regulations. The emerging insights into the diverse cell types and functional properties of vagal sensory neurons have paved the way for exciting future directions, which may provide valuable insights into potential therapeutic targets for disorders involving gut-brain communication.
Collapse
Affiliation(s)
- Yiyun Cao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Rui Li
- Chinese Institute for Brain Research, Beijing 102206, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Ling Bai
- Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
11
|
Pan H, Liu P, Zhao L, Pan Y, Mao M, Kroemer G, Kepp O. Immunogenic cell stress and death in the treatment of cancer. Semin Cell Dev Biol 2024; 156:11-21. [PMID: 37977108 DOI: 10.1016/j.semcdb.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The successful treatment of oncological malignancies which results in long-term disease control or the complete eradication of cancerous cells necessitates the onset of adaptive immune responses targeting tumor-specific antigens. Such desirable anticancer immunity can be triggered via the induction of immunogenic cell death (ICD) of cancer cells, thus converting malignant cells into an in situ vaccine that elicits T cell mediated adaptive immune responses and establishes durable immunological memory. The exploration of ICD for cancer treatment has been subject to extensive research. However, functional heterogeneity among ICD activating therapies in many cases requires specific co-medications to achieve full-blown efficacy. Here, we described the hallmarks of ICD and classify ICD activators into three distinct functional categories namely, according to their mode of action: (i) ICD inducers, which increase the immunogenicity of malignant cells, (ii) ICD sensitizers, which prime cellular circuitries for ICD induction by conventional cytotoxic agents, and (iii) ICD enhancers, which improve the perception of ICD signals by antigen presenting dendritic cells. Altogether, ICD induction, sensitization and enhancement offer the possibility to convert well-established conventional anticancer therapies into immunotherapeutic approaches that activate T cell-mediated anticancer immunity.
Collapse
Affiliation(s)
- Hui Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France; Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France.
| |
Collapse
|
12
|
Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 2024; 11:675-686. [PMID: 37692518 PMCID: PMC10491921 DOI: 10.1016/j.gendis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an acquired immune system of many bacteria and archaea, comprising CRISPR loci, Cas genes, and its associated proteins. This system can recognize exogenous DNA and utilize the Cas9 protein's nuclease activity to break DNA double-strand and to achieve base insertion or deletion by subsequent DNA repair. In recent years, multiple laboratory and clinical studies have revealed the therapeutic role of the CRISPR/Cas9 system in neurological diseases. This article reviews the CRISPR/Cas9-mediated gene editing technology and its potential for clinical application against neurological diseases.
Collapse
Affiliation(s)
- Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyan Tang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuyin Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
13
|
Junior MSO, Reiche L, Daniele E, Kortebi I, Faiz M, Küry P. Star power: harnessing the reactive astrocyte response to promote remyelination in multiple sclerosis. Neural Regen Res 2024; 19:578-582. [PMID: 37721287 PMCID: PMC10581572 DOI: 10.4103/1673-5374.380879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 09/19/2023] Open
Abstract
Astrocytes are indispensable for central nervous system development and homeostasis. In response to injury and disease, astrocytes are integral to the immunological- and the, albeit limited, repair response. In this review, we will examine some of the functions reactive astrocytes play in the context of multiple sclerosis and related animal models. We will consider the heterogeneity or plasticity of astrocytes and the mechanisms by which they promote or mitigate demyelination. Finally, we will discuss a set of biomedical strategies that can stimulate astrocytes in their promyelinating response.
Collapse
Affiliation(s)
- Markley Silva Oliveira Junior
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emerson Daniele
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Ines Kortebi
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Maryam Faiz
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Patrick Küry
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
14
|
Genaro K, Luo ZD. Pathophysiological roles of thrombospondin-4 in disease development. Semin Cell Dev Biol 2024; 155:66-73. [PMID: 37391348 DOI: 10.1016/j.semcdb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the extracellular matrix glycoprotein family of thrombospondins (TSPs). The multidomain, pentameric structure of TSP-4 allows its interactions with numerous extracellular matrix components, proteins and signaling molecules that enable its modulation to various physiological and pathological processes. Characterization of TSP-4 expression under development and pathogenesis of disorders has yielded important insights into mechanisms underlying the unique role of TSP-4 in mediating various processes including cell-cell, cell-extracellular matrix interactions, cell migration, proliferation, tissue remodeling, angiogenesis, and synaptogenesis. Maladaptation of these processes in response to pathological insults and stress can accelerate the development of disorders including skeletal dysplasia, osteoporosis, degenerative joint disease, cardiovascular diseases, tumor progression/metastasis and neurological disorders. Overall, the diverse functions of TSP-4 suggest that it may be a potential marker or therapeutic target for prognosis, diagnosis, and treatment of various pathological conditions upon further investigations. This review article highlights recent findings on the role of TSP-4 in both physiological and pathological conditions with a focus on what sets it apart from other TSPs.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
15
|
Han B, Liang W, Hai Y, Sun D, Ding H, Yang Y, Yin P. Neurophysiological, histological, and behavioral characterization of animal models of distraction spinal cord injury: a systematic review. Neural Regen Res 2024; 19:563-570. [PMID: 37721285 PMCID: PMC10581570 DOI: 10.4103/1673-5374.380871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 09/19/2023] Open
Abstract
Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity. With the increased degree and duration of distraction, spinal cord injuries become more serious in terms of their neurophysiology, histology, and behavior. Very few studies have been published on the specific characteristics of distraction spinal cord injury. In this study, we systematically review 22 related studies involving animal models of distraction spinal cord injury, focusing particularly on the neurophysiological, histological, and behavioral characteristics of this disease. In addition, we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury. We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research, and provide reference guidelines for the clinical diagnosis and treatment of this disease.
Collapse
Grants
< |