1
|
Yuasa-Kawada J, Kinoshita-Kawada M, Hiramoto M, Yamagishi S, Mishima T, Yasunaga S, Tsuboi Y, Hattori N, Wu JY. Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces. Neural Regen Res 2026; 21:612-635. [PMID: 39995079 DOI: 10.4103/nrr.nrr-d-24-01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The nervous system processes a vast amount of information, performing computations that underlie perception, cognition, and behavior. During development, neuronal guidance genes, which encode extracellular cues, their receptors, and downstream signal transducers, organize neural wiring to generate the complex architecture of the nervous system. It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system. This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system. Supporting this view, these pathways continue to regulate synaptic connectivity, plasticity, and remodeling, and overall brain homeostasis throughout adulthood. Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders. Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified, emerging evidence points to several common themes, including dysfunction in neurons, microglia, astrocytes, and endothelial cells, along with dysregulation of neuron-microglia-astrocyte, neuroimmune, and neurovascular interactions. In this review, we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions. For instance, recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation. We discuss the challenges ahead, along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases. Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions. Specifically, we examine the crosstalk between neuronal guidance signaling and TREM2, a master regulator of microglial function, in the context of pathogenic protein aggregates. It is well-established that age is a major risk factor for neurodegeneration. Future research should address how aging and neuronal guidance signaling interact to influence an individual's susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
Collapse
Affiliation(s)
| | | | | | - Satoru Yamagishi
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayasu Mishima
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jane Y Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Wu H, Dong L, Jin S, Zhao Y, Zhu L. Innovative gene delivery systems for retinal disease therapy. Neural Regen Res 2026; 21:542-552. [PMID: 39665817 DOI: 10.4103/nrr.nrr-d-24-00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
The human retina, a complex and highly specialized structure, includes multiple cell types that work synergistically to generate and transmit visual signals. However, genetic predisposition or age-related degeneration can lead to retinal damage that severely impairs vision or causes blindness. Treatment options for retinal diseases are limited, and there is an urgent need for innovative therapeutic strategies. Cell and gene therapies are promising because of the efficacy of delivery systems that transport therapeutic genes to targeted retinal cells. Gene delivery systems hold great promise for treating retinal diseases by enabling the targeted delivery of therapeutic genes to affected cells or by converting endogenous cells into functional ones to facilitate nerve regeneration, potentially restoring vision. This review focuses on two principal categories of gene delivery vectors used in the treatment of retinal diseases: viral and non-viral systems. Viral vectors, including lentiviruses and adeno-associated viruses, exploit the innate ability of viruses to infiltrate cells, which is followed by the introduction of therapeutic genetic material into target cells for gene correction. Lentiviruses can accommodate exogenous genes up to 8 kb in length, but their mechanism of integration into the host genome presents insertion mutation risks. Conversely, adeno-associated viruses are safer, as they exist as episomes in the nucleus, yet their limited packaging capacity constrains their application to a narrower spectrum of diseases, which necessitates the exploration of alternative delivery methods. In parallel, progress has also occurred in the development of novel non-viral delivery systems, particularly those based on liposomal technology. Manipulation of the ratios of hydrophilic and hydrophobic molecules within liposomes and the development of new lipid formulations have led to the creation of advanced non-viral vectors. These innovative systems include solid lipid nanoparticles, polymer nanoparticles, dendrimers, polymeric micelles, and polymeric nanoparticles. Compared with their viral counterparts, non-viral delivery systems offer markedly enhanced loading capacities that enable the direct delivery of nucleic acids, mRNA, or protein molecules into cells. This bypasses the need for DNA transcription and processing, which significantly enhances therapeutic efficiency. Nevertheless, the immunogenic potential and accumulation toxicity associated with non-viral particulate systems necessitates continued optimization to reduce adverse effects in vivo . This review explores the various delivery systems for retinal therapies and retinal nerve regeneration, and details the characteristics, advantages, limitations, and clinical applications of each vector type. By systematically outlining these factors, our goal is to guide the selection of the optimal delivery tool for a specific retinal disease, which will enhance treatment efficacy and improve patient outcomes while paving the way for more effective and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Hongguang Wu
- Department of Ophthalmology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
3
|
Cui Z, He J, Li A, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Novel insights into non-coding RNAs and their role in hydrocephalus. Neural Regen Res 2026; 21:636-647. [PMID: 39688559 DOI: 10.4103/nrr.nrr-d-24-00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation. This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus, one of the most common neurological conditions worldwide. In this review, we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition. Then, we outline the definition, classification, and biological role of non-coding RNAs. Subsequently, we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail. Specifically, we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus, including glymphatic pathways, neuroinflammatory processes, and neurological dysplasia, on the basis of the existing evidence. Lastly, we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.
Collapse
Affiliation(s)
- Zhiyue Cui
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - An Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan Province, China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke 's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Münz C, Campbell GR, Esclatine A, Faure M, Labonte P, Lussignol M, Orvedahl A, Altan-Bonnet N, Bartenschlager R, Beale R, Cirone M, Espert L, Jung J, Leib D, Reggiori F, Sanyal S, Spector SA, Thiel V, Viret C, Wei Y, Wileman T, Wodrich H. Autophagy machinery as exploited by viruses. AUTOPHAGY REPORTS 2025; 4:27694127.2025.2464986. [PMID: 40201908 PMCID: PMC11921968 DOI: 10.1080/27694127.2025.2464986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 04/10/2025]
Abstract
Viruses adapt and modulate cellular pathways to allow their replication in host cells. The catabolic pathway of macroautophagy, for simplicity referred to as autophagy, is no exception. In this review, we discuss anti-viral functions of both autophagy and select components of the autophagy machinery, and how viruses have evaded them. Some viruses use the membrane remodeling ability of the autophagy machinery to build their replication compartments in the cytosol or efficiently egress from cells in a non-lytic fashion. Some of the autophagy machinery components and their remodeled membranes can even be found in viral particles as envelopes or single membranes around virus packages that protect them during spreading and transmission. Therefore, studies on autophagy regulation by viral infections can reveal functions of the autophagy machinery beyond lysosomal degradation of cytosolic constituents. Furthermore, they can also pinpoint molecular interactions with which the autophagy machinery can most efficiently be manipulated, and this may be relevant to develop effective disease treatments based on autophagy modulation.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, ZürichSwitzerland
| | - Grant R Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of SD, Vermillion, SD, USA
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007Lyon, France
| | - Patrick Labonte
- eINRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
- Division of Medicine, University College London, London, UK
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucile Espert
- University of Montpellier, Montpellier, France
- CNRS, Institut de Recherche enInfectiologie deMontpellier (IRIM), Montpellier, France
| | - Jae Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH, USA
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Aarhus C, Denmark
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007Lyon, France
| | - Yu Wei
- Institut Pasteur-Theravectys Joint Laboratory, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, UK
| | - Harald Wodrich
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Chen Z, Yang Y, Peng C, Zhou Z, Wang F, Miao C, Li X, Wang M, Feng S, Chen T, Chen R, Liang Z. Mendelian randomisation studies for causal inference in chronic obstructive pulmonary disease: A narrative review. Pulmonology 2025; 31:2470556. [PMID: 39996617 DOI: 10.1080/25310429.2025.2470556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Most non-randomised controlled trials are unable to establish clear causal relationships in chronic obstructive pulmonary disease (COPD) due to the presence of confounding factors. This review summarises the evidence that the Mendelian randomisation method can be a powerful tool for performing causal inferences in COPD. METHODS A non-systematic search of English-language scientific literature was performed on PubMed using the following keywords: 'Mendelian randomisation', 'COPD', 'lung function', and 'GWAS'. No date restrictions were applied. The types of articles selected included randomised controlled trials, cohort studies, observational studies, and reviews. RESULTS Mendelian randomisation is becoming an increasingly popular method for identifying the risk factors of COPD. Recent Mendelian randomisation studies have revealed some risk factors for COPD, such as club cell secretory protein-16, impaired kidney function, air pollutants, asthma, and depression. In addition, Mendelian randomisation results suggest that genetically predicted factors such as PM2.5, inflammatory cytokines, growth differentiation factor 15, docosahexaenoic acid, and testosterone may have causal relationships with lung function. CONCLUSION Mendelian randomisation is a robust method for performing causal inferences in COPD research as it reduces the impact of confounding factors.
Collapse
Affiliation(s)
- Zizheng Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yuqiong Yang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chusheng Peng
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zifei Zhou
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Fengyan Wang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chengyu Miao
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xueping Li
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mingdie Wang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Shengchuan Feng
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tingnan Chen
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Respiratory and Critical Care Medicine, Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Zhenyu Liang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Río P, Zubicaray J, Navarro S, Gálvez E, Sánchez-Domínguez R, Nicoletti E, Sebastián E, Rothe M, Pujol R, Bogliolo M, John-Neek P, Bastone AL, Schambach A, Wang W, Schmidt M, Larcher L, Segovia JC, Yáñez RM, Alberquilla O, Díez B, Fernández-García M, García-García L, Ramírez M, Galy A, Lefrere F, Cavazzana M, Leblanc T, García de Andoin N, López-Almaraz R, Catalá A, Barquinero J, Rodríguez-Perales S, Rao G, Surrallés J, Soulier J, Díaz-de-Heredia C, Schwartz JD, Sevilla J, Bueren JA. Haematopoietic gene therapy of non-conditioned patients with Fanconi anaemia-A: results from open-label phase 1/2 (FANCOLEN-1) and long-term clinical trials. Lancet 2025; 404:2584-2592. [PMID: 39642902 DOI: 10.1016/s0140-6736(24)01880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Allogeneic haematopoietic stem-cell transplantation is the standard treatment for bone marrow failure (BMF) in patients with Fanconi anaemia, but transplantation-associated complications such as an increased incidence of subsequent cancer are frequent. The aim of this study was to evaluate the safety and efficacy of the infusion of autologous gene-corrected haematopoietic stem cells as an alternative therapy for these patients. METHODS This was an open-label, investigator-initiated phase 1/2 clinical trial (FANCOLEN-1) and long-term follow-up trial (up to 7 years post-treatment) in Spain. Mobilised peripheral blood (PB) CD34+ cells from nine patients with Fanconi anaemia-A in the early stages of BMF were transduced with a therapeutic FANCA-encoding lentiviral vector and re-infused without any cytotoxic conditioning treatment. The primary efficacy endpoint of FANCOLEN-1 was the engraftment of transduced cells, as defined by the detection of at least 0·1 therapeutic vector copies per nucleated cell of patient bone marrow (BM) or PB at the second year post-infusion, without this percentage having declined substantially over the previous year. The safety coprimary endpoint was adverse events during the 3 years after infusion. The completed open-label phase 1/2 and the ongoing long-term clinical trials are registered with ClinicalTrials.gov, NCT03157804; EudraCT, 2011-006100-12; and NCT04437771, respectively. FINDINGS There were eight evaluable treated patients with Fanconi anaemia-A. Patients were recruited between Jan 7, 2016 and April 3, 2019. The primary endpoint was met in five of the eight evaluable patients (62·50%). The median number of therapeutic vector copies per nucleated cell of patient BM and PB at the second year post-infusion was 0·18 (IQR 0·01-0·20) and 0·06 (0·01-0·19), respectively. No genotoxic events related to the gene therapy were observed. Most treatment-emergent adverse events (TEAEs) were non-serious and assessed as not related to therapeutic FANCA-encoding lentiviral vector. Nine serious adverse events (grade 3-4) were reported in six patients, one was considered related to medicinal product infusion, and all resolved without sequelae. Cytopenias and viral infections (common childhood illnesses) were the most frequently reported TEAEs. INTERPRETATION These results show for the first time that haematopoietic gene therapy without genotoxic conditioning enables sustained engraftment and reversal of BMF progression in patients with Fanconi anaemia. FUNDING European Commission, Instituto de Salud Carlos III, and Rocket Pharmaceuticals.
Collapse
Affiliation(s)
- Paula Río
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Josune Zubicaray
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Foundation for the Biomedical Research, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Susana Navarro
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Eva Gálvez
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Foundation for the Biomedical Research, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | | | - Elena Sebastián
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Foundation for the Biomedical Research, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Roser Pujol
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Institut de Recerca Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain; Unit of Genomic Medicine, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Massimo Bogliolo
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Institut de Recerca Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain; Serra Hunter Fellow, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain; Unit of Genomic Medicine, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Lise Larcher
- Université Paris Cité, Inserm, CNRS, Hôpital Saint-Louis, APHP, Paris, France
| | - José C Segovia
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Rosa M Yáñez
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Omaira Alberquilla
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Begoña Díez
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - María Fernández-García
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Laura García-García
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Manuel Ramírez
- Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Sanitary Research Institute Fundación La Princesa, Madrid, Spain
| | - Anne Galy
- Genethon, UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Evry-Courcouronnes, France
| | - Francois Lefrere
- Hôpital Universitaire Necker Enfants-Malades, Assistance Publique Hôpitaux de Paris GHU Paris Centre, Université Paris Cité, Paris, France; Centre D'Investigation Clinique en Biotherapie INSERM, Institut Imagine, Paris, France
| | - Marina Cavazzana
- Hôpital Universitaire Necker Enfants-Malades, Assistance Publique Hôpitaux de Paris GHU Paris Centre, Université Paris Cité, Paris, France; Centre D'Investigation Clinique en Biotherapie INSERM, Institut Imagine, Paris, France
| | - Thierry Leblanc
- Robert-Debré University Hospital (APHP and Université Paris Cité), Paris, France
| | - Nagore García de Andoin
- Donostia Universitary Hospital, San Sebastián, Spain; Biogipuzkoa Health Research Institute, San Sebastián, Spain
| | - Ricardo López-Almaraz
- Cruces Universitary Hospital, Barakaldo, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Albert Catalá
- Hospital Sant Joan de Déu, Barcelona, Spain; Research Institute Sant Joan de Déu, Barcelona, Spain
| | | | | | | | - Jordi Surrallés
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Institut de Recerca Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain; Unit of Genomic Medicine, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jean Soulier
- Université Paris Cité, Inserm, CNRS, Hôpital Saint-Louis, APHP, Paris, France
| | - Cristina Díaz-de-Heredia
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Pediatric Haematology and Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Julián Sevilla
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Foundation for the Biomedical Research, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Juan A Bueren
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain.
| |
Collapse
|
7
|
Koo JS, Zhan Q, Zhang H. Acetaldehyde-driven mRNA methylation and expression changes in ethanol-metabolizing enzyme genes. Epigenetics 2025; 20:2493865. [PMID: 40252050 PMCID: PMC12013419 DOI: 10.1080/15592294.2025.2493865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025] Open
Abstract
This study examines how the alcohol metabolite acetaldehyde modulates mRNA methylation and expression of ethanol-metabolizing genes, uncovering its epigenetic role in ethanol metabolism. Using neuron-like (SH-SY5Y) and non-neuronal (SW620) cellular models, we examined the effects of chronic intermittent acetaldehyde (CIA) exposure and subsequent withdrawal (CIA+WD) on global RNA m6A modifications and the methylation and expression of three brain ethanol-metabolizing genes: CAT (catalase), CYP2E1 (cytochrome P450 2E1), and ALDH2 (aldehyde dehydrogenase 2). A 3-week CIA exposure, with or without 24-hour withdrawal, did not significantly alter global m6A methylation levels in either cell line. However, acetaldehyde exposure/withdrawal induced hypermethylation at the mRNA stop codon regions of ALDH2 (CIA: p = 0.002; CIA+WD: p = 0.055) and CAT (CIA: p = 0.077; CIA+WD: p = 0.036) in SH-SY5Y cells, but not in SW620 cells. Furthermore, ALDH2 mRNA expression was significantly upregulated in both cell types following exposure (SH-SY5Y: p = 0.073 [CIA] and 0.00002 [CIA+WD]; SW620: p = 0.0009 [CIA] and 0.00008 [CIA+WD]). In contrast, CYP2E1 mRNA methylation and the expression of CYP2E1 and CAT remained unchanged. These findings highlight the cell-specific epigenetic effects of acetaldehyde, particularly its role in modulating mRNA methylation and expression of ALDH2, a key enzyme in alcohol metabolism.
Collapse
Affiliation(s)
- Ji Sun Koo
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Biomedical Genetics Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Qiansheng Zhan
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Biomedical Genetics Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Biomedical Genetics Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Zhao W, Lin L, Kelly KM, Opsasnick LA, Needham BL, Liu Y, Sen S, Smith JA. Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA). Epigenetics 2025; 20:2445447. [PMID: 39825881 DOI: 10.1080/15592294.2024.2445447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm. To identify the DNAm sites across the epigenome that are associated with discrimination, we conducted epigenome-wide association analyses (EWAS) of three discrimination measures (everyday discrimination, race-related major discrimination, and non-race-related major discrimination) in 1,151 participants, including 565 non-Hispanic White, 221 African American, and 365 Hispanic individuals, from the Multi-Ethnic Study of Atherosclerosis (MESA). We conducted both race/ethnicity-stratified analyses as well as trans-ancestry meta-analyses. At false discovery rate of 10%, 7 CpGs and 4 differentially methylated regions (DMRs) containing 11 CpGs were associated with perceived discrimination exposures in at least one racial/ethnic group or in meta-analysis. Identified CpGs and/or nearby genes have been implicated in cellular development pathways, transcription factor binding, cancer and multiple autoimmune and/or inflammatory diseases. Of the identified CpGs (7 individual CpGs and 11 within DMRs), two CpGs and one CpG within a DMR were associated with expression of cis genes NDUFS5, AK1RIN1, NCF4 and ADSSL1. Our study demonstrated the potential influence of discrimination on DNAm and subsequent gene expression.
Collapse
Affiliation(s)
- Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kristen M Kelly
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yongmei Liu
- Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC, USA
| | - Srijan Sen
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Nair A, Khanna J, Kler J, Ragesh R, Sengupta K. Nuclear envelope and chromatin choreography direct cellular differentiation. Nucleus 2025; 16:2449520. [PMID: 39943681 PMCID: PMC11834525 DOI: 10.1080/19491034.2024.2449520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The nuclear envelope plays an indispensable role in the spatiotemporal organization of chromatin and transcriptional regulation during the intricate process of cell differentiation. This review outlines the distinct regulatory networks between nuclear envelope proteins, transcription factors and epigenetic modifications in controlling the expression of cell lineage-specific genes during differentiation. Nuclear lamina with its associated nuclear envelope proteins organize heterochromatin via Lamina-Associated Domains (LADs), proximal to the nuclear periphery. Since nuclear lamina is mechanosensitive, we critically examine the impact of extracellular forces on differentiation outcomes. The nuclear envelope is spanned by nuclear pore complexes which, in addition to their central role in transport, are associated with chromatin organization. Furthermore, mutations in the nuclear envelope proteins disrupt differentiation, resulting in developmental disorders. Investigating the underlying nuclear envelope controlled regulatory mechanisms of chromatin remodelling during lineage commitment will accelerate our fundamental understanding of developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Anjitha Nair
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jayati Khanna
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jashan Kler
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Rohith Ragesh
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
10
|
Moutsoglou D, Ramakrishnan P, Vaughn BP. Microbiota transplant therapy in inflammatory bowel disease: advances and mechanistic insights. Gut Microbes 2025; 17:2477255. [PMID: 40062406 PMCID: PMC11901402 DOI: 10.1080/19490976.2025.2477255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Microbiota transplant therapy is an emerging therapy for inflammatory bowel disease, but factors influencing its efficacy and mechanism remain poorly understood. In this narrative review, we outline key elements affecting therapeutic outcomes, including donor factors (such as age and patient relationship), recipient factors, control selection, and elements impacting engraftment and its correlation with clinical response. We also examine potential mechanisms through inflammatory bowel disease trials, focusing on the interplay between the microbiota, host, and immune system. Finally, we briefly explore potential future directions for microbiota transplant therapy and promising emerging treatments.
Collapse
Affiliation(s)
- Daphne Moutsoglou
- Gastroenterology Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Byron P. Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Xu Z, Asakawa S. Release and degradation of dissolved environmental RNAs from zebrafish cells. RNA Biol 2025; 22:1-12. [PMID: 40167163 PMCID: PMC12026185 DOI: 10.1080/15476286.2025.2486281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The sources and degradation profiles of dissolved environmental RNAs from fish in water remain unknown. In this study, laboratory experiments and mathematical modelling were conducted to investigate the permeability of RNA extracted from zebrafish cells through filters, the release of dissolved environmental RNAs from live and dying zebrafish cells, and the degradation of RNA extracted from zebrafish cells in a non-sterile aqueous environment. This research aimed to provide biological and ecological insights into fish RNAs dissolved in water. The results showed that most of the RNA extracted from zebrafish cells was detected in the filtrates after passage through 0.45 µm filters. Over the course of the 6-day experiment, dynamic levels of the RNAs in the liquid environment containing live or dying zebrafish cells were determined. The release and degradation rates of dissolved environmental RNA from zebrafish cells were calculated using mathematical modelling. RNA extracted from zebrafish cells degraded in non-sterile water in the tubes, and after 2 months, more than 15% of the RNAs in the water remained detectable. The half-life of the RNA in the tubes was approximately 20 ~ 43 days. The modelling results suggest that the levels of the dissolved environmental fish RNAs in natural waters or aquariums could be so low that it would be difficult to detect them using current techniques. The results obtained in this study will help develop new methods for measuring the dynamics of dissolved environmental fish RNAs in water and determining their significance.
Collapse
Affiliation(s)
- Zhongneng Xu
- Department of Ecology, Jinan University, Guangzhou, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Zhang S, Miao L, Tian X, Yang B, Luo B. Opportunities and challenges of immuno-oncology: A bibliometric analysis from 2014 to 2023. Hum Vaccin Immunother 2025; 21:2440203. [PMID: 39885669 PMCID: PMC11792843 DOI: 10.1080/21645515.2024.2440203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
The emergence of immuno-oncology (IO) has led to revolutionary changes in the field of cancer treatment. Despite notable advancements in this field, a thorough exploration of its full depth and extent has yet to be performed. This study provides a comprehensive overview of publications pertaining to IO. Publications on IO from 2014 to 2023 were retrieved by searching the Web of Science Core Collection database (WoSCC). VOSviewer software and Citespace software were used for the visualized analysis. A total of 1,874 articles have been published in the IO domain. The number of publications and citations has been increasing annually. This study also examines the primary research directions within the field of IO. In conclusion, this study offers a comprehensive overview of the opportunities and challenges associated with IO, illuminating the current status of research and indicating potential future trajectories in this rapidly progressing field. This study provides a comprehensive survey of the current research status and hot spots within the field of IO. It will assist researchers in comprehending the current research emphasis and development trends in this field and offers guidance for future research directions.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Lina Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Tian
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bingxu Yang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Baoping Luo
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
13
|
Lin S, Wang F, Huang M, Chen J, Jiang X, Li Q, Yuan Y, Huang F, Zhu P. Multidomain intervention for delaying aging in community-dwelling older adults (MIDA): study design and protocol. Ann Med 2025; 57:2496409. [PMID: 40297922 PMCID: PMC12042233 DOI: 10.1080/07853890.2025.2496409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/10/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The exploration of interventions to delay aging is an emerging topic that promotes healthy aging. The multidomain intervention has the potential to be applied in the field of aging because it concentrates on the functional ability of older adults. There is currently no literature reporting on a multidomain intervention involving cognition, exercise and nutrition for delaying aging. METHODS The Multidomain Intervention for Delaying Aging in Community-dwelling Older Adults (MIDA) is a Zelen-design randomized controlled trial with a 6-month intervention duration. The multidomain intervention comprises cognitive training, exercise training, and nutritional guidance, delivered through both group sessions and individual family interventions. A total of 248 participants aged 60 to 85 years will be randomized to the intervention group or control group and followed up for 12 months. The primary outcome is the change in epigenetic age acceleration and pace of aging following the multidomain intervention. The secondary outcomes are the changes in frailty score and intrinsic capacity Z-score. Other outcomes include physical functions, body composition, aging biomarkers, inflammatory markers, haematology and biochemistry parameters, and lifestyle factors. CONCLUSIONS This study will explore the effects of the multidomain intervention on delaying aging in community-dwelling older adults. We aim to introduce a new approach to delaying aging and offer a practical multidomain intervention strategy for healthcare institutions.
Collapse
Affiliation(s)
- Siyang Lin
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| | - Fang Wang
- Department of Nursing, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Min Huang
- Department of Geriatric Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Jingyi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xinye Jiang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qiaowei Li
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| | - Yin Yuan
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| | - Feng Huang
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| | - Pengli Zhu
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, China
- Fujian Provincial Key Laboratory of Geriatrics, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| |
Collapse
|
14
|
Nguyen TD, Winek MA, Rao MK, Dhyani SP, Lee MY. Nuclear envelope components in vascular mechanotransduction: emerging roles in vascular health and disease. Nucleus 2025; 16:2453752. [PMID: 39827403 DOI: 10.1080/19491034.2025.2453752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
The vascular network, uniquely sensitive to mechanical changes, translates biophysical forces into biochemical signals for vessel function. This process relies on the cell's architectural integrity, enabling uniform responses to physical stimuli. Recently, the nuclear envelope (NE) has emerged as a key regulator of vascular cell function. Studies implicate nucleoskeletal elements (e.g. nuclear lamina) and the linker of nucleoskeleton and cytoskeleton (LINC) complex in force transmission, emphasizing nucleo-cytoskeletal communication in mechanotransduction. The nuclear pore complex (NPC) and its component proteins (i.e. nucleoporins) also play roles in cardiovascular disease (CVD) progression. We herein summarize evidence on the roles of nuclear lamina proteins, LINC complex members, and nucleoporins in endothelial and vascular cell mechanotransduction. Numerous studies attribute NE components in cytoskeletal-related cellular behaviors to insinuate dysregulation of nucleocytoskeletal feedback and nucleocytoplasmic transport as a mechanism of endothelial and vascular dysfunction, and hence implications for aging and vascular pathophysiology.
Collapse
Affiliation(s)
- Tung D Nguyen
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
- The Center for Cardiovascular Research, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Michael A Winek
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Mihir K Rao
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Shaiva P Dhyani
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Monica Y Lee
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
- The Center for Cardiovascular Research, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Sharma NK, Singh P, Saha B, Bhardwaj A, Iquebal MA, Pal Y, Nayan V, Jaiswal S, Giri SK, Legha RA, Bhattacharya TK, Kumar D, Rai A. Genome wide landscaping of copy number variations for horse inter-breed variability. Anim Biotechnol 2025; 36:2446251. [PMID: 39791493 DOI: 10.1080/10495398.2024.2446251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, namely, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom™ Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters. A total of 2668 autosomal CNVs and 381 CNV regions (CNVRs) were identified with PennCNV tool. DeepCNV was employed to re-validate to get 883 autosomal CNVs, of which 9.06% were singleton type. A total of 180 CNVRs were identified after DeepCNV filtering with the estimated length of 3.12 Kb-4.90 Mb. The functional analysis showed the majority of the CNVRs genes enriched for sensory perception and olfactory receptor activity. An Equine CNVs database, EqCNVdb (http://backlin.cabgrid.res.in/eqcnvdb/) was developed which catalogues detailed information on the horse CNVs, CNVRs and gene content within CNVRs. Also, three random CNVRs were validated with real-time polymerase chain reaction. These findings will aid in the understanding the horse genome and serve as a preliminary foundation for future CNV association research with commercially significant equine traits. The identification of CNVs and CNVRs would lead to better insights into genetic basis of important traits.
Collapse
Affiliation(s)
- Nitesh Kumar Sharma
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Bibek Saha
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Varij Nayan
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi (Solan), Himachal Pradesh, India
| | | | | | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
16
|
Huang C, Chu LM, Liang B, Wu HL, Li BS, Ren S, Hou ML, Nie HC, Kong LY, Fan LQ, Du J, Zhu WB. Comparative genetic analysis of blood and semen samples in sperm donors from Hunan, China. Ann Med 2025; 57:2447421. [PMID: 39757988 PMCID: PMC11721621 DOI: 10.1080/07853890.2024.2447421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVES At present, most genetic tests or carrier screening are performed with blood samples, and the known carrier rate of disease-causing variants is also derived from blood. For semen donors, what is really passed on to offspring is the pathogenic variant in their sperm. This study aimed to determine whether pathogenic variants identified in the sperm of young semen donors are also present in their blood, and whether matching results for blood are consistent with results for sperm. METHODS We included 40 paired sperm and blood samples from 40 qualified semen donors at the Hunan Province Human Sperm Bank of China. All samples underwent exome sequencing (ES) analysis, and the pathogenicity was assessed according to the American College of Medical Genetics (ACMG) guidelines. Scoring for sperm donation matching, which was based on gene scoring and variant scoring, was also used to assess the consistency of sperm and blood genetic test results. RESULTS A total of 108 pathogenic (P)/likely pathogenic (LP) variants in 82 genes were identified. The highest carrier had 7 variants, and there was also one donor did not carry any P/LP variant. On average, each donor carried 2.7 P/LP variants. Among all the P/LP variants, missense mutation was the dominant type and most of them were located in exonic regions. Chromosome 1 harboured the largest number of variants and no pathogenic copy number variants (CNV) was identified in semen donors. The P/LP variant of all the 40 semen donors was consistent by comparing sperm and blood. Except for one case that was slightly different, the rest simulated matching results for blood were all consistent with results for sperm. CONCLUSIONS It is reasonable to choose either blood or sperm for genetic screening in semen donors.
Collapse
Affiliation(s)
- Chuan Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Li-Ming Chu
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Lan Wu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | - Bai-Shun Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | - Shuai Ren
- Basecare Medical Device Co., Ltd, Suzhou, China
| | | | - Hong-Chuan Nie
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | | | - Li-Qing Fan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Juan Du
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-Bing Zhu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
17
|
Albassam H, Almutairi O, Alnasser M, Altowairqi F, Almutairi F, Alobid S. Discovery of a selective PI3Kα inhibitor via structure-based virtual screening for targeted colorectal cancer therapy. J Enzyme Inhib Med Chem 2025; 40:2468852. [PMID: 39992303 PMCID: PMC11852364 DOI: 10.1080/14756366.2025.2468852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, driving an urgent need for effective therapies. A promising avenue of research focuses on the PI3K/AKT/mTOR signalling pathway, which is frequently disrupted by mutations in the PI3Kα subunit. Our cutting-edge study employed a structure-based virtual screening of ∼3000 compounds, leading to the discovery of F0608-0019, a highly potent and selective PI3Kα inhibitor. F0608-0019 demonstrated remarkable efficacy in suppressing HCT116 colorectal cancer cell proliferation, with an IC50 of 12.14 µM, while maintaining high selectivity by minimising activity against other PI3K isoforms. Advanced molecular dynamics simulations highlighted the stability of F0608-0019's binding interactions with key amino acids, such as TRP:780, ILE:932, and VAL:850, which are critical for its targeted action. These exciting findings reveal F0608-0019 as a leading candidate for innovative CRC therapies that selectively target PI3Kα dysregulation, offering promising new possibilities for effective CRC treatment.
Collapse
Affiliation(s)
- Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Majed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Altowairqi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faris Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alobid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Appleton AA. A polyepigenetic glucocorticoid exposure score and HPA axis-related DNA methylation are associated with gestational epigenetic aging. Epigenetics 2025; 20:2471129. [PMID: 40007075 PMCID: PMC11866962 DOI: 10.1080/15592294.2025.2471129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Gestational epigenetic aging (GEA) is a novel approach for characterizing associations between prenatal exposures and postnatal risks. Psychosocial adversity in pregnancy may influence GEA, but the molecular mechanisms are not well understood. DNA methylation to glucocorticoid regulation and hypothalamic-pituitary-adrenal (HPA) axis genes are implicated but have not been fully examined in association with GEA. This study investigated whether a polyepigenetic glucocorticoid exposure score (PGES) and HPA axis gene (NR3C1, HSD11B2, FKBP5) methylation were associated with GEA, and whether associations were sex-specific. Participants were from a prospective cohort of racial/ethnic diverse and socially disadvantaged pregnant women and infants (n = 200). DNA methylation variables were estimated using umbilical cord blood. PGES was derived with CpGs shown to be sensitive to synthetic dexamethasone exposure. NR3C1, HSD11B2, and FKBP5 methylation was summarized via factor analysis. We found that PGES (β = -1.12, SE = 0.47, p = 0.02) and several NR3C1 and FKBP5 factor scores were associated with decelerated GEA (all p < 0.05). A significant sex interaction was observed for FKBP5 factor score 3 (β = -0.34, SE = 0.15, p = 0.02) suggesting decelerated GEA for males but not females. This study showed that glucocorticoid regulation-related DNA methylation was associated with a decelerated aging phenotype at birth that might indicate a neonatal risk.
Collapse
Affiliation(s)
- Allison A. Appleton
- Department of Epidemiology and Biostatistics, University at Albany College of Integrated Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
19
|
Alizon S, Sofonea MT. SARS-CoV-2 epidemiology, kinetics, and evolution: A narrative review. Virulence 2025; 16:2480633. [PMID: 40197159 PMCID: PMC11988222 DOI: 10.1080/21505594.2025.2480633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/26/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Since winter 2019, SARS-CoV-2 has emerged, spread, and evolved all around the globe. We explore 4 y of evolutionary epidemiology of this virus, ranging from the applied public health challenges to the more conceptual evolutionary biology perspectives. Through this review, we first present the spread and lethality of the infections it causes, starting from its emergence in Wuhan (China) from the initial epidemics all around the world, compare the virus to other betacoronaviruses, focus on its airborne transmission, compare containment strategies ("zero-COVID" vs. "herd immunity"), explain its phylogeographical tracking, underline the importance of natural selection on the epidemics, mention its within-host population dynamics. Finally, we discuss how the pandemic has transformed (or should transform) the surveillance and prevention of viral respiratory infections and identify perspectives for the research on epidemiology of COVID-19.
Collapse
Affiliation(s)
- Samuel Alizon
- CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
| | - Mircea T. Sofonea
- PCCEI, University Montpellier, INSERM, Montpellier, France
- Department of Anesthesiology, Critical Care, Intensive Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| |
Collapse
|
20
|
Negi MS, Krishnan VP, Saraf N, Vijayraghavan U. Prp16 enables efficient splicing of introns with diverse exonic consensus elements in the short-intron rich Cryptococcus neoformans transcriptome. RNA Biol 2025; 22:1-14. [PMID: 40065603 PMCID: PMC11913375 DOI: 10.1080/15476286.2025.2477844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
DEAH box splicing helicase Prp16 in budding yeast governs spliceosomal remodelling from the branching conformation (C complex) to the exon ligation conformation (C* complex). In this study, we examined the genome-wide functions of Prp16 in the short intron-rich genome of the basidiomycete yeast Cryptococcus neoformans. The presence of multiple introns per transcript with intronic features that are more similar to those of higher eukaryotes makes it a promising model for studying spliceosomal splicing. Using a promoter-shutdown conditional Prp16 knockdown strain, we uncovered genome-wide but substrate-specific roles in C. neoformans splicing. The splicing functions of Prp16 are dependent on helicase motifs I and II, which are conserved motifs for helicase activity. A small subset of introns spliced independent of Prp16 activity was investigated to discover that exonic sequences at the 5' splice site (5'SS) and 3' splice site (3'SS) with stronger affinity for U5 loop 1 are a common feature in these introns. Furthermore, short (60-100nts) and ultrashort introns (<60nts) prevalent in the C. neoformans transcriptome were more sensitive to Prp16 knockdown than longer introns, indicating that Prp16 is required for the efficient splicing of short and ultrashort introns. We propose that stronger U5 snRNA-pre-mRNA interactions enable efficient transition of the spliceosome from the first to the second catalytic confirmation in Prp16 knockdown, particularly for short introns and introns with suboptimal features. This study provides insights into fine-tuning spliceosomal helicase function with variations in cis-element features.
Collapse
Affiliation(s)
- Manendra Singh Negi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Vishnu Priya Krishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Niharika Saraf
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
21
|
Lin Y, Yang Q, Zeng R. Crosstalk between macrophages and adjacent cells in AKI to CKD transition. Ren Fail 2025; 47:2478482. [PMID: 40110623 PMCID: PMC11926904 DOI: 10.1080/0886022x.2025.2478482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Acute kidney injury (AKI), triggered by ischemia, sepsis, toxicity, or obstruction, is marked by a rapid impairment of renal function and could lead to the initiation and advancement of chronic kidney disease (CKD). The concept of AKI to CKD transition has gained much interest. Despite a series of studies highlighting the diverse roles of renal macrophages in the immune response following AKI, the intricate mechanisms of macrophage-driven cell-cell communication in AKI to CKD transition remains incompletely understood. In this review, we introduce the dynamic phenotype change of macrophages under the different stages of kidney injury. Importantly, we present novel perspectives on the extensive interaction of renal macrophages with adjacent cells, including tubular epithelial cells, vascular endothelial cells, fibroblasts, and other immune cells via soluble factors, extracellular vesicles, and direct contact, to facilitate the transition from AKI to CKD. Additionally, we summarize the potential therapeutic strategies based on the adverse macrophage-neighboring cell crosstalk.
Collapse
Affiliation(s)
- Yanping Lin
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Zhang M, Lu Z. tRNA modifications: greasing the wheels of translation and beyond. RNA Biol 2025; 22:1-25. [PMID: 39723662 DOI: 10.1080/15476286.2024.2442856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Transfer RNA (tRNA) is one of the most abundant RNA types in cells, acting as an adaptor to bridge the genetic information in mRNAs with the amino acid sequence in proteins. Both tRNAs and small fragments processed from them play many nonconventional roles in addition to translation. tRNA molecules undergo various types of chemical modifications to ensure the accuracy and efficiency of translation and regulate their diverse functions beyond translation. In this review, we discuss the biogenesis and molecular mechanisms of tRNA modifications, including major tRNA modifications, writer enzymes, and their dynamic regulation. We also summarize the state-of-the-art technologies for measuring tRNA modification, with a particular focus on 2'-O-methylation (Nm), and discuss their limitations and remaining challenges. Finally, we highlight recent discoveries linking dysregulation of tRNA modifications with genetic diseases.
Collapse
Affiliation(s)
- Minjie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Hartasánchez DA, Dumond M, Dubrulle N, Monéger F, Boudaoud A. Highly expressed cell wall genes contribute to robustness of sepal size. PLANT SIGNALING & BEHAVIOR 2025; 20:2446858. [PMID: 39739543 DOI: 10.1080/15592324.2024.2446858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Reproducibility in organ size and shape is a fascinating trait of living organisms. The mechanisms underlying such robustness remain, however, to be elucidated. Taking the sepal of Arabidopsis as a model, we investigated whether variability of gene expression plays a role in variation of organ size and shape. Previous work from our team identified cell-wall related genes as being enriched among the genes whose expression is highly variable. We then hypothesized that the variation of measured morphological parameters in cell-wall related single knockout mutants could be correlated with the variation in gene expression of the corresponding gene (the knocked-out gene) in wild-type plants. We analyzed sepal size and shape from 16 cell-wall mutants and found that sepal size variability correlates positively, not with gene expression variation, but with mean gene expression of the corresponding gene in wild type. These findings support a contribution of cell-wall related genes to the robustness of sepal size.
Collapse
Affiliation(s)
- Diego A Hartasánchez
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Mathilde Dumond
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
| | - Nelly Dubrulle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
| | - Françoise Monéger
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau Cedex, France
| |
Collapse
|
24
|
Wu X, Xu H, Xia E, Gao L, Hou Y, Sun L, Zhang H, Cheng Y. Histone modifications in the regulation of erythropoiesis. Ann Med 2025; 57:2490824. [PMID: 40214280 PMCID: PMC11995772 DOI: 10.1080/07853890.2025.2490824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
INTRODUCTION The pathogenesis of anemia and other erythroid dysphasia are mains poorly understood, primarily due to limited knowledge about the differentiation processes and regulatory mechanisms governing erythropoiesis. Erythropoiesis is a highly complex and precise biological process, that can be categorized into three distinct stages: early erythropoiesis, terminal erythroid differentiation, and reticulocyte maturation, and this complex process is tightly controlled by multiple regulatory factors. Emerging evidence highlights the crucial role of epigenetic modifications, particularly histone modifications, in regulating erythropoiesis. Methylation and acetylation are two common modification forms that affect genome accessibility by altering the state of chromatin, thereby regulating gene expression during erythropoiesis. DISCUSSION This review systematically examines the roles of histone methylation and acetylation, along with their respective regulatory enzymes, in regulating the development and differentiation of hematopoietic stem/progenitor cells (HSPCs) and erythroid progenitors. Furthermore, we discuss the involvement of these histone modifications in erythroid-specific developmental processes, including hemoglobin switching, chromatin condensation, and enucleation.Conclusions This review summarizes the current understanding of the role of histone modifications in erythropoiesis based on existing research, as a foundation for further research the mechanisms of epigenetic regulatory in erythropoiesis.
Collapse
Affiliation(s)
- Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongdi Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Erxi Xia
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Linru Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Hou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Chen B, Zhen L, Yang Z, Liu T, Yang S, Mu W, Xiao X, Chen J. miRNA-mRNA integrated analysis reveals candidate genes associated with salt stress response in Halophytic Sonneratia apetala. RNA Biol 2025; 22:1-13. [PMID: 40296366 PMCID: PMC12045576 DOI: 10.1080/15476286.2025.2496097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/20/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Sonneratia apetala is a pioneering species of mangrove plants, which has evolved various mechanisms to tolerate salt-stress due to their long-term exposure to a salinized environment as compared to the of terrestrial freshwater plants. However, limited attempt has been made to uncover the underlying molecular mechanism of their saline adaptation. Here, we integrated mRNA and microRNA (miRNA) sequencing to identify the genes and pathways that may be involved in salt stress-response in the roots of S. apetala. A comprehensive full‑length transcriptome containing 295,501 high‑quality unigenes was obtained by PacBio sequencing technology. Of these, 6,686 genes exhibited significantly differential accumulation after salt stress treatment (p < 0.001, Q < 0.01). They were mainly implicated in plant signal transduction and diverse metabolic pathways, such as those involving phenylpropanoid biosynthesis, plant-pathogen interaction and protein processing. Also, our results identified the regulatory interaction between miRNA-target counterparts during salt stress. Taken together, we present the first global overview of the transcriptome of S. apetala roots, and identify potentially important genes and pathways associated with salt tolerance for further investigation. This study is expected to deliver novel insights in understanding the regulatory mechanism in S. apetala response to salt stress.
Collapse
Affiliation(s)
- Beibei Chen
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Lishan Zhen
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Zhuanying Yang
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Tingting Liu
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Shaoxia Yang
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Wei Mu
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Xiao Xiao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, PR, China
| | - Jinhui Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, PR, China
| |
Collapse
|
26
|
Wutikeli H, Xie T, Xiong W, Shen Y. ELAV/Hu RNA-binding protein family: key regulators in neurological disorders, cancer, and other diseases. RNA Biol 2025; 22:1-11. [PMID: 40000387 PMCID: PMC11926907 DOI: 10.1080/15476286.2025.2471133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The ELAV/Hu family represents a crucial group of RNA-binding proteins predominantly expressed in neurons, playing significant roles in mRNA transcription and translation. These proteins bind to AU-rich elements in transcripts to regulate the expression of cytokines, growth factors, and the development and maintenance of neurons. Elav-like RNA-binding proteins exhibit remarkable molecular weight conservation across different species, highlighting their evolutionary conservation. Although these proteins are widely expressed in the nervous system and other cell types, variations in the DNA sequences of the four Elav proteins contribute to their distinct roles in neurological disorders, cancer, and other Diseases . Elavl1, a ubiquitously expressed family member, is integral to processes such as cell growth, ageing, tumorigenesis, and inflammatory diseases. Elavl2, primarily expressed in the nervous and reproductive systems, is critical for central nervous system and retinal development; its dysregulation has been implicated in neurodevelopmental disorders such as autism. Both Elavl3 and Elavl4 are restricted to the nervous system and are involved in neuronal differentiation and excitability. Elavl3 is essential for cerebellar function and has been associated with epilepsy, while Elavl4 is linked to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. This paper provides a comprehensive review of the ELAV/Hu family's role in nervous system development, neurological disorders, cancer, and other diseases.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Special Administrative Region (SAR), Kowloon, Hong Kong, China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
27
|
Vopalensky P, Škríba A, Chiumenti M, Ďuričeková L, Šimonová A, Lukšan O, Di Serio F, Navarro B, Cahova H. Exploring RNA modifications in infectious non-coding circular RNAs. RNA Biol 2025; 22:1-9. [PMID: 39883038 PMCID: PMC11817525 DOI: 10.1080/15476286.2025.2459039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Viroids, small circular non-coding RNAs, act as infectious pathogens in higher plants, demonstrating high stability despite consisting solely of naked RNA. Their dependence of replication on host machinery poses the question of whether RNA modifications play a role in viroid biology. Here, we explore RNA modifications in the avocado sunblotch viroid (ASBVd) and the citrus exocortis viroid (CEVd), representative members of viroids replicating in chloroplasts and the nucleus, respectively, using LC - MS and Oxford Nanopore Technology (ONT) direct RNA sequencing. Although no modification was detected in ASBVd, CEVd contained approximately one m6A per RNA molecule. ONT sequencing predicted three m6A positions. Employing orthogonal SELECT method, we confirmed m6A in two positions A353 and A360, which are highly conserved among CEVd variants. These positions are located in the left terminal region of the CEVd rod-like structure where likely RNA Pol II and and TFIIIA-7ZF bind, thus suggesting potential biological role of methylation in viroid replication.
Collapse
Affiliation(s)
- Pavel Vopalensky
- Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
| | - Anton Škríba
- Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
| | - Michela Chiumenti
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Bari, Italy
| | - Lucia Ďuričeková
- Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
- Faculty of Science, Department of Cell Biology, Charles University, Prague 2, Czechia
| | - Anna Šimonová
- Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
| | - Ondřej Lukšan
- Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Bari, Italy
| | - Beatriz Navarro
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Bari, Italy
| | - Hana Cahova
- Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
| |
Collapse
|
28
|
Li D, Chu X, Liu W, Ma Y, Tian X, Yang Y. The regulatory roles of RNA-binding proteins in the tumour immune microenvironment of gastrointestinal malignancies. RNA Biol 2025; 22:1-14. [PMID: 39718205 DOI: 10.1080/15476286.2024.2440683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/03/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
The crosstalk between the tumour immune microenvironment (TIME) and tumour cells promote immune evasion and resistance to immunotherapy in gastrointestinal (GI) tumours. Post-transcriptional regulation of genes is pivotal to GI tumours progression, and RNA-binding proteins (RBPs) serve as key regulators via their RNA-binding domains. RBPs may exhibit either anti-tumour or pro-tumour functions by influencing the TIME through the modulation of mRNAs and non-coding RNAs expression, as well as post-transcriptional modifications, primarily N6-methyladenosine (m6A). Aberrant regulation of RBPs, such as HuR and YBX1, typically enhances tumour immune escape and impacts prognosis of GI tumour patients. Further, while targeting RBPs offers a promising strategy for improving immunotherapy in GI cancers, the mechanisms by which RBPs regulate the TIME in these tumours remain poorly understood, and the therapeutic application is still in its early stages. This review summarizes current advances in exploring the roles of RBPs in regulating genes expression and their effect on the TIME of GI tumours, then providing theoretical insights for RBP-targeted cancer therapies.
Collapse
Affiliation(s)
- Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiangyu Chu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
29
|
Ioannou D, Tempest HG. The genetic basis of male and female infertility. Syst Biol Reprod Med 2025; 71:143-169. [PMID: 40294233 DOI: 10.1080/19396368.2025.2493621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
This review provides a comprehensive overview of the genetic factors underlying male and female infertility. Infertility affects an estimated one in six couples worldwide, with both male and female factors contributing equally to its prevalence. Approximately, 50% of infertility cases are attributed to genetic causes. We explore three main categories of genetic causes: chromosomal abnormalities, monogenic disorders, and syndromic conditions. Chromosomal causes, including numerical and structural aberrations, are discussed with a focus on their impact on gametogenesis and reproductive outcomes. We review key monogenic causes of infertility, highlighting recent discoveries in genes critical for gonadal development, gametogenesis, and hormonal regulation. Syndromic conditions affecting fertility are examined, highlighting their impact on reproductive function. Throughout the review, we address the challenges in identifying genetic mechanisms of infertility, particularly focusing on the intricate processes involved in oogenesis and spermatogenesis. We also discuss how advancements in genetic testing, such as next-generation sequencing (NGS) and genome-wide association studies (GWAS), have significantly enhanced our understanding of idiopathic infertility and promise further insights in the future. We also discuss the clinical implications of genetic diagnoses, including the role of preimplantation genetic testing (PGT) and genetic counseling in reproductive medicine. This review synthesizes current knowledge on the genetic basis of infertility, providing a comprehensive overview of chromosomal, monogenic, and syndromic causes. It aims to offer readers a solid foundation for understanding the complex genetic factors underlying reproductive disorders.
Collapse
Affiliation(s)
- Dimitrios Ioannou
- Department of Basic Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
| | - Helen G Tempest
- Department of Basic Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
| |
Collapse
|
30
|
Herzog MKM, Peters A, Shayya N, Cazzaniga M, Kaka Bra K, Arora T, Barthel M, Gül E, Maurer L, Kiefer P, Christen P, Endhardt K, Vorholt JA, Frankel G, Heimesaat MM, Bereswill S, Gahan CGM, Claesson MJ, Domingo-Almenara X, Hardt WD. Comparing Campylobacter jejuni to three other enteric pathogens in OligoMM 12 mice reveals pathogen-specific host and microbiota responses. Gut Microbes 2025; 17:2447832. [PMID: 39835346 DOI: 10.1080/19490976.2024.2447832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Campylobacter jejuni, non-typhoidal Salmonella spp., Listeria monocytogenes and enteropathogenic/enterohemorrhagic Escherichia coli (EPEC/EHEC) are leading causes of food-borne illness worldwide. Citrobacter rodentium has been used to model EPEC and EHEC infection in mice. The gut microbiome is well-known to affect gut colonization and host responses to many food-borne pathogens. Recent progress has established gnotobiotic mice as valuable models to study how microbiota affect the enteric infections by S. Typhimurium, C. rodentium and L. monocytogenes. However, for C. jejuni, we are still lacking a suitable gnotobiotic mouse model. Moreover, the limited comparability of data across laboratories is often negatively affected by variations between different research facilities or murine microbiotas. In this study, we applied the standardized gnotobiotic OligoMM12 microbiota mouse model and compared the infections in the same facility. We provide evidence of robust colonization and significant pathological changes in OligoMM12 mice following infection with these pathogens. Moreover, we offer insights into pathogen-specific host responses and metabolite signatures, highlighting the advantages of a standardized mouse model for direct comparisons of factors influencing the pathogenesis of major food-borne pathogens. Notably, we reveal for the first time that C. jejuni stably colonizes OligoMM12 mice, triggering inflammation. Additionally, our comparative approach successfully identifies pathogen-specific responses, including the detection of genes uniquely associated with C. jejuni infection in humans. These findings underscore the potential of the OligoMM12 model as a versatile tool for advancing our understanding of food-borne pathogen interactions.
Collapse
Affiliation(s)
- Mathias K-M Herzog
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nizar Shayya
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Kardokh Kaka Bra
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Trisha Arora
- Omic Sciences Unit, EURECAT - Technology Centre of Catalonia, Reus, Spain
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Katharina Endhardt
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Li L, Xu X, Cheng P, Yu Z, Li M, Yu Z, Cheng W, Zhang W, Sun H, Song X. Klebsiella pneumoniae derived outer membrane vesicles mediated bacterial virulence, antibiotic resistance, host immune responses and clinical applications. Virulence 2025; 16:2449722. [PMID: 39792030 PMCID: PMC11730361 DOI: 10.1080/21505594.2025.2449722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/14/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Klebsiella pneumoniae is a gram-negative pathogen that can cause multiple diseases including sepsis, urinary tract infections, and pneumonia. The escalating detections of hypervirulent and antibiotic-resistant isolates are giving rise to growing public concerns. Outer membrane vesicles (OMVs) are spherical vesicles containing bioactive substances including lipopolysaccharides, peptidoglycans, periplasmic and cytoplasmic proteins, and nucleic acids. Emerging studies have reported various roles of OMVs in bacterial virulence, antibiotic resistance, stress adaptation, and host interactions, whereas knowledge on their roles in K. pneumoniae is currently unclear. In this review, we summarized recent progress on the biogenesis, components, and biological function of K. pneumoniae OMVs, the impact and action mechanism in virulence, antibiotic resistance, and host immune response. We also deliberated on the potential of K. pneumoniae OMVs in vaccine development, as diagnostic biomarkers, and as drug nanocarriers. In conclusion, K. pneumoniae OMVs hold great promise in the prevention and control of infectious diseases, which merits further investigation.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xinxiu Xu
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ping Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zengyuan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| |
Collapse
|
32
|
He X, Zhu J, Gong X, Zhang D, Li Y, Zhang X, Zhao X, Zhou C. Advances in deciphering the mechanisms of salt tolerance in Maize. PLANT SIGNALING & BEHAVIOR 2025; 20:2479513. [PMID: 40098499 PMCID: PMC11959903 DOI: 10.1080/15592324.2025.2479513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/19/2025]
Abstract
Maize (Zea mays L.) is a vital crop worldwide, serving as a cornerstone for food security, livestock feed, and biofuel production. However, its cultivation is increasingly jeopardized by environmental challenges, notably soil salinization, which severely constrains growth, yield, and quality. To combat salinity stress, maize employs an array of adaptive mechanisms, including enhanced antioxidant enzyme activity and modulated plant hormone levels, which work synergistically to maintain reactive oxygen species (ROS) balance and ion homeostasis. This review explores the intricate interactions among ROS, antioxidant systems, plant hormones, and ion regulation in maize under salt stress, providing a comprehensive understanding of the physiological and molecular basis of its tolerance. By elucidating these mechanisms, this study contributes to the development of salt-tolerant maize varieties and informs innovative strategies to sustain agricultural productivity under adverse environmental conditions, offering significant theoretical insights into plant stress biology and practical solutions for achieving sustainable agriculture amidst global climate challenges.
Collapse
Affiliation(s)
- Xiaofei He
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Junke Zhu
- School of Agricultural Engineering & Food Science, Shandong University of Technology, Zibo, Shandong, China
- College of Life Sciences, Qilu Normal University, Jinan, Shandong, China
| | - Xuehua Gong
- Hebei Province Carbon-Based Heavy Metal Soil Pollution Remediation Technology Innovation Center, Tangshan, Hebei, China
| | - Dongqing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Yuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Chao Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
33
|
Gu Y, Bi X, Liu X, Qian Q, Wen Y, Hua S, Fu Q, Zheng Y, Sun S. Roles of ABCA1 in Chronic Obstructive Pulmonary Disease. COPD 2025; 22:2493701. [PMID: 40302380 DOI: 10.1080/15412555.2025.2493701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the common chronic respiratory diseases, which causes a heavy burden to patients and society. Increasing studies suggest that ABCA1 plays an important role in COPD. ABCA1 belongs to a large class of ATP-binding (ABC) transporters. It is not only involved in the reverse transport of cholesterol, but also in the regulation of apoptosis, pyroptosis, cellular inflammation and cellular immunity. Meanwhile, ABCA1 is involved in several signaling pathways, such as SREBP pathway, LXR pathway, MAPK pathway, p62/mTOR pathway, CTRP1 pathway and so on. In addition, the ABCA1 participates in the disorder of lipid metabolism in COPD by regulating the formation of RCT and HDL, regulates the inflammation of COPD by removing excess cholesterol in macrophages, and promotes the differentiation of COPD phenotype into emphysema type. Accordingly, the ABCA1 may be a therapeutic target for COPD.
Collapse
Affiliation(s)
- Ying Gu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaoqing Bi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qingqing Qian
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiaoli Fu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
34
|
Ma Y, Boycott C, Zhang J, Gomilar R, Yang T, Stefanska B. SIRT1/DNMT3B-mediated epigenetic gene silencing in response to phytoestrogens in mammary epithelial cells. Epigenetics 2025; 20:2473770. [PMID: 40029260 PMCID: PMC11881848 DOI: 10.1080/15592294.2025.2473770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
We performed an integrated analysis of genome-wide DNA methylation and expression datasets in normal cells and healthy animals exposed to polyphenols with estrogenic activity (i.e. phytoestrogens). We identified that phytoestrogens target genes linked to disrupted cellular homeostasis, e.g. genes limiting DNA break repair (RNF169) or promoting ribosomal biogenesis (rDNA). Existing evidence suggests that DNA methylation may be governed by sirtuin 1 (SIRT1) deacetylase via interactions with DNA methylating enzymes, specifically DNMT3B. Since SIRT1 was reported to be regulated by phytoestrogens, we test whether phytoestrogens suppress genes related to disrupted homeostasis via SIRT1/DNMT3B-mediated transcriptional silencing. Human MCF10A mammary epithelial cells were treated with phytoestrogens, pterostilbene (PTS) or genistein (GEN), followed by analysis of cell growth, DNA methylation, gene expression, and SIRT1/DNMT3B binding. SIRT1 occupancy at the selected phytoestrogen-target genes, RNF169 and rDNA, was accompanied by consistent promoter hypermethylation and gene downregulation in response to GEN, but not PTS. GEN-mediated hypermethylation and SIRT1 binding were linked to a robust DNMT3B enrichment at RNF169 and rDNA promoters. This was not observed in cells exposed to PTS, suggesting a distinct mechanism of action. Although both SIRT1 and DNMT3B bind to RNF169 and rDNA promoters upon GEN, the two proteins do not co-occupy the regions. Depletion of SIRT1 abolishes GEN-mediated decrease in rDNA expression, suggesting SIRT1-dependent epigenetic suppression of rDNA by GEN. These findings enhance our understanding of the role of SIRT1-DNMT3B interplay in epigenetic mechanisms mediating the impact of phytoestrogens on cell biology and cellular homeostasis.
Collapse
Affiliation(s)
- Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jiaxi Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Rekha Gomilar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Yu S, Fan J, Zong S, Yu Q, Cheng Q, Wang Y, Li M, Lu Z. Correlation of extracellular vesicle Alu RNA with brain aging and neuronal injury: a potential biomarker for brain aging. Ann Med 2025; 57:2493767. [PMID: 40248949 PMCID: PMC12010651 DOI: 10.1080/07853890.2025.2493767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are promising biomarkers for neurodegeneration. Alu elements are retrotransposons increasingly expressed with age and may be involved in aging-related diseases. OBJECTIVE To determine the potential of Alu RNA in plasma-derived EVs as a biomarker for brain aging and neuronal injury. METHODS EVs were isolated from plasma samples across different age groups. EV Alu RNA levels were measured and their associations with biomarkers of brain aging, including plasma neurofilament light chain (NfL), plasma amyloid-beta (Aβ42 and Aβ40), and plasma phosphorylated tau (p-Tau181), were analyzed. RESULTS EV Alu RNA levels were increased significantly with age and were strongly correlated with plasma NfL, suggesting a strong association between EV Alu RNA and neuronal injury. Significant correlations were also found between EV Alu RNA and plasma amyloid-beta levels, while no significant association was observed with tau pathology. CONCLUSIONS EV Alu RNA levels are elevated with age and associated with neuronal injury, highlighting their potential as a novel, non-invasive biomarker for brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Shuyi Yu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Fan
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Yu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Cheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Lu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
36
|
Yang Y, Zhong Y, Chen L. EIciRNAs in focus: current understanding and future perspectives. RNA Biol 2025; 22:1-12. [PMID: 39711231 DOI: 10.1080/15476286.2024.2443876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.
Collapse
Affiliation(s)
- Yan Yang
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yinchun Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
37
|
Chan H, Yin H, Yang X, Zhang G, Wang M, Yang H, Li Q. Etiology of nephrotic syndrome: insights from univariate and multivariate Mendelian randomization study. Ren Fail 2025; 47:2479184. [PMID: 40097353 PMCID: PMC11915732 DOI: 10.1080/0886022x.2025.2479184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025] Open
Abstract
Nephrotic syndrome (NS) is a common cause of chronic glomerular disease. However, the precise way in which one or more risk exposure traits of renal injury lead to NS remains unclear. In this study, we systematically examined the causal relationships between NS and various exposure traits, including traits related to chronic hepatitis B/C infection, COVID-19 (hospitalized), general allergy status, herbal tea intake, immunoglobulin E, childhood obesity, and the human leukocyte antigen (HLA)-II histocompatibility DM α/DP β1/DQ α2 chain, via multivariate Mendelian randomization (MVMR). A previously reported exposure trait, ulcerative colitis, was also included to analyze the independent effect of each significant exposure on the risk of developing NS. In the univariable MR analysis, immunoglobulin E (OR = 5.62, 95% CI = 2.91-10.84, p = 2.67 × 10-7) and the HLA-II histocompatibility DQ α2 chain (OR = 0.70, 95% CI = 0.63-0.80, p = 2.83 × 10-7) were shown to have effect estimates consistent with a greater risk of developing NS. The reverse MR analysis showed no evidence of causal effect from NS to histocompatibility DQ α2 chain (p = 0.76). In MVMR, only the HLA-II histocompatibility DQ α2 chain retained a robust effect (OR = 0.71, 95% CI = 0.61-0.82; p = 9.39 × 10-6), and the estimate for immunoglobulin E was weakened (OR = 1.04, 95% CI = 0.60-2.13; p = 0.92). With two independent ulcerative colitis resources used for validation, ulcerative colitis was not significantly associated with NS. This study provides genetic evidence that the HLA-II histocompatibility DQ α2 chain has a predominant causal effect on the risk of developing NS. HLA-II histocompatibility-mediated immune abnormalities may lead to subtypes of NS and its pathological changes.
Collapse
Affiliation(s)
- Han Chan
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Hui Yin
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Xueying Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Mo Wang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Haiping Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Qiu Li
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
38
|
Zhang Z, Jiang C, Wang X, Qiu H, Li J, Wang Y, Luo Q, Ju Y. Childhood maltreatment and mental health: causal links to depression, anxiety, non-fatal self-harm, suicide attempts, and PTSD. Eur J Psychotraumatol 2025; 16:2480884. [PMID: 40367030 DOI: 10.1080/20008066.2025.2480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 05/16/2025] Open
Abstract
Background: This study aims to elucidate the causal relationship between childhood maltreatment (CM) and subsequent mental health outcomes, including major depressive disorder (MDD), anxiety (ANX), post-traumatic stress disorder (PTSD), suicide attempts, and non-fatal self-harm. Utilising Mendelian Randomisation (MR) and genome-wide association studies (GWAS) data from individuals of European descent, this research applies a rigorous analytical methodology to large-scale datasets, overcoming the confounding variables inherent in previous observational studies.Methods: Genetic data were obtained from publicly available GWAS on individuals of European ancestry, focusing on Childhood Maltreatment (CM), Major Depressive Disorder (MDD), Anxiety (ANX), Post-Traumatic Stress Disorder (PTSD), Age at First Episode of Depression, Number of Depression Episodes, Non-fatal self-harm, and Suicide Attempts. Mendelian Randomisation (MR) analyses were conducted to investigate the causal impact of CM on these outcomes. Sensitivity analyses included IVW, MR Egger, WM, and MR-PRESSO. FDR corrections were applied to account for multiple testing. Results were presented as odds ratios (ORs) with confidence intervals (CIs).Results: Significant associations were identified between CM and the likelihood of developing MDD (IVW: OR = 2.28, 95% CI = 1.66-3.14, PFDR < .001), ANX (IVW: OR = 1.01, 95% CI = 1.00-1.02, PFDR =.032), and PTSD (IVW: OR = 2.29, 95% CI = 1.43-3.67, PFDR =.001). CM was also linked to increased non-fatal self-harm (IVW: OR = 1.06, 95% CI = 1.04-1.08, PFDR <.001), higher frequency of depressive episodes (IVW: β=0.31, 95% CI = 0.17-0.46, PFDR <.001), and earlier onset of depression (IVW: β=-0.17, 95% CI = -0.32 to - 0.02, PFDR =.033). No significant association was found between CM and suicide attempts (IVW: OR = 1.09, 95% CI = 0.81-1.45, PFDR =.573).Conclusion: This study provides robust evidence that CM is a significant causal factor for MDD, ANX, PTSD, and non-fatal self-harming behaviours. It is associated with a higher frequency of depressive episodes and earlier onset of depression. These findings highlight the need for early intervention and targeted prevention strategies to address the long-lasting psychological impacts of CM.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing, People's Republic of China
| | - Chenggang Jiang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing, People's Republic of China
| | - Xinglian Wang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haitang Qiu
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiazheng Li
- The First Clinical College, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yating Wang
- The First Clinical College, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qinghua Luo
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuanzhi Ju
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
39
|
Su F, Su M, Wei W, Wu J, Chen L, Sun X, Liu M, Sun S, Mao R, Bourgonje AR, Hu S. Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes 2025; 17:2476570. [PMID: 40063366 PMCID: PMC11901428 DOI: 10.1080/19490976.2025.2476570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Numerous studies have accelerated the knowledge expansion on the role of gut microbiota in inflammatory bowel disease (IBD). However, the precise mechanisms behind host-microbe cross-talk remain largely undefined, due to the complexity of the human intestinal ecosystem and multiple external factors. In this review, we introduce the interactome concept to systematically summarize how intestinal dysbiosis is involved in IBD pathogenesis in terms of microbial composition, functionality, genomic structure, transcriptional activity, and downstream proteins and metabolites. Meanwhile, this review also aims to present an updated overview of the relevant mechanisms, high-throughput multi-omics methodologies, different types of multi-omics cohort resources, and computational methods used to understand host-microbiota interactions in the context of IBD. Finally, we discuss the challenges pertaining to the integration of multi-omics data in order to reveal host-microbiota cross-talk and offer insights into relevant future research directions.
Collapse
Affiliation(s)
- Fengyuan Su
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng Su
- The First Clinical Medical School, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayun Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Leyan Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiao Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Moyan Liu
- Amsterdam UMC location Academic Medical Center, Department of Experimental Vascular Medicine, Amsterdam, The Netherlands
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
40
|
Kong M, Li J, Tong N. The role of peripheral blood microRNAs in the pathogenesis and treatment response of age-related macular degeneration. Future Sci OA 2025; 11:2482499. [PMID: 40183456 PMCID: PMC11980467 DOI: 10.1080/20565623.2025.2482499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Age-related macular degeneration is a leading cause of vision loss in aging populations, driven by complex interactions between genetic, environmental, and molecular factors. MicroRNAs have emerged as crucial regulators of cellular processes such as oxidative stress, inflammation, and angiogenesis, all of which contribute to AMD pathogenesis. This narrative review aims to summarize the involvement of peripheral blood microRNAs in the pathogenesis of AMD, focusing on key pathways such as oxidative stress, inflammation, and angiogenesis. Additionally, it explores their potential as biomarkers for predicting treatment response, particularly to anti-VEGF therapies. The potential of miRNAs as noninvasive biomarkers for early diagnosis and personalized treatment strategies is also explored, highlighting future directions for research.
Collapse
Affiliation(s)
- Meng Kong
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
- School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jingwen Li
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Nianting Tong
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
- School of Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
41
|
Gentile GM, Blue RE, Goda GA, Guzman BB, Szymanski RA, Lee EY, Engels NM, Hinkle ER, Wiedner HJ, Bishop AN, Harrison JT, Zhang H, Wehrens XH, Dominguez D, Giudice J. Alternative splicing of the Snap23 microexon is regulated by MBNL, QKI, and RBFOX2 in a tissue-specific manner and is altered in striated muscle diseases. RNA Biol 2025; 22:1-20. [PMID: 40207498 PMCID: PMC12064062 DOI: 10.1080/15476286.2025.2491160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The reprogramming of alternative splicing networks during development is a hallmark of tissue maturation and identity. Alternative splicing of microexons (small, genomic regions ≤ 51 nucleotides) functionally regulate protein-protein interactions in the brain and is altered in several neuronal diseases. However, little is known about the regulation and function of alternatively spliced microexons in striated muscle. Here, we investigated alternative splicing of a microexon in the synaptosome-associated protein 23 (Snap23) encoded gene. We found that inclusion of this microexon is developmentally regulated and tissue-specific, as it occurs exclusively in adult heart and skeletal muscle. The alternative region is highly conserved in mammalian species and encodes an in-frame sequence of 11 amino acids. Furthermore, we showed that alternative splicing of this microexon is mis-regulated in mouse models of heart and skeletal muscle diseases. We identified the RNA-binding proteins (RBPs) quaking (QKI) and RNA binding fox-1 homolog 2 (RBFOX2) as the primary splicing regulators of the Snap23 microexon. We found that QKI and RBFOX2 bind downstream of the Snap23 microexon to promote its inclusion, and this regulation can be escaped when the weak splice donor is mutated to the consensus 5' splice site. Finally, we uncovered the interplay between QKI and muscleblind-like splicing regulator (MBNL) as an additional, but minor layer of Snap23 microexon splicing control. Our results are one of the few reports detailing microexon alternative splicing regulation during mammalian striated muscle development.
Collapse
Affiliation(s)
- Gabrielle M. Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grant A. Goda
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan B. Guzman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel A. Szymanski
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eunice Y. Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichlas M. Engels
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma R. Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aubriana N. Bishop
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan T. Harrison
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Dominguez
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Wu D, Yin Y, Zheng J, Zhou X, Cheng F, Wang Y, Li K, Mou X, Lin W, Feng C, Jia S, Ge W, Xia S. Association between early heart rate trajectories in post-PCI STEMI patients and prognosis after hospital discharge. Ann Med 2025; 57:2468267. [PMID: 39985263 PMCID: PMC11849009 DOI: 10.1080/07853890.2025.2468267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Timely percutaneous coronary intervention (PCI) is crucial for restoring myocardial blood supply in ST-segment elevation myocardial infarction (STEMI) patients, with the first 72 h being a critical period for early ventricular remodelling. The association between heart rate trajectories within this period and after hospital discharge outcomes in STEMI patients post-PCI remains unclear. METHODS We conducted a retrospective study involving STEMI patients who underwent successful PCI at three tertiary hospitals in Zhejiang Province, China. Heart rate data were collected every 8 h post-PCI through nursing records, along with intraoperative findings and biochemical markers. Using trajectory modelling, we identified heart rate patterns at 24, 48 and 72 h post-PCI, determined the optimal number of trajectory groups using Akaike information criterion (AIC) and Bayesian information criterion (BIC) criteria, and performed a minimum 3-month follow-up. Cox regression analysed the association between early heart rate trajectories and major adverse cardiovascular events (MACEs) post-discharge. The prognostic value of trajectory models was assessed using the area under the curve (AUC). RESULTS A total of 1257 patients were included, with an average follow-up duration of 28.72 ± 21.14 months and a mean age of 60.42 ± 14.19 years; 1013 (80.59%) were male. Growth mixture modelling identified four distinct heart rate trajectory groups at 24, 48 and 72 h post-PCI. Higher heart rate trajectories with rates greater than 80 bpm were strongly associated with MACEs, and the 72-hour heart rate trajectory showed a predictive value for MACEs (AUC = 0.745, 95% CI: 0.709-0.781). CONCLUSIONS Elevated heart rate trajectories exceeding 80 bpm within 72 h after PCI are associated with an increased risk of MACEs post-discharge. Heart rate management should be further emphasized in post-PCI STEMI patients.
Collapse
Affiliation(s)
- Dan Wu
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yanping Yin
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jing Zheng
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xiaoshan Zhou
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Fanli Cheng
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yiran Wang
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Kaini Li
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xuanting Mou
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Wenting Lin
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Chao Feng
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Sixiang Jia
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Weili Ge
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shudong Xia
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
43
|
Lin L, Zhao W, Li Z, Ratliff SM, Wang YZ, Mitchell C, Faul JD, Kardia SLR, Birditt KS, Smith JA. Poly-epigenetic scores for cardiometabolic risk factors interact with demographic factors and health behaviors in older US Adults. Epigenetics 2025; 20:2469205. [PMID: 39976511 PMCID: PMC11844928 DOI: 10.1080/15592294.2025.2469205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Poly-epigenetic scores (PEGS) are surrogate measures that help capture individual-level risk. Understanding how the associations between PEGS and cardiometabolic risk factors vary by demographics and health behaviors is crucial for lowering the burden of cardiometabolic diseases. We used results from established epigenome-wide association studies to construct trait-specific PEGS from whole blood DNA methylation for systolic and diastolic blood pressure (SBP, DBP), body mass index (BMI), C-reactive protein (CRP), high- and low-density lipoprotein cholesterol (HDL-C, LDL-C), triglycerides (TG), and fasting glucose. Overall and race-stratified associations between PEGS and corresponding traits were examined in adults >50 years from the Health and Retirement Study (n = 3,996, mean age = 79.5 years). We investigated how demographics (age, sex, educational attainment) and health behaviors (smoking, alcohol consumption, physical activity) modified these associations. All PEGS were positively associated with their corresponding cardiometabolic traits (p < 0.05), and most associations persisted across all racial/ethnic groups. Associations for BMI, HDL-C, and TG were stronger in younger participants, and BMI and HDL-C associations were stronger in females. The CRP association was stronger among those with a high school degree. Finally, the HDL-C association was stronger among current smokers. These findings support PEGS as robust surrogate measures and suggest the associations may differ among subgroups.
Collapse
Affiliation(s)
- Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yi Zhe Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kira S. Birditt
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Lv X, Yang C, Li X, Liu Y, Yang Y, Jin T, Chen Z, Jia J, Wang M, Li L. Ferroptosis and hearing loss: from molecular mechanisms to therapeutic interventions. J Enzyme Inhib Med Chem 2025; 40:2468853. [PMID: 39992186 PMCID: PMC11852237 DOI: 10.1080/14756366.2025.2468853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Hearing loss profoundly affects social engagement, mental health, cognition, and brain development, with sensorineural hearing loss (SNHL) being a major concern. Linked to ototoxic medications, ageing, and noise exposure, SNHL presents significant treatment challenges, highlighting the need for effective prevention and regeneration strategies. Ferroptosis, a distinct form of cell death featuring iron-dependent lipid peroxidation, has garnered interest due to its potential role in cancer, ageing, and neuronal degeneration, especially hearing loss. The emerging role of ferroptosis as a crucial mediator in SNHL suggests that it may offer a novel therapeutic target for otoprotection. This review aims to summarise the intricate connection between ferroptosis and SNHL, offering a fresh perspective for exploring targeted therapeutic strategies that could potentially mitigate cochlear cells damage and enhance the quality of life for individuals with hearing impairments.
Collapse
Affiliation(s)
- Xingyi Lv
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Chenyi Yang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Xianying Li
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yun Liu
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yu Yang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Tongyan Jin
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhijian Chen
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Jinjing Jia
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Min Wang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Li Li
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
45
|
Jungfleisch J, Gebauer F. RNA-binding proteins as therapeutic targets in cancer. RNA Biol 2025; 22:1-8. [PMID: 40016176 PMCID: PMC11869776 DOI: 10.1080/15476286.2025.2470511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
RNA-binding proteins (RBPs) have emerged as critical regulators of cancer progression, influencing virtually all hallmarks of cancer. Their ability to modulate gene expression patterns that promote or inhibit tumorigenesis has positioned RBPs as promising targets for novel anti-cancer therapies. This mini-review summarizes the current state of RBP-targeted cancer treatments, focusing on five examples, eIF4F, FTO, SF3B1, RBM39 and nucleolin. We highlight the diversity of current targeting approaches and discuss ongoing challenges including the complexity of RBP regulatory networks, potential off-target effects and the need for more specific targeting methods. By assessing the future potential of novel therapeutic avenues, we provide insights into the evolving landscape of cancer treatment and the critical role RBPs may play in next-generation therapeutics.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
46
|
Rayêe D, Meier UT, Eliscovich C, Cvekl A. Nucleolar ribosomal RNA synthesis continues in differentiating lens fiber cells until abrupt nuclear degradation required for ocular lens transparency. RNA Biol 2025; 22:1-16. [PMID: 40126102 PMCID: PMC11959900 DOI: 10.1080/15476286.2025.2483118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Cellular differentiation requires highly coordinated action of all three transcriptional systems to produce rRNAs, mRNAs and various 'short' and 'long' non-coding RNAs by RNA Polymerase I, II and III systems, respectively. RNA Polymerase I catalyzes transcription of about 400 copies of mammalian rDNA genes, generating 18S, 5.8S and 28S rRNA molecules. Lens fiber cell differentiation is a unique process to study transcriptional mechanisms of individual crystallin genes as their very high transcriptional outputs are directly comparable only to globin genes in erythrocytes. Importantly, both terminally differentiated lens fiber cells and mammalian erythrocytes degrade their nuclei through different mechanisms. In lens, the generation of the organelle-free zone (OFZ) includes the degradation of mitochondria, endoplasmic reticulum, Golgi apparatus and nuclei. Here, using RNA fluorescence in situ hybridization (FISH), we evaluated nascent rRNA transcription, located in the nucleoli, during the process of mouse lens fiber cell differentiation. Lens fiber cell nuclei undergo morphological changes including chromatin condensation prior to their denucleation. Remarkably, nascent rRNA transcription persists in all nuclei that are in direct proximity of the OFZ. Additionally, changes in both nuclei and nucleoli shape were evaluated via immunofluorescence detection of fibrillarin, nucleolin, UBF and other proteins. These studies demonstrate for the first time that highly condensed lens fiber cell nuclei have the capacity to support nascent rRNA transcription. Thus, we propose that 'late' production of rRNA molecules and consequently of ribosomes increases crystallin protein synthesis machinery within the mature lens fibers.
Collapse
Affiliation(s)
- Danielle Rayêe
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - U. Thomas Meier
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carolina Eliscovich
- Departments of Medicine (Hepatology) and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleš Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
47
|
Farahani A, Farahani A, Kashfi K, Ghasemi A. Inhibition of hepatic gluconeogenesis in type 2 diabetes by metformin: complementary role of nitric oxide. Med Gas Res 2025; 15:507-519. [PMID: 40300886 DOI: 10.4103/mgr.medgasres-d-24-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/21/2025] [Indexed: 05/01/2025] Open
Abstract
Metformin is the first-line treatment for type 2 diabetes mellitus. Type 2 diabetes mellitus is associated with decreased nitric oxide bioavailability, which has significant metabolic implications, including enhanced insulin secretion and peripheral glucose utilization. Similar to metformin, nitric oxide also inhibits hepatic glucose production, mainly by suppressing gluconeogenesis. This review explores the combined effects of metformin and nitric oxide on hepatic gluconeogenesis and proposes the potential of a hybrid metformin-nitric oxide drug for managing type 2 diabetes mellitus. Both metformin and nitric oxide inhibit gluconeogenesis through overlapping and distinct mechanisms. In hepatic gluconeogenesis, mitochondrial oxaloacetate is exported to the cytoplasm via various pathways, including the malate, direct, aspartate, and fumarate pathways. The effects of nitric oxide and metformin on the exportation of oxaloacetate are complementary; nitric oxide primarily inhibits the malate pathway, while metformin strongly inhibits the fumarate and aspartate pathways. Furthermore, metformin effectively blocks gluconeogenesis from lactate, glycerol, and glutamine, whereas nitric oxide mainly inhibits alanine-induced gluconeogenesis. Additionally, nitric oxide contributes to the adenosine monophosphate-activated protein kinase-dependent inhibition of gluconeogenesis induced by metformin. The combined use of metformin and nitric oxide offers the potential to mitigate common side effects. For example, lactic acidosis, a known side effect of metformin, is linked to nitric oxide deficiency, while the oxidative and nitrosative stress caused by nitric oxide could be counterbalanced by metformin's enhancement of glutathione. Metformin also amplifies nitric oxide -induced activation of adenosine monophosphate-activated protein kinase. In conclusion, a metformin-nitric oxide hybrid drug can benefit patients with type 2 diabetes mellitus by enhancing the inhibition of hepatic gluconeogenesis, decreasing the required dose of metformin for maintaining optimal glycemia, and lowering the incidence of metformin-associated lactic acidosis.
Collapse
Affiliation(s)
- Arman Farahani
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Khan W, Kanwar S, Mannan MM, Kabir F, Iqbal N, Nadeem Rajab Ali M, Zia SR, Mian S, Aziz F, Muneer S, Kalam A, Hussain A, Javed I, Qazi MF, Khalid J, Nisar MI, Jehan F. Identification of differentially expressed non-coding RNAs in the plasma of women with preterm birth. RNA Biol 2025; 22:1-8. [PMID: 39804675 PMCID: PMC11730358 DOI: 10.1080/15476286.2024.2449278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
This study aimed to identify differentially expressed non-coding RNAs (ncRNAs) associated with preterm birth (PTB) and determine biological pathways being influenced in the context of PTB. We processed cell-free RNA sequencing data and identified seventeen differentially expressed (DE) ncRNAs that could be involved in the onset of PTB. Per the validation via customized RT-qPCR, the recorded variations in expressions of eleven ncRNAs were concordant with the in-silico analyses. The results of this study provide insights into the role of DE ncRNAs and their impact on pregnancy-related biological pathways that could lead to PTB. Further studies are required to elucidate the precise mechanisms by which these DE ncRNAs contribute to adverse pregnancy outcomes (APOs) and their potential as diagnostic biomarkers.
Collapse
Affiliation(s)
- Waqasuddin Khan
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Samiah Kanwar
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Mohammad Mohsin Mannan
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Furqan Kabir
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Naveed Iqbal
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Mehdia Nadeem Rajab Ali
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Syeda Rehana Zia
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Sharmeen Mian
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Fatima Aziz
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Sahrish Muneer
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Adil Kalam
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Akram Hussain
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Iqra Javed
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Muhammad Farrukh Qazi
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Javairia Khalid
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Muhammad Imran Nisar
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Fyezah Jehan
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
49
|
Ye RZ, Zhao JQ, Xie H, Zhao L, Gong C, Wang ZF, Yue N, Xia LY, Song K, Dong B, Wang N, Gao WY, Li YY, Cui XM, Pang JJ, Ma DD, Wang H, Jiang JF, Liu Y, Feng Y, Jia N, Sun WQ, Qi XP, Du LT, Chen Y, Jiang T, Huang F, Cao WC. A tombus-like virus in patients with lower respiratory tract infection: an observational study based on meta-transcriptomic sequencing. Emerg Microbes Infect 2025; 14:2494704. [PMID: 40237518 PMCID: PMC12024507 DOI: 10.1080/22221751.2025.2494704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
The identification of a novel virus related to the family Tombusviridae, provisionally named human tombus-like virus (hTLV), is significant in the context of ongoing surveillance for respiratory pathogens. Meta-transcriptomic sequencing was utilized to detect respiratory pathogens in patients with lower respiratory tract infections (LRIs) in Jinan, China, from 2022 to 2023. The additional hTLV infections were identified through retrospective analysis of meta-transcriptome data collected in Beijing, China, from 2016 to 2019, prior to the COVID-19 outbreak. Phylogenetic analyzes indicated that hTLVs were clustered with a Jingmen tombus-like virus 2 but in a distinct clade. The hTLVs genomes consist of a single-stranded positive-sense RNA genomes of 4.7-4.8 kb in size, and contained four putative open reading frames (ORF1-4). The RNA-dependent RNA polymerase protein of hTLV shared significant sequence similarity containing three conserved motifs with 15, 24, and 15 amino acids, respectively. The hTLV genome included the canonical Gly376-Asp377-Asp378 (GDD) catalytic residues, which were a unifying feature of viruses in the family Tombusviridae. The main clinical manifestations of the 23 patients were fever, cough, expectoration and dyspnea, with varying degrees of lung infection or abnormalities in other laboratory indicators. Serological studies showed that fourfold rise in IgG titers in sera of a patient between acute and convalescent phase by ELISA. Identification of the pathogens for acute respiratory tract infections is essential for timely public health interventions and clinical management. The discovery of a novel virus, hTLV, in patients with LRIs highlights the continuous emergence of new respiratory pathogens in humans.
Collapse
Affiliation(s)
- Run-Ze Ye
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jia-Qi Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Hui Xie
- Beijing Center for Disease Prevention and Control; Beijing Academy for Preventive Medicine, Beijing, People’s Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Cheng Gong
- Beijing Center for Disease Prevention and Control; Beijing Academy for Preventive Medicine, Beijing, People’s Republic of China
| | - Zhen-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Ning Yue
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
- Tsinghua-Peking Center for Life Sciences, Beijing, People’s Republic of China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ke Song
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Bao Dong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yu-Yu Li
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jiao-Jiao Pang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - De-Dong Ma
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
- Tsinghua-Peking Center for Life Sciences, Beijing, People’s Republic of China
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wen-Qing Sun
- Department of Intensive Care Unit, Public Health Clinical Center Affiliated to Shandong University, Jinan, People’s Republic of China
| | - Xiao-Peng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Lu-Tao Du
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Innovation Technology in Laboratory Medicine, Jinan, People’s Republic of China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Fang Huang
- Beijing Center for Disease Prevention and Control; Beijing Academy for Preventive Medicine, Beijing, People’s Republic of China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
50
|
Prince N, Peralta Marzal LN, Roussin L, Monnoye M, Philippe C, Maximin E, Ahmed S, Salenius K, Lin J, Autio R, Adolfs Y, Pasterkamp RJ, Garssen J, Naudon L, Rabot S, Kraneveld AD, Perez-Pardo P. Mouse strain-specific responses along the gut-brain axis upon fecal microbiota transplantation from children with autism. Gut Microbes 2025; 17:2447822. [PMID: 39773319 PMCID: PMC11730631 DOI: 10.1080/19490976.2024.2447822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Several factors are linked to the pathophysiology of autism spectrum disorders (ASD); however, the molecular mechanisms of the condition remain unknown. As intestinal problems and gut microbiota dysbiosis are associated with ASD development and severity, recent studies have focused on elucidating the microbiota-gut-brain axis' involvement. This study aims to explore mechanisms through which gut microbiota might influence ASD. Briefly, we depleted the microbiota of conventional male BALB/cAnNCrl (Balb/c) and C57BL/6J (BL/6) mice prior to human fecal microbiota transplantation (hFMT) with samples from children with ASD or their neurotypical siblings. We found mouse strain-specific responses to ASD hFMT. Notably, Balb/c mice exhibit decreased exploratory and social behavior, and show evidence of intestinal, systemic, and central inflammation accompanied with metabolic shifts. BL/6 mice show less changes after hFMT. Our results reveal that gut microbiota alone induce changes in ASD-like behavior, and highlight the importance of mouse strain selection when investigating multifactorial conditions like ASD.
Collapse
Affiliation(s)
- Naika Prince
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lucia N. Peralta Marzal
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Léa Roussin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elise Maximin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sabbir Ahmed
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karoliina Salenius
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Jake Lin
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Reija Autio
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Aletta D. Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|