1
|
Yao H, Wu R, Du D, Ai F, Yang F, Li Y, Qi S. Flavonoids from Polypodium hastatum as neuroprotective agents attenuate cerebral ischemia/reperfusion injury in vitro and in vivo via activating Nrf2. Redox Rep 2025; 30:2440204. [PMID: 39702961 DOI: 10.1080/13510002.2024.2440204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Cerebral ischemic stroke is a leading cause of death worldwide. Though timely reperfusion reduces the infarction size, it exacerbates neuronal apoptosis due to oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes. Activating Nrf2 gives a therapeutic approach to ischemic stroke. METHODS Herein we explored flavonoids identified from Polypodium hastatum as Nrf2 activators and their protective effects on PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R) as well as middle cerebral artery occlusion (MCAO) mice. RESULTS The results showed among these flavonoids, AAKR significantly improved the survival of PC12 cells induced by OGD/R and activated Nrf2 in a Keap1-dependent manner. Further investigations have disclosed AAKR attenuated oxidative stress, mitochondrial dysfunction and following apoptosis resulting from OGD/R. Meanwhile, activation of Nrf2 by AAKR was involved in the protective effects. Finally, it was found that AAKR could protect MCAO mice brains against ischemia/reperfusion injury via activating Nrf2. DISCUSSION This investigation could provide lead compounds for the discovery of novel Nrf2 activators targeting ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Huankai Yao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ruiqing Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dan Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Fengwei Ai
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Feng Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Suhua Qi
- School of Medical Technology & Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
2
|
Zheng XQ, Wang DB, Jiang YR, Song CL. Gut microbiota and microbial metabolites for osteoporosis. Gut Microbes 2025; 17:2437247. [PMID: 39690861 DOI: 10.1080/19490976.2024.2437247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Osteoporosis is an age-related bone metabolic disease. As an essential endocrine organ, the skeletal system is intricately connected with extraosseous organs. The crosstalk between bones and other organs supports this view. In recent years, the link between the gut microecology and bone metabolism has become an important research topic, both in preclinical studies and in clinical trials. Many studies have shown that skeletal changes are accompanied by changes in the composition and structure of the gut microbiota (GM). At the same time, natural or artificial interventions targeting the GM can subsequently affect bone metabolism. Moreover, microbiome-related metabolites may have important effects on bone metabolism. We aim to review the relationships among the GM, microbial metabolites, and bone metabolism and to summarize the potential mechanisms involved and the theory of the gut‒bone axis. We also describe existing bottlenecks in laboratory studies, as well as existing challenges in clinical settings, and propose possible future research directions.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Ding-Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
3
|
Marques de Souza PR, Keenan CM, Wallace LE, Habibyan YB, Davoli-Ferreira M, Ohland C, Vicentini FA, McCoy KD, Sharkey KA. T cells regulate intestinal motility and shape enteric neuronal responses to intestinal microbiota. Gut Microbes 2025; 17:2442528. [PMID: 39704079 DOI: 10.1080/19490976.2024.2442528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner. SPF microbiota increased neuronal density in the myenteric and submucosal plexuses of the ileum and colon, similar to conventionally raised SPF mice, independently of T cells. SFB increased neuronal density in the ileum in a T cell-dependent manner, but independently of T cells in the colon. SPF microbiota stimulated enteric neurogenesis (Sox2 expression in enteric neurons) in the ileum in a T cell-dependent manner, but in the colon this effect was T cell-independent. T cells regulated nestin expression in the ENS. SPF colonization increased Th17 cells, RORγT+ Treg cells, and IL-1β and IL-17A levels in the ileum and colon. By neutralizing IL-1β and IL-17A, we observed that they control microbiota-mediated enteric neurogenesis but were not involved in the regulation of motility. Together, these findings provide new insights into the microbiota-neuroimmune dialog that regulates intestinal physiology.
Collapse
Affiliation(s)
- Patricia Rodrigues Marques de Souza
- Department of Health Education, Federal University of Sergipe, Aracaju, SE, Brazil
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laurie E Wallace
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yasaman Bahojb Habibyan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Ohland
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fernando A Vicentini
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | | | | | | | | | | |
Collapse
|
5
|
Hashemolhosseini S, Gessler L. Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction. Neural Regen Res 2025; 20:2464-2479. [PMID: 39248171 DOI: 10.4103/nrr.nrr-d-24-00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Skeletal muscles are essential for locomotion, posture, and metabolic regulation. To understand physiological processes, exercise adaptation, and muscle-related disorders, it is critical to understand the molecular pathways that underlie skeletal muscle function. The process of muscle contraction, orchestrated by a complex interplay of molecular events, is at the core of skeletal muscle function. Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction. Within muscle fibers, calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force. Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling. The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis. Myogenic regulators coordinate the differentiation of myoblasts into mature muscle fibers. Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability. Several muscle-related diseases, including congenital myasthenic disorders, sarcopenia, muscular dystrophies, and metabolic myopathies, are underpinned by dysregulated molecular pathways in skeletal muscle. Therapeutic interventions aimed at preserving muscle mass and function, enhancing regeneration, and improving metabolic health hold promise by targeting specific molecular pathways. Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway, a critical regulator of myogenesis, muscle regeneration, and metabolic function, and the Hippo signaling pathway. In recent years, more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers, and at the neuromuscular junction. In fact, research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers. In this review, we will summarize and discuss the data on these two pathways, focusing on their concerted action next to their contribution to skeletal muscle biology. However, an in-depth discussion of the non-canonical Wnt pathway, the fibro/adipogenic precursors, or the mechanosensory aspects of these pathways is not the focus of this review.
Collapse
Affiliation(s)
- Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
6
|
Lv Y, Li H. Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis. Neural Regen Res 2025; 20:2556-2570. [PMID: 39314138 DOI: 10.4103/nrr.nrr-d-24-00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited. The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain, brainstem, and spinal cord, as well as abnormal protein deposition in the cytoplasm of neurons and glial cells. The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid, blood, and even urine. Among these biomarkers, neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system, while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles. Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity. However, there are challenges in using neurofilament light chain to differentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury. Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment, oxygen saturation, and the glomerular filtration rate. TAR DNA-binding protein 43, a pathological protein associated with amyotrophic lateral sclerosis, is emerging as a promising biomarker, particularly with advancements in exosome-related research. Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers; however, they show potential in predicting disease prognosis. Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years, the quest for definitive diagnostic and prognostic biomarkers remains a formidable challenge. This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
Collapse
Affiliation(s)
- Yongting Lv
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hongfu Li
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Medical Genetics and Center for Rare disease, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
8
|
Boulksibat A, Tempio A, Bardoni B. Central role of altered phosphodiesterase 2-dependent signaling in the pathophysiology of cognition-based brain disorders. Neural Regen Res 2025; 20:2302-2303. [PMID: 39359080 DOI: 10.4103/nrr.nrr-d-24-00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Asma Boulksibat
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Inserm U1323, Valbonne, France
| | | | | |
Collapse
|
9
|
Ma Y, Dong T, Luan F, Yang J, Miao F, Wei P. Interaction of major facilitator superfamily domain containing 2A with the blood-brain barrier. Neural Regen Res 2025; 20:2133-2152. [PMID: 39248155 DOI: 10.4103/nrr.nrr-d-24-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment; however, the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood. The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function. It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier, in addition to the transport of lipids, such as docosahexaenoic acid, across the blood-brain barrier. Furthermore, an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases; however, little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier. This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier, including their basic structures and functions, cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier, and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability. This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date. This will not only help to elucidate the pathogenesis of neurological diseases, improve the accuracy of laboratory diagnosis, and optimize clinical treatment strategies, but it may also play an important role in prognostic monitoring. In addition, the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized. This review may contribute to the development of new approaches for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yilun Ma
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Taiwei Dong
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Fei Luan
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Juanjuan Yang
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi'an, Shaanxi Province, China
| | - Feng Miao
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Peifeng Wei
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
10
|
Mu Y, Zhang N, Wei D, Yang G, Yao L, Xu X, Li Y, Xue J, Zhang Z, Chen T. Müller cells are activated in response to retinal outer nuclear layer degeneration in rats subjected to simulated weightlessness conditions. Neural Regen Res 2025; 20:2116-2128. [PMID: 39254570 DOI: 10.4103/nrr.nrr-d-23-01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/07/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00032/figure1/v/2024-09-09T124005Z/r/image-tiff A microgravity environment has been shown to cause ocular damage and affect visual acuity, but the underlying mechanisms remain unclear. Therefore, we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity. After 4 weeks of tail suspension, there were no notable alterations in retinal function and morphology, while after 8 weeks of tail suspension, significant reductions in retinal function were observed, and the outer nuclear layer was thinner, with abundant apoptotic cells. To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina, proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension. The results showed that the expression levels of fibroblast growth factor 2 (also known as basic fibroblast growth factor) and glial fibrillary acidic protein, which are closely related to Müller cell activation, were significantly upregulated. In addition, Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks, respectively, of simulated weightlessness. These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
Collapse
Affiliation(s)
- Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Ning Zhang
- Department of Emergency Medicine, Wuhan No.1 Hospital, Wuhan, Hubei Province, China
| | - Dongyu Wei
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Guoqing Yang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Lilingxuan Yao
- Third Regiment, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Xinyue Xu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Yang Li
- Fourth Regiment, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Junhui Xue
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Zuoming Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Tao Chen
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
11
|
Sun B, Li L, Luo J. Brain endothelial cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in aging and neurodegeneration. Neural Regen Res 2025; 20:2005-2007. [PMID: 39254560 DOI: 10.4103/nrr.nrr-d-24-00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Bryan Sun
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, USA (Sun B, Li L, Luo J)
| | - Lulin Li
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, USA (Sun B, Li L, Luo J)
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, USA (Sun B, Li L, Luo J)
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA, USA (Luo J)
| |
Collapse
|
12
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
13
|
Frigon A, Lecomte CG. Stepping up after spinal cord injury: negotiating an obstacle during walking. Neural Regen Res 2025; 20:1919-1929. [PMID: 39254549 DOI: 10.4103/nrr.nrr-d-24-00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/27/2024] [Indexed: 09/11/2024] Open
Abstract
Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles. After spinal cord injury, stepping over an obstacle becomes challenging. Stepping over an obstacle requires sensorimotor transformations in several structures of the brain, including the parietal cortex, premotor cortex, and motor cortex. Sensory information and planning are transformed into motor commands, which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory, coordinate the limbs, and maintain balance. After spinal cord injury, bidirectional communication between the brain and spinal cord is disrupted and animals, including humans, fail to voluntarily modify limb trajectory to step over an obstacle. Therefore, in this review, we discuss the neuromechanical control of stepping over an obstacle, why it fails after spinal cord injury, and how it recovers to a certain extent.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
14
|
Castillo-González J, González-Rey E. Beyond wrecking a wall: revisiting the concept of blood-brain barrier breakdown in ischemic stroke. Neural Regen Res 2025; 20:1944-1956. [PMID: 39254550 DOI: 10.4103/nrr.nrr-d-24-00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation. It tightly modulates the ion transport and nutrient influx, while restricting the entry of harmful factors, and selectively limiting the migration of immune cells, thereby maintaining brain homeostasis. Despite the well-established association between blood-brain barrier disruption and most neurodegenerative/neuroinflammatory diseases, much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown. Moreover, the role of blood-brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood. This review aims to revisit this concept of "blood-brain barrier breakdown," delving into the most controversial aspects, prevalent challenges, and knowledge gaps concerning the lack of blood-brain barrier integrity. By moving beyond the oversimplistic dichotomy of an "open"/"bad" or a "closed"/"good" barrier, our objective is to provide a more comprehensive insight into blood-brain barrier dynamics, to identify novel targets and/or therapeutic approaches aimed at mitigating blood-brain barrier dysfunction. Furthermore, in this review, we advocate for considering the diverse time- and location-dependent alterations in the blood-brain barrier, which go beyond tight-junction disruption or brain endothelial cell breakdown, illustrated through the dynamics of ischemic stroke as a case study. Through this exploration, we seek to underscore the complexity of blood-brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada, Spain
| | | |
Collapse
|
15
|
Hu Q, Wang S, Zhang W, Qu J, Liu GH. Unraveling brain aging through the lens of oral microbiota. Neural Regen Res 2025; 20:1930-1943. [PMID: 38993126 DOI: 10.4103/nrr.nrr-d-23-01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
16
|
Maejima I, Sato K. New aspects of a small GTPase RAB35 in brain development and function. Neural Regen Res 2025; 20:1971-1980. [PMID: 39254551 DOI: 10.4103/nrr.nrr-d-23-01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/30/2023] [Indexed: 09/11/2024] Open
Abstract
In eukaryotic cells, organelles in the secretory, lysosomal, and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking, which is the process of transporting the cargo of proteins, lipids, and other molecules to appropriate compartments via transport vesicles or intermediates. These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain (RAB) protein family, which is the largest subfamily of the RAS superfamily. Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases, including neurological disorders and neurodegenerative diseases. Therefore, it is important to understand the physiological and pathological roles of RAB proteins in brain function. RAB35, a member of the RAB family, is an evolutionarily conserved protein in metazoans. A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis, endocytic recycling, actin bundling, and cell migration. RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles. We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function. These mice exhibited defects in anxiety-related behaviors and spatial memory. Strikingly, RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development, and thereby for normal hippocampal lamination. In contrast, layer formation in the cerebral cortex occurred superficially, even in the absence of RAB35, suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development. Recent studies have suggested an association between RAB35 and neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. In this review, we provide an overview of the current understanding of subcellular functions of RAB35. We also provide insights into the physiological role of RAB35 in mammalian brain development and function, and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | |
Collapse
|
17
|
Zhang M, Xiang C, Niu R, He X, Luo W, Liu W, Gu R. Liposomes as versatile agents for the management of traumatic and nontraumatic central nervous system disorders: drug stability, targeting efficiency, and safety. Neural Regen Res 2025; 20:1883-1899. [PMID: 39254548 DOI: 10.4103/nrr.nrr-d-24-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/28/2024] [Indexed: 09/11/2024] Open
Abstract
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied. However, their inability to cross the blood-brain barrier hampers the clinical translation of these therapeutic strategies. Liposomes are nanoparticles composed of lipid bilayers, which can effectively encapsulate drugs and improve drug delivery across the blood-brain barrier and into brain tissue through their targeting and permeability. Therefore, they can potentially treat traumatic and nontraumatic central nervous system diseases. In this review, we outlined the common properties and preparation methods of liposomes, including thin-film hydration, reverse-phase evaporation, solvent injection techniques, detergent removal methods, and microfluidics techniques. Afterwards, we comprehensively discussed the current applications of liposomes in central nervous system diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and brain tumors. Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials. Additionally, their application as drug delivery systems in clinical practice faces challenges such as drug stability, targeting efficiency, and safety. Therefore, we proposed development strategies related to liposomes to further promote their development in neurological disease research.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Yashaswini C, Kiran NS, Chatterjee A. Zebrafish navigating the metabolic maze: insights into human disease - assets, challenges and future implications. J Diabetes Metab Disord 2025; 24:3. [PMID: 39697864 PMCID: PMC11649609 DOI: 10.1007/s40200-024-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 12/20/2024]
Abstract
Zebrafish (Danio rerio) have become indispensable models for advancing our understanding of multiple metabolic disorders such as obesity, diabetes mellitus, dyslipidemia, and metabolic syndrome. This review provides a comprehensive analysis of zebrafish as a powerful tool for dissecting the genetic and molecular mechanisms of these diseases, focusing on key genes, like pparγ, lepr, ins, and srebp. Zebrafish offer distinct advantages, including genetic tractability, optical transparency in early development, and the conservation of key metabolic pathways with humans. Studies have successfully used zebrafish to uncover conserved metabolic mechanisms, identify novel disease pathways, and facilitate high-throughput screening of potential therapeutic compounds. The review also highlights the novelty of using zebrafish to model multifactorial metabolic disorders, addressing challenges such as interspecies differences in metabolism and the complexity of human metabolic disease etiology. Moving forward, future research will benefit from integrating advanced omics technologies to map disease-specific molecular signatures, applying personalized medicine approaches to optimize treatments, and utilizing computational models to predict therapeutic outcomes. By embracing these innovative strategies, zebrafish research has the potential to revolutionize the diagnosis, treatment, and prevention of metabolic disorders, offering new avenues for translational applications. Continued interdisciplinary collaboration and investment in zebrafish-based studies will be crucial to fully harnessing their potential for advancing therapeutic development.
Collapse
Affiliation(s)
- Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| | | | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| |
Collapse
|
19
|
Sun H, Shen S, Thomas RJ, Westover MB, Zhang C. Sleep as a window to understand and regulate Alzheimer's disease: emerging roles of thalamic reticular nucleus. Neural Regen Res 2025; 20:1711-1712. [PMID: 39104106 DOI: 10.4103/nrr.nrr-d-24-00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/25/2024] [Indexed: 08/07/2024] Open
Affiliation(s)
- Haoqi Sun
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA (Sun H, Westover MB)
| | - Shiqian Shen
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (Shen S)
| | - Robert J Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA (Thomas RJ)
| | - M Brandon Westover
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA (Sun H, Westover MB)
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (Zhang C)
| |
Collapse
|
20
|
Okosun IS. Elevated uric acid level and metabolic syndrome in Non-Hispanic Black American adults. J Diabetes Metab Disord 2025; 24:2. [PMID: 39691855 PMCID: PMC11646972 DOI: 10.1007/s40200-024-01528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024]
Abstract
Objectives To ascertain the direct and indirect link between elevated uric acid (eUA) and metabolic syndrome (MetSyn) in Non-Hispanic Black (NHB) American adults. Design Structural equation modeling (SEM) was used to disentangle the U.S. National Health and Nutritional Examination Survey (2015-2018 NHANES) dataset and investigate the connection between eUA and components of MetSyn as per the criteria from the National Cholesterol Education Program (NCEP) Adult Treatment Panel III. The association between eUA and MetSyn was determined using odds ratios from sex-specific multivariable logistic regression analysis. The analysis was adjusted for age, physical activity, alcohol use, and smoking. SEM coefficients were used to measure the strength of the link between eUA and MetSyn components. Results NHB American men with eUA had 1.41-fold greater odds of MetSyn, and NHB American women with eUA had 2.70-fold greater odds of MetSyn after adjusting for confounding factors. Elevated uric acid was more strongly and directly linked to abdominal obesity (β = 0.320, p < 0.01) in NHB American men, and with abdominal obesity (β = 0.423, p < 0.01), dyslipidemia (β = 0.151, p < 0.01) and hypertension (β = 0.121, p < 0.01) in NHB American women than between eUA and other components of MetSyn. Conclusions This study's finding linking eUA to MetSyn components in NHB American adults needs reaffirmation through a robust prospective study design. If validated, eUA could help predict and prevent MetSyn in NHB American adults.
Collapse
Affiliation(s)
- Ike S. Okosun
- Department of Population Health Sciences, School of Public Health, Georgia State University, Suite 461 – Urban Life Building, P.O. Box 3984, Atlanta, GA 30302-3984 USA
| |
Collapse
|
21
|
Filippas-Ntekouan S, Dimou A, Dafopoulos P, Kostara C, Bairaktari E, Chasapi S, Spyroulias G, Koufakis T, Koutsovasilis A, Tsimihodimos V. Effect of dapagliflozin on the serum metabolome in patients with type 2 diabetes mellitus. J Diabetes Metab Disord 2025; 24:4. [PMID: 39697865 PMCID: PMC11649604 DOI: 10.1007/s40200-024-01508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Objectives SGLT-2 inhibitors have been shown to exert cardio- and renoprotective actions. We aimed to investigate the underlying mechanisms using 1H-NMR based metabolomics in patients with type-2 diabetes mellitus who received dapagliflozin. Methods 50 patients with type 2 diabetes mellitus, inadequately controlled on metformin monotherapy (HbA1c > 7%) received dapagliflozin for 3 months and 30 matched patients received insulin degludec for 3 months. Clinical and laboratory values, as well as 1H-NMR based metabolomics were assessed before treatment and after completion of 3 months of treatment. Results Dapagliflozin reduced weight, body mass index, systolic and diastolic blood pressure significantly. Using 1H-NMR based metabolomics, the dapagliflozin group showed a good separation with a degree of overlap before and after treatment initiation. Regarding targeted metabolomics, dapagliflozin increased serum ketone, citrate and tryptophan levels compared with insulin. On the other hand, serum taurine, threonine and mannose levels were significantly decreased following dapagliflozin administration. Conclusions Dapagliflozin led to a small, but significant change in serum metabolome. The observed changes may indicate improvement in energy metabolism, reduction in inflammatory activity and decreased insulin resistance which may provide further evidence of the agent's observed cardiac and renal protection. The study was registered with ClinicalTrials.gov (identifier: NCT02798757). Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01508-1.
Collapse
Affiliation(s)
| | - Aikaterini Dimou
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | | | - Christina Kostara
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | | | | | - Theoharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, 546 42 Greece
| | | | - Vasileios Tsimihodimos
- Department of Internal Medicine, University of Ioannina, Stavrou Niarchou Avenue, Ioannina, 45500 Greece
| |
Collapse
|
22
|
Luján R, Martín-Belmonte A, Ferré S, Ciruela F. Amyloid-beta pathology-induced nanoscale synaptic disruption: the case of the GABAB-GIRK assembly. Neural Regen Res 2025; 20:1409-1410. [PMID: 39075907 PMCID: PMC11624866 DOI: 10.4103/nrr.nrr-d-24-00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Rafael Luján
- Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Instituto de Investigación en Salud de Castilla-La Mancha (IDISCAM), Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa, Albacete, Spain
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Instituto de Investigación en Salud de Castilla-La Mancha (IDISCAM), Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa, Albacete, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
23
|
Weng C, Groh AM, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 PMCID: PMC11624867 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M.R. Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G. R. Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Yin W, Ma H, Qu Y, Ren J, Sun Y, Guo ZN, Yang Y. Exosomes: the next-generation therapeutic platform for ischemic stroke. Neural Regen Res 2025; 20:1221-1235. [PMID: 39075892 PMCID: PMC11624871 DOI: 10.4103/nrr.nrr-d-23-02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024] Open
Abstract
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yingying Sun
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
25
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 PMCID: PMC11624876 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
26
|
Kann O, Söder L, Khodaie B. Lactate is a potentially harmful substitute for brain glucose fuel: consequences for metabolic restoration of neurotransmission. Neural Regen Res 2025; 20:1403-1404. [PMID: 39075904 PMCID: PMC11624877 DOI: 10.4103/nrr.nrr-d-24-00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Lennart Söder
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Babak Khodaie
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
27
|
Long Y, Liu J, Wang Y, Guo H, Cui G. The complex effects of miR-146a in the pathogenesis of Alzheimer's disease. Neural Regen Res 2025; 20:1309-1323. [PMID: 39075895 PMCID: PMC11624861 DOI: 10.4103/nrr.nrr-d-23-01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by cognitive dysfunction and behavioral abnormalities. Neuroinflammatory plaques formed through the extracellular deposition of amyloid-β proteins, as well as neurofibrillary tangles formed by the intracellular deposition of hyperphosphorylated tau proteins, comprise two typical pathological features of Alzheimer's disease. Besides symptomatic treatment, there are no effective therapies for delaying Alzheimer's disease progression. MicroRNAs (miR) are small, non-coding RNAs that negatively regulate gene expression at the transcriptional and translational levels and play important roles in multiple physiological and pathological processes. Indeed, miR-146a, a NF-κB-regulated gene, has been extensively implicated in the development of Alzheimer's disease through several pathways. Research has demonstrated substantial dysregulation of miR-146a both during the initial phases and throughout the progression of this disorder. MiR-146a is believed to reduce amyloid-β deposition and tau protein hyperphosphorylation through the TLR/IRAK1/TRAF6 pathway; however, there is also evidence supporting that it can promote these processes through many other pathways, thus exacerbating the pathological manifestations of Alzheimer's disease. It has been widely reported that miR-146a mediates synaptic dysfunction, mitochondrial dysfunction, and neuronal death by targeting mRNAs encoding synaptic-related proteins, mitochondrial-related proteins, and membrane proteins, as well as other mRNAs. Regarding the impact on glial cells, miR-146a also exhibits differential effects. On one hand, it causes widespread and sustained inflammation through certain pathways, while on the other hand, it can reverse the polarization of astrocytes and microglia, alleviate neuroinflammation, and promote oligodendrocyte progenitor cell differentiation, thus maintaining the normal function of the myelin sheath and exerting a protective effect on neurons. In this review, we provide a comprehensive analysis of the involvement of miR-146a in the pathogenesis of Alzheimer's disease. We aim to elucidate the relationship between miR-146a and the key pathological manifestations of Alzheimer's disease, such as amyloid-β deposition, tau protein hyperphosphorylation, neuronal death, mitochondrial dysfunction, synaptic dysfunction, and glial cell dysfunction, as well as summarize recent relevant studies that have highlighted the potential of miR-146a as a clinical diagnostic marker and therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Yunfan Long
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajia Liu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohong Cui
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 2025; 20:973-989. [PMID: 38989932 PMCID: PMC11438322 DOI: 10.4103/nrr.nrr-d-23-02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions. Homeostatic astroglial proteins are downregulated near the traumatic brain injury core, while pro-inflammatory astroglial genes are overexpressed. This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery. In addition, glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration, but in the long term impedes axonal reconnection and functional recovery. Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications. Statins, cannabinoids, progesterone, beta-blockers, and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes. In this review, we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury, especially using cell-targeted strategies with miRNAs or lncRNA, viral vectors, and repurposed drugs.
Collapse
Affiliation(s)
- María Belén Cieri
- Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
29
|
Chizhikov VV, Iskusnykh IY. Cortical hem signaling center: functions, development, and potential implications for evolution and brain disorders. Neural Regen Res 2025; 20:1079-1080. [PMID: 38989940 PMCID: PMC11438340 DOI: 10.4103/nrr.nrr-d-23-01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/24/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
30
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. Biomaterials 2025; 315:122916. [PMID: 39490060 DOI: 10.1016/j.biomaterials.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer bone metastasis is a major cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Moreover, mineralized biomaterials are commonly utilized for clinical bone defect repair, but how mineralized biomaterials affect the foreign body response and wound healing is unclear. Here, we investigate how bone mineral affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to bone mineral content depends on the murine tumor model used. While lack of bone mineral induces tumor-promoting microenvironments in both immunocompromised and immunocompetent animals, these changes are mediated by altered fibroblast phenotype in immunocompromised mice and macrophage polarization in immunocompetent mice. Collectively, our findings suggest that bone mineral density affects tumor growth by impacting microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
31
|
Chen S, Wang W, Shen L, Liu H, Luo J, Ren Y, Cui S, Ye Y, Shi G, Cheng F, Su X, Dai L, Gou M, Deng H. A 3D-printed microdevice encapsulates vascularized islets composed of iPSC-derived β-like cells and microvascular fragments for type 1 diabetes treatment. Biomaterials 2025; 315:122947. [PMID: 39547136 DOI: 10.1016/j.biomaterials.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Transplantation of insulin-secreting cells provides a promising method for re-establishing the autonomous blood glucose control ability of type 1 diabetes (T1D) patients, but the low survival of the transplanted cells hinder the therapeutic efficacy. In this study, we 3D-printed an encapsulation system containing β-like cells and microvascular fragments (MVF), to create a retrivable microdevice with vascularized islets in vivo for T1D therapy. The functional β-like cells were differentiated from the urine epithelial cell-derived induced pluripotent stem cells (UiPSCs). Single-cell RNA sequencing provided an integrative study and macroscopic developmental analyses of the entire process of differentiation, which revealed the developmental trajectory of differentiation in vitro follows the developmental pattern of embryonic pancreas in vivo. The MVF were isolated from the epididymal fat pad. The microdevice with a groove structure were rapidly fabricated by the digital light processing (DLP)-3D printing technology. The β-like cells and MVF were uniformly distributed in the device. After subcutaneous transplantation into C57BL/6 mice, the microdevice have less collagen accumulation and low immune cell infiltration. Moreover, the microdevice encapsulated vascularized islets reduced hyperglycemia in 33 % of the treated mice for up to 100 days without immunosuppressants, and the humanized C-peptide was also detected in the serum of the mice. In summary, we described the microdevice-protected vascularized islets for long-term treatment of T1D, with high safety and potential clinical transformative value, and may therefore provide a translatable solution to advance the research progress of β cell replacement therapy for T1D.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenshuang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lanlin Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushuang Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Susu Cui
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
32
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
33
|
Yaron JR, Pallod S, Grigaitis-Esman N, Singh V, Rhodes S, Patel DM, Ghosh D, Rege K. Histamine receptor agonism differentially induces immune and reparative healing responses in biomaterial-facilitated tissue repair. Biomaterials 2025; 315:122967. [PMID: 39586217 DOI: 10.1016/j.biomaterials.2024.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Tissue repair is a highly regulated process involving immune, stromal, vascular, and parenchymal cell responses. Mediators of cellular responses at different phases of the healing process stimulate transitions through the continuum of repair. Histamine is an early mediator of healing, which, in skin, is released by resident cells (e.g., mast cells) after cutaneous injury, and acts to stimulate diverse responses in multiple cell populations. Histamine signaling is regulated by four distinct cell surface G-protein coupled receptors (HRH1-4 in humans, Hrh1-4 in mice) which initiate different downstream signaling cascades upon activation, but the specific effect of each receptor on tissue repair is poorly understood. Here, we systematically investigated the effect of selective histamine receptor agonism in laser-activated sealing and tissue repair of incisional skin wounds in immunocompetent mice. Although all four histamine receptors exhibited wound responsiveness in the epidermis, we find that activation of Hrh1, Hrh2, and Hrh4 stimulate a pro-healing immune response characterized by increased pro-resolution macrophages, reduced pro-inflammatory macrophages, and suppressed neutrophil responses. Further, activation of Hrh1 and Hrh4 stimulate angiogenesis after injury. Lastly, although Hrh1 activation resulted in enhanced epidermal epithelial-to-mesenchymal transition (EMT) in vivo and epithelialization in vitro, activation of Hrh2 suppressed both epidermal EMT and epithelialization. Activation of Hrh3, primarily found on neuronal cells, had no effect on any measure in our study. Selective histamine receptor agonism, specifically of histamine receptors Hrh-1 and 4, is a potential reparative approach to promote the efficacy of biomaterial-mediated repair of tissues, including skin.
Collapse
Affiliation(s)
- Jordan R Yaron
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Shubham Pallod
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Nicole Grigaitis-Esman
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Vanshika Singh
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Samantha Rhodes
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Dirghau Manishbhai Patel
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Deepanjan Ghosh
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
34
|
Huang R, Pang Q, Zheng L, Lin J, Li H, Wan L, Wang T. Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage. Neural Regen Res 2025; 20:1015-1030. [PMID: 38989934 PMCID: PMC11438341 DOI: 10.4103/nrr.nrr-d-23-01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 07/12/2024] Open
Abstract
Cholesterol is an important component of plasma membranes and participates in many basic life functions, such as the maintenance of cell membrane stability, the synthesis of steroid hormones, and myelination. Cholesterol plays a key role in the establishment and maintenance of the central nervous system. The brain contains 20% of the whole body's cholesterol, 80% of which is located within myelin. A huge number of processes (e.g., the sterol regulatory element-binding protein pathway and liver X receptor pathway) participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis, intracellular transport, and efflux. Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences. Therefore, we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases. Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype, with high mortality and morbidity. Historical cholesterol levels are associated with the risk of intracerebral hemorrhage. Moreover, secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation, such as neuroinflammation, demyelination, and multiple types of programmed cell death. Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage. In this paper, we review normal cholesterol metabolism in the central nervous system, the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage, and the links between cholesterol metabolism and cell death. We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiuyu Pang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lexin Zheng
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaxi Lin
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hanxi Li
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lingbo Wan
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Tao Wang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
35
|
Torun Bayram M, Kavukcu S. Renal glucosuria in children. World J Clin Pediatr 2025; 14:91622. [DOI: 10.5409/wjcp.v14.i1.91622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
The kidneys play a critical role in maintaining glucose homeostasis. Under normal renal tubular function, most of the glucose filtered from the glomeruli is reabsorbed in the proximal tubules, leaving only trace amounts in the urine. Glycosuria can occur as a symptom of generalized proximal tubular dysfunction or when the reabsorption threshold is exceeded or the glucose threshold is reduced, as seen in familial renal glycosuria (FRG). FRG is characterized by persistent glycosuria despite normal blood glucose levels and tubular function and is primarily associated with mutations in the sodium/glucose cotransporter 5A2 gene, which encodes the sodium-glucose cotransporter (SGLT) 2. Inhibiting SGLTs has been proposed as a novel treatment strategy for diabetes, and since FRG is often considered an asymptomatic and benign condition, it has inspired preclinical and clinical studies using SGLT2 inhibitors in type 2 diabetes. However, patients with FRG may exhibit clinical features such as lower body weight or height, altered systemic blood pressure, diaper dermatitis, aminoaciduria, decreased serum uric acid levels, and hypercalciuria. Further research is needed to fully understand the pathophysiology, molecular genetics, and clinical manifestations of renal glucosuria.
Collapse
Affiliation(s)
- Meral Torun Bayram
- Division of Nephrology, Department of Pediatrics, Dokuz Eylül University, School of Medicine, Inciralti-Balcova 35340, Izmir, Türkiye
| | - Salih Kavukcu
- Division of Nephrology, Department of Pediatrics, Dokuz Eylül University, School of Medicine, Inciralti-Balcova 35340, Izmir, Türkiye
| |
Collapse
|
36
|
Wang K, Sun Y, Zhu K, Liu Y, Zheng X, Yang Z, Man F, Huang L, Zhu Z, Huang Q, Li Y, Dong H, Zhao J, Li Y. Anti-pyroptosis biomimetic nanoplatform loading puerarin for myocardial infarction repair: From drug discovery to drug delivery. Biomaterials 2025; 314:122890. [PMID: 39427429 DOI: 10.1016/j.biomaterials.2024.122890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Pyroptosis is a critical pathological mechanism implicated in myocardial damage following myocardial infarction (MI), and the crosstalk between macrophages and pyroptotic cardiomyocytes presents a formidable challenge for anti-pyroptosis therapies of MI. However, as single-target pyroptosis inhibitors frequently fail to address this crosstalk, the efficacy of anti-pyroptosis treatment post-MI remains inadequate. Therefore, the exploration of more potent anti-pyroptosis approaches is imperative for improving outcomes in MI treatment, particularly in addressing the crosstalk between macrophages and pyroptotic cardiomyocytes. Here, in response to this crosstalk, we engineered an anti-pyroptosis biomimetic nanoplatform (NM@PDA@PU), employing polydopamine (PDA) nanoparticles enveloped with neutrophil membrane (NM) for targeted delivery of puerarin (PU). Notably, network pharmacology is deployed to discern the most efficacious anti-pyroptosis drug (puerarin) among the 7 primary active monomers of TCM formulations widely applied in clinical practice and reveal the effect of puerarin on the crosstalk. Additionally, targeted delivery of puerarin could disrupt the malignant crosstalk between macrophages and pyroptotic cardiomyocytes, and enhance the effect of anti-pyroptosis by not only directly inhibiting cardiomyocytes pyroptosis through NLRP3-CASP1-IL-1β/IL-18 signal pathway, but reshaping the inflammatory microenvironment by reprogramming macrophages to anti-inflammatory M2 subtype. Overall, NM@PDA@PU could enhance anti-pyroptosis effect by disrupting the crosstalk between M1 macrophages and pyroptotic cardiomyocytes to protect cardiomyocytes, ameliorate cardiac function and improve ventricular remodeling, which providing new insights for the efficient treatment of MI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yu Sun
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Zhu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiao Zheng
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zichen Yang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fulong Man
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Li Huang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haiqing Dong
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China; State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China.
| | - Yongyong Li
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China; State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China.
| |
Collapse
|
37
|
Pavlou G, Spitz S, Pramotton FM, Tsai A, Li BM, Wang X, Barr OM, Ko EC, Zhang S, Ashley SJ, Maaser-Hecker A, Choi SH, Jorfi M, Tanzi RE, Kamm RD. Engineered 3D human neurovascular model of Alzheimer's disease to study vascular dysfunction. Biomaterials 2025; 314:122864. [PMID: 39357152 DOI: 10.1016/j.biomaterials.2024.122864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The blood-brain barrier (BBB) serves as a selective filter that prevents harmful substances from entering the healthy brain. Dysfunction of this barrier is implicated in several neurological diseases. In the context of Alzheimer's disease (AD), BBB breakdown plays a significant role in both the initiation and progression of the disease. This study introduces a three-dimensional (3D) self-assembled in vitro model of the human neurovascular unit to recapitulate some of the complex interactions between the BBB and AD pathologies. It incorporates primary human brain endothelial cells, pericytes and astrocytes, and stem cell-derived neurons and astrocytes harboring Familial AD (FAD) mutations. Over an extended co-culture period, the model demonstrates increased BBB permeability, dysregulation of key endothelial and pericyte markers, and morphological alterations mirroring AD pathologies. The model enables visualization of amyloid-beta (Aβ) accumulation in both neuronal and vascular compartments. This model may serve as a versatile tool for neuroscience research and drug development to provide insights into the dynamic relationship between vascular dysfunction and AD pathogenesis.
Collapse
Affiliation(s)
- Georgios Pavlou
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Alice Tsai
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brent M Li
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xun Wang
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Olivia M Barr
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Eunkyung Clare Ko
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Shun Zhang
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Savannah J Ashley
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Anna Maaser-Hecker
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Roger D Kamm
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA.
| |
Collapse
|
38
|
Wang J, Zhang B, Li L, Tang X, Zeng J, Song Y, Xu C, Zhao K, Liu G, Lu Y, Li X, Shu K. Repetitive traumatic brain injury-induced complement C1-related inflammation impairs long-term hippocampal neurogenesis. Neural Regen Res 2025; 20:821-835. [PMID: 38886955 PMCID: PMC11433904 DOI: 10.4103/nrr.nrr-d-23-01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00027/figure1/v/2024-06-17T092413Z/r/image-tiff Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus, leading to long-term cognitive impairment. However, the mechanism underlying this neurogenesis impairment remains unknown. In this study, we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury. Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development, delayed neuronal maturation, and reduced the complexity of neuronal dendrites and spines. Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval. Moreover, following repetitive traumatic brain injury, neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased, C1q binding protein levels were decreased, and canonical Wnt/β-catenin signaling was downregulated. An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function. These findings suggest that repetitive traumatic brain injury-induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Bing Zhang
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lanfang Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaomei Tang
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinyu Zeng
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yige Song
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chao Xu
- Department of Graduate Student, Chongqing Medical University, Chongqing, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoqiang Liu
- Department of Basic Medicine, School of Medical Science, Hubei University for Nationalities, Enshi, Hubei Province, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xinyan Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
39
|
Zielinska Z, Oldak L, Gorodkiewicz E. Biosensing systems for the detection of biomarkers of neurodegenerative diseases: A review. Talanta 2025; 284:127247. [PMID: 39586209 DOI: 10.1016/j.talanta.2024.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) are pathologies associated with neuronal disorders and degradation. They are difficult to detect in their early stages, when it is crucial for appropriate treatment to be implemented. Currently, many biosensors are being developed to enable the determination of compounds characteristic of the aforementioned diseases. This review includes a de-scription of the structure of biosensors, as well as their applications in many areas of qualitative and quantitative analysis, with particular emphasis on diagnostics. The structures of biosensors that can potentially be used for the diagnosis of AD, PD and MS are discussed, as well as their characteristics, which depend on the technique used for the analysis and the type of recognition element capable of specifically binding a given biomarker. A description is also given of biosensors classified according to the type of sample used for quantitative determinations.
Collapse
Affiliation(s)
- Zuzanna Zielinska
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
40
|
Ortasoz AM, Ozdemir E, Taskıran AS, Ozturk A. Sinapic acid alleviates glutamate-induced excitotoxicity by inhibiting neuroinflammation and endoplasmic reticulum stress pathway in C6 glioma cells. Toxicol In Vitro 2025; 103:105977. [PMID: 39615638 DOI: 10.1016/j.tiv.2024.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Sinapic acid (SA) is a polyphenol compound derived from hydroxycinnamic acid found in various foods such as cereals and vegetables and has antioxidant, anti-inflammatory and neuroprotective properties. However, its effects on glutamate-induced excitotoxicity, which is important in neurodegenerative diseases, have not been fully elucidated. This study aimed to investigate the effect of SA on glutamate excitotoxicity and the possible role of proinflammatory cytokines and the endoplasmic reticulum (ER) stress pathway. In the study, C6 rat glioma cell line was used and the cells were divided into 4 groups: control, glutamate, SA and glutamate+SA. Cells were treated with 10 mM glutamate for 24 h to induce excitotoxicity. Additionally, SA was applied to cells at concentrations of 12.5 to 100 μM to examine its effects on glutamate excitotoxicity. XTT test was used for cell viability, and apoptotic cells were determined by immunofluorescence and flow cytometry methods. Proinflammatory cytokines (tumor necrosis factor-alpha, TNF-α and interleukin-beta, IL-1β), ER stress markers (glucose regulatory protein 78, GRP78; C/EBP homologous protein, CHOP and activating transcription factor-4, ATF-4) and caspase-3 was used to measure ELISA method. Findings indicated that SA (50 μM) significantly increased cell viability against glutamate-induced excitotoxicity (p < 0.05). Also, SA caused a significant decrease in TNF-α, IL-1β, GRP78, CHOP, ATF-4 and caspase-3 levels in glutamate-treated cells (p < 0.05). Flow cytometry and immunofluorescence staining results showed that SA reduced apoptosis in C6 glioma cells. In conclusion, our findings suggested that SA attenuated glutamate-induced excitotoxicity by preventing apoptosis through reducing proinflammatory cytokines and ER stress protein levels.
Collapse
Affiliation(s)
- Ahmet Mahmut Ortasoz
- Sivas Cumhuriyet University, Medicine Faculty, Department of Physiology, Sivas, Turkey
| | - Ercan Ozdemir
- Sivas Cumhuriyet University, Medicine Faculty, Department of Physiology, Sivas, Turkey.
| | - Ahmet Sevki Taskıran
- Sivas Cumhuriyet University, Medicine Faculty, Department of Physiology, Sivas, Turkey
| | - Aysegul Ozturk
- Sivas Cumhuriyet University, Vocational School of Health Services, Deparment of Therapy and Rehabilitation, Sivas, Turkey
| |
Collapse
|
41
|
Li D, Zeng L, Zhang W, Wang Q, Wu J, Zhu C, Meng Z. Multi-omics study of sex in greater amberjack (Seriola dumerili): Identifying related genes, analyzing sex-biased expression, and developing sex-specific markers. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101364. [PMID: 39612541 DOI: 10.1016/j.cbd.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
The greater amberjack (Seriola dumerili) is a valuable marine fish with significant breeding potential, but does not exhibit clear sexual dimorphism in morphology. Sex research and the development of sex identification technology are important for breeding purposes. Through genome-wide association analysis (GWAS), we identified one significant sex-related SNP and 18 candidate sex-related SNPs, then obtained one significant sex-related gene (hsd17β1) and 20 candidate sex-related genes (hmbox1, ahcyl1, pdzd2, etc.). Key sex-biased genes (sox2, dmrt2, hsd17β3, rnf145, foxo3, etc.) were identified in mature gonads by transcriptome analysis. These genes are important in greater amberjack sex determination and gonad development. In addition, we developed classical PCR and kompetitive allele-specific PCR (KASP) primers to identify the sex of greater amberjack, with an accuracy of 94.87 % and 100 %, respectively. The sex-specific markers can effectively determine the gender of greater amberjack and evaluate the sex ratio and reproductive potential of the breeding population.
Collapse
Affiliation(s)
- Duo Li
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Leilei Zeng
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Weiwei Zhang
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinghua Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510520, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish, Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zining Meng
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
42
|
Wang X, Qu X, Liu X, Wang K, Yang Y, Zhang Y, Wang Z, Fan G, Li Y, Zeng Y, Chen H, Zhu T. KLF14 inhibits tumor progression via FOSL1 in glioma. Biochem Biophys Rep 2025; 41:101885. [PMID: 39678169 PMCID: PMC11638655 DOI: 10.1016/j.bbrep.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Background Glioma, the most frequent central nervous system malignancy, is often promoted by the overexpression of Fos-like antigen 1 (FOSL1). However, the regulation of FOSL1 remains unexplored. The present study aimed to investigate the regulatory mechanism of FOSL1 to identify potential therapeutic targets for glioblastoma. Methods This study's initial investigation utilized dual-luciferase reporter gene assays and quantitative polymerase chain reaction (qPCR) assays to establish that Kruppel-like factor 14 (KLF14) inhibits the transcription of FOSL1. Subsequent immunohistochemistry and western blotting (WB) assays on glioma tissues confirmed a negative association between FOSL1 and KLF14. This study generated KLF14 knockdown cells and double knockdown cells of KLF14 and FOSL1 and further assessed cell growth through various experimental methods. The impact of KLF14 on tumor cell migration via FOSL1 was determined using qPCR and WB assays. A xenograft tumor model was utilized to verify tumor growth suppression by KLF14. Results The present study demonstrated that KLF14 restrains FOSL1 transcription and is inversely correlated with FOSL1 in glioma tissues. KLF14 overexpression was found to counteract FOSL1's effect on cell migration and epithelial-to-mesenchymal transition in glioma cells, which coincided with decreased Snail2 and cluster of differentiation 44 (CD44) expressions. Further, KLF14 overexpression was shown to hinder tumor progression in vivo. Conclusion This study highlights that FOSL1 is negatively regulated by KLF14 in glioblastoma and suggests that KLF14 overexpression can mitigate tumor growth by inhibiting FOSL1, thus identifying KLF14 as a novel molecular target for treating glioblastoma. Further research into the interplay and regulatory dynamics between KLF14 and FOSL1 under varying stress conditions can enhance the precision of glioblastoma treatment.
Collapse
Affiliation(s)
- Xiaohua Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
- Department of General Internal Medicine, Linyi People's Hospital, No.27 Jiefang Road, Lanshan District, Linyi City, Shandong Province, 276003, China
| | - Xinjuan Qu
- Department of Neurology, Linyi Hospital of Traditional Chinese Medicine, Shandong, 276002, China
| | - Xuelai Liu
- Department of Neurology, Linyi Hospital of Traditional Chinese Medicine, Shandong, 276002, China
| | - Kaiyue Wang
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong Province, 276003, China
| | - Yongfang Yang
- Department of Rehabilitation, Linyi People's Hospital, Linyi, Shandong Province, 276003, China
| | - Yujuan Zhang
- Department of Acupuncture and Moxibustion, Linyi People's Hospital, Linyi, Shandong Province, 276003, China
| | - Zhenguo Wang
- Department of Neurology, Linyi Hospital of Traditional Chinese Medicine, Shandong, 276002, China
| | - Guangjian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200080, China
| | - Yuming Li
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200080, China
| | - Yuanyuan Zeng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200080, China
| | - Hongwei Chen
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200080, China
- Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai 201600, China
| | - Ting Zhu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200080, China
| |
Collapse
|
43
|
Wang X, Xue Y, Hao K, Peng B, Chen H, Liu H, Wang J, Cao J, Dong W, Zhang S, Yang Q, Li J, Lei W, Feng Y. Sustained therapeutic effects of self-assembled hyaluronic acid nanoparticles loaded with α-Ketoglutarate in various osteoarthritis stages. Biomaterials 2025; 314:122845. [PMID: 39326362 DOI: 10.1016/j.biomaterials.2024.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease characterized by irreversible destruction of articular cartilage, for which no current drugs are known to modify its progression. While intra-articular (IA) injections of hyaluronic acid (HA) offer temporary relief, their effectiveness and long-term benefits are debated. Alpha-ketoglutarate (αKG) has potential chondroprotective properties, but its use is limited by a short half-life and poor cartilage-targeting efficiency. Here, we developed self-assembled HA-αKG nanoparticles (NPs) to combine the benefits of both HA and αKG, showing stability, bioavailability, and sustained pH-responsive release in the knee joint. In both early and advanced OA stages in mice, HA, αKG, and HA-αKG NPs could relieve pain, enhance mobility, and reduce cartilage damage, with HA-αKG NPs demonstrating the best efficacy. Mechanistically, αKG not only promotes cartilage matrix synthesis but also inhibits degradation by activating the PERK-ATF4 signaling pathway to reduce endoplasmic reticulum stress (ERS) in chondrocytes. This study highlights the therapeutic potential of HA-αKG NPs for treating various OA stages, with efficient and sustained effects, suggesting rapid clinical adoption and high acceptability among clinicians and patients.
Collapse
Affiliation(s)
- Xinli Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kaili Hao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongli Chen
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jiahao Cao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wengang Dong
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China; Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Siqi Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Yang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710000, China; Key Lab of Hazard Assessment and Control in Special Operational Environment, Ministry of Education, Fourth Military Medical University, Xi'an, 710000, China; Department of Health Statistics, School of Public Health, Fourth Military Medical University, Xi'an, 710000, China.
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
44
|
Gao M, Wang X, Su S, Feng W, Lai Y, Huang K, Cao D, Wang Q. Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases. Neural Regen Res 2025; 20:763-778. [PMID: 38886941 PMCID: PMC11433890 DOI: 10.4103/nrr.nrr-d-23-01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
Collapse
Affiliation(s)
- Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Weicheng Feng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yaona Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
45
|
Mahan VL. Heme oxygenase/carbon monoxide system and development of the heart. Med Gas Res 2025; 15:10-22. [PMID: 39324891 PMCID: PMC11515065 DOI: 10.4103/mgr.medgasres-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 09/27/2024] Open
Abstract
Progressive differentiation controlled by intercellular signaling between pharyngeal mesoderm, foregut endoderm, and neural crest-derived mesenchyme is required for normal embryonic and fetal development. Gasotransmitters (criteria: 1) a small gas molecule; 2) freely permeable across membranes; 3) endogenously and enzymatically produced and its production regulated; 4) well-defined and specific functions at physiologically relevant concentrations; 5) functions can be mimicked by exogenously applied counterpart; and 6) cellular effects may or may not be second messenger-mediated, but should have specific cellular and molecular targets) are integral to gametogenesis and subsequent embryogenesis, fetal development, and normal heart maturation. Important for in utero development, the heme oxygenase/carbon monoxide system is expressed during gametogenesis, by the placenta, during embryonic development, and by the fetus. Complex sequences of biochemical pathways result in the progressive maturation of the human heart in utero . The resulting myocardial architecture, consisting of working myocardium, coronary arteries and veins, epicardium, valves and cardiac skeleton, endocardial lining, and cardiac conduction system, determines function. Oxygen metabolism in normal and maldeveloping hearts, which develop under reduced and fluctuating oxygen concentrations, is poorly understood. "Normal" hypoxia is critical for heart formation, but "abnormal" hypoxia in utero affects cardiogenesis. The heme oxygenase/carbon monoxide system is important for in utero cardiac development, and other factors also result in alterations of the heme oxygenase/carbon monoxide system during in utero cardiac development. This review will address the role of the heme oxygenase/carbon monoxide system during cardiac development in embryo and fetal development.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Drexel University Medical School, Phildelphia, PA, USA
| |
Collapse
|
46
|
Letko Khait N, Zuccaro S, Abdo D, Cui H, Siu R, Ho E, Morshead CM, Shoichet MS. Redesigned chondroitinase ABC degrades inhibitory chondroitin sulfate proteoglycans in vitro and in vivo in the stroke-injured rat brain. Biomaterials 2025; 314:122818. [PMID: 39260032 DOI: 10.1016/j.biomaterials.2024.122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Injuries to the central nervous system, such as stroke and traumatic spinal cord injury, result in an aggregate scar that both limits tissue degeneration and inhibits tissue regeneration. The aggregate scar includes chondroitin sulfate proteoglycans (CSPGs), which impede cell migration and axonal outgrowth. Chondroitinase ABC (ChASE) is a potent yet fragile enzyme that degrades CSPGs, and thus may enable tissue regeneration. ChASE37, with 37-point mutations to the native enzyme, has been shown to be more stable than ChASE, but its efficacy has never been tested. To answer this question, we investigated the efficacy of ChASE37 first in vitro using human cell-based assays and then in vivo in a rodent model of stroke. We demonstrated ChASE37 degradation of CSPGs in vitro and the consequent cell adhesion and axonal sprouting now possible using human induced pluripotent stem cell (hiPSC)-derived neurons. To enable prolonged release of ChASE37 to injured tissue, we expressed it as a fusion protein with a Src homology 3 (SH3) domain and modified an injectable, carboxymethylcellulose (CMC) hydrogel with SH3-binding peptides (CMC-bp) using inverse electron-demand Diels-Alder chemistry. We injected this affinity release CMC-bp/SH3-ChASE37 hydrogel epicortically to endothelin-1 stroke-injured rats and confirmed bioactivity via degradation of CSPGs and axonal sprouting in and around the lesion. With CSPG degradation shown both in vitro by greater cell interaction and in vivo with local delivery from a sustained release formulation, we lay the foundation to test the potential of ChASE37 and its delivery by local affinity release for tissue regeneration after stroke.
Collapse
Affiliation(s)
- Nitzan Letko Khait
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Sabrina Zuccaro
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Dhana Abdo
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Ricky Siu
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada
| | - Eric Ho
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada
| | - Cindi M Morshead
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada; Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
47
|
Li M, Wang C, Zhou H, Chen J, Wang L, Xiong Y, Tian Y, Yan H, Liang X, Liu Q, Wang X, Wang Y, Fu C. Effects of temperature to the liver transcriptome in the hybrid puffer fish (Takifugu rubripes ♀ × Takifugu obscurus ♂). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101360. [PMID: 39608187 DOI: 10.1016/j.cbd.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
Water temperature exerts a crucial impact on the growth and development of fish. Hybrids may integrate the superior traits of their parents, thereby leading to higher economic benefits. Takifugu rubripes and T. obscurus are two important economic species in Asia. Here, to investigated the effect of temperature on the hybrid puffer larvae (T. rubripes ♀ × T. obscurus ♂), the larvae (0.79 ± 0.02 cm in body length) were treated to three temperatures: 15 °C (T15), 20 °C (T20), and 25 °C (T25) for 45 days. At the end of the study, the body length and weight were measured, the survival rate was calculated, and liver transcriptome analysis was performed on liver tissues. The hybrid puffer larvae in the T25 group showed a significant increase in average body length and body weight compared to the T15 and T20 groups (P < 0.05). 1292, 329, and 1927 differentially expressed genes (DEGs) were identified in T15 vs. T20, T20 vs. T25, and T15 vs. T25 groups, respectively. KEGG enrichment analyses showed that DEGs were primarily involved in the citrate cycle (TCA cycle), PPAR signaling, glycine, serine and threonine metabolism, and protein digestion and absorption pathways. These results indicated that temperature affects metabolism, signal transduction and protein digestion and absorption in hybrid puffer fish. In addition, twelve DEGs were randomly selected for RNA-seq validation, and the transcriptome results were consistent with the qPCR validation results, illustrating the accuracy of transcriptome sequencing. These findings deepen our understanding of the complex molecular mechanism of the response of hybrid puffer fish to temperature changes and contribute to the development of hybrid puffer fish breeding.
Collapse
Affiliation(s)
- Meiyuan Li
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Chenqi Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Huiting Zhou
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Jinfeng Chen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Liu Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Yuyu Xiong
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Yushun Tian
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Xinyan Liang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Yaohui Wang
- Jiangsu Zhongyang Group Company Limited, Haian, Jiangsu 226600, China
| | - Chuang Fu
- Changhai County Marine and Fisheries Comprehensive Administrative Law Enforcement Team, Dalian, Liaoning, China
| |
Collapse
|
48
|
Yang C, Gao J, Gong K, Ma Q, Chen G. Comprehensive analysis of hub mRNA, lncRNA and miRNA, and associated ceRNA networks implicated in cobia (Rachycentron canadum) scales under hypoosmotic adaption. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101353. [PMID: 39586219 DOI: 10.1016/j.cbd.2024.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024]
Abstract
Salinity plays a vital role in fish aquaculture, profoundly influencing the growth and development of fish. Scales, as the protective outer layer of fish, function as a critical defense against external factors. In this study, we employed transcriptome sequencing to analyze the ceRNA expression profiles to reveal the effect of salinity acclimation on transcriptional expression changes in the scales of cobia (Rachycentron canadum). The results revealed that after being exposed to a salinity level of 15 ‰ for just one day (1D), a total of 407 mRNAs/genes were significantly regulated; 66 miRNAs were respectively significantly regulated; and 109 target genes of the differentially expressed miRNAs were significantly regulated; a total of 185 differently expressed lncRNAs and 292 differently expressed target genes (DetGenes) of differently expressed lncRNAs were also identified. After 7 days (7D), a total of 2195 mRNAs/genes were found to be significantly regulated and 82 miRNAs were significantly regulated; among the target genes of the differentially expressed miRNAs, 245 were regulated. Moreover, 438 differently expressed lncRNAs and 681 DetGenes of these lncRNAs were identified. Subsequent analysis through GO, KEGG pathway, in 1D vs. CG (control group), DeGenes, which first respond to changes in salinity, are mainly involved in negative regulation of macrophage differentiation, negative regulation of granulocyte differentiation and negative regulation of phagocytosis, and are mainly related to biological processes related to the immune function of fish. After a 7-day process, DeGenes were enriched in the collagen fibril organization, regulation of nodal signaling pathway and cell recognition biology processes. These biological processes are not only related to the immune function of fish, but more importantly, to the physiological structure of fish. By analyzing the co down-regulated miRNAs of 1D vs. CG, as well as 7D vs. CG, the functions of these miRNAs are mainly related to bone differentiation and development. In addition,ceRNA network uncovered that the effect of salinity is temporal. The first competing lncRNAs mainly regulated genes related to physiological processes and biological development, while target genes related to immunity and body defense were less competitive. On the contrary, after a period of salinity treatment, the types of competing lncRNAs involved changed.
Collapse
Affiliation(s)
- Changgeng Yang
- Life Science & Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Jingyi Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kailin Gong
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qian Ma
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
49
|
Pan Y, Li L, Cao N, Liao J, Chen H, Zhang M. Advanced nano delivery system for stem cell therapy for Alzheimer's disease. Biomaterials 2025; 314:122852. [PMID: 39357149 DOI: 10.1016/j.biomaterials.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's Disease (AD) represents one of the most significant neurodegenerative challenges of our time, with its increasing prevalence and the lack of curative treatments underscoring an urgent need for innovative therapeutic strategies. Stem cells (SCs) therapy emerges as a promising frontier, offering potential mechanisms for neuroregeneration, neuroprotection, and disease modification in AD. This article provides a comprehensive overview of the current landscape and future directions of stem cell therapy in AD treatment, addressing key aspects such as stem cell migration, differentiation, paracrine effects, and mitochondrial translocation. Despite the promising therapeutic mechanisms of SCs, translating these findings into clinical applications faces substantial hurdles, including production scalability, quality control, ethical concerns, immunogenicity, and regulatory challenges. Furthermore, we delve into emerging trends in stem cell modification and application, highlighting the roles of genetic engineering, biomaterials, and advanced delivery systems. Potential solutions to overcome translational barriers are discussed, emphasizing the importance of interdisciplinary collaboration, regulatory harmonization, and adaptive clinical trial designs. The article concludes with reflections on the future of stem cell therapy in AD, balancing optimism with a pragmatic recognition of the challenges ahead. As we navigate these complexities, the ultimate goal remains to translate stem cell research into safe, effective, and accessible treatments for AD, heralding a new era in the fight against this devastating disease.
Collapse
Affiliation(s)
- Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| | - Long Li
- Department of Neurosurgery, First Hospital of China Medical University, Liaoning, 110001, China.
| | - Ning Cao
- Army Medical University, Chongqing, 400000, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Huiyue Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110001, China.
| | - Meng Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
50
|
Zhu T, Liu Y, Du J, Lei C, Wang C, Li S, Song H. Effects of short-term salt exposure on gill damage, serum components and gene expression patterns in juvenile Largemouth bass (Micropterus salmoides). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101365. [PMID: 39603077 DOI: 10.1016/j.cbd.2024.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The Largemouth bass (Micropterus salmoides; LMB) is a freshwater fish that plays a significant role in aquaculture, and its cultural base is expanding into inland saline water areas. To study the effect of short-term salt exposure on LMB, fish with an average body weight of 11.69 (±1.82) g were cultured for 14 days at three different salt concentrations (0 ‰, 6 ‰, and 12 ‰). After 14 days, the second gill arch was collected for tissue sectioning and transcriptome sequencing, while serum samples were collected to analyze serum components. The results showed that the mortality rate in the 0 ‰ and 6 ‰ groups was 0 %, whereas the mortality rate in the 12 ‰ group was 62 %. In the gill tissue sections, no apparent damage was observed in the 0 ‰ and 6 ‰ groups. However, in the 12 ‰ group, the secondary lamellae became shorter, thicker, and exhibited a disordered arrangement. The serum component test results showed that osmolality and K+ significantly increased in the 12 ‰ group, while Na+, K+, and Cl- concentrations showed slight increases, but the differences were not significant. Comparative transcriptome analysis revealed that, along the salinity gradient, gene expression exhibited five profiles. Genes related to ion transport and immunity were highly expressed in the 6 ‰ and 12 ‰ groups, while genes associated with biosynthesis and ATP production showed decreased expression levels as salinity increased. Notably, seven solute carrier genes, two Na+/K+-ATPase genes, and two insulin-like growth factor genes were significantly highly expressed in the 12 ‰ salinity group, playing important roles in the transmembrane transport of ions. Based on the results, the LMB can acclimatize to a salt concentration of at least 6 ‰. However, exposure to 12 ‰ salinity can lead to a series of adverse effects, including organ damage, reduced energy metabolism efficiency, and disruption of ion homeostasis.
Collapse
Affiliation(s)
- Tao Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jinxing Du
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Caixia Lei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chenghui Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shengjie Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hongmei Song
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|