1
|
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023;90:29-44. [PMID: 36806560 DOI: 10.1016/j.semcancer.2023.02.003] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
|
2
|
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023:S1044-579X(23)00048-2. [PMID: 36958703 DOI: 10.1016/j.semcancer.2023.03.007] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impacts the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
|
3
|
|
Zhou S, Cao C, Hu J. Long Non-Coding RNA Small Nucleolar RNA Host Gene 4 Induced by Transcription Factor SP1 Promoted the Progression of Nasopharyngeal Carcinoma Through Modulating microRNA-510-5p/Centromere Protein F Axis. Biochem Genet 2023. [PMID: 36899270 DOI: 10.1007/s10528-023-10351-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023]
Abstract
Long non-coding RNAs (LncRNAs) are implicated with tumorigenesis and the development of nasopharyngeal carcinoma (NPC). Previous studies suggested that long non-coding RNA small nucleolar RNA host gene 4 (SNHG4) exerted oncogenic roles in various cancers. However, the function and molecular mechanism of SNHG4 in NPC have not been investigated. In our study, it was confirmed that the SNHG4 level was enriched in NPC tissues and cells. Functional assays indicated that SNHG4 depletion inhibited the proliferation and metastasis but promoted apoptosis of NPC cells. Furthermore, we identified miR-510-5p as a downstream gene of SNHG4 in NPC cells and SNHG4 upregulated CENPF expression by binding to miR-510-5p. Moreover, there was a positive (or negative) association between CENPF and SNHG4 (or miR-510-5p) expression in NPC. In addition, rescue experiments verified that CENPF overexpression or miR-510-5p silencing abrogated inhibitory effects on NPC tumorigenesis caused by SNHG4 deficiency. The study demonstrated that SNHG4 promoted NPC progression via miR-510-5p/CENPF axis, providing a novel potential therapeutic target for NPC treatments.
Collapse
|
4
|
|
Adeoye J, Hui L, Su Y. Data-centric artificial intelligence in oncology: a systematic review assessing data quality in machine learning models for head and neck cancer. J Big Data 2023;10:28. [DOI: 10.1186/s40537-023-00703-w] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023] Open
Abstract
AbstractMachine learning models have been increasingly considered to model head and neck cancer outcomes for improved screening, diagnosis, treatment, and prognostication of the disease. As the concept of data-centric artificial intelligence is still incipient in healthcare systems, little is known about the data quality of the models proposed for clinical utility. This is important as it supports the generalizability of the models and data standardization. Therefore, this study overviews the quality of structured and unstructured data used for machine learning model construction in head and neck cancer. Relevant studies reporting on the use of machine learning models based on structured and unstructured custom datasets between January 2016 and June 2022 were sourced from PubMed, EMBASE, Scopus, and Web of Science electronic databases. Prediction model Risk of Bias Assessment (PROBAST) tool was used to assess the quality of individual studies before comprehensive data quality parameters were assessed according to the type of dataset used for model construction. A total of 159 studies were included in the review; 106 utilized structured datasets while 53 utilized unstructured datasets. Data quality assessments were deliberately performed for 14.2% of structured datasets and 11.3% of unstructured datasets before model construction. Class imbalance and data fairness were the most common limitations in data quality for both types of datasets while outlier detection and lack of representative outcome classes were common in structured and unstructured datasets respectively. Furthermore, this review found that class imbalance reduced the discriminatory performance for models based on structured datasets while higher image resolution and good class overlap resulted in better model performance using unstructured datasets during internal validation. Overall, data quality was infrequently assessed before the construction of ML models in head and neck cancer irrespective of the use of structured or unstructured datasets. To improve model generalizability, the assessments discussed in this study should be introduced during model construction to achieve data-centric intelligent systems for head and neck cancer management.
Collapse
|
5
|
|
Wu B, Wang X, Chen C, Yang Q, Zhou P, Lu S, Lin L, Liu Y, Li M, Zhu D. MMP9 in Pan-Cancer and Computational Study to Screen MMP9 Inhibitors.. [DOI: 10.21203/rs.3.rs-2589286/v1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023]
Abstract
Abstract
Purpose Stromal metalloproteinase 9 (MMP9) is a stromal cell protein associated with extracellular matrix (ECM) degradation and remodeling, which promotes tumor invasion and metastasis and regulates the activity of cell adhesion molecules and cytokines. This study aims to evaluate the MMP9 in pan-cancer and to screen out new major compounds and drug candidates that can inhibit MMP9.
Methods The pan-cancer dataset was downloaded from UCSC database. The MMP9 expression in pan-cancer was evaluated and the correlation of MMP9 with tumor microenvironment (TME), RNA Modification Genes and tumor mutation burden (TMB) in pan-cancer. Then, MMP9 crystal structures was download and a ligand-based pharmacophore model was constructed. machine learning model was also constructed for further screen. The identify compounds were pooled into Discovery Studio 4.5 for ADME (absorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was performed using the Glide module of the Schrödinger kit to demonstrate the binding affinity and mechanism between compounds and MMP9. To assess whether the ligand-receptor complex is stable, Molecular Dynamics Simulation of Discovery Studio 4.5 was used.
Results The results of our pan-cancer analysis showed difference expression of MMP9 in tumor tissues. Prognostic analysis showed that higher MMP9 expression means both worse survival rate and tumor progression in GMBLGG, KIPAN, UVM, LGG, ACC, and LIHC. MMP9 expression in GMBLGG, KIPAN, UVM, LGG, ACC, and LIHC was significantly positively correlated with TME. After screened by ligand-based pharmacophore model and machine learning model, 49 small molecules were identified. ADME and toxicity prediction results indicated that CEMBL82047 and CEMBL381163 were identified as potential MMP9 inhibitor. CEMBL82047 and CEMBL381163 showed robust binding affinity with MMP9, and the complex can exist stably in the natural environment.
Conclusion CHEMBL82047 and CHEMBL381163 are ideal potential leading compounds for inhibiting MMP9. The findings of this study and these selected drug candidates have greatly contributed to the design and improvement of novel MMP9-targeted drugs.
Collapse
|
6
|
|
Wang R, Yu W, Zhu T, Lin F, Hua C, Ru L, Guo P, Wan X, Xue G, Guo Z, Han S, Lv K, Zhang G, Ge H, Guo W, Xu L, Deng W. MED27 plays a tumor-promoting role in breast cancer progression by targeting KLF4. Cancer Sci 2023. [PMID: 36786527 DOI: 10.1111/cas.15757] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/15/2023] Open
Abstract
The mediator complex usually cooperates with transcription factors to be involved in RNA polymerase II-mediated gene transcription. As one component of this complex, MED27 has been reported in our previous studies to promote thyroid cancer and melanoma progression. However, the precise function of MED27 in breast cancer development remains poorly understood. Here, we found that MED27 was more highly expressed in breast cancer samples than in normal tissues, especially in triple-negative breast cancer, and its expression level was elevated with the increase in pathological stage. MED27 knockdown in triple-negative breast cancer cells inhibited cancer cell metastasis and stemness maintenance, which was accompanied by downregulation of the expression of EMT- and stem traits-associated proteins, and vice versa in non-triple-negative breast cancer. Furthermore, MED27 knockdown sensitized breast cancer cells to epirubicin treatment by inducing cellular apoptosis and reducing tumorsphere-forming ability. Based on RNA-seq, we identified KLF4 as the possible downstream target of MED27. KLF4 overexpression reversed the MED27 silencing-mediated arrest of cellular metastasis and stemness maintenance capacity in breast cancer in vitro and in vivo. Mechanistically, MED27 transcriptionally regulated KLF4 by binding to its promoter region at positions -156 to +177. Collectively, our study not only demonstrated the tumor-promoting role of MED27 in breast cancer progression by transcriptionally targeting KLF4, but also suggested the possibility of developing the MED27/KLF4 signaling axis as a potential therapeutic target in breast cancer.
Collapse
|
7
|
|
Li X, Li X. USP21 Promotes the Progression of Nasopharyngeal Carcinoma by Regulating FOXM1. Stem Cells Int 2023;2023:9196583. [PMID: 36820242 DOI: 10.1155/2023/9196583] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/13/2023] Open
Abstract
The purpose of this work was to explore the molecular mechanisms by which USP21 regulates nasopharyngeal carcinoma tumor growth and cancer cell stemness. In this study, the USP21 transcript data was obtained from TCGA database. Then, qPCR and western blot tests revealed that, in contrast to normal tissue or normal nasopharyngeal epithelial cells, the expression of USP21 was greater in nasopharyngeal carcinoma tissues or cell lines, respectively. CCK-8 and EdU immunofluorescent staining assays revealed that USP21 promoted the proliferation of nasopharyngeal carcinoma cells. Meanwhile, scratch and transwell assays showed that USP21 facilitated migration and invasion of nasopharyngeal carcinoma cells. Sphere formation assay was performed on nasopharyngeal carcinoma cells after knockdown of USP21, which revealed that knockdown of USP21 inhibited the stemness profiles of nasopharyngeal carcinoma cells. Then, the western blot assays indicated that knockdown of USP21 in nasopharyngeal carcinoma cells would inhibit FOXM1 expression, and overexpression of FOXM1 could reverse the cell proliferation ability, cell migration and invasion ability, and cell stemness profiles. Finally, a nasopharyngeal xenograft model suggested that USP21 facilitated tumor growth in mice. These findings proved that USP21 promoted tumor growth and cancer cell stemness in nasopharyngeal carcinoma by regulating FOXM1.
Collapse
|
8
|
|
Su ZY, Siak PY, Leong CO, Cheah SC. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front Microbiol 2023;14:1116143. [PMID: 36846758 DOI: 10.3389/fmicb.2023.1116143] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/11/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
Collapse
|
9
|
|
Okuyama K, Suzuki K, Yanamoto S. Relationship between Tumor Budding and Partial Epithelial-Mesenchymal Transition in Head and Neck Cancer. Cancers (Basel) 2023;15. [PMID: 36831453 DOI: 10.3390/cancers15041111] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/12/2023] Open
Abstract
Tumor budding (TB), a microscopic finding in the stroma ahead of the invasive fronts of tumors, has been well investigated and reported as a prognostic marker in head and neck squamous cell carcinoma (HNSCC). Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and metastasis, and its status cannot be distinguished from TB. The current understanding of partial EMT (p-EMT), the so-called halfway step of EMT, focuses on the tumor microenvironment (TME). Although this evidence has been investigated, the clinicopathological and biological relationship between TB and p-EMT remains debatable. At the invasion front, previous research suggested that cancer-associated fibroblasts (CAFs) are important for tumor progression, metastasis, p-EMT, and TB formation in the TME. Although there is biological evidence of TB drivers, no report has focused on their organized functional relationships. Understanding the mechanism of TB onset and the relationship between p-EMTs may facilitate the development of novel diagnostic and prognostic methods, and targeted therapies for the prevention of metastasis in epithelial cancer. Thus far, major pieces of evidence have been established from colorectal cancer (CRC), due to a large number of patients with the disease. Herein, we review the current understanding of p-EMT and TME dynamics and discuss the relationship between TB development and p-EMT, focusing on CAFs, hypoxia, tumor-associated macrophages, laminin-integrin crosstalk, membrane stiffness, enzymes, and viral infections in cancers, and clarify the gap of evidence between HNSCC and CRC.
Collapse
|
10
|
|
Sarshari B, Ravanshad M, Rabbani A, Zareh-Khoshchehreh R, Mokhtari F, Khanabadi B, Mohebbi SR, Asadzadeh Aghdaei H. Quantitative analysis of Epstein-Barr virus DNA in plasma and stomach biopsies of patients with gastric cancer. Virus Genes 2023. [PMID: 36757510 DOI: 10.1007/s11262-023-01977-1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/10/2023]
Abstract
Epstein-Barr virus (EBV) associated gastric carcinoma (EBVaGC) is a subtype of gastric cancer with distinct histological and molecular features. The study aimed to assess the EBV DNA copy number and the prevalence of EBVaGC in gastric cancer samples taken from Iranian patients. The next aim was to assess whether the DNA and microRNAs EBV are present in plasma. EBV load was analyzed in 68 gastric cancer biopsies and compared with the results of EBV-encoded small RNA in situ hybridization (EBER-ISH) test in these patients. After the detection of 6 EBV miRNAs in gastric tissue by stem-loop RT-PCR, plasma samples were evaluated for the viral load and EBV miRNAs. Four gastric cancer cases were EBER -ISH positive (5.8%), with a significantly higher viral load than the remaining cases, 47,781 vs. 1909 copies/μg of tissue DNA. Here, was also found a significant difference in plasma EBV load between EBER-positive and EBER-negative cases. Although EBV miRNAs were detectable in all the EBER-positive tumors, the test did not detect any of these miRNAs among the plasma samples tested. Our data indicate that the prevalence of EBVaGC among Iranian patients with gastric cancer is lower than the global prevalence and although none of the EBV miRNAs were detected in plasma, evaluation of EBV microRNAs in tumor tissue, especially miR-BART7-3p, may constitute useful biomarkers for diagnosis of EBVaGC.
Collapse
|
11
|
|
Li T, Zhang G, Li W, Xiao J, Zhou Z, Tan G, Ai J. MicroRNA-101-3p inhibits nasopharyngeal carcinoma cell proliferation and cisplatin resistance through ZIC5 down-regulation by targeting SOX2. Biol Chem 2023. [PMID: 36752150 DOI: 10.1515/hsz-2022-0329] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/09/2023]
Abstract
This study aims to explore the mechanism of microRNA (miR)-101-3p-mediated SOX2/ZIC5 axis in the progression of cisplatin resistance of nasopharyngeal carcinoma (NPC). ZIC5 expression was analyzed with a bioinformatics database and detected in NPC cell lines. Cisplatin-resistant cells (HNE-1/DDP and C666-1/DDP) were transfected with sh-ZIC5, sh-SOX2, sh-SOX2 + pcDNA3.1-ZIC5, or miR-101-3p Agomir + pcDNA3.1-SOX2. MiR-101-3p, SOX2, and ZIC5 expression was assessed after transfection, and cancer associated phenotypes were evaluated after cisplatin treatment. The potential relationships among miR-101-3p, SOX2, and ZIC5 were analyzed. A xenograft mouse model of NPC was established with HNE-1 cells stably transfected or not transfected with oe-ZIC5 and subjected to tail vein injection of miR-101-3p Agomir and intraperitoneal injection of cisplatin. Overexpression of ZIC5 was found in cisplatin-resistant NPC cells. Downregulating ZIC5 in NPC cells decreased cell viability, promoted apoptosis, and reduced cisplatin resistance. SOX2 had a binding site on ZIC5, and SOX2 promoted proliferation, migration, and cisplatin resistance and inhibited cell apoptosis by up-regulating ZIC5. Mechanistically, miR-101-3p was decreased in cisplatin-resistant NPC cells and negatively targeted SOX2. Overexpression of miR-101-3p inhibited tumor growth and cisplatin resistance in xenograft mouse model, which was reversed by ZIC5 overexpression. In conclusion, the miR-101-3p/SOX2/ZIC5 axis was implicated in cancer associated phenotypes and cisplatin resistance in NPC.
Collapse
|
12
|
|
Kim G, Jung J, Kim JW, Kim JY. Low HES-1 and positive DLL4 expression predicts poor prognosis of colorectal cancers. Pathology 2023;55:52-7. [PMID: 36167746 DOI: 10.1016/j.pathol.2022.07.008] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/27/2023]
Abstract
Hairy and enhancer of split-1 (HES-1) is a downstream transcription factor and delta-like 4 (DLL4) is a ligand of the Notch signalling pathway. HES-1 and DLL4 expression are known to have an association with the progression and metastasis of cancers. We evaluated HES-1 and DLL4 expression and assessed their correlation with biological behaviour and prognostic significance of 327 colorectal cancers. Low HES-1 expression was identified in 210 (64.2%) cases and was significantly correlated with large tumour size, lymphovascular invasion, and distant metastasis. DLL4 was positive in 132 (40.4%) cases and significantly correlated with perineural invasion, distant metastasis, and involved resection margin. Patients with low HES-1 expression showed significantly worse overall survival than patients with high HES-1 expression [hazard ratio (HR)=3.017; 95% confidence interval (CI) 1.880-4.841; p<0.001]. The overall survival of patients with positive DLL4 expression was significantly worse than that of patients with negative DLL4 expression (HR=2.922; 95% CI 1.976-4.322; p<0.001). Furthermore, the combined HES-1lowDLL4positive expression group showed the worst overall survival compared to other groups (p<0.001) and was an independent poor prognostic factor of colorectal cancer patients. Thus, low HES-1 and positive DLL4 expression are associated with aggressive biological behaviour and can be used as prognostic factors in colorectal cancer patients.
Collapse
|
13
|
|
Montenarh M, Grässer FA, Götz C. Protein Kinase CK2 and Epstein-Barr Virus. Biomedicines 2023;11. [PMID: 36830895 DOI: 10.3390/biomedicines11020358] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/28/2023] Open
Abstract
Protein kinase CK2 is a pleiotropic protein kinase, which phosphorylates a number of cellular and viral proteins. Thereby, this kinase is implicated in the regulation of cellular signaling, controlling of cell proliferation, apoptosis, angiogenesis, immune response, migration and invasion. In general, viruses use host signaling mechanisms for the replication of their genome as well as for cell transformation leading to cancer. Therefore, it is not surprising that CK2 also plays a role in controlling viral infection and the generation of cancer cells. Epstein-Barr virus (EBV) lytically infects epithelial cells of the oropharynx and B cells. These latently infected B cells subsequently become resting memory B cells when passing the germinal center. Importantly, EBV is responsible for the generation of tumors such as Burkitt's lymphoma. EBV was one of the first human viruses, which was connected to CK2 in the early nineties of the last century. The present review shows that protein kinase CK2 phosphorylates EBV encoded proteins as well as cellular proteins, which are implicated in the lytic and persistent infection and in EBV-induced neoplastic transformation. EBV-encoded and CK2-phosphorylated proteins together with CK2-phosphorylated cellular signaling proteins have the potential to provide efficient virus replication and cell transformation. Since there are powerful inhibitors known for CK2 kinase activity, CK2 might become an attractive target for the inhibition of EBV replication and cell transformation.
Collapse
|
14
|
|
Li Z, Li Y, Zhang Q, Ge W, Zhang Y, Zhao X, Hu J, Yuan L, Zhang W. Establishment of Bactrian Camel Induced Pluripotent Stem Cells and Prediction of Their Unique Pluripotency Genes. Int J Mol Sci 2023;24. [PMID: 36768240 DOI: 10.3390/ijms24031917] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/21/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can differentiate into all types of cells and can be used in livestock for research on biological development, genetic breeding, and in vitro genetic resource conservation. The Bactrian camel is a large domestic animal that inhabits extreme environments and holds value in the treatment of various diseases and the development of the local economy. Therefore, we transferred four mouse genes (Oct4, Sox2, Klf4, and c-Myc) into Bactrian camel fetal fibroblasts (BCFFs) using retroviruses with a large host range to obtain Bactrian camel induced pluripotent stem cells (bciPSCs). They were comprehensively identified based on cell morphology, pluripotency gene and marker expression, chromosome number, transcriptome sequencing, and differentiation potential. The results showed the pluripotency of bciPSCs. However, unlike stem cells of other species, late formation of stem cell clones was observed; moreover, the immunofluorescence of SSEA1, SSEA3, and SSEA4 were positive, and teratoma formation took four months. These findings may be related to the extremely long gestation period and species specificity of Bactrian camels. By mining RNA sequence data, 85 potential unique pluripotent genes of Bactrian camels were predicted, which could be used as candidate genes for the production of bciPSC in the future. Among them, ASF1B, DTL, CDCA5, PROM1, CYTL1, NUP210, Epha3, and SYT13 are more attractive. In conclusion, we generated bciPSCs for the first time and obtained their transcriptome information, expanding the iPSC genetic information database and exploring the applicability of iPSCs in livestock. Our results can provide an experimental basis for Bactrian camel ESC establishment, developmental research, and genetic resource conservation.
Collapse
|
15
|
|
Martins Balbinot K, Almeida Loureiro FJ, Chemelo GP, Alves Mesquita R, Cruz Ramos AMP, Ramos RTJ, da Costa da Silva AL, de Menezes SAF, da Silva Kataoka MS, Alves Junior SM, Viana Pinheiro JJ. Immunoexpression of stem cell markers SOX-2, NANOG AND OCT4 in ameloblastoma. PeerJ 2023;11:e14349. [PMID: 36655039 DOI: 10.7717/peerj.14349] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/15/2023] Open
Abstract
Background Ameloblastoma (AME) is characterized by a locally invasive growth pattern. In an attempt to justify the aggressiveness of neoplasms, the investigation of the role of stem cells has gained prominence. The SOX-2, NANOG and OCT4 proteins are important stem cell biomarkers. Methodology To verify the expression of these proteins in tissue samples of AME, dentigerous cyst (DC) and dental follicle (DF), immunohistochemistry was performed and indirect immunofluorescence were performed on the human AME (AME-hTERT) cell line. Results Revealed expression of SOX-2, NANOG and OCT4 in the tissue samples and AME-hTERT lineage. Greater immunostaining of the studied proteins was observed in AME compared to DC and DF (p < 0.001). Conclusions The presence of biomarkers indicates a probable role of stem cells in the genesis and progression of AME.
Collapse
|
16
|
|
Kim B, Kim KM. Role of Exosomes and Their Potential as Biomarkers in Epstein-Barr Virus-Associated Gastric Cancer. Cancers (Basel) 2023;15. [PMID: 36672418 DOI: 10.3390/cancers15020469] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/15/2023] Open
Abstract
Exosomes are a subtype of extracellular vesicles ranging from 30 to 150 nm and comprising many cellular components, including DNA, RNA, proteins, and metabolites, encapsulated in a lipid bilayer. Exosomes are secreted by many cell types and play important roles in intercellular communication in cancer. Viruses can hijack the exosomal pathway to regulate viral propagation, cellular immunity, and the microenvironment. Cells infected with Epstein-Barr virus (EBV), one of the most common oncogenic viruses, have also been found to actively secrete exosomes, and studies on their roles in EBV-related malignancies are ongoing. In this review, we focus on the role of exosomes in EBV-associated gastric cancer and their clinical applicability in diagnosis and treatment.
Collapse
|
17
|
|
Yang Z, Jia Y, Wang S, Zhang Y, Fan W, Wang X, He L, Shen X, Yang X, Zhang Y, Yang H. Retinoblastoma-Binding Protein 5 Regulates H3K4 Methylation Modification to Inhibit the Proliferation of Melanoma Cells by Inactivating the Wnt/β-Catenin and Epithelial-Mesenchymal Transition Pathways. J Oncol 2023;2023:5093941. [PMID: 36866240 DOI: 10.1155/2023/5093941] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/25/2023] Open
Abstract
Histone 3 lysine 4 methylation (H3K4me), especially histone 3 lysine 4 trimethylation (H3K4me3), is one of the most extensively studied patterns of histone modification and plays crucial roles in many biological processes. However, as a part of H3K4 methyltransferase that participates in H3K4 methylation and transcriptional regulation, retinoblastoma-binding protein 5 (RBBP5) has not been well studied in melanoma. The present study sought to explore RBBP5-mediated H3K4 histone modification and the potential mechanisms in melanoma. RBBP5 expression in melanoma and nevi specimens was detected by immunohistochemistry. Western blotting was performed for three pairs of melanoma cancer tissues and nevi tissues. In vitro and in vivo assays were used to investigate the function of RBBP5. The molecular mechanism was determined using RT-qPCR, western blotting, ChIP assays, and Co-IP assays. Our study showed that RBBP5 was significantly downregulated in melanoma tissue and cells compared with nevi tissues and normal epithelia cells (P < 0.05). Reducing RBBP5 in human melanoma cells leads to H3K4me3 downregulation and promotes cell proliferation, migration, and invasion. On the one hand, we verified that WSB2 was an upstream gene of RBBP5-mediated H3K4 modification, which could directly bind to RBBP5 and negatively regulate its expression. On the other hand, we also confirmed that p16 (a cancer suppressor gene) was a downstream target of H3K4me3, the promoter of which can directly bind to H3K4me3. Mechanistically, our data revealed that RBBP5 inactivated the Wnt/β-catenin and epithelial-mesenchymal transition (EMT) pathways (P < 0.05), leading to melanoma suppression. Histone methylation is rising as an important factor affecting tumorigenicity and tumor progression. Our findings verified the significance of RBBP5-mediated H3K4 modification in melanoma and the potential regulatory mechanisms of melanoma proliferation and growth, suggesting that RBBP5 is a potential therapeutic target for the treatment of melanoma.
Collapse
|
18
|
|
Zhao MH, Liu W, Zhang X, Zhang Y, Luo B. Epstein-Barr virus miR-BART2-5p and miR-BART11-5p regulate cell proliferation, apoptosis, and migration by targeting RB and p21 in gastric carcinoma. J Med Virol 2023;95:e28338. [PMID: 36418188 DOI: 10.1002/jmv.28338] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/25/2022]
Abstract
Epstein-Barr virus (EBV) was the first tumor virus discovered in humans and can cause various types of tumors. Molecular classification suggests that EBV-associated gastric cancer (EBVaGC) is a unique subtype of gastric cancer.EBV was also the first virus found to encode its own microRNAs. However, the functions of many miRNAs remain unknown. This study investigated the roles and targets of miR-BART2-5p (BART2-5p) and miR-BART11-5p (BART11-5p) in EBVaGC. The expression of RB and p21 in EBVaGC and EBV negative GC (EBVnGC) cells was evaluated by western blotting. Expression of BART2-5p and BART11-5p in EBVaGC cells was evaluated by droplet digital PCR. The effects of BART2-5p or BART11-5p and their potential mechanisms were further investigated using cell counting kit-8, colony formation assay, flow cytometry analysis, and transwell assay. BART2-5p and BART11-5p were abundantly expressed and RB and p21 were downregulated in EBVaGC cells. BART2-5p regulates RB and p21 expression by directly targeting them. BART11-5p regulates RB expression by directly targeting RB. Both BART2-5p and BART11-5p promoted proliferation and migration of gastric cancer cells, while inhibiting apoptosis and promoting S-phase arrest of the cell cycle. Thus, BART2-5p and BART11-5p play important roles in promoting proliferation and migration, and inhibiting apoptosis in EBVaGC by targeting RB and p21, thus providing new potential therapeutic targets for EBVaGC.
Collapse
|
19
|
|
Fu Y, Bai C, Wang S, Chen D, Zhang P, Wei H, Rong F, Zhang C, Chen S, Wang Z. AKT1 phosphorylates RBM17 to promote Sox2 transcription by modulating alternative splicing of FOXM1 to enhance cancer stem cell properties in colorectal cancer cells. FASEB J 2023;37:e22707. [PMID: 36520054 DOI: 10.1096/fj.202201255R] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. The existence of cancer stem cells (CSC) causes tumor relapses, metastasis, and resistance to conventional therapy. Alternative splicing has been shown to affect physiological and pathological processes. Accumulating evidence has confirmed that targeting alternative splicing could be an effective strategy to treat CRC. Currently, the role of alternative splicing in the regulation of CSC properties in CRC has not been elucidated. Here, we show that RBM17 displays oncogenic roles in CRC cells. RBM17 enhances cell proliferation and reduces chemotherapeutic-induced apoptosis in CRC cells. Besides, RBM17 increases CD133 positive and ALDEFLUOR positive populations and promotes sphere formation in CRC cells. In mechanism studies, we found that FOXM1 is critical for RBM17 enhanced CSC properties. Moreover, FOXM1 alternative splicing is essential for RBM17 enhanced CSC properties in CRC cells. Additionally, RBM17 enhances CSC characteristics by controlling FOXM1 expression to promote Sox2 expression. Furthermore, AKT1 works as an upstream kinase to control RBM17-mediated FOXM1 alternative splicing and enhancement of CSC properties in CRC cells. Our study reveals that AKT1-RBM17-FOXM1-Sox2 axis could be a potential target for modulating alternative splicing to reduce CSC properties in CRC cells.
Collapse
|
20
|
|
Jhanwar-Uniyal M, Gellerson O, Bree J, Das M, Kleinman G, Gandhi CD. Defining the role of mTOR pathway in the regulation of stem cells of glioblastoma. Adv Biol Regul 2022;:100946. [PMID: 36658088 DOI: 10.1016/j.jbior.2022.100946] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/01/2023]
Abstract
The mechanistic target of rapamycin (mTOR), a serine/threonine kinase, functions by forming two multiprotein complexes termed mTORC1 and mTORC2. Glioblastoma (GBM) is a uniformly fatal brain tumor that remains incurable partly due to the existence of untreatable cancer stem cells (CSC). The pathogenesis of GBM is largely due to the loss of the tumor suppressor gene PTEN, which is implicated in the aberrant activation of the mTOR pathway. The major cause of tumor recurrence, growth, and invasion is the presence of the unique population of CSC. Resistance to conventional therapies appears to be caused by both extensive genetic abnormalities and dysregulation of the transcription landscape. Consequently, CSCs have emerged as targets of interest in new treatment paradigms. Evidence suggests that inhibition of the mTOR pathway can also be applied to target CSCs. Here we explored the role of the mTOR pathway in the regulation of stem cells of GBM by treating them with inhibitors of canonical PI3K/AKT/mTOR pathways such as rapamycin (mTORC1 inhibitor), PP242 (ATP binding mTORC1/2 inhibitor), LY294002 (PI3K inhibitor), and MAPK inhibitor, U0126. A significant number of GBM tumors expressed stem cell marker nestin and activated mTOR (pmTORSer2448), with most tumor cells co-expressing both markers. The expression of stem cell marker NANOG was suppressed following rapamycin treatment. The neurospheres were disrupted following rapamycin and LY294002 treatments. Rapamycin or PP242 along with differentiating agent All-trans-retinoic acid reduced stem cell proliferation. Treatment with novel small molecule inhibitors of mTORC1/2 demonstrated that Torin1 and Torin2 suppressed the proliferation of GBM CSC, while XL388 was less effective. Torin1 and XL388 delay the process of self-renewal as compared to controls, whereas Torin2 halted self-renewal. Torin2 was able to eradicate tumor cells. In conclusion, Torin2 effectively targeted CSCs of GBM by halting self-renewal and inhibiting cell proliferation, underscoring the use of Torin2 in the treatment of GBM.
Collapse
|
21
|
|
Bao S, Lu G, Kang Y, Zhou Y, Wang Y, Yan L, Yin D, Bao Y, Yuan X, Xu J. A diagnostic model for serious COVID-19 infection among older adults in Shanghai during the Omicron wave. Front Med (Lausanne) 2022;9:1018516. [PMID: 36600892 DOI: 10.3389/fmed.2022.1018516] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/23/2022] Open
Abstract
Background The Omicron variant is characterized by striking infectivity and antibody evasion. The analysis of Omicron variant BA.2 infection risk factors is limited among geriatric individuals and understanding these risk factors would promote improvement in the public health system and reduction in mortality. Therefore, our research investigated BA.2 infection risk factors for discriminating severe/critical from mild/moderate geriatric patients. Methods Baseline characteristics of enrolled geriatric patients (aged over 60 years) with Omicron infections were analyzed. A logistic regression analysis was conducted to evaluate factors correlated with severe/critical patients. A receiver operating characteristic (ROC) curve was constructed for predicting variables to discriminate mild/moderate patients from severe/critical patients. Results A total of 595 geriatric patients older than 60 years were enrolled in this study. Lymphocyte subset levels were significantly decreased, and white blood cells (WBCs) and D-dimer levels were significantly increased with disease progression from a mild/moderate state to a severe/critical state. Univariate and multivariate logistic regression analyses identified a panel of WBCs, CD4+ T cell, and D-dimer values that were correlated with good diagnostic accuracy for discriminating mild/moderate patients from severe/critical patients with an area under the curve of 0.962. Conclusion Some key baseline laboratory indicators change with disease development. A panel was identified for discriminating mild/moderate patients from severe/critical patients, suggesting that the panel could serve as a potential biomarker to enable physicians to provide timely medical services in clinical practice.
Collapse
|
22
|
|
Izadpanah MH, Forghanifard MM. TWIST1 Plays Role in Expression of Stemness State Markers in ESCC. Genes (Basel) 2022;13. [PMID: 36553636 DOI: 10.3390/genes13122369] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Stemness markers play critical roles in the maintenance of key properties of embryonic stem cells (ESCs), including the pluripotency, stemness state, and self-renewal capacities, as well as cell fate decision. Some of these features are present in cancer stem cells (CSCs). TWIST1, as a bHLH transcription factor oncogene, is involved in the epithelial-mesenchymal transition (EMT) process in both embryonic and cancer development. Our aim in this study was to investigate the functional correlation between TWIST1 and the involved genes in the process of CSCs self-renewal in human esophageal squamous cell carcinoma (ESCC) line KYSE-30. METHODS TWIST1 overexpression was enforced in the ESCC KYSE-30 cells using retroviral vector containing the specific pruf-IRES-GFP-hTWIST1 sequence. Following RNA extraction and cDNA synthesis, the mRNA expression profile of TWIST1 and the stem cell markers, including BMI1, CRIPTO1, DPPA2, KLF4, SOX2, NANOG, and MSI1, were assessed using relative comparative real-time PCR. RESULTS Ectopic expression of TWIST1 in KYSE-30 cells resulted in an increased expression of TWIST1 compared to control GFP cells by nearly 9-fold. Transduction of TWIST1-retroviral particles caused a significant enhancement in BMI1, CRIPTO1, DPPA2, KLF4, and SOX2 mRNA expression, approximately 4.5-, 3.2-, 5.5-, 3.5-, and 3.7-folds, respectively, whereas this increased TWIST1 expression caused no change in the mRNA expression of NANOG and MSI1 genes. CONCLUSIONS TWIST1 gene ectopic expression in KYSE-30 cells enhanced the level of cancer stem cell markers' mRNA expression. These results may emphasize the role of TWIST1 in the self-renewal process and may corroborate the involvement of TWIST1 in the stemness state capacity of ESCC cell line KYSE-30, as well as its potential as a therapeutic target.
Collapse
|
23
|
|
Wang W, Liu W, Chen Q, Yuan Y, Wang P. Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. Semin Cancer Biol 2022;87:84-97. [PMID: 36371028 DOI: 10.1016/j.semcancer.2022.11.002] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/10/2022]
Abstract
Evidence has revealed that transcription factors play essential roles in regulation of multiple cellular processes, including cell proliferation, metastasis, EMT, cancer stem cells and chemoresistance. Dysregulated expression levels of transcription factors contribute to tumorigenesis and malignant progression. The expression of transcription factors is tightly governed by several signaling pathways, noncoding RNAs and E3 ubiquitin ligases. Cancer stem cells (CSCs) have been validated in regulation of tumor metastasis, reoccurrence and chemoresistance in human cancer. Transcription factors have been verified to participate in regulation of CSC formation, including Oct4, SOX2, KLF4, c-Myc, Nanog, GATA, SALL4, Bmi-1, OLIG2, POU3F2 and FOX proteins. In this review article, we will describe the critical role of CSC-related transcription factors. We will further discuss which E3 ligases regulate the degradation of these CSC-related transcription factors and their underlying mechanisms. We also mentioned the functions and mechanisms of EMT-associated transcription factors such as ZEB1, ZEB2, Snail, Slug, Twist1 and Twist2. Furthermore, we highlight the therapeutic potential via targeting E3 ubiquitin ligases for modulation of these transcription factors.
Collapse
|
24
|
|
Mao M, Wang X, Seeruttun SR, Chi P, Huang K, Liu W, Tan W. Recurrence risk stratification based on Epstein–Barr virus DNA to identify enlarged retropharyngeal lymph nodes of nasopharyngeal carcinoma: A model-histopathologic correlation study. Front Med (Lausanne) 2022;9. [DOI: 10.3389/fmed.2022.996127] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/03/2022] Open
Abstract
BackgroundAccurate assessment of the nature of enlarged retropharyngeal lymph nodes (RLN) of nasopharyngeal carcinoma (NPC) patients after radiotherapy is related to selecting appropriate treatments and avoiding unnecessary therapy. This study aimed to develop a non-invasive and effective model for predicting the recurrence of RLN (RRLN) in NPC.Materials and methodsThe data of post-radiotherapy NPC patients (N = 76) with abnormal enlargement of RLN who underwent endonasopharyngeal ultrasound-guided fine-needle aspirations (EPUS-FNA) were examined. They were randomly divided into a discovery (n = 53) and validation (n = 23) cohort. Univariate logistic regression was used to assess the association between variables (magnetic resonance imaging characteristics, EBV DNA) and RRLN. Multiple logistic regression was used to construct a prediction model. The accuracy of the model was assessed by discrimination and calibration, and decision curves were used to assess the clinical reliability of the model for the identification of high risk RLNs for possible recurrence.ResultsAbnormal enhancement, minimum axis diameter (MAD) and EBV-DNA were identified as independent risk factors for RRLN and could stratify NPC patients into three risk groups. The probability of RRLN in the low-, medium-, and high-risk groups were 37.5, 82.4, and 100%, respectively. The AUC of the final predictive model was 0.882 (95% CI: 0.782–0.982) in the discovery cohort and 0.926 (95% CI, 0.827–1.000) in the validation cohort, demonstrating good clinical accuracy for predicting the RRLN of NPC patients. The favorable performance of the model was confirmed by the calibration plot and decision curve analysis.ConclusionThe nomogram model constructed in the study could be reliable in predicting the risk of RRLN after radiotherapy for NPC patients.
Collapse
|
25
|
|
Saito M. Novel Roles of Nanog in Cancer Cells and Their Extracellular Vesicles. Cells 2022;11. [PMID: 36497144 DOI: 10.3390/cells11233881] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/03/2022] Open
Abstract
The use of extracellular vesicle (EV)-based vaccines is a strategically promising way to prevent cancer metastasis. The effective roles of immune cell-derived EVs have been well understood in the literature. In the present paper, we focus on cancer cell-derived EVs to enforce, more thoroughly, the use of EV-based vaccines against unexpected malignant cells that might appear in poor prognostic patients. As a model of such a cancer cell with high malignancy, Nanog-overexpressing melanoma cell lines were developed. As expected, Nanog overexpression enhanced the metastatic potential of melanomas. Against our expectations, a fantastic finding was obtained that determined that EVs derived from Nanog-overexpressing melanomas exhibited a metastasis-suppressive effect. This is considered to be a novel role for Nanog in regulating the property of cancer cell-derived EVs. Stimulated by this result, the review of Nanog's roles in various cancer cells and their EVs has been updated once again. Although there was no other case presenting a similar contribution by Nanog, only one case suggested that NANOG and SOX might be better prognosis markers in head and neck squamous cell carcinomas. This review clarifies the varieties of Nanog-dependent phenomena and the relevant signaling factors. The information summarized in this study is, thus, suggestive enough to generate novel ideas for the construction of an EV-based versatile vaccine platform against cancer metastasis.
Collapse
|
26
|
|
Li H, Wu P, Wang Z, Mao J, Alsaadi FE, Zeng N. A generalized framework of feature learning enhanced convolutional neural network for pathology-image-oriented cancer diagnosis. Comput Biol Med 2022;151:106265. [PMID: 36401968 DOI: 10.1016/j.compbiomed.2022.106265] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/11/2022]
Abstract
In this paper, a feature learning enhanced convolutional neural network (FLE-CNN) is proposed for cancer detection from histopathology images. To build a highly generalized computer-aided diagnosis (CAD) system, an information refinement unit employing depth- and point-wise convolutions is meticulously designed, where a dual-domain attention mechanism is adopted to focus primarily on the important areas. By deploying a residual fusion unit, context information is further integrated to extract highly discriminative features with strong representation ability. Experimental results demonstrate the merits of the proposed FLE-CNN in terms of feature extraction, which has achieved average sensitivity, specificity, precision, accuracy and F1 score of 0.9992, 0.9998, 0.9992, 0.9997 and 0.9992 in a five-class cancer detection task, and in comparison to some other advanced deep learning models, above indicators have been improved by 1.23%, 0.31%, 1.24%, 0.5% and 1.26%, respectively. Moreover, the proposed FLE-CNN provides satisfactory results in three important diagnosis, which further validates that FLE-CNN is a competitive CAD model with high generalization ability.
Collapse
|
27
|
|
Park MK, Lee H, Lee CH. Post-Translational Modification of ZEB Family Members in Cancer Progression. Int J Mol Sci 2022;23. [PMID: 36499447 DOI: 10.3390/ijms232315127] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/03/2022] Open
Abstract
Post-translational modification (PTM), the essential regulatory mechanisms of proteins, play essential roles in physiological and pathological processes. In addition, PTM functions in tumour development and progression. Zinc finger E-box binding homeobox (ZEB) family homeodomain transcription factors, such as ZEB1 and ZEB2, play a pivotal role in tumour progression and metastasis by induction epithelial-mesenchymal transition (EMT), with activation of stem cell traits, immune evasion and epigenetic reprogramming. However, the relationship between ZEB family members' post-translational modification (PTM) and tumourigenesis remains largely unknown. Therefore, we focussed on the PTM of ZEBs and potential therapeutic approaches in cancer progression. This review provides an overview of the diverse functions of ZEBs in cancer and the mechanisms and therapeutic implications that target ZEB family members' PTMs.
Collapse
|
28
|
|
Chaudhary S, Yadav RP, Kumar S, Yadav SC. Ultrastructural study confirms the formation of single and heterotypic syncytial cells in bronchoalveolar fluids of COVID-19 patients.. [DOI: 10.21203/rs.3.rs-2305286/v1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/02/2022]
Abstract
Abstract
Background
SARS-CoV-2 was reported to induce cell fusions to form multinuclear syncytia that might facilitate viral replication, dissemination, immune evasion, and inflammatory responses. In this study, we have reported the types of cells involved in syncytia formation at different stages of COVID-19 disease through electron microscopy.
Methods
Bronchoalveolar fluids from the mild (n = 8, 2–8 days), moderate (n = 8, 9–16 days), and severe (n = 8, after 17th days) COVID-19 patients were examined by PAP (cell type identification), immunofluorescence (for the level of viral infection), scanning (SEM), and transmission (TEM) electron microscopy to identify the syncytia.
Results
Immunofluorescence studies (S protein-specific antibodies) from each syncytium cell indicate a very high infection level. We could not find any syncytial cells in mildly infected patients. However, identical (neutrophils or type 2 pneumocytes) and heterotypic (neutrophils-monocytes) plasma membrane initial fusion (indicating initiation of fusion) was observed under TEM in moderately infected patients. Fully matured large-size (20–100µm) syncytial cells were found in severe ARDS patients of neutrophils, monocytes, and macrophage origin under SEM.
Conclusions
This ultrastructural study on the syncytial cells from COVID-19 patients sheds light on the disease's stages and types of cells involved in the syncytia formations. Syncytia formation was first induced in type II pneumocytes by homotypic fusion and later with haematopoetic cells (monocyte and neutrophils) by heterotypic fusion in the moderate stage (9–16 days) of the disease. Matured syncytia were reported in the late phase of the disease and formed large giant cells of 40 to 100 µm.
Collapse
|
29
|
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022;938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
|
30
|
|
Gaballah A, Bartosch B. An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022;14. [PMID: 36497226 DOI: 10.3390/cancers14235742] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
31
|
|
Tran TT, Lee K. JAG1 Intracellular Domain Enhances AR Expression and Signaling and Promotes Stem-like Properties in Prostate Cancer Cells. Cancers (Basel) 2022;14. [PMID: 36428807 DOI: 10.3390/cancers14225714] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/23/2022] Open
Abstract
JAG1 expression is upregulated in high-grade metastatic prostate carcinomas and associated with poor disease-free survival of patients with prostate cancer. Intriguingly, all JAG1-positive prostate carcinomas express JICD although JICD function in prostate cancer (PC) cells is poorly understood. In this study, we found that JICD overexpression increased the expression levels of AR, especially AR-Vs, in PC cell lines and significantly enhanced androgen-independent and androgen-dependent function of ARs. Interestingly, JICD overexpression upregulated the expression of the PCSC marker CD133 in PC cells as the expression of self-renewal markers; namely, NANOG and OCT3/4 increased. In addition, JICD overexpression highly increased the expression of anti-apoptotic BCL-XL protein, while it little affected the expression of apoptotic BIM protein. In 3D cell culture assays, the spheres formed by JICD-overexpressing PC subline cells (C4-2 and CWR22Rv1) were larger than those formed by control (EV) subline cells with undifferentiated morphology. Although JICD overexpression caused quiescence in cell proliferation, it activated the expression of components in PCSC-related signaling pathways, increased PC cell mobility, and promoted in vivo xenograft mouse tumorigenesis. Therefore, JICD may play a crucial role in enhancing androgen independence and promoting stem-like properties in PC cells and should be considered a novel target for CRPC and PCSC diagnostic therapy.
Collapse
|
32
|
|
Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A, Uddin S. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol 2022;86:107-21. [PMID: 35931301 DOI: 10.1016/j.semcancer.2022.07.009] [Cited by in Crossref: 5] [Cited by in RCA: 4] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/27/2023]
Abstract
Since the introduction of the cancer stem cell (CSC) paradigm, significant advances have been made in understanding the functional and biological plasticity of these elusive components in malignancies. Endowed with self-renewing abilities and multilineage differentiation potential, CSCs have emerged as cellular drivers of virtually all facets of tumor biology, including metastasis, tumor recurrence/relapse, and drug resistance. The functional and biological characteristics of CSCs, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation are regulated by an array of extracellular factors, signaling pathways, and pluripotent transcriptional factors. Besides the well-characterized regulatory role of transcription factors OCT4, SOX2, NANOG, KLF4, and MYC in CSCs, evidence for the central role of Forkhead box transcription factor FOXM1 in the establishment, maintenance, and functions of CSCs is accumulating. Conventionally identified as a master regulator of the cell cycle, a comprehensive understanding of this molecule has revealed its multifarious oncogenic potential and uncovered its role in angiogenesis, invasion, migration, self-renewal, and drug resistance. This review compiles the large body of literature that has accumulated in recent years that provides evidence for the mechanisms by which FOXM1 expression promotes stemness in glioblastoma, breast, colon, ovarian, lung, hepatic, and pancreatic carcinomas. We have also compiled the data showing the association of stem cell mediators with FOXM1 using TCGA mRNA expression data. Further, the prognostic importance of FOXM1 and other stem cell markers is presented. The delineation of FOXM1-mediated regulation of CSCs can aid in the development of molecularly targeted pharmacological approaches directed at the selective eradication of CSCs in several human malignancies.
Collapse
|
33
|
|
Nalwa A, Vishwajeet V, Kumar D, Purohit A, Garg M, Kanchan DT, Dutt N, Kothari N, Bhaskar S, Elhence P, Bhatia P, Nag VL, Garg MK, Misra S, Pandey A, Dhawan A. Ultrastructural Changes in Autopsy Tissues of COVID-19 Patients. Cureus 2022;14:e31932. [PMID: 36582579 DOI: 10.7759/cureus.31932] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION The COVID-19 pandemic resulted in substantial morbidity and mortality across the world. The prognosis was found to be poor in patients with co-morbidities such as diabetes, hypertension, interstitial lung disease, etc. Although biochemical studies were done in patient samples, no study has been reported from the Indian subcontinent about ultrastructural changes in the vital organs of COVID-19 patients. The present study was, therefore, conducted to understand the ultrastructural changes in the lung, liver, and brain of the deceased patients. METHODS The present study was conducted on samples obtained from reverse transcription-polymerase chain reaction (RT-PCR)-positive patients who were admitted to a tertiary care hospital in Western India. Core needle biopsies were done in eight fatal cases of COVID-19. The samples were taken from the lungs, liver, and brain and subjected to light microscopy, immunohistochemistry (IHC), and transmission electron microscopy (TEM). Clinical details and biochemical findings were also collected. Results: The study participants included seven males and one female. The presenting complaints included fever, breathlessness, and cough. Light microscopy revealed diffuse alveolar damage in the lungs. Further, a positive expression of SARS-CoV-2 nucleocapsid protein was observed in the pulmonary parenchyma of five patients. Also, the TEM microphotograph showed viral particles of size up to 80nm localized in alveolar epithelial cells. However, no viral particles were found in liver or brain samples. In the liver, macrovesicular steatosis and centrizonal congestion with loss of hepatocytes were observed in light microscopy. CONCLUSION This is the first study in the Indian population showing the in-situ presence of viral particles in core biopsies from fatal cases of COVID-19. As evident from the results, histology and ultrastructural changes in the lung correlated with the presence of viral particles. The study revealed a positive correlation between the damage in the lungs and the presence of viral particles.
Collapse
|
34
|
|
Meng Q, Sun H, Wu S, Familiari G, Relucenti M, Aschner M, Li X, Chen R. Epstein-Barr Virus-Encoded MicroRNA-BART18-3p Promotes Colorectal Cancer Progression by Targeting De Novo Lipogenesis. Adv Sci (Weinh) 2022;9:e2202116. [PMID: 36307872 DOI: 10.1002/advs.202202116] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/01/2023] Open
Abstract
The Epstein-Barr virus (EBV) genome encodes a cluster of 22 viral microRNAs, called miR-BamHI-A rightward transcripts (miR-BARTs), which are shown to promote the development of cancer. Here, this study reports that EBV-miR-BART18-3p is highly expressed in colorectal cancer (CRC) and is closely associated with the pathological and advanced clinical stages of CRC. Ectopic expression of EBV-miR-BART18-3p leads to increased migration and invasion capacities of CRC cells in vitro and causes tumor metastasis in vivo. Mechanistically, EBV-miR-BART18-3p activates the hypoxia inducible factor 1 subunit alpha/lactate dehydrogenase A axis by targeting Sirtuin, which promotes lactate accumulation and acetyl-CoA production in CRC cells under hypoxic condition. Increased acetyl-CoA utilization subsequently leads to histone acetylation of fatty acid synthase and fatty acid synthase-dependent fat synthesis, which in turn drives de novo lipogenesis. The oncogenic role of EBV-miR-BART18-3p is confirmed in the patient-derived tumor xenograft mouse model. Altogether, the findings define a novel mechanism of EBV-miR-BART18-3p in CRC development through the lipogenesis pathway and provide a potential clinical intervention target for CRC.
Collapse
|
35
|
|
Zhang H, Wu H, Pan D, Shen W. D-dimer levels and characteristics of lymphocyte subsets, cytokine profiles in peripheral blood of patients with severe COVID-19: A systematic review and meta-analysis. Front Med (Lausanne) 2022;9:988666. [PMID: 36275800 DOI: 10.3389/fmed.2022.988666] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/15/2022] Open
Abstract
Purpose A series of complications caused by severe COVID-19 can significantly affect short-term results. Therefore, early diagnosis is essential for critically COVID-19 patients. we aimed to investigate the correlation among D-dimer levels, lymphocyte subsets, cytokines, and disease severity in COVID-19 patients. Methods Systematic review and meta- analysis of PubMed, Scopus, Web of Science, Cochrane Central Register of Controlled Trials, Embase, clinical trials, and China National Knowledge Infrastructure (CNKI) until 1 August 2022. We considered case-control, and cohort studies that compared laboratory parameters between patients with severe or non-serious diseases or between survivors and non-survivors. Pooled data was assessed by use of a random-effects model and used I2 to test heterogeneity. We assessed the risk of bias using the Newcastle- Ottawa Scale. Results Of the 5,561 identified studies, 32 were eligible and included in our analysis (N = 3,337 participants). Random-effect results indicated that patients with COVID-19 in severe group had higher levels for D-dimer (WMD = 1.217 mg/L, 95%CI=[0.788, 1.646], P < 0.001), neutrophil-to-lymphocyte ratio (NLR) (WMD = 6.939, 95%CI = [4.581, 9.297], P < 0.001), IL-2 (WMD = 0.371 pg/ml, 95%CI = [−0.190, 0.932], P = 0.004), IL-4 (WMD = 0.139 pg/ml, 95%CI = [0.060, 0.219], P = 0.717), IL-6 (WMD = 44.251 pg/ml, 95%CI = [27.010, 61.493], P < 0.001), IL-10 (WMD = 3.718 pg/ml, 95%CI = [2.648, 4.788], P < 0.001) as well as lower levels of lymphocytes (WMD = −0.468( × 109/L), 95%CI = [−0.543, −0.394], P < 0.001), T cells (WMD = −446.746(/μL), 95%CI = [−619.607, −273.885], P < 0.001), B cells (WMD = −60.616(/μL), 95%CI = [−96.452, −24.780], P < 0.001), NK cells (WMD = −68.297(/μL), 95%CI = [−90.600, −45.994], P < 0.001), CD3+T cells (WMD = −487.870(/μL), 95%CI = [−627.248, −348.492], P < 0.001), CD4+T cells (WMD = −290.134(/μL), 95%CI = [−370.834, −209.435], P < 0.001), CD8+T cells (WMD = −188.781(/μL), 95%CI = [−227.806, −149.757], P < 0.001). Conclusions There is a correlation among higher levels of D-dimer, cytokines, lower levels of lymphocyte subsets, and disease severity in COVID-19 patients. These effective biomarkers may help clinicians to evaluate the severity and prognosis of COVID-19. This study is registered with PROSPERO, number CRD42020196659. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=196659; PROSPERO registration number: CRD42020196659.
Collapse
|
36
|
|
Huang ML, Luo WL. Engrailed homeobox 1 transcriptional regulation of COL22A1 inhibits nasopharyngeal carcinoma cell senescence through the G1/S phase arrest. J Cell Mol Med 2022. [PMID: 36196630 DOI: 10.1111/jcmm.17575] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/30/2022] Open
Abstract
EN1 is well known as a transcription factor in other tumours, but its role in NPC is unclear. In this study, we first used bioinformatics to analyse GEO data to obtain the differentially expressed gene EN1, and subsequently verified that EN1 was highly expressed in nasopharyngeal carcinoma cells by tissue microarrays as well as cell lines. Further, we down‐regulated the expression of EN1 in cells for RNA sequencing. The analysis of sequencing results using KEGG and GO revealed significant changes in cell proliferation and cycle function after downregulation of EN1. Meanwhile, we found that cells underwent senescence after inhibition of EN1 under electron microscopy and the SA‐β‐gal assays. Based on the sequencing results, we verified that EN1 can promote the proliferation and cycle of NPC cells in cell function experiments and animal experiments. To investigate how EN1 affects cell senescence, we found that EN1 transcriptional regulation of COL22A1 regulated cell proliferation and cycle via CDK4/6‐cyclin D1‐Rb signalling pathway by dual luciferase reporter, Immunoblotting and rescue experiment. Accordingly, we uncovered that EN1 could serve as a target for the regulation of senescence in NPC.
Collapse
|
37
|
|
Skalsky RL. MicroRNA-mediated control of Epstein–Barr virus infection and potential diagnostic and therapeutic implications. Curr Opin Virol 2022;56:101272. [DOI: 10.1016/j.coviro.2022.101272] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/03/2022]
|
38
|
|
Yang W, Kang Q, Li C, Bo S, Wang Y. Matrine promotes trophoblast invasion and reduces inflammation via miR-19a-3p to prevent preeclampsia. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00293-3] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/12/2023]
|
39
|
|
Liu XP, Yang X, Xiong M, Mao X, Jin X, Li Z, Zhou S, Chang H. Development and validation of chest CT-based imaging biomarkers for early stage COVID-19 screening. Front Public Health 2022;10:1004117. [PMID: 36211676 DOI: 10.3389/fpubh.2022.1004117] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/27/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is currently a global pandemic, and early screening is one of the key factors for COVID-19 control and treatment. Here, we developed and validated chest CT-based imaging biomarkers for COVID-19 patient screening from two independent hospitals with 419 patients. We identified the vasculature-like signals from CT images and found that, compared to healthy and community acquired pneumonia (CAP) patients, COVID-19 patients display a significantly higher abundance of these signals. Furthermore, unsupervised feature learning led to the discovery of clinical-relevant imaging biomarkers from the vasculature-like signals for accurate and sensitive COVID-19 screening that have been double-blindly validated in an independent hospital (sensitivity: 0.941, specificity: 0.920, AUC: 0.971, accuracy 0.931, F1 score: 0.929). Our findings could open a new avenue to assist screening of COVID-19 patients.
Collapse
|
40
|
|
Wei J, Deng W, Weng J, Li M, Lan G, Li X, Ye L, Wang Y, Liu F, Ou H, Wei Y, Huang W, Xie S, Dong G, Qu S. Epithelial-mesenchymal transition classification of circulating tumor cells predicts clinical outcomes in progressive nasopharyngeal carcinoma. Front Oncol 2022;12:988458. [PMID: 36212389 DOI: 10.3389/fonc.2022.988458] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/13/2022] Open
Abstract
BackgroundLiquid biopsy facilitates the enrichment and isolation of circulating tumor cells (CTCs) in various human cancers, including nasopharyngeal carcinoma (NPC). Characterizing CTCs allows observation of the evolutionary process of single tumor cells undergoing blood-borne dissemination, such as epithelial-mesenchymal transition. However, the prognostic value of phenotypic classification of CTCs in predicting the clinical outcomes of NPC remains poorly understood.Patients and methodsA total of 92 patients who met the inclusion criteria were enrolled in the present study. The CanPatrol™ CTC technology platform was employed to isolate CTCs, and an RNA in situ hybridization-based system was used for phenotypic classification. Kaplan–Meier survival curves were used for univariate survival analysis, and the log-rank test was performed for between-group comparisons of the survival curves.ResultsCTCs were detected in 88.0% (81/92) of the enrolled patients with NPC. The total CTC number did not vary between the T and N stages or between Epstein–Barr virus DNA-positive and -negative cases. The numbers of total CTCs and epithelial/mesenchymal (E/M) hybrid CTCs decreased significantly at 3 months post concurrent chemoradiotherapy (P=0.008 and P=0.023, respectively), whereas the numbers of epithelial or mesenchymal CTCs did not decrease. E/M hybrid-predominant cases had lower disease-free survival (P=0.043) and distant metastasis-free survival (P=0.046) rates than non-E/M hybrid-predominant cases.ConclusionCTC classification enables a better understanding of the cellular phenotypic alterations responsible for locoregional invasion and distant metastasis in NPC. E/M hybrid-predominant CTC distribution predicts unfavorable clinical outcomes in patients with progressive NPC.
Collapse
|
41
|
|
Yang J, Hou G, Chen H, Chen W, Ge J, Ghose J. Circ_0000189 Promotes the Malignancy of Glioma Cells via Regulating miR-192-5p-ZEB2 Axis. Oxid Med Cell Longev 2022;2022:1-19. [PMID: 36193069 DOI: 10.1155/2022/2521951] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/30/2022] Open
Abstract
Background Some recent studies have reported the role of circular RNAs (circRNAs) in modulating the tumorigenesis of human malignancies. Nevertheless, the expression characteristics, biological functions, and regulatory mechanism of circ_0000189 in glioma are unclear. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of circ_0000189, miR-192-5p, and ZEB2 mRNA in glioma tissues and cells. The association between the expression of circ_0000189 and the clinicopathological indicators and the features of magnetic resonance imaging (MRI) images of glioma patients were analyzed. Western blot was utilized to evaluate ZEB2 expression and epithelial-mesenchymal transition (EMT-)-related proteins (E-cadherin, N-cadherin, as well as Vimentin) in glioma cells. Cell proliferation was assessed employing cell counting kit-8 (CCK-8) and EdU experiments. Flow cytometry was used to detect the apoptotic rate of the cells. Cell migration and invasion were accessed employing Transwell assay. Moreover, dual luciferase reporter gene assay and RNA immunoprecipitation assay were employed to investigate the targeting relationship between miR-192-5p and circ_0000189, miR-192-5p, and ZEB2. Subcutaneous tumorigenesis experiment and lung metastasis experiment in nude mice were conducted to verify the regulatory function of circ_0000189 on the proliferation and metastasis of glioma cells in vivo. Results circ_0000189 was markedly overexpressed in glioma tissues and cell lines. Its high expression was associated with poor clinical pathological indicators and adverse MRI signs. Gain-of-function experiments and loss-of-function experiments confirmed that circ_0000189 overexpression facilitated the proliferation and migration, as well as invasion of glioma cells, and suppressed apoptosis, and facilitated epithelial-mesenchymal transition (EMT) process. Compared to the control group, knocking down circ_0000189 suppressed the malignant phenotypes of glioma cells both in vivo and in vitro. Working as a competitive endogenous RNA, circ_0000189 directly targeted miR-192-5p, and repressed its expression, and circ_0000189 positively modulated ZEB2 expression indirectly via repressing miR-192-5p. Conclusion circ_0000189 facilitates the progression of glioma by modulating miR-192-5p/ZEB2 axis.
Collapse
|
42
|
|
Guo SS, Chen YZ, Liu LT, Liu RP, Liang YJ, Wen DX, Jin J, Tang LQ, Mai HQ, Chen QY. Prognostic significance of AKR1C4 and the advantage of combining EBV DNA to stratify patients at high risk of locoregional recurrence of nasopharyngeal carcinoma. BMC Cancer 2022;22:880. [PMID: 35953777 DOI: 10.1186/s12885-022-09924-3] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/10/2022] Open
Abstract
Background Distinguishing patients at a greater risk of recurrence is essential for treating locoregional advanced nasopharyngeal carcinoma (NPC). This study aimed to explore the potential of aldo–keto reductase 1C4 (AKR1C4) in stratifying patients at high risk of locoregional relapse. Methods A total of 179 patients with locoregionally advanced NPC were grouped by different strategies; they were: (a) divided into two groups according to AKR1C4 expression level, and (b) classified into three clusters by integrating AKR1C4 and Epstein-Barr virus (EBV) DNA. The Kaplan–Meier method was used to calculate locoregional relapse-free survival (LRFS), overall survival (OS), progression-free survival (PFS), and distant metastasis-free survival (DMFS). The Cox proportional hazards model was used to determine potential prognostic factors, and a nomogram was generated to predict 3-year and 5-year LRFS. Results A significant difference in the 5-year LRFS was observed between the high and low AKR1C4 expression groups (83.3% vs. 92.7%, respectively; p = 0.009). After integrating AKR1C4 expression and EBV DNA, the LRFS (84.7%, 84.5%, 96.9%, p = 0.014) of high-, intermediate-, and low- AKR1C4 and EBV DNA was also significant. Multivariate analysis indicated that AKR1C4 expression (p = 0.006) was an independent prognostic factor for LRFS. The prognostic factors incorporated into the nomogram were AKR1C4 expression, T stage, and EBV DNA, and the concordance index of the nomogram for locoregional relapse was 0.718. Conclusions In conclusion, high AKR1C4 expression was associated with a high possibility of relapse in NPC patients, and integrating EBV DNA and AKR1C4 can stratify high-risk patients with locoregional recurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09924-3.
Collapse
|
43
|
|
Xie W, Yu J, Yin Y, Zhang X, Zheng X, Wang X. OCT4 induces EMT and promotes ovarian cancer progression by regulating the PI3K/AKT/mTOR pathway. Front Oncol 2022;12:876257. [PMID: 36033461 DOI: 10.3389/fonc.2022.876257] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/29/2022] Open
Abstract
Background Octamer-binding transcription factor 4 (OCT4) is a key stem cell transcription factor involved in the development of various cancers. The role of OCT4 in ovarian cancer (OC) progression and its molecular mechanism are not fully understood. Methods First, immunohistochemistry (IHC) assays of ovarian benign cyst tissues, OC tissues, and omental metastatic tissues were performed to reveal OCT4 expression profiles. We knocked down OCT4 in two OC cell lines (SKOV3 and A2780) using a lentiviral vector and performed in vitro and in vivo experiments. OCT4 was knocked down to assess the proliferation, migration, and invasion of OC cells using CCK-8, colony formation, wound healing, and Transwell assays. In addition, the nude tumor mouse model was used for in vivo study. Mechanistically, we demonstrated that OCT4 influenced protein expression in the phosphoinositol 3-kinase (PI3K)/AKT/mTOR pathway and epithelial-mesenchymal transition (EMT)-related proteins by Western blotting and immunofluorescence (IF) assays. The interaction between OCT4 and p-AKT was further confirmed by coimmunoprecipitation (CoIP) assays. Importantly, AKT activation by its activator SC79 reversed the biological functions of OCT4 knockdown. Results OCT4 expression was significantly upregulated in OC samples and metastatic tissues. OCT4 knockdown notably inhibited the proliferation, migration, and invasion of OC cells in vitro and in vivo. Moreover, the expression of p-PI3K, p-AKT, and p-mTOR was downregulated after OCT4 knockdown. An AKT agonist reversed the effect of OCT4 knockdown on OC cells. EMT in OC samples was enhanced by OCT4. Conclusions Our study shows that OCT4 promotes the proliferation, migration, and invasion of OC cells by participating in the PI3K/AKT/mTOR signaling axis, suggesting that it could serve as a potential therapeutic target for OC patients.
Collapse
|
44
|
|
Zhou L, Shen J, Zhou T, Li C, Hu Y, Xiao H. The prognostic significance of β-Catenin expression in patients with nasopharyngeal carcinoma: A systematic review and meta-analysis. Front Genet 2022;13:953739. [PMID: 36035172 DOI: 10.3389/fgene.2022.953739] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/13/2022] Open
Abstract
Background:β-Catenin has been recently identified as a promising novel therapeutic target and prognostic marker in different types of cancer. Here, we conduct a meta-analysis to better clarify the correlation between β-Catenin expression and survival outcomes in nasopharyngeal carcinoma (NPC) patients.Patients/methods: Following the Preferred Reporting Items or Systematic Reviews Meta Analyses (PRISMA) 2020 guidelines, the PubMed, Embase, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI) and Wanfang databases were systematically searched for relevant studies to explore the prognostic significance of β-Catenin in NPC. Pooled hazards ratios (HRs) and 95% confidence intervals (CIs) were used to estimate the association of β-Catenin expression with survival outcomes in NPC patients. Odd ratios (ORs) and 95% CIs for clinicopathological characteristics were also statistically analyzed.Results: Eight studies involving 1,179 patients with NPC were ultimately included in the meta-analysis. Pooled analysis indicated that elevated β-Catenin expression was significantly associated with poor OS (HR = 2.45, 95% CIs: 1.45–4.16, p = 0.001) and poor DFS/PFS (HR 1.79, 95% CIs: 1.29–2.49, p = 0.000). Furthermore, β-cadherin was signifcantly associated with higher TMN stages (OR = 5.10, 95% CIs 2.93–8.86, p = 0.000), clinical stages (OR = 5.10, 95% CIs 2.93–8.86, p = 0.000) and lymph node metastasis (LNM) (OR = 5.01, 95% CIs 2.40–10.44, p = 0.000).Conclusions: This study demonstrated that for NPC, patients with elevated β-Catenin expression are more likely to have poor survival.
Collapse
|
45
|
|
Ning J, Wang F, Bu J, Zhu K, Liu W. Down-regulated m6A reader FTO destabilizes PHF1 that triggers enhanced stemness capacity and tumor progression in lung adenocarcinoma. Cell Death Dis 2022;8:354. [PMID: 35945194 DOI: 10.1038/s41420-022-01125-y] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/28/2022]
Abstract
Aberrant epigenetic drivers or suppressors contribute to LUAD progression and drug resistance, including KRAS, PTEN, Keap1. Human Plant Homeodomain (PHD) finger protein 1 (PHF1) coordinates with H3K36me3 to increase nucleosomal DNA accessibility. Previous studies revealed that PHF1 is markedly upregulated in various tumors and enhances cell proliferation, migration and tumorigenesis. However, its roles in LUAD are still unknown. We aimed to depict the biological roles of PHF1 and identify useful targets for clinical treatment of LUAD. Based on the bioinformatic analysis, we found that PHF1 was down-regulated in LUAD samples and low PHF1 expressions correlated with unfavorable clinical characteristics. Patients with low PHF1 had poorer survival outcomes relative to those with high PHF1. Targeting PHF1 potentiated cell growth, migration and in vivo proliferation. Mechanistically, FTO mediated the stabilization of PHF1 mRNA by demethylating m6A, which particularly prevented YTHDF2 from degrading PHF1 transcripts. Of note, FTO also expressed lowly in LUAD that predicts poor prognosis of patients. FTO inhibition promoted LUAD progression, and PHF1 overexpression could reverse the effect. Lastly, down-regulated FTO/PHF1 axis could mainly elevate FOXM1 expression to potentiate the self-renewal capacity. Targeting FOXM1 was effective to suppress PHF1low/− LUAD growth. Collectively, our findings revealed that FTO positively regulates PHF1 expression and determined the tumor-suppressive role of FTO/PHF1 axis, thereby highlighting insights into its epigenetic remodeling mechanisms in LUAD progression and treatment.
Collapse
|
46
|
|
Gött H, Nagl J, Hagedorn F, Thomas S, Schwarm FP, Uhl E, Kolodziej MA. ZEB1 induces N-cadherin expression in human glioblastoma and may alter patient survival. Mol Clin Oncol 2022;17:123. [PMID: 35911664 DOI: 10.3892/mco.2022.2556] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the expression of epithelial-mesenchymal transition (EMT)-related factors zinc finger E-box-binding homeobox 1 (ZEB1), cadherin-1 (CDH1), cadherin-2 (CDH2) and the cell cycle modulating kinase cyclin-dependent kinase 1 (CDK1) in human glioblastoma (GBM) compared to normal brain tissue, as well as whether the levels of expression were associated with the overall and progression-free survival of the GBM patients. In 44 GBM and five normal brain tissue specimens, the expression levels of ZEB1, CDH1, CDH2 and CDK1 were evaluated by real-time PCR and immunostaining, and the results were correlated with clinical data. The expression levels of all investigated genes as detected by immunostaining were significantly higher in the GBM when compared to the normal brain tissues. There was no influence on survival. A linear correlation between ZEB1 and CDH2 and CDK1 expression was observed in GBM. Moreover, ZEB1 was involved in EMT (e.g., signaling in human GBM) and high ZEB1 levels were linked to an aberrant cell cycle processing, marked by CDK1 overexpression.
Collapse
|
47
|
|
Zhang T, Chen Z, Deng J, Xu K, Che D, Lin J, Jiang P, Gu X, Xu B. Epstein-Barr virus-encoded microRNA BART22 serves as novel biomarkers and drives malignant transformation of nasopharyngeal carcinoma. Cell Death Dis 2022;13:664. [PMID: 35907914 DOI: 10.1038/s41419-022-05107-x] [Cited by in Crossref: 2] [Cited by in RCA: 1] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/21/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy ubiquitously associated with Epstein-Barr virus (EBV). EBV generates various viral microRNAs (miRNAs) by processing the BHRF1 and BamHI A rightward (BART) transcripts. These BART miRNAs are abundantly expressed in NPC, but their functions and molecular mechanisms remain largely unknown. Our study found that the EBV-encoded microRNA BART-22 was significantly upregulated in NPC tissues and positively correlated with tumor progression. Furthermore, we found that EBV-miR-BART-22 was a significant predictor of poor prognosis in NPC. A reliable nomogram model to predict the preoperative overall survival (OS) of NPC patients was established. The area under the receiver operating characteristic (ROC) curve value for 5-year survival was 0.91. Elevated levels of EBV-miR-BART-22 significantly promoted the epithelial-mesenchymal transition (EMT) and metastasis of NPC cells in vivo and in vitro. We found that EBV-miR-BART-22 directly targets the 3'-UTR of MOSPD2 mRNA to promote the EMT and metastasis of NPC cells by activating the Wnt/β-catenin signaling pathway. Our findings provide a potential prognostic biomarker and new insight into the molecular mechanisms of NPC metastasis.
Collapse
|
48
|
|
Li HL, Deng NH, He XS, Li YH. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma. Biomark Res 2022;10:52. [PMID: 35883139 DOI: 10.1186/s40364-022-00397-x] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck in Southeast Asia and southern China. The Phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway is involved in processes related to tumour initiation/progression, such as proliferation, apoptosis, metastasis, and drug resistance, and is closely related to the clinicopathological features of NPC. In addition, key genes involved in the PI3K/AKT/mTOR signalling pathway undergo many changes in NPC. More interestingly, a growing body of evidence suggests an interaction between this signalling pathway and microRNAs (miRNAs), a class of small noncoding RNAs. Therefore, in this review, we discuss the interactions between key components of the PI3K/AKT/mTOR signalling pathway and various miRNAs and their importance in NPC pathology and explore potential diagnostic biomarkers and therapeutic targets.
Collapse
|
49
|
|
Togni L, Caponio VCA, Zerman N, Troiano G, Zhurakivska K, Lo Muzio L, Balercia A, Mascitti M, Santarelli A. The Emerging Impact of Tumor Budding in Oral Squamous Cell Carcinoma: Main Issues and Clinical Relevance of a New Prognostic Marker. Cancers (Basel) 2022;14:3571. [PMID: 35892830 DOI: 10.3390/cancers14153571] [Cited by in Crossref: 6] [Cited by in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/04/2023] Open
Abstract
Tumor Budding (TB) represents a single cancer cell or a small cluster of less than five cancer cells on the infiltrative tumor front. Accumulating evidence suggests TB is an independent prognostic factor in oral squamous cell carcinoma (OSCC). However, its exact role is not yet elucidated, and a standardized scoring system is still necessary. The study aims to extensively review the literature data regarding the prognostic role of TB in OSCC. The results of TB are an independent prognostic factor of poor survival outcomes in OSCC. To date, the manual detection of hematoxylin and eosin-staining or pancytokeratin-immunostaining sections are the most commonly used methods. Between the several cut-offs, the two-tier system with five buds/field cut-offs provides better risk stratification. The prognostic role of the BD model in predicting survival outcomes was extensively validated; however, the inclusion of DOI, which is already a staging parameter, encouraged other authors to propose other models, integrating TB count with other adverse risk factors, such as the tumor–stroma ratio and tumor-infiltrated lymphocytes. The prognostic relevance of TB in OSCC highlights its evaluation in daily pathological practice. Therefore, the TB detection method and the TB scoring system should be validated based on tumor stage and site.
Collapse
|
50
|
|
Deroubaix A, Kramvis A. Imaging Techniques: Essential Tools for the Study of SARS-CoV-2 Infection. Front Cell Infect Microbiol 2022;12:794264. [PMID: 35937687 DOI: 10.3389/fcimb.2022.794264] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/08/2023] Open
Abstract
The world has seen the emergence of a new virus in 2019, SARS-CoV-2, causing the COVID-19 pandemic and millions of deaths worldwide. Microscopy can be much more informative than conventional detection methods such as RT-PCR. This review aims to present the up-to-date microscopy observations in patients, the in vitro studies of the virus and viral proteins and their interaction with their host, discuss the microscopy techniques for detection and study of SARS-CoV-2, and summarize the reagents used for SARS-CoV-2 detection. From basic fluorescence microscopy to high resolution techniques and combined technologies, this article shows the power and the potential of microscopy techniques, especially in the field of virology.
Collapse
|