1
|
|
Zou W, Zhang Q, Sun R, Li X, He S. Study on TFF1 and PALB2 gene variants associated with gastric carcinoma risk in the Chinese Han population. Cancer Epidemiol 2023;83:102333. [PMID: 36758349 DOI: 10.1016/j.canep.2023.102333] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/10/2023]
Abstract
OBJECTIVE Gastric carcinoma (GC) has received extensive attention due to its complex pathogenesis. Studies have shown that the expression of Trefoil factor 1 (TFF1) and Partner and localiser of BRCA2 (PALB2) genes promotes the occurrence of GC. Therefore, we investigated whether TFF1 and PALB2 gene polymorphisms are associated with GC risk in the Chinese Han population. METHODS A total of 509 GC cases and 505 controls were recruited, and single nucleotide polymorphisms (SNPs) of TFF1 and PALB2 in these subjects were genotyped. The association between each candidate polymorphism and GC risk was assessed by calculating odds ratios (ORs) and 95% confidence intervals (CIs). The visualization of gene-gene interactions and functional enrichment analysis were then performed using Cytoscape software and the R package "cluster profile". RESULTS The TFF1 rs2156310 polymorphism significantly reduced the predisposition to GC in people under 60 years of age (AA vs. AG - GG, OR = 0.58, 95% CI = 0.35-0.97, p = 0.036). The gender-stratified analysis found that PALB2 rs513313 was significantly associated with the risk of GC in males (CT vs. TT, OR = 1.51, 95% CI = 1.06-2.15, p = 0.022). Besides, PALB2 rs249954 significantly reduced the susceptibility to GC in females (AA vs GG, OR = 0.42, 95% CI = 0.19-0.94, p = 0.034). CONCLUSION Our results revealed that TFF1 and PALB2 gene polymorphisms were correlated with the genetic susceptibility to GC, providing certain data support for researchers to further study the mechanism of GC.
Collapse
|
2
|
|
Xu BB, Zheng ED, Sun HY, Huang Y, Zheng L, Lan QL, Zhou XL, Geng XG, Wang YN, Wang XY, Yu YC. Comprehensive analysis of circular RNA-associated competing endogenous RNA networks and immune infiltration in gastric cancer. Transpl Immunol 2023;77:101793. [PMID: 36773765 DOI: 10.1016/j.trim.2023.101793] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/12/2023]
Abstract
BACKGROUND Circular RNA (circRNA) has been proved to be an important regulator of gastric cancer (GC). However, the role and regulatory mechanism of circrna related competitive endogenous RNA (ceRNA) in GC have not been established. METHODS CircRNA data and clinical data were obtained from the GEO and TCGA databases. The ceRNA networks were constructed and a function enrichment analysis was completed. Additionally, correlations between hub genes expression, immune cell infiltration, and clinical phenotypes were determined. The differentially expressed circRNAs and their downstream microRNAs (miRNAs) were validated by quantitative real-time polymerase chain reaction, and the hub genes were validated by western blot analysis. The migration and invasion ability of overexpressed hsa_circ_0002504 was determined by a transwell assay. RESULTS The ceRNA network contained 2 circRNAs, 3 miRNAs, and 55 messenger RNAs (mRNAs). 323 biological processes terms, 53 cellular components terms, 51 molecular functions terms, and 4 signaling pathways were revealed by the function enrichment analysis. The GSEA analysis revealed that the hub genes were positively correlated with the axon guidance and adhesion molecules pathways. The correlation analysis revealed that overexpressed EPHA4 and KCNA1 indicated poor tissue differentiation and were associated with clinically advanced stages of GC. The in vitro experiments showed that hsa_circ_0002504 was significantly down-regulated in GC cell lines. In addition, the overexpression of hsa_circ_0002504 led to a significant downregulation of hsa-miR-615-5p and hsa-miR-767-5p, as well as an upregulation of EPHA4, KCNA1, and NCAM1. Furthermore, it suppressed the migration and invasion ability of GC cells. CONCLUSIONS Hsa_circ_0002504 is a potential diagnostic biomarker for GC. High expression of EPHA4 and KCNA1 may indicate poor prognosis.
Collapse
|
3
|
|
Harada G, Yang SR, Cocco E, Drilon A. Rare molecular subtypes of lung cancer. Nat Rev Clin Oncol 2023;20:229-49. [PMID: 36806787 DOI: 10.1038/s41571-023-00733-6] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/22/2023]
Abstract
Oncogenes that occur in ≤5% of non-small-cell lung cancers have been defined as 'rare'; nonetheless, this frequency can correspond to a substantial number of patients diagnosed annually. Within rare oncogenes, less commonly identified alterations (such as HRAS, NRAS, RIT1, ARAF, RAF1 and MAP2K1 mutations, or ERBB family, LTK and RASGRF1 fusions) can share certain structural or oncogenic features with more commonly recognized alterations (such as KRAS, BRAF, MET and ERBB family mutations, or ALK, RET and ROS1 fusions). Over the past 5 years, a surge in the identification of rare-oncogene-driven lung cancers has challenged the boundaries of traditional clinical grade diagnostic assays and profiling algorithms. In tandem, the number of approved targeted therapies for patients with rare molecular subtypes of lung cancer has risen dramatically. Rational drug design has iteratively improved the quality of small-molecule therapeutic agents and introduced a wave of antibody-based therapeutics, expanding the list of actionable de novo and resistance alterations in lung cancer. Getting additional molecularly tailored therapeutics approved for rare-oncogene-driven lung cancers in a larger range of countries will require ongoing stakeholder cooperation. Patient advocates, health-care agencies, investigators and companies with an interest in diagnostics, therapeutics and real-world evidence have already taken steps to surmount the challenges associated with research into low-frequency drivers.
Collapse
|
4
|
|
Gurav M, Epari S, Gogte P, Pai T, Deshpande G, Karnik N, Shetty O, Desai S. Targeted molecular profiling of solid tumours-Indian tertiary cancer centre experience. J Cancer Res Clin Oncol 2023. [PMID: 36935431 DOI: 10.1007/s00432-023-04693-3] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/21/2023]
Abstract
PURPOSE Molecular Profiling of solid tumours is extensively used for prognostic, theranostic, and risk prediction. Next generation sequencing (NGS) has emerged as powerful method for molecular profiling. The present study was performed to identify molecular alterations present in solid tumours in Indian tertiary cancer centre. METHODS Study included 1140 formalin Fixed paraffin embedded samples. NGS was performed using two targeted gene panels viz. Ampliseq Focus panel and Sophia Solid Tumor Plus Solution. Data was analyzed using Illumina's Local Run Manager and SOPHiA DDM software. Variant interpretation and annotations were done as per AMP/ACMG guidelines. RESULTS Total 896 cases were subjected to NGS after excluding cases with suboptimal nucleic acid quality/quantity. DNA alterations were detected in 64.9% and RNA fusions in 6.9% cases. Among detected variants, 86.7% were clinically relevant aberrations. Mutation frequency among different solid tumours was 70.8%, 67.4%, 64.4% in non-small cell lung (NSCLC), lung squamous cell carcinomas and head neck tumours respectively. EGFR, KRAS, BRAF, ALK and ROS1were commonly altered in NSCLC. Gastrointestinal tumours showed mutations in 63.6% with predominant alterations in pancreatic (88.2%), GIST (87.5%), colorectal (78.7%), cholangiocarcinoma (52.9%), neuroendocrine (45.5%), gall bladder (36.7%) and gastric adenocarcinomas (16.7%). The key genes affected were KRAS, NRAS, BRAF and PIK3CA. NGS evaluation identified co-occurring alterations in 37.7% cases otherwise missed by conventional assays. Resistance mutations were detected in progressive lung tumours (39.5%) against EGFR TKIs and ALK/ROS inhibitors. CONCLUSION This is the largest Indian study on molecular profiling of solid tumours providing extensive information about mutational signatures using NGS.
Collapse
|
5
|
|
Eichner LJ, Curtis SD, Brun SN, McGuire CK, Gushterova I, Baumgart JT, Trefts E, Ross DS, Rymoff TJ, Shaw RJ. HDAC3 is critical in tumor development and therapeutic resistance in Kras-mutant non-small cell lung cancer. Sci Adv 2023;9:eadd3243. [PMID: 36930718 DOI: 10.1126/sciadv.add3243] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/19/2023] Open
Abstract
HDAC3 is one of the main targets of histone deacetylase (HDAC) inhibitors in clinical development as cancer therapies, yet the in vivo role of HDAC3 in solid tumors is unknown. We identified a critical role for HDAC3 in Kras-mutant lung cancer. Using genetically engineered mouse models (GEMMs), we found that HDAC3 is required for lung tumor growth in vivo. HDAC3 was found to direct and enhance the transcription effects of the lung cancer lineage transcription factor NKX2-1 to mediate expression of a common set of target genes. We identified FGFR1 as a critical previously unidentified target of HDAC3. Leveraging this, we identified that an HDAC3-dependent transcriptional cassette becomes hyperactivated as Kras/LKB1-mutant cells develop resistance to the MEK inhibitor trametinib, and this can be reversed by treatment with the HDAC1/HDAC3 inhibitor entinostat. We found that the combination of entinostat plus trametinib treatment elicits therapeutic benefit in the Kras/LKB1 GEMM.
Collapse
|
6
|
|
Gong H, Xu H, Zhang D. Focusing on discoidin domain receptors in premalignant and malignant liver diseases. Front Oncol 2023;13. [DOI: 10.3389/fonc.2023.1123638] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/17/2023] Open
Abstract
Discoidin domain receptors (DDRs) are receptor tyrosine kinases on the membrane surface that bind to extracellular collagens, but they are rarely expressed in normal liver tissues. Recent studies have demonstrated that DDRs participate in and influence the processes underlying premalignant and malignant liver diseases. A brief overview of the potential roles of DDR1 and DDR2 in premalignant and malignant liver diseases is presented. DDR1 has proinflammatory and profibrotic benefits and promotes the invasion, migration and liver metastasis of tumour cells. However, DDR2 may play a pathogenic role in early-stage liver injury (prefibrotic stage) and a different role in chronic liver fibrosis and in metastatic liver cancer. These views are critically significant and first described in detail in this review. The main purpose of this review was to describe how DDRs act in premalignant and malignant liver diseases and their potential mechanisms through an in-depth summary of preclinical in vitro and in vivo studies. Our work aims to provide new ideas for cancer treatment and accelerate translation from bench to bedside.
Collapse
|
7
|
|
Huang J, Hu B, Yang Y, Liu H, Fan X, Zhou J, Chen L. Integrated analyzes identify CCT3 as a modulator to shape immunosuppressive tumor microenvironment in lung adenocarcinoma. BMC Cancer 2023;23:241. [PMID: 36918801 DOI: 10.1186/s12885-023-10677-w] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Chaperonin-containing tailless complex polypeptide 1 (TCP1) subunit 3 (CCT3) has tumor-promoting effects in lung adenocarcinoma (LUAD). This study aims to investigate the molecular mechanisms of CCT3 in LUAD oncogenesis. METHODS The UALCAN databases, Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA) data were used to analyze CCT3 expression in LUAD. Both the Wilcoxon rank-sum test and the regression model were used to investigate the connection between clinicopathologic characteristics of LUAD patients and CCT3 expression. The prognostic value of CCT3 was determined by Cox regression models, the Kaplan-Meier method and Nomogram prediction. Next, we identified the most related genes with CCT3 via GeneMANIA and String databases, and the association between CCT3 and infiltrated immune cells using single-sample Gene Set Enrichment Analysis (ssGSEA). CCT3-related pathway enrichment analysis was investigated by GSEA. Finally, CCT3 roles in cell proliferation and apoptosis of LUAD A549 cells was verified by siRNA (small interfering RNA) mediated CCT3 knockdown. RESULTS CCT3 was upregulated in LUAD both in mRNA and protein levels. CCT3 overexpression was associated with clinicopathological characteristics including sex, smoking, T- and N-categories, pathological staging, and a poor prognosis of LUAD patients. GeneMANIA and String databases found a set of CCT3-related genes that are connected to the assembly and stability of proteins involved in proteostasis of cytoskeletal filaments, DNA repair and protein methylation. Furthermore, CCT3 was found to be positively correlated with the infiltrating Th2 cells (r = 0.442, p < 0.01) while negatively correlated with mast cells (r = -0.49, p < 0.01) and immature dendritic cells (iDCs, r = -0.401, p < 0.001) according to ssGSEA analyzes. The pathway analysis based on GSEA method showed that the cell cycle pathway, the protein export pathway, the proteasome pathway and the ribosome pathway are enriched in CCT3 high group, whereas the JAK/STAT pathway, B cell receptor pathway, T cell receptor pathway and toll like receptor pathway were enriched in CCT3 low group. Finally, CCT3 knockdown substantially inhibited proliferation while promoted apoptosis of A549 cells. CONCLUSION Integrated analyzes identify CCT3 as a modulator to shape immunosuppressive tumor microenvironment in LUAD and therefore, a prognostic factor for LUAD.
Collapse
|
8
|
|
Zhang L, Zhou Y, Wu B, Zhang S, Zhu K, Liu C, Yu X, Alfano RR. A Handheld Visible Resonance Raman Analyzer Used in Intraoperative Detection of Human Glioma. Cancers (Basel) 2023;15:1752. [DOI: 10.3390/cancers15061752] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/17/2023] Open
Abstract
There is still a lack of reliable intraoperative tools for glioma diagnosis and to guide the maximal safe resection of glioma. We report continuing work on the optical biopsy method to detect glioma grades and assess glioma boundaries intraoperatively using the VRR-LRRTM Raman analyzer, which is based on the visible resonance Raman spectroscopy (VRR) technique. A total of 2220 VRR spectra were collected during surgeries from 63 unprocessed fresh glioma tissues using the VRR-LRRTM Raman analyzer. After the VRR spectral analysis, we found differences in the native molecules in the fingerprint region and in the high-wavenumber region, and differences between normal (control) and different grades of glioma tissues. A principal component analysis–support vector machine (PCA-SVM) machine learning method was used to distinguish glioma tissues from normal tissues and different glioma grades. The accuracy in identifying glioma from normal tissue was over 80%, compared with the gold standard of histopathology reports of glioma. The VRR-LRRTM Raman analyzer may be a new label-free, real-time optical molecular pathology tool aiding in the intraoperative detection of glioma and identification of tumor boundaries, thus helping to guide maximal safe glioma removal and adjacent healthy tissue preservation.
Collapse
|
9
|
|
Pena-Burgos EM, De Sabando DP, Utrilla C, Pozo-Kreilinger JJ, Sastre A, Rubio P, Escudero A, Mendiola-Sabio M, Pérez-Martínez A. First Reported Case of Malignant Ectomesenchymoma with p.Leu122Arg Mutation in MYOD1 Gene: Extensive Intra- and Extracranial Tumor in a 15-Year-Old Female. Head Neck Pathol 2023. [PMID: 36913073 DOI: 10.1007/s12105-023-01542-0] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Indexed: 03/14/2023]
Abstract
BACKGROUND Ectomesenchymomas (EMs) are extremely rare neoplasms composed of malignant mesenchymal components and neuroectodermal derivatives. They are described in a wide variety of locations, with the head and neck region being one of the most frequently involved areas. EMs are usually managed as high-risk rhabdomyosarcomas and have similar outcomes. METHODS We present the case of a 15-year-old female with an EM that arose in the parapharyngeal space and extended into the intracranial space. RESULTS Histologically, the tumor presented an embryonal rhabdomyosarcomatous mesenchymal component and the neuroectodermal component was constituted by isolated ganglion cells. Next-generation sequencing (NGS) revealed a p.Leu122Arg (c.365 T > G) mutation in the MYOD1 gene, a p.Ala34Gly mutation in the CDKN2A gene, and CDK4 gene amplification. The patient was treated with chemotherapy. She died 17 months after the debut of symptoms. CONCLUSION(S) To our knowledge, this is the first reported case in English literature of an EM with this MYOD1 mutation. We suggest combining PI3K/ATK pathway inhibitors in these cases. NGS should be performed in EMs cases to detect mutations with potential treatment options.
Collapse
|
10
|
|
Ito S, Otsuki S, Ohsawa H, Hirano A, Kazuno H, Yamashita S, Egami K, Shibata Y, Yamamiya I, Yamashita F, Kodama Y, Funabashi K, Kazuno H, Komori T, Suzuki S, Sootome H, Hirai H, Sagara T. Discovery of Futibatinib: The First Covalent FGFR Kinase Inhibitor in Clinical Use. ACS Med Chem Lett 2023. [DOI: 10.1021/acsmedchemlett.3c00006] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/12/2023] Open
|
11
|
|
Qiao R, Di F, Wang J, Wei Y, Xu T, Dai L, Gu W, Han B, Yang R. Identification of FUT7 hypomethylation as the blood biomarker in prediction of early-stage lung cancer. J Genet Genomics 2023:S1673-8527(23)00053-X. [PMID: 36898609 DOI: 10.1016/j.jgg.2023.02.014] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023]
Abstract
Early detection of lung cancer (LC) is vital for reducing LC-related mortality. However, noninvasive diagnostic tools remain a great challenge. We aim to identify blood-based biomarkers for early detection of LC. Here, LC-associated hypomethylation in alpha-1,3-fucosyltransferase VII (FUT7) is identified via Illumina 850K array in a discovery study and validated by mass spectrometry in two independent case-control studies with blood samples from 1720 LC patients (86.8% LC at stage I, blood is collected before surgery and treatment) and 3143 healthy controls. Compared to the controls, blood-based FUT7 hypomethylation is identified in LC patients at stage I, and even in LC patients with malignant nodules ≤1 cm and in patients with adenocarcinoma in situ. Gender plays a role in the LC-associated FUT7 hypomethylation in blood, which is more significant in males than in females. We also reveal FUT7 hypomethylation in LC could be enhanced by the advanced stage of cancer, involvement of lymph nodes, and larger tumor size. Based on a large sample size and semi-quantitative methods, our study reveals a strong association between blood-based FUT7 hypomethylation and LC, and suggests methylation signatures in blood might be a group of potential biomarkers for detection of early-stage LC.
Collapse
|
12
|
|
Bai X, Guo ZQ, Zhang YP, Fan ZZ, Liu LJ, Liu L, Long LL, Ma SC, Wang J, Fang Y, Tang XR, Zeng YJ, Pan X, Wu DH, Dong ZY. CDK4/6 inhibition triggers ICAM1-driven immune response and sensitizes LKB1 mutant lung cancer to immunotherapy. Nat Commun 2023;14:1247. [PMID: 36871040 DOI: 10.1038/s41467-023-36892-4] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023] Open
Abstract
Liver kinase B1 (LKB1) mutation is prevalent and a driver of resistance to immune checkpoint blockade (ICB) therapy for lung adenocarcinoma. Here leveraging single cell RNA sequencing data, we demonstrate that trafficking and adhesion process of activated T cells are defected in genetically engineered Kras-driven mouse model with Lkb1 conditional knockout. LKB1 mutant cancer cells result in marked suppression of intercellular adhesion molecule-1 (ICAM1). Ectopic expression of Icam1 in Lkb1-deficient tumor increases homing and activation of adoptively transferred SIINFEKL-specific CD8+ T cells, reactivates tumor-effector cell interactions and re-sensitises tumors to ICB. Further discovery proves that CDK4/6 inhibitors upregulate ICAM1 transcription by inhibiting phosphorylation of retinoblastoma protein RB in LKB1 deficient cancer cells. Finally, a tailored combination strategy using CDK4/6 inhibitors and anti-PD-1 antibodies promotes ICAM1-triggered immune response in multiple Lkb1-deficient murine models. Our findings renovate that ICAM1 on tumor cells orchestrates anti-tumor immune response, especially for adaptive immunity.
Collapse
|
13
|
|
Alam M, Hasan GM, Eldin SM, Adnan M, Riaz MB, Islam A, Khan I, Hassan MI. Investigating regulated signaling pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed Pharmacother 2023;161:114452. [PMID: 36878052 DOI: 10.1016/j.biopha.2023.114452] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common malignancy worldwide. The signaling cascades are stimulated via genetic modifications in upstream signaling molecules, which affect apoptotic, proliferative, and differentiation pathways. Dysregulation of these signaling cascades causes cancer-initiating cell proliferation, cancer development, and drug resistance. Numerous efforts in the treatment of NSCLC have been undertaken in the past few decades, enhancing our understanding of the mechanisms of cancer development and moving forward to develop effective therapeutic approaches. Modifications of transcription factors and connected pathways are utilized to develop new treatment options for NSCLC. Developing designed inhibitors targeting specific cellular signaling pathways in tumor progression has been recommended for the therapeutic management of NSCLC. This comprehensive review provided deeper mechanistic insights into the molecular mechanism of action of various signaling molecules and their targeting in the clinical management of NSCLC.
Collapse
|
14
|
|
Armakolas A, Kotsari M, Koskinas J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers (Basel) 2023;15. [PMID: 36900369 DOI: 10.3390/cancers15051579] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. Early diagnosis and prognosis are vital to improve patients' outcomes. The gold standard of tumor characterization leading to tumor diagnosis and prognosis is tissue biopsy. Amongst the constraints of tissue biopsy collection is the sampling frequency and the incomplete representation of the entire tumor bulk. Liquid biopsy approaches, including the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs), as well as certain protein signatures that are released in the circulation from primary tumors and their metastatic sites, present a promising and more potent candidate for patient diagnosis and follow up monitoring. The minimally invasive nature of liquid biopsies, allowing frequent collection, can be used in the monitoring of therapy response in real time, allowing the development of novel approaches in the therapeutic management of cancer patients. In this review we will describe recent advances in the field of liquid biopsy markers focusing on their advantages and disadvantages.
Collapse
|
15
|
|
Sun H, Ren P, Chen Y, Lan L, Yan Z, Yang Y, Wang B, Wang C, Li Y, Li L, Zhang Y, Li Y, Wang Z, Pan Z, Jiang Z. Optimal therapy for concomitant EGFR and TP53 mutated non-small cell lung cancer: a real-world study. BMC Cancer 2023;23:198. [PMID: 36864384 DOI: 10.1186/s12885-023-10637-4] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Non-small cell cancer (NSCLC) patients with concomitant epidermal growth factor receptor (EGFR) and TP53 mutations have a poor prognosis with the treatment of tyrosine kinase inhibitors (TKIs), and may benefit from a combination regimen preferentially. The present study aims to compare the benefits of EGFR-TKIs and its combination with antiangiogenic drugs or chemotherapy in patients with NSCLC harboring EGFR and TP53 co-mutation in a real-life setting. METHODS This retrospective analysis included 124 patients with advanced NSCLC having concomitant EGFR and TP53 mutations, who underwent next-generation sequencing prior to treatment. Patients were classified into the EGFR-TKI group and combination therapy group. The primary end point of this study was progression-free survival (PFS). The Kaplan-Meier (KM) curve was drawn to analyze PFS, and the differences between the groups were compared using the logarithmic rank test. Univariate and multivariate cox regression analysis was performed on the risk factors associated with survival. RESULTS The combination group included 72 patients who received the regimen of EGFR-TKIs combined with antiangiogenic drugs or chemotherapy, while the EGFR-TKI monotherapy group included 52 patients treated with TKI only. The median PFS was significantly longer in the combination group than in the EGFR-TKI group (18.0 months; 95% confidence interval [CI]: 12.1-23.9 vs. 7.0 months; 95% CI: 6.1-7.9; p < 0.001) with greater PFS benefit in TP53 exon 4 or 7 mutations subgroup. Subgroup analysis showed a similar trend. The median duration of response was significantly longer in the combination group than in the EGFR-TKI group. Patients with 19 deletions or L858R mutations both achieved a significant PFS benefit with combination therapy versus EGFR-TKI alone. CONCLUSION Combination therapy had a higher efficacy than EGFR-TKI alone for patients with NSCLC having concomitant EGFR and TP53 mutations. Future prospective clinical trials are needed to determine the role of combination therapy for this patient population.
Collapse
|
16
|
|
Silva Dos Santos F, Neves RAF, Bernay B, Krepsky N, Teixeira VL, Artigaud S. The first use of LC-MS/MS proteomic approach in the brown mussel Perna perna after bacterial challenge: Searching for key proteins on immune response. Fish Shellfish Immunol 2023;134:108622. [PMID: 36803779 DOI: 10.1016/j.fsi.2023.108622] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/19/2023]
Abstract
The brown mussel Perna perna is a valuable fishing resource, primarily in tropical and subtropical coastal regions. Because of their filter-feeding habits, mussels are directly exposed to bacteria in the water column. Escherichia coli (EC) and Salmonella enterica (SE) inhabit human guts and reach the marine environment through anthropogenic sources, such as sewage. Vibrio parahaemolyticus (VP) is indigenous to coastal ecosystems but can be harmful to shellfish. In this study, we aimed to assess the protein profile of the hepatopancreas of P. perna mussel challenged by introduced - E. coli and S. enterica - and indigenous marine bacteria - V. parahaemolyticus. Bacterial-challenge groups were compared with non-injected (NC) and injected control (IC) - that consisted in mussels not challenged and mussels injected with sterile PBS-NaCl, respectively. Through LC-MS/MS proteomic analysis, 3805 proteins were found in the hepatopancreas of P. perna. From the total, 597 were significantly different among conditions. Mussels injected with VP presented 343 proteins downregulated compared with all the other conditions, suggesting that VP suppresses their immune response. Particularly, 31 altered proteins - upregulated or downregulated - for one or more challenge groups (EC, SE, and VP) compared with controls (NC and IC) are discussed in detail in the paper. For the three tested bacteria, significantly different proteins were found to perform critical roles in immune response at all levels, namely: recognition and signal transduction; transcription; RNA processing; translation and protein processing; secretion; and humoral effectors. This is the first shotgun proteomic study in P. perna mussel, therefore providing an overview of the protein profile of the mussel hepatopancreas, focused on the immune response against bacteria. Hence, it is possible to understand the immune-bacteria relationship at molecular levels better. This knowledge can support the development of strategies and tools to be applied to coastal marine resource management and contribute to the sustainability of coastal systems.
Collapse
|
17
|
|
Harrandah AM. The role of Fusobacteria in oral cancer and immune evasion. Curr Opin Oncol 2023;35:125-31. [PMID: 36633319 DOI: 10.1097/CCO.0000000000000927] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW There is growing evidence that suggests a possible role for bacteria in the progression of cancer. Fusobacteria have been detected in different types of cancers, including colorectal and oral cancers. Fusobacteria are common opportunistic oral bacteria known to cause various infections. In this review, we focus on the association between Fusobacteria and cancer, specifically oral cancer, and provide insight into the role of Fusobacteria in carcinogenesis and immune evasion. RECENT FINDINGS Recently, it has been suggested that Fusobacteria are among the bacteria that contribute to the progression of cancer and might affect disease prognosis and treatment outcome. Moreover, Fusobacteria might alter tumor microenvironment and have an impact on tumor immune response. Thus, understanding the effect of Fusobacteria on cancer cells and tumor microenvironment is crucial to improve treatment outcome. SUMMERY Recent evidences suggest that Fusobacteria not only have an impact on tumor progression, but might also affect tumor immune response. Moreover, Fusobacteria presence in the tumor microenvironment might have an impact on treatment outcome and might be used as a prognostic factor.
Collapse
|
18
|
|
Yun J, Nakagawa R, Tham K. KRAS-targeted therapy in the treatment of non-small cell lung cancer. J Oncol Pharm Pract 2023;29:422-30. [PMID: 35938195 DOI: 10.1177/10781552221118848] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/04/2023]
Abstract
OBJECTIVE KRAS mutations are one of the most common driver mutations in non-small cell lung cancer. Though previously believed to be an undruggable target, recent advances in therapeutics have seen new targeted agents against KRAS mutations. The objective of this article is to review currently available and upcoming KRAS-targeted treatments. DATA SOURCES Currently available trials examining KRAS-targeted therapy in non-small cell lung cancer were examined by searching for the keyword "KRAS inhibitors." The pivotal trials for sotorasib and adagrasib were reviewed for this article. DATA SUMMARY Mutated KRAS can be challenging to target for a variety of reasons. In 2021, the US Food and Drug Administration approved sotorasib for the treatment of adult patients with locally advanced or metastatic non-small cell lung cancer with KRAS G12C mutation as determined by a Food and Drug Administration-approved test, who have received at least one prior systemic therapy. A multicenter, single-group, open-label, phase 2 trial was able to demonstrate that sotorasib was able to demonstrate objective response, progression-free survival, and overall survival in this patient population. A phase 3 trial comparing sotorasib to docetaxel in the subsequent-line treatment of KRAS G12C non-small cell lung cancer is currently ongoing. There are other KRAS-targeted agents currently under study, including adagrasib, with growing interest in targeting KRAS downstream pathways. CONCLUSION Further trials need to be conducted in order to identify other targeted agents for KRAS and the appropriate place in therapy among currently approved treatments for non-small cell lung cancer.
Collapse
|
19
|
|
Yu Y, Yang Y, Li H, Fan Y. Targeting HER2 alterations in non-small cell lung cancer: Therapeutic breakthrough and challenges. Cancer Treat Rev 2023;114:102520. [PMID: 36738637 DOI: 10.1016/j.ctrv.2023.102520] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/28/2023]
Abstract
In non-small cell lung cancer (NSCLC) with human epidermal growth factor receptor 2 (HER2) alterations, chemotherapy remains the standard treatment over a decade, due to the minor efficacy of traditional pan-HER tyrosine kinase inhibitors (TKIs) and HER2-targeted monoclonal antibodies. In recent years, novel selective HER2 TKIs have been developed for pretreated HER2-mutant patients. In particular, pyrotinib has shown moderate efficacy as well as a manageable safety profile, and it is now being further evaluated as monotherapy or combined with other existing therapies; by contrast, while poziotinib has demonstrated promising preliminary results, the high rates of toxicity has hampered subsequent studies. Most notably, trastuzumab deruxtecan (T-DXd, DS-8201) has led to a significant breakthrough, with the most encouraging efficacy data (response rate of 55 %, median progression-free survival of 8.2 months and median overall survival of 17.8 months) among all the anti-HER2 agents. This is certainly remarkable progress, and T-DXd is undoubtedly the key drug for the treatment of this disease. Future developments regarding T-DXd are favourable, including shifting from monotherapy to combination strategies, improving structural design to optimise antitumour activity and minimise toxicity, identifying the potential resistance mechanisms and developing therapeutic strategies to overcome them. Several other challenges need to be addressed, such as the intracranial activity of anti-HER2 agents and the optimal sequencing of therapies. Here, we summarise recent therapeutic advances in targeting HER2 alterations in NSCLC and highlight the future perspectives of these patient populations.
Collapse
|
20
|
|
Elahi AH, Morales CS, Xu XL, Eliades A, Patsalis PC, Abramson DH, Jhanwar SC. `Targeted pharmacologic inhibition of S-phase kinase-associated protein 2 (SKP2) mediated cell cycle regulation in lung and other RB-Related cancers: A brief review of current status and future prospects. Adv Biol Regul 2023. [DOI: 10.1016/j.jbior.2023.100964] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/18/2023]
|
21
|
|
Pu H, Wen X, Luo D, Guo Z. Regulation of progesterone receptor expression in endometriosis, endometrial cancer, and breast cancer by estrogen, polymorphisms, transcription factors, epigenetic alterations, and ubiquitin-proteasome system. J Steroid Biochem Mol Biol 2023;227:106199. [PMID: 36191723 DOI: 10.1016/j.jsbmb.2022.106199] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
The uterus and breasts are hormone-responsive tissues. Progesterone and estradiol regulate gonadotropin secretion, prepare the endometrium for implantation, maintain pregnancy, and regulate the differentiation of breast tissue. Dysregulation of these hormones causes endometriosis, endometrial cancer, and breast cancer, damaging the physical and mental health of women. Emerging evidence has shown that progesterone resistance or elevated progesterone activity is the primary hormonal substrate of these diseases. Since progesterone acts through its specific nuclear receptor, the abnormal expression of the progesterone receptor (PR) dysregulates progesterone function. This review discusses the regulatory mechanisms of PR expression in patients with endometriosis, and endometrial or breast cancer, including estrogen, polymorphisms, transcription factors, epigenetics, and the ubiquitin-proteasome system. (1) Estrogen promotes the expression of PRA (a PR isoform) mRNA and protein through the interaction of estrogen receptors (ERs) and Sp1 with half-ERE/Sp1 binding sites. ERs also affect the binding of Sp1 and Sp1 sites to promote the expression of PRB (another PR isoform)(2) PR polymorphisms, mainly PROGINS and + 331 G/A polymorphism, regulate PR expression by affecting DNA methylation and transcription factor binding. (3) The influence of epigenetic alterations on PR expression occurs through DNA methylation, histone modification, and microRNA. (4) As one of the main protein degradation pathways in vivo, the ubiquitin-proteasome system (UPS) regulates PR expression by participating in protein degradation. These mechanisms may provide new molecular targets for diagnosing and treating endometriosis, endometrial, and breast cancer.
Collapse
|
22
|
|
Saito R, Sugawara S, Ko R, Azuma K, Morita R, Maemondo M, Oizumi S, Takahashi K, Kagamu H, Tsubata Y, Seike M, Kikuchi T, Okamoto I, Satoshi M, Asahina H, Tanaka K, Sugio K, Kobayashi K. Phase 2 Study of Osimertinib in Combination with Platinum and Pemetrexed in Patients with Previously Untreated EGFR-Mutated Advanced Non-Squamous Non-Small Cell Lung Cancer: The OPAL Study. Eur J Cancer 2023. [DOI: 10.1016/j.ejca.2023.02.023] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023]
|
23
|
|
Cifuentes GA, Santiago A, Méndez Blanco L, Fueyo M, López Martínez E, Soria R, Martín López I, Cucarella Beltrán P, Pardo-Coto P, Rodriguez-Rubi D, Urquilla K, Durán NS, Álvarez R, Lago CG, Otero A, Diñeiro M, Capín R, Cadiñanos J, Cabanillas R. Clinical utility of liquid biopsy and integrative genomic profiling in early-stage and oligometastatic cancer patients treated with radiotherapy. Br J Cancer 2023;128:857-76. [PMID: 36550207 DOI: 10.1038/s41416-022-02102-z] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Liquid biopsy and Integrative Genomic Profiling (IGP) are yet to be implemented into routine Radiation Oncology. Here we assess the utility of germline, tumour and circulating cell-free DNA-based genomic analyses for the clinical management of early-stage and oligometastatic cancer patients treated by precision radiotherapy. METHODS We performed germline, tissue- and liquid biopsy NGS panels on 50 early-stage/oligometastatic cancer patients undergoing radiotherapy. We also monitored ctDNA variants in serial liquid biopsies collected during radiotherapy and follow-up and evaluated the clinical utility of such comprehensive approach. RESULTS The integration of different genomic studies revealed that only 1/3 of the liquid biopsy variants are of tumour origin. Altogether, 55 tumour variants (affecting 3/4 of the patients) were considered potentially actionable (for treatment and prognosis), whereas potential follow-up biomarkers were identified in all cases. Germline cancer-predisposing variants were present in three patients, which would have not been eligible for hereditary cancer testing according to clinical guidelines. The presence of detectable ctDNA variants before radiotherapy was associated with progression-free survival both in oligometastatic patients and in those with early-stage. CONCLUSIONS IGP provides both valuable and actionable information for personalised decision-making in Radiation Oncology.
Collapse
|
24
|
|
Tani Y, Kaneda H, Koh Y, Tamiya A, Isa S, Kubo A, Ogawa K, Matsumoto Y, Sawa K, Yoshimoto N, Mitsuoka S, Kawaguchi T. The Impact of Estrogen Receptor Expression on Mutational Status in the Evolution of Non-Small Cell Lung Cancer. Clin Lung Cancer 2023;24:165-74. [PMID: 36646585 DOI: 10.1016/j.cllc.2022.12.010] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/01/2023]
Abstract
BACKGROUND The role of estrogen receptor (ER) status in the carcinogenesis of lung cancer and its impact on prognosis remain unclear. MATERIALS AND METHODS We previously reported a prospective, multicenter, molecular epidemiology study (Japan Molecular Epidemiology for Lung Cancer Study [JME]). We examined the relationship of ER status with reproductive and hormonal factors, mutational profile, and survival using JME study data. Patients were enrolled between July 2012 and December 2013, with follow-up until November, 2017. RESULTS Among 441 ever- and 435 never-smokers, ER expression was observed in 46.4% and 53.5%, respectively (P = .022). Hormone use and reproductive history of female patients were not associated with ER status. Mutations in EGFR (P = .003), TP53 (P = .007), and CTNNB1 (P = .027) were significantly associated with ER expression. Multivariate analysis showed that mutations in EGFR (P = .032) and CTNNB1 (P = .026) were significantly associated with ER expression, whereas TP53 mutations exhibited a trend toward significance (P = .059). Relapse-free survival (RFS) was longer in all the patients with ER-positive tumors than those with ER-negative tumors (P = .021). RFS and overall survival were longer (P = .024, P = .011, respectively) in the stage I patients with ER-positive tumors than those with ER-negative tumors. CONCLUSION ERβ expression is positively associated with EGFR mutations and negatively with TP53 and CTNNB1 mutations. ER-positive tumors can be associated with better prognosis of the patients, suggesting that ER expression with coexisting EGFR mutations and wild-type TP53 contribute to the biology of non-small cell lung cancer.
Collapse
|
25
|
|
Stratmann S, Vesterlund M, Umer HM, Eshtad S, Skaftason A, Herlin MK, Sundström C, Eriksson A, Höglund M, Palle J, Abrahamsson J, Jahnukainen K, Munthe-Kaas MC, Zeller B, Tamm KP, Lindskog C, Cavelier L, Lehtiö J, Holmfeldt L. Proteogenomic analysis of acute myeloid leukemia associates relapsed disease with reprogrammed energy metabolism both in adults and children. Leukemia 2023;37:550-9. [PMID: 36572751 DOI: 10.1038/s41375-022-01796-7] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/27/2022]
Abstract
Despite improvement of current treatment strategies and novel targeted drugs, relapse and treatment resistance largely determine the outcome for acute myeloid leukemia (AML) patients. To identify the underlying molecular characteristics, numerous studies have been aimed to decipher the genomic- and transcriptomic landscape of AML. Nevertheless, further molecular changes allowing malignant cells to escape treatment remain to be elucidated. Mass spectrometry is a powerful tool enabling detailed insights into proteomic changes that could explain AML relapse and resistance. Here, we investigated AML samples from 47 adult and 22 pediatric patients at serial time-points during disease progression using mass spectrometry-based in-depth proteomics. We show that the proteomic profile at relapse is enriched for mitochondrial ribosomal proteins and subunits of the respiratory chain complex, indicative of reprogrammed energy metabolism from diagnosis to relapse. Further, higher levels of granzymes and lower levels of the anti-inflammatory protein CR1/CD35 suggest an inflammatory signature promoting disease progression. Finally, through a proteogenomic approach, we detected novel peptides, which present a promising repertoire in the search for biomarkers and tumor-specific druggable targets. Altogether, this study highlights the importance of proteomic studies in holistic approaches to improve treatment and survival of AML patients.
Collapse
|
26
|
|
Kim SY, Costa DB, Shibahara D, Kobayashi S, Halmos B. EGFR-Directed Therapy in Lung Cancer. 2023. [DOI: 10.1017/9781009342285] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/06/2023]
Abstract
Epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) is a clinically important driver alteration affecting approximately one-third of lung cancer patients. Treatments for EGFR-exon 19 deletion and exon 21 L858R NSCLC have evolved over the last decade from first-generation reversible tyrosine kinase inhibitors (TKI) to third-generation irreversible TKIs, of which osimertinib has been the widely accepted as first-line therapy. Despite survival improvement seen with osimertinib and its efficacy against acquired T790M mutation, resistance through on-target and off-target pathways eventually develop. This Element describes the structural biology and pathophysiology of EGFR-mutant NSCLC and discusses past, current, and future treatment options in the metastatic, neoadjuvant, and adjuvant settings. It describes the biology and recently approved treatment for EGFR-exon 20 insertion mutation and the treatment for the uncommon exon 18 (G719X), 20 (S768I), and 21 (L861Q) mutations. It also outlines the promising clinical applications of circulating tumor DNA (ctDNA).
Collapse
|
27
|
|
Yang M, Zhao Y, Li Y, Cui X, Liu F, Wu W, Wang XA, Li M, Liu Y, Liu Y. Afatinib in combination with GEMOX chemotherapy as the adjuvant treatment in patients with ErbB pathway mutated, resectable gallbladder cancer: study protocol for a ctDNA-based, multicentre, open-label, randomised, controlled, phase II trial. BMJ Open 2023;13:e061892. [PMID: 36854604 DOI: 10.1136/bmjopen-2022-061892] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 03/02/2023] Open
Abstract
INTRODUCTION Gallbladder cancer (GBC) is an aggressive type of digestive system cancer with a dismal outcome. Given the lack of effective treatment options, the disease rapidly reoccurs and 5-year survival rate is <5%. Our team previously found that a significant percentage of GBC tissues harboured mutations of the ErbB-related pathway. Afatinib is a chemically synthesised drug specifically targeting the ErbB pathway mutations. However, its efficacy in the treatment of patients with GBC remains unknown. Circulating tumour DNA (ctDNA) refers to a proportion of cell-free DNA in the blood which is released by apoptotic and necrotic cells from tumours in situ, metastatic foci or circulating tumour cells. ctDNA-based liquid biopsy is a non-invasive pathological detection method that offers additional value to evaluate the therapeutic efficacy of antitumour drugs. METHODS AND ANALYSIS We conduct a multicentre and randomised study on afatinib combined with gemcitabine and oxaliplatin (GEMOX) in patients with ErbB pathway mutated GBC. Clinical and biological evaluation involving ErbB pathway ctDNA detection will be made during the 3-year follow-up after participation. The primary objective of this clinical trial is to evaluate the clinical efficacy of afatinib. Disease-free survival is the primary end point and will be correlated with plasma ctDNA of patients in the treatment with afatinib. In addition, we will evaluate the sensitivity and specificity of plasma ctDNA for monitoring tumour recurrence and progression. Finally, we will assess the safety of afatinib by keeping an eye on the safety indicators. ETHICS AND DISSEMINATION The study was approved by the medical-ethical review committee of Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. The clinical trials results, even inconclusive, will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04183712.
Collapse
|
28
|
|
Tapak L, Ghasemi MK, Afshar S, Mahjub H, Soltanian A, Khotanlou H. Identification of gene profiles related to the development of oral cancer using a deep learning technique. BMC Med Genomics 2023;16:35. [PMID: 36849997 DOI: 10.1186/s12920-023-01462-6] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Oral cancer (OC) is a debilitating disease that can affect the quality of life of these patients adversely. Oral premalignant lesion patients have a high risk of developing OC. Therefore, identifying robust survival subgroups among them may significantly improve patient therapy and care. This study aimed to identify prognostic biomarkers that predict the time-to-development of OC and survival stratification for patients using state-of-the-art machine learning and deep learning. METHODS Gene expression profiles (29,096 probes) related to 86 patients from the GSE26549 dataset from the GEO repository were used. An autoencoder deep learning neural network model was used to extract features. We also used a univariate Cox regression model to select significant features obtained from the deep learning method (P < 0.05). High-risk and low-risk groups were then identified using a hierarchical clustering technique based on 100 encoded features (the number of units of the encoding layer, i.e., bottleneck of the network) from autoencoder and selected by Cox proportional hazards model and a supervised random forest (RF) classifier was used to identify gene profiles related to subtypes of OC from the original 29,096 probes. RESULTS Among 100 encoded features extracted by autoencoder, seventy features were significantly related to time-to-OC-development, based on the univariate Cox model, which was used as the inputs for the clustering of patients. Two survival risk groups were identified (P value of log-rank test = 0.003) and were used as the labels for supervised classification. The overall accuracy of the RF classifier was 0.916 over the test set, yielded 21 top genes (FUT8-DDR2-ATM-CD247-ETS1-ZEB2-COL5A2-GMAP7-CDH1-COL11A2-COL3A1-AHR-COL2A1-CHORDC1-PTP4A3-COL1A2-CCR2-PDGFRB-COL1A1-FERMT2-PIK3CB) associated with time to developing OC, selected among the original 29,096 probes. CONCLUSIONS Using deep learning, our study identified prominent transcriptional biomarkers in determining high-risk patients for developing oral cancer, which may be prognostic as significant targets for OC therapy. The identified genes may serve as potential targets for oral cancer chemoprevention. Additional validation of these biomarkers in experimental prospective and retrospective studies will launch them in OC clinics.
Collapse
|
29
|
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023;1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
|
30
|
|
Ren L, Ren Q, Wang J, He Y, Deng H, Wang X, Liu C. miR-199a-3p promotes gastric cancer progression by promoting its stemness potential via DDR2 mediation. Cell Signal 2023;106:110636. [PMID: 36813149 DOI: 10.1016/j.cellsig.2023.110636] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/22/2023]
Abstract
BACKGROUND Peritoneal metastasis (PM) is an independent prognostic factor in gastric cancer (GC), however, the underlying mechanisms of PM occurrence remain unclear. METHOD The roles of DDR2 were investigated in GC and its potential relationship to PM, and orthotopic implants into nude mice were performed to assess the biological effects of DDR2 on PM. RESULTS Herein, DDR2 level is more significantly observed to elevate in PM lesion than the primary lesion. GC with DDR2-high expression evokes a worse overall survival (OS) in TCGA, similar results of the gloomy OS with high DDR2 levels are clarified via the stratifying stage of TNM. The conspicuously increased expression of DDR2 was found in GC cell lines, luciferase reporter assays verified that miR-199a-3p directly targeted DDR2 gene, which was correlated to tumor progression. We ulteriorly observed DDR2 participated in GC stemness maintenance via mediating pluripotency factor SOX2 expression and implicated in autophagy and DNA damage of cancer stem cells (CSCs). In particular, DDR2 dominated EMT programming through recruiting NFATc1-SOX2 complex to Snai1 in governing cell progression, controlling by DDR2-mTOR-SOX2 axis in SGC-7901 CSCs. Furthermore, DDR2 promoted the tumor peritoneal dissemination in gastric xenograft mouse model. CONCLUSION Phenotype screens and disseminated verifications incriminating in GC exposit the miR-199a-3p-DDR2-mTOR-SOX2 axis as a clinically actionable target for tumor PM progression. The herein-reported DDR2-based underlying axis in GC represents novel and potent tools for studying the mechanisms of PM.
Collapse
|
31
|
|
Liao Y, Chin Chan S, Welsh EA, Fang B, Sun L, Schönbrunn E, Koomen JM, Duckett DR, Haura EB, Monastyrskyi A, Rix U. Chemical Proteomics with Novel Fully Functionalized Fragments and Stringent Target Prioritization Identifies the Glutathione-Dependent Isomerase GSTZ1 as a Lung Cancer Target. ACS Chem Biol 2023;18:251-64. [PMID: 36630201 DOI: 10.1021/acschembio.2c00587] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/12/2023]
Abstract
Photoreactive fragment-like probes have been applied to discover target proteins that constitute novel cellular vulnerabilities and to identify viable chemical hits for drug discovery. Through forming covalent bonds, functionalized probes can achieve stronger target engagement and require less effort for on-target mechanism validation. However, the design of probe libraries, which directly affects the biological target space that is interrogated, and effective target prioritization remain critical challenges of such a chemical proteomic platform. In this study, we designed and synthesized a diverse panel of 20 fragment-based probes containing natural product-based privileged structural motifs for small-molecule lead discovery. These probes were fully functionalized with orthogonal diazirine and alkyne moieties and used for protein crosslinking in live lung cancer cells, target enrichment via "click chemistry," and subsequent target identification through label-free quantitative liquid chromatography-tandem mass spectrometry analysis. Pair-wise comparison with a blunted negative control probe and stringent prioritization via individual cross-comparisons against the entire panel identified glutathione S-transferase zeta 1 (GSTZ1) as a specific and unique target candidate. DepMap database query, RNA interference-based gene silencing, and proteome-wide tyrosine reactivity profiling suggested that GSTZ1 cooperated with different oncogenic alterations by supporting survival signaling in refractory non-small cell lung cancer cells. This finding may form the basis for developing novel GSTZ1 inhibitors to improve the therapeutic efficacy of oncogene-directed targeted drugs. In summary, we designed a novel fragment-based probe panel and developed a target prioritization scheme with improved stringency, which allows for the identification of unique target candidates, such as GSTZ1 in refractory lung cancer.
Collapse
|
32
|
|
Elenius K, Koivu M, Chakroborty D, Airenne T, Johnson M, Kurppa K. Trans-activating mutations of the pseudokinase ERBB3.. [DOI: 10.21203/rs.3.rs-2568092/v1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/17/2023]
Abstract
Abstract
Genetic changes in the ERBB family of receptor tyrosine kinases serve as oncogenic driver events and predictive biomarkers for ERBB inhibitor drugs. ERBB3 is a pseudokinase member of the family that, although lacking a fully active kinase domain, is well known for its potent signaling activity as a heterodimeric complex with ERBB2. Previous studies have identified few transforming ERBB3 mutations while the great majority of the hundreds of different somatic ERBB3 variants observed in different cancer types remain of unknown significance. Here, we describe an unbiased functional genetics screen of the transforming potential of thousands of ERBB3 mutations in parallel. The screen based on a previously described iSCREAM (in vitro screen of activating mutations) platform, and addressing ERBB3 pseudokinase signaling in a context of ERBB3/ERBB2 heterodimers, identified 18 hit mutations. Validation experiments in Ba/F3, NIH 3T3, and MCF10A cell backgrounds demonstrated the presence of both previously known and unknown transforming ERBB3 missense mutations functioning either as single variants or in cis as a pairwise combination. Drug sensitivity assays with trastuzumab, pertuzumab and neratinib indicated actionability of the transforming ERBB3 variants.
Collapse
|
33
|
|
Gogolev AB, Urezkova MM, Kudaibergenova AG. [Changes in the WHO classification (2020) of soft tissue tumors]. Arkh Patol 2023;85:43-50. [PMID: 36785961 DOI: 10.17116/patol20238501143] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/15/2023]
Abstract
The article provides an overview of the main changes in the current (2020) WHO classification of soft tissue tumors, as well as selected updates that have occurred since the release of the classification.
Collapse
|
34
|
|
Fontana F, Anselmi M, Limonta P. Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers (Basel) 2023;15. [PMID: 36831534 DOI: 10.3390/cancers15041192] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among men in Western countries. Mitochondria, the "powerhouse" of cells, undergo distinctive metabolic and structural dynamics in different types of cancer. PCa cells experience peculiar metabolic changes during their progression from normal epithelial cells to early-stage and, progressively, to late-stage cancer cells. Specifically, healthy cells display a truncated tricarboxylic acid (TCA) cycle and inefficient oxidative phosphorylation (OXPHOS) due to the high accumulation of zinc that impairs the activity of m-aconitase, the enzyme of the TCA cycle responsible for the oxidation of citrate. During the early phase of cancer development, intracellular zinc levels decrease leading to the reactivation of m-aconitase, TCA cycle and OXPHOS. PCa cells change their metabolic features again when progressing to the late stage of cancer. In particular, the Warburg effect was consistently shown to be the main metabolic feature of late-stage PCa cells. However, accumulating evidence sustains that both the TCA cycle and the OXPHOS pathway are still present and active in these cells. The androgen receptor axis as well as mutations in mitochondrial genes involved in metabolic rewiring were shown to play a key role in PCa cell metabolic reprogramming. Mitochondrial structural dynamics, such as biogenesis, fusion/fission and mitophagy, were also observed in PCa cells. In this review, we focus on the mitochondrial metabolic and structural dynamics occurring in PCa during tumor development and progression; their role as effective molecular targets for novel therapeutic strategies in PCa patients is also discussed.
Collapse
|
35
|
|
Wang X, Fang A, Peng Y, Yu J, Yu C, Xie J, Zheng Y, Song L, Li P, Li J, Kang X, Lin Y, Li W. PHF6 promotes the progression of endometrial carcinoma by increasing cancer cells growth and decreasing T-cell infiltration. J Cell Mol Med 2023;27:609-21. [PMID: 36756714 DOI: 10.1111/jcmm.17638] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/10/2023] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is the most common cancer of the female reproductive tract. The overall survival of advanced and recurrent UCEC patients is still unfavourable nowadays. It is urgent to find a predictive biomarker and block tumorgenesis at an early stage. Plant homeodomain finger protein 6 (PHF6) is a key player in epigenetic regulation, and its alterations lead to various diseases, including tumours. Here, we found that PHF6 expression was upregulated in UCEC tissues compared with normal tissues. The UCEC patients with high PHF6 expression had poor survival than UCEC patients with low PHF6 expression. PHF6 mutation occurred in 12% of UCEC patients, and PHF6 mutation predicted favourable clinical outcome in UCEC patients. Depletion of PHF6 effectively inhibited HEC-1-A and KLE cell proliferation in vitro and decreased HEC-1-A cell growth in vivo. Furthermore, high PHF6 level indicated a subtype of UCECs characterized by low immune infiltration, such as CD3+ T-cell infiltration. While knockdown of PHF6 in endometrial carcinoma cells increased T-cell migration by promoting IL32 production and secretion. Taken together, our findings suggested that PHF6 might play an oncogenic role in UCEC patients. Thus, PHF6 could be a potential biomarker in predicting the prognosis of UCEC patients. Depletion of PHF6 may be a novel therapeutic strategy for UCEC patients.
Collapse
|
36
|
|
Bodnar-Wachtel M, Huber AL, Gorry J, Hacot S, Burlet D, Gérossier L, Guey B, Goutagny N, Bartosch B, Ballot E, Lecuelle J, Truntzer C, Ghiringhelli F, Py BF, Couté Y, Ballesta A, Lantuejoul S, Hall J, Tissier A, Petrilli V. Inflammasome-independent NLRP3 function enforces ATM activity in response to genotoxic stress. Life Sci Alliance 2023;6:e202201494. [PMID: 36746533 DOI: 10.26508/lsa.202201494] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/08/2023] Open
Abstract
NLRP3 is a pattern recognition receptor with a well-documented role in inducing inflammasome assembly in response to cellular stress. Deregulation of its activity leads to many inflammatory disorders including gouty arthritis, Alzheimer disease, and cancer. Whereas its role in the context of cancer has been mostly explored in the immune compartment, whether NLRP3 exerts functions unrelated to immunity in cancer development remains unexplored. Here, we demonstrate that NLRP3 interacts with the ATM kinase to control the activation of the DNA damage response, independently of its inflammasome activity. NLRP3 down-regulation in both broncho- and mammary human epithelial cells significantly impairs ATM pathway activation, leading to lower p53 activation, and provides cells with the ability to resist apoptosis induced by acute genotoxic stress. Interestingly, NLRP3 expression is down-regulated in non-small cell lung cancers and breast cancers, and its expression positively correlates with patient overall survival. Our findings identify a novel non-immune function for NLRP3 in maintaining genome integrity and strengthen the concept of a functional link between innate immunity and DNA damage sensing pathways to maintain cell integrity.
Collapse
|
37
|
|
Aoun-Bacha Z, Bitar N, Saleh WA, Assi H, Bahous J, Boukhalil P, Chami H, Dabar G, El Karak F, Farhat F, Ghanem H, Ghosn M, Juvelikian G, Nasr F, Nehme R, Riachy M, Tabet G, Tfayli A, Waked M, Youssef P. Diagnosis and management of patients with stage III non‑small cell lung cancer: A joint statement by the Lebanese Society of Medical Oncology and the Lebanese Pulmonary Society (Review). Oncol Lett 2023;25:113. [PMID: 36844621 DOI: 10.3892/ol.2023.13699] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/08/2023] Open
Abstract
Proper management of stage III non-small cell lung cancer (NSCLC) might result in a cure or patient long-term survival. Management should therefore be preceded by adequate and accurate diagnosis and staging, which will inform therapeutic decisions. A panel of oncologists, surgeons and pulmonologists in Lebanon convened to establish a set of recommendations to guide and unify clinical practice, in alignment with international standards of care. Whilst chest computerized tomography (CT) scanning remains a cornerstone in the discovery of a lung lesion, a positron-emission tomography (PET)/CT scan and a tumor biopsy allows for staging of the cancer and defining the resectability of the tumor(s). A multidisciplinary discussion meeting is currently widely advised for evaluating patients on a case-by-case basis, and should include at least the treating oncologist, a thoracic surgeon, a radiation oncologist and a pulmonologist, in addition to physicians from other specialties as needed. The standard of care for unresectable stage III NSCLC is concurrent chemotherapy and radiation therapy, followed by consolidation therapy with durvalumab, which should be initiated within 42 days of the last radiation dose; for resectable tumors, neoadjuvant therapy followed by surgical resection is recommended. This joint statement is based on the expertise of the physician panel, available literature and evidence governing the treatment, management and follow-up of patients with stage III NSCLC.
Collapse
|
38
|
|
Rauniyar S, Pansare K, Sharda A, Singh SR, Saha P, Chilakapati MK, Gupta S. Raman Spectroscopy Revealed Cell Passage-Dependent Distinct Biochemical Alterations in Radiation-Resistant Breast Cancer Cells. ACS Omega 2023;8:5522-32. [PMID: 36816694 DOI: 10.1021/acsomega.2c06787] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/05/2023] Open
Abstract
Recapitulating radioresistant cell features in pertinent cell line models is essential for deciphering fundamental cellular mechanisms. The limited understanding of passage and cell cycle phases on radioresistant cells revived post-cryopreservation led us to investigate the effect of sub-culturing in parental and radioresistant MCF-7 cells. In this study, the radioresistant cells showed high-intensity nucleic acid and cytochrome bands, which are potentially a radiation-induced spectral marker. Raman spectroscopy data showed dynamic biochemical alterations in revived radioresistant G2/M synchronized cells at early cell passages 1 and 3 with stabilization at a latter cell passage, 5. The study highlights the importance of cell passaging and cell cycle phases in potentially changing the biochemical parameters during in vitro experiments after the revival of radioresistant cells post-cryopreservation.
Collapse
|
39
|
|
Abramson DH, Mandelker DL, Brannon AR, Dunkel IJ, Benayed R, Berger MF, Arcila ME, Ladanyi M, Friedman DN, Jayakumaran G, Diosdado MS, Robbins MA, Haggag-Lindgren D, Shukla N, Walsh MF, Kothari P, Tsui DWY, Francis JH. Mutant-RB1 circulating tumor DNA in the blood of unilateral retinoblastoma patients: What happens during enucleation surgery: A pilot study. PLoS One 2023;18:e0271505. [PMID: 36735656 DOI: 10.1371/journal.pone.0271505] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/04/2023] Open
Abstract
Cell free DNA (cfDNA) and circulating tumor cell free DNA (ctDNA) from blood (plasma) are increasingly being used in oncology for diagnosis, monitoring response, identifying cancer causing mutations and detecting recurrences. Circulating tumor RB1 DNA (ctDNA) is found in the blood (plasma) of retinoblastoma patients at diagnosis before instituting treatment (naïve). We investigated ctDNA in naïve unilateral patients before enucleation and during enucleation (6 patients/ 8 mutations with specimens collected 5-40 minutes from severing the optic nerve) In our cohort, following transection the optic nerve, ctDNA RB1 VAF was measurably lower than pre-enucleation levels within five minutes, 50% less within 15 minutes and 90% less by 40 minutes.
Collapse
|
40
|
|
Srivastava P, Mishra S, Agarwal A, Pandey A, Husain N. Circulating microRNAs in gallbladder cancer: Is serum assay of diagnostic value? Pathol Res Pract 2023;242:154320. [PMID: 36682281 DOI: 10.1016/j.prp.2023.154320] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/18/2023]
Abstract
The microRNAs (miRNAs) in circulation could serve as biomarkers for cancer detection. Gallbladder carcinoma (GBC) is mostly asymptomatic; therefore, using microRNAs (miRNAs) as an early diagnostic biomarker could be a valuable tool. We aimed to identify the tumor-associated miR-1, miR130, miR-146, miR-182, and miR-21expression in serum as a biomarker for early detection of GBC and identify their possible diagnostic role. The study group comprised of paired serum and tissue samples from 34 GBC, 19 cholecystitis (CC), 21 normal controls (uninflamed gall bladder), and additional 29 serum-only samples of GBC. Total RNA was isolated using a commercially available RNA isolation kit (Applied Biosystem, USA) and reverse transcribed using Advanced Taqman MicroRNA reverse transcription kit. The relative expression of miRNAs was analyzed using Quantitative real-time polymerase chain reaction. The diagnostic potential of these miRNAs was assessed by ROC analysis. In paired samples, the trend towards up and down regulation for miR-182, miR-21, miR-1, miR-130, and miR-146 was similar in both tissue and sera of GBC. The expression pattern of serum miR-1, miR130, and miR-146 gradually decreased from normal control (NC) to CC to GBC, while miR-21 and miR-182 gradually increased from NC to CC to GBC. The miR-1, miR-121, miR-182, and miR-146 significantly differed between CC vs. early stage and early stage vs. NC. Among these miRNAs, the sensitivity of miR-1 (85.71 %) was the highest, and the specificity of miR-21 was the highest (92.73 %). The combined sensitivity for miRNAs ranged from 73.13 % (CI: 60.90-83.24 %) to 98.63 % (CI: 89.0-99.61 %); however, the specificity was lower. In stage I&II vs. III&IV discrimination, the diagnostic sensitivity of miR-1 was highest (89.36 %, CI: 76.90-96.45). The two miRNAs, in combination, increase the diagnostic sensitivity. Circulating serum miRNAs may provide a new approach for clinical application. Panels of specific circulating miRNA, which require further validation, could be potential non-invasive diagnostic biomarkers for GBC in combination with abnormal radio diagnostic scans.
Collapse
|
41
|
|
Hou X, Li M, Wu G, Feng W, Su J, Jiang H, Jiang G, Chen J, Zhang B, You Z, Liu Q, Chen L. Gefitinib Plus Chemotherapy vs Gefitinib Alone in Untreated EGFR-Mutant Non-Small Cell Lung Cancer in Patients With Brain Metastases: The GAP BRAIN Open-Label, Randomized, Multicenter, Phase 3 Study. JAMA Netw Open 2023;6:e2255050. [PMID: 36753281 DOI: 10.1001/jamanetworkopen.2022.55050] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/09/2023] Open
Abstract
IMPORTANCE Use of tyrosine kinase inhibitors (TKIs) is the standard therapy for epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) with brain metastases. Several studies have shown that adding chemotherapy to EGFR-TKIs could improve progression-free survival (PFS) in patients with EGFR-mutant advanced NSCLC; however, the efficacy of these agents in patients with brain metastases remains unclear. OBJECTIVE To investigate the efficacy and safety of gefitinib plus chemotherapy (pemetrexed with platinum) compared with gefitinib alone in patients with untreated EGFR-mutant NSCLC brain metastases. DESIGN, SETTING, AND PARTICIPANTS This open-label prospective, multicenter, phase 3 randomized clinical trial was conducted in 6 centers in China from January 13, 2016, to August 27, 2021. The median follow-up time was 21.1 months (IQR, 13.5-31.8 months). Patients with untreated confirmed brain metastases and EGFR-sensitive mutated NSCLC were enrolled. INTERVENTIONS The eligible patients were randomly assigned (1:1) to receive gefitinib plus chemotherapy or gefitinib alone. MAIN OUTCOMES AND MEASURES The primary end point was intracranial PFS; secondary end points included PFS, overall survival (OS), intracranial objective response rate, overall objective response rate, and safety. Intention-to-treat analysis was performed. RESULTS A total of 161 patients (87 [54.0%] women; mean [SD] age, 55 [9.8] years; range, 26-80 years) were enrolled and randomized to receive gefitinib (n = 81) or gefitinib plus chemotherapy (n = 80). The median intracranial PFS was 15.6 months (95% CI, 14.3-16.9 months) in the gefitinib plus chemotherapy group vs 9.1 months (95% CI, 8.0-10.2 months) in the gefitinib group (hazard ratio, 0.36; 95% CI, 0.25-0.53; P < .001). Similarly, the median PFS was significantly longer with gefitinib plus chemotherapy than gefitinib alone (16.3; 95% CI, 14.4-18.2 months vs 9.5; 95% CI, 8.3-10.8 months; P < .001). Gefitinib plus chemotherapy had a better intracranial objective response rate (85.0%; 95% CI, 77.0%-93.0% vs 63.0%; 95% CI, 52.2%-73.7%; P = .002) and overall objective response rate (80.0%; 95% CI, 71.0%-89.0% vs 64.2%; 95% CI, 53.5%-74.9%; P = .03) than gefitinib alone. At data cutoff, the median OS was also significantly longer in the gefitinib plus chemotherapy group vs the gefitinib group (35.0 vs 28.9 months; hazard ratio, 0.65; 95% CI, 0.43-0.99; P = .04). Grade 3 or worse adverse events were more common with gefitinib plus chemotherapy, most of which were manageable. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, gefitinib plus chemotherapy significantly improved intracranial PFS, PFS, and OS compared with gefitinib alone in patients with untreated EGFR-mutant NSCLC brain metastases and could be an optional first-line treatment for these patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01951469.
Collapse
|
42
|
|
Woldmar N, Schwendenwein A, Kuras M, Szeitz B, Boettiger K, Tisza A, László V, Reiniger L, Bagó AG, Szállási Z, Moldvay J, Szász AM, Malm J, Horvatovich P, Pizzatti L, Domont GB, Rényi-Vámos F, Hoetzenecker K, Hoda MA, Marko-Varga G, Schelch K, Megyesfalvi Z, Rezeli M, Döme B. Proteomic analysis of brain metastatic lung adenocarcinoma reveals intertumoral heterogeneity and specific alterations associated with the timing of brain metastases. ESMO Open 2023;8:100741. [PMID: 36527824 DOI: 10.1016/j.esmoop.2022.100741] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Brain metastases are associated with considerable negative effects on patients' outcome in lung adenocarcinoma (LADC). Here, we investigated the proteomic landscape of primary LADCs and their corresponding brain metastases. MATERIALS AND METHODS Proteomic profiling was conducted on 20 surgically resected primary and brain metastatic LADC samples via label-free shotgun proteomics. After sample processing, peptides were analyzed using an Ultimate 3000 pump coupled to a QExactive HF-X mass spectrometer. Raw data were searched using PD 2.4. Further data analyses were carried out using Perseus, RStudio and GraphPad Prism. Proteomic data were correlated with clinical and histopathological parameters and the timing of brain metastases. Mass spectrometry-based proteomic data are available via ProteomeXchange with identifier PXD027259. RESULTS Out of the 6821 proteins identified and quantified, 1496 proteins were differentially expressed between primary LADCs and corresponding brain metastases. Pathways associated with the immune system, cell-cell/matrix interactions and migration were predominantly activated in the primary tumors, whereas pathways related to metabolism, translation or vesicle formation were overrepresented in the metastatic tumors. When comparing fast- versus slow-progressing patients, we found 454 and 298 differentially expressed proteins in the primary tumors and brain metastases, respectively. Metabolic reprogramming and ribosomal activity were prominently up-regulated in the fast-progressing patients (versus slow-progressing individuals), whereas expression of cell-cell interaction- and immune system-related pathways was reduced in these patients and in those with multiple brain metastases. CONCLUSIONS This is the first comprehensive proteomic analysis of paired primary tumors and brain metastases of LADC patients. Our data suggest a malfunction of cellular attachment and an increase in ribosomal activity in LADC tissue, promoting brain metastasis. The current study provides insights into the biology of LADC brain metastases and, moreover, might contribute to the development of personalized follow-up strategies in LADC.
Collapse
|
43
|
|
Talia KL, Banet N, Buza N. The role of HER2 as a therapeutic biomarker in gynaecological malignancy: potential for use beyond uterine serous carcinoma. Pathology 2023;55:8-18. [PMID: 36503635 DOI: 10.1016/j.pathol.2022.11.004] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/25/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a prognostic biomarker and therapeutic target in carcinomas of the breast, stomach and colon. In 2018, clinical trial data confirmed the prognostic and predictive role of HER2 in uterine serous carcinoma, with a demonstrated survival benefit from combined chemotherapy and anti-HER2 targeted therapy in patients with advanced or recurrent disease. Approximately one-third of uterine serous carcinomas demonstrate HER2 protein overexpression and/or gene amplification and HER2 immunohistochemistry, supplemented by in situ hybridisation in equivocal cases, is fast becoming a reflex ancillary test at time of diagnosis. The potential role of HER2 in gynaecological tumours other than uterine serous carcinoma is yet to be firmly established. With the advent of personalised medicine, routine tumour sequencing and pursuit of targeted therapies, this is a field currently under active investigation. Emerging data suggest triaging endometrial carcinomas for HER2 analysis based on molecular classification may be superior to histotype-based testing, with copy-number high/p53 mutant tumours enriched for HER2 overexpression or amplification. Accordingly, many carcinosarcomas and a subset of clear cell and high-grade endometrioid carcinomas may be eligible for HER2 targeted therapy, although any clinical benefit in this context is currently undefined. For ovarian carcinomas, combined data support the role of HER2 as a prognostic biomarker, however its use as a therapeutic target is yet to be elucidated through clinical trials. In the cervix, reported rates of HER2 overexpression vary and are generally low, and currently there is insufficient evidence to justify routine HER2 testing in this context. Limited data suggest HER2 holds promise as a prognostic and predictive biomarker in vulvar Paget disease. Future clinical trials, with pathologist input to develop and refine site-specific scoring criteria, are required to establish what role HER2 might play more broadly in gynaecological cancer care.
Collapse
|
44
|
|
Raman R, Ramamohan V, Rathore A, Jain D, Mohan A, Vashistha V. Prevalence of highly actionable mutations among Indian patients with advanced non-small cell lung cancer: A systematic review and meta-analysis. Asia Pac J Clin Oncol 2023;19:158-71. [PMID: 35634796 DOI: 10.1111/ajco.13802] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/20/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality in India. To clarify rates of actionable mutations, and thereby identify opportunities to improve the delivery of best available care for a large volume of patients, a comprehensive review of available data is warranted. METHODS Studies that reported prevalence of any actionable gene variant among adult Indian patients with advanced NSCLC were selected from three databases (PubMed, EMBASE, and Cochrane Library). Ranges in actionable variant prevalence were reported. Meta-analysis of proportions was completed among studies specifically evaluating mutational prevalence within ALK or EGFR. Sensitivity analyses were undertaken among populations sharing high heterogeneity. RESULTS Twenty-six studies were selected. Ranges in actionable mutational prevalence among NSCLC patients were as follows: ALK: 4.1-21.4%, BRAF: 1.5-3.5%, EGFR: 11.9-51.8%, HER2: 0-1.5%, KRAS: 4.5-6.4%, NTRK: 0-.7%, and ROS-1: 3.5-4.1%. Following sensitivity analysis, pooled ALK mutational prevalence rates were 8.3% (95% CIs: 6.6-10.4%) and 4.01% (95% CIs: 2.3-7.0) for adenocarcinoma and NSCLC patients, respectively. Pooled EGFR mutational prevalence rates were 28.7% (95% CIs: 23.5-34.6%) and 24.2% (95% CIs: 19.9-29.1%) for adenocarcinoma and NSCLC patients, respectively. CONCLUSIONS Nearly 40% of Indian patients with advanced adenocarcinoma and 30% with NSCLC share an actionable mutation in ALK or EGFR. Approximately one-half of adenocarcinoma patients have an actionable variant. Efforts should be directed toward efficiently identifying candidates for targeted agents and delivering such treatments.
Collapse
|
45
|
|
Dehner C, Geiersbach K, Rowsey R, Murugan P, Broski S, Meis JM, Rosenberg AE, Folpe AL. Rhabdomyosarcoma Arising in Inflammatory Rhabdomyoblastic Tumor: A Genetically Distinctive Subtype of Rhabdomyosarcoma. Mod Pathol 2023. [DOI: 10.1016/j.modpat.2023.100131] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/03/2023]
|
46
|
|
Jang E, Jung S, Sohng W, Choi D, Hwang G, Chung H. Screening of gall bladder cancer through infrared analysis of bile and examination of varied bile constituent composition by the disease. Spectrochim Acta A Mol Biomol Spectrosc 2023;286:122030. [DOI: 10.1016/j.saa.2022.122030] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/06/2022]
|
47
|
|
Lu JT, Yan ZY, Xu TX, Zhao F, Liu L, Li F, Guo W. Reciprocal regulation of LINC00941 and SOX2 promotes progression of esophageal squamous cell carcinoma. Cell Death Dis 2023;14:72. [PMID: 36717549 DOI: 10.1038/s41419-023-05605-6] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/01/2023]
Abstract
LINC00941 is a novel long noncoding RNA (lncRNA) and emerging as an important factor in cancer development. However, the exact function and relative regulatory mechanism of LINC00941 in carcinogenesis of esophageal squamous cell carcinoma (ESCC) remain to be further clarified. The present study was to investigate the expression level, functions, and mechanisms of LINC00941 in ESCC tumorigenesis. LINC00941 was significantly upregulated in ESCC, and upregulated LINC00941 was correlated with dismal patient outcomes. LINC00941 functioned as an oncogene by promoting cells proliferation, stemness, migration, and invasion in ESCC. In terms of mechanisms, SOX2 could bind directly to the promoter region of LINC00941 and activate its transcription. In turn, LINC00941 upregulated SOX2 through interacting with interleukin enhancer binding factor 2 (ILF2) and Y-box binding protein 1 (YBX1) at the transcriptional and post-transcriptional levels. LINC00941 recruited ILF2 and YBX1 to the promoter region of SOX2, leading to upregulation of the transcription of SOX2. Moreover, LINC00941 could promote the binding ability of ILF2 and YBX1 on mRNA of SOX2 and further stabilize SOX2 mRNA. Therefore, LINC00941 contributed to the malignant behaviors of ESCC cells via the unrestricted increase in SOX2 expression. In conclusion, our data indicate that LINC00941 exacerbates ESCC progression through forming a LINC00941-ILF2/YBX1-SOX2 positive feedback loop, and LINC00941 may be a promising prognostic and therapeutic target for ESCC.
Collapse
|
48
|
|
Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023;9:e13323. [PMID: 36744065 DOI: 10.1016/j.heliyon.2023.e13323] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/31/2023] Open
Abstract
The use of biomarkers as early warning systems in the evaluation of disease risk has increased markedly in the last decade. Biomarkers are indicators of typical biological processes, pathogenic processes, or pharmacological reactions to therapy. The application and identification of biomarkers in the medical and clinical fields have an enormous impact on society. In this review, we discuss the history, various definitions, classifications, characteristics, and discovery of biomarkers. Furthermore, the potential application of biomarkers in the diagnosis, prognosis, and treatment of various diseases over the last decade are reviewed. The present review aims to inspire readers to explore new avenues in biomarker research and development.
Collapse
|
49
|
|
Seong CS, Huang C, Boese AC, Hou Y, Koo J, Mouw JK, Rupji M, Joseph G, Johnston HR, Claussen H, Switchenko JM, Behera M, Churchman M, Kolesar JM, Arnold SM, Kerrigan K, Akerley W, Colman H, Johns MA, Arciero C, Zhou W, Marcus AI, Ramalingam SS, Fu H, Gilbert-Ross M. Loss of the endocytic tumor suppressor HD-PTP phenocopies LKB1 and promotes RAS-driven oncogenesis. bioRxiv 2023:2023. [PMID: 36747658 DOI: 10.1101/2023.01.26.525772] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/30/2023]
Abstract
Oncogenic RAS mutations drive aggressive cancers that are difficult to treat in the clinic, and while direct inhibition of the most common KRAS variant in lung adenocarcinoma (G12C) is undergoing clinical evaluation, a wide spectrum of oncogenic RAS variants together make up a large percentage of untargetable lung and GI cancers. Here we report that loss-of-function alterations (mutations and deep deletions) in the gene that encodes HD-PTP ( PTPN23 ) occur in up to 14% of lung cancers in the ORIEN Avatar lung cancer cohort, associate with adenosquamous histology, and occur alongside an altered spectrum of KRAS alleles. Furthermore, we show that in publicly available early-stage NSCLC studies loss of HD-PTP is mutually exclusive with loss of LKB1, which suggests they restrict a common oncogenic pathway in early lung tumorigenesis. In support of this, knockdown of HD-PTP in RAS-transformed lung cancer cells is sufficient to promote FAK-dependent invasion. Lastly, knockdown of the Drosophila homolog of HD-PTP (dHD-PTP/Myopic) synergizes to promote RAS-dependent neoplastic progression. Our findings highlight a novel tumor suppressor that can restrict RAS-driven lung cancer oncogenesis and identify a targetable pathway for personalized therapeutic approaches for adenosquamous lung cancer.
Collapse
|
50
|
|
Bhatt V, Lan T, Wang W, Kong J, Lopes EC, Wang J, Khayati K, Raju A, Rangel M, Lopez E, Hu ZS, Luo X, Su X, Malhotra J, Hu W, Pine SR, White E, Guo JY. Inhibition of autophagy and MEK promotes ferroptosis in Lkb1-deficient Kras-driven lung tumors. Cell Death Dis 2023;14:61. [PMID: 36702816 DOI: 10.1038/s41419-023-05592-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/27/2023]
Abstract
LKB1 and KRAS are the third most frequent co-mutations detected in non-small cell lung cancer (NSCLC) and cause aggressive tumor growth. Unfortunately, treatment with RAS-RAF-MEK-ERK pathway inhibitors has minimal therapeutic efficacy in LKB1-mutant KRAS-driven NSCLC. Autophagy, an intracellular nutrient scavenging pathway, compensates for Lkb1 loss to support Kras-driven lung tumor growth. Here we preclinically evaluate the possibility of autophagy inhibition together with MEK inhibition as a treatment for Kras-driven lung tumors. We found that the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and the MEK inhibitor Trametinib displays synergistic anti-proliferative activity in KrasG12D/+;Lkb1-/- (KL) lung cancer cells, but not in KrasG12D/+;p53-/- (KP) lung cancer cells. In vivo studies using tumor allografts, genetically engineered mouse models (GEMMs) and patient-derived xenografts (PDXs) showed anti-tumor activity of the combination of HCQ and Trametinib on KL but not KP tumors. We further found that the combination treatment significantly reduced mitochondrial membrane potential, basal respiration, and ATP production, while also increasing lipid peroxidation, indicative of ferroptosis, in KL tumor-derived cell lines (TDCLs) and KL tumors compared to treatment with single agents. Moreover, the reduced tumor growth by the combination treatment was rescued by ferroptosis inhibitor. Taken together, we demonstrate that autophagy upregulation in KL tumors causes resistance to Trametinib by inhibiting ferroptosis. Therefore, a combination of autophagy and MEK inhibition could be a novel therapeutic strategy to specifically treat NSCLC bearing co-mutations of LKB1 and KRAS.
Collapse
|