451
|
Farmer JT, Shimkevitch AV, Reilly PS, Mlynek KD, Jensen KS, Callahan MT, Bushaw-Newton KL, Kaplan JB. Environmental bacteria produce abundant and diverse antibiofilm compounds. J Appl Microbiol 2014; 117:1663-73. [PMID: 25179003 DOI: 10.1111/jam.12639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/23/2014] [Accepted: 08/22/2014] [Indexed: 11/26/2022]
Abstract
AIMS The aim of this study was to isolate novel antibiofilm compounds produced by environmental bacteria. METHODS AND RESULTS Cell-free extracts were prepared from lawns of bacteria cultured on agar. A total of 126 bacteria isolated from soil, cave and river habitats were employed. Extracts were tested for their ability to inhibit Staphylococcus aureus biofilm in a 96-well microtitre plate assay. A total of 55/126 extracts (44%) significantly inhibited Staph. aureus biofilm. Seven extracts were selected for further analysis. The antibiofilm activities in all seven extracts exhibited unique patterns of molecular mass, chemical polarity, heat stability and spectrum of activity against Staph. aureus, Staphylococcus epidermidis and Pseudomonas fluorescens, suggesting that these seven antibiofilm activities were mediated by unique chemical compounds with different mechanisms of action. CONCLUSIONS Environmental bacteria produce abundant and diverse antibiofilm compounds. SIGNIFICANCE AND IMPACT OF THE STUDY Screening cell-free extracts is a useful method for identifying secreted compounds that regulate biofilm formation. Such compounds may represent a novel source of antibiofilm agents for technological development.
Collapse
Affiliation(s)
- J T Farmer
- Department of Biology, American University, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
452
|
Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces. Int J Biomater 2014; 2014:716080. [PMID: 25332720 PMCID: PMC4190133 DOI: 10.1155/2014/716080] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Biofilm growth on the implant surface is the number one cause of the failure of the implants. Biofilms on implant surfaces are hard to eliminate by antibiotics due to the protection offered by the exopolymeric substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune cells. Application of metals in nanoscale is considered to resolve biofilm formation. Here we studied the effect of iron-oxide nanoparticles over biofilm formation on different biomaterial surfaces and pluronic coated surfaces. Bacterial adhesion for 30 min showed significant reduction in bacterial adhesion on pluronic coated surfaces compared to other surfaces. Subsequently, bacteria were allowed to grow for 24 h in the presence of different concentrations of iron-oxide nanoparticles. A significant reduction in biofilm growth was observed in the presence of the highest concentration of iron-oxide nanoparticles on pluronic coated surfaces compared to other surfaces. Therefore, combination of polymer brush coating and iron-oxide nanoparticles could show a significant reduction in biofilm formation.
Collapse
|
453
|
Mishra SK, Basukala P, Basukala O, Parajuli K, Pokhrel BM, Rijal BP. Detection of biofilm production and antibiotic resistance pattern in clinical isolates from indwelling medical devices. Curr Microbiol 2014; 70:128-34. [PMID: 25239012 DOI: 10.1007/s00284-014-0694-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 08/12/2014] [Indexed: 01/09/2023]
Abstract
Microbial biofilms pose great threat for patients requiring indwelling medical devices (IMDs) as it is difficult to remove them. It is, therefore, crucial to follow an appropriate method for the detection of biofilms. The present study focuses on detection of biofilm formation among the isolates from IMDs. We also aimed to explore the antibiogram of biofilm producers. This prospective analysis included 65 prosthetic samples. After isolation and identification of bacteria following standard methodology, antibiogram of the isolates were produced following Kirby-Bauer disc diffusion method. Detection of biofilms was done by tube adherence (TA), Congo red agar and tissue culture plate (TCP) methods. Out of 67 clinical isolates from IMDs, TCP detected 31 (46.3 %) biofilm producers and 36 (53.7 %) biofilm non-producers. Klebsiella pneumoniae, Pseudomonas aeruginosa and Burkholderia cepacia complex were found to be the most frequent biofilm producers. The TA method correlated well with the TCP method for biofilm detection. Higher antibiotic resistance was observed in biofilm producers than in biofilm non-producers. The most effective antibiotics for biofilm producing Gram-positive isolates were Vancomycin and Tigecycline, and that for biofilm producing Gram-negative isolates were Polymyxin-B, Colistin Sulphate and Tigecycline. Nearly 46 % of the isolates were found to be biofilm producers. The antibiotic susceptibility pattern in the present study showed Amoxicillin to be an ineffective drug for isolates from the IMDs. For the detection of biofilm production, TA method can be an economical and effective alternative to TCP method.
Collapse
Affiliation(s)
- Shyam Kumar Mishra
- Department of Microbiology, Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu, Nepal,
| | | | | | | | | | | |
Collapse
|
454
|
cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1. J Bacteriol 2014; 196:3881-9. [PMID: 25182494 DOI: 10.1128/jb.01978-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
For bacteria, many studies have focused on the role of respiratory enzymes in energy conservation; however, their effect on cell behavior is poorly understood. Pseudomonas aeruginosa can perform both aerobic respiration and denitrification. Previous studies demonstrated that cbb3-type cytochrome c oxidases that support aerobic respiration are more highly expressed in P. aeruginosa under anoxic conditions than are other aerobic respiratory enzymes. However, little is known about their role under such conditions. In this study, it was shown that cbb3 oxidases of P. aeruginosa PAO1 alter anaerobic growth, the denitrification process, and cell morphology under anoxic conditions. Furthermore, biofilm formation was promoted by the cbb3 oxidases under anoxic conditions. cbb3 oxidases led to the accumulation of nitric oxide (NO), which is produced during denitrification. Cell elongation induced by NO accumulation was reported to be required for robust biofilm formation of P. aeruginosa PAO1 under anoxic conditions. Our data show that cbb3 oxidases promote cell elongation by inducing NO accumulation during the denitrification process, which further leads to robust biofilms. Our findings show that cbb3 oxidases, which have been well studied as aerobic respiratory enzymes, are also involved in denitrification and influence the lifestyle of P. aeruginosa PAO1 under anoxic conditions.
Collapse
|
455
|
Ahtinen H, Kulkova J, Lindholm L, Eerola E, Hakanen AJ, Moritz N, Söderström M, Saanijoki T, Jalkanen S, Roivainen A, Aro HT. (68)Ga-DOTA-Siglec-9 PET/CT imaging of peri-implant tissue responses and staphylococcal infections. EJNMMI Res 2014; 4:45. [PMID: 25520903 PMCID: PMC4265888 DOI: 10.1186/s13550-014-0045-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/26/2014] [Indexed: 11/16/2022] Open
Abstract
Background Staphylococcus epidermidis (S. epidermidis) has emerged as one of the leading pathogens of biomaterial-related infections. Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial molecule controlling extravasation of leukocytes. Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a leukocyte ligand of VAP-1. We hypothesized that 68Ga-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated Siglec-9 motif containing peptide (68Ga-DOTA-Siglec-9) could detect inflammatory response due to S. epidermidis peri-implant infection by positron emission tomography (PET). Methods Thirty Sprague-Dawley rats were randomized into three groups. A sterile catheter was implanted into the medullary canal of the left tibia. In groups 1 and 2, the implantation was followed by peri-implant injection of S. epidermidis or Staphylococcus aureus (S. aureus) with adjunct injections of aqueous sodium morrhuate. In group 3, sterile saline was injected instead of bacteria and no aqueous sodium morrhuate was used. At 2 weeks after operation, 68Ga-DOTA-Siglec-9 PET coupled with computed tomography (CT) was performed with the measurement of the standardized uptake value (SUV). The presence of the implant-related infection was verified by microbiological analysis, imaging with fluorescence microscope, and histology. The in vivo PET results were verified by ex vivo measurements by gamma counter. Results In group 3, the tibias with implanted sterile catheters showed an increased local uptake of 68Ga-DOTA-Siglec-9 compared with the intact contralateral bones (SUVratio +29.5%). 68Ga-DOTA-Siglec-9 PET detected inflammation induced by S. epidermidis and S. aureus catheter-related bone infections (SUVratio +58.1% and +41.7%, respectively). The tracer uptake was significantly higher in the S. epidermidis group than in group 3 without bacterial inoculation, but the difference between S. epidermidis and S. aureus groups was not statistically significant. The difference between the S. aureus group and group 3 was neither statistically significant. Conclusion PET/CT imaging with novel 68Ga-DOTA-Siglec-9 tracer was able to detect inflammatory tissue response induced by catheter implantation and staphylococcal infections.
Collapse
Affiliation(s)
- Helena Ahtinen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku FI-20521, Finland
| | - Julia Kulkova
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, Turku University Hospital, University of Turku, Turku FI-20521, Finland
| | - Laura Lindholm
- Department of Medical Microbiology and Immunology, University of Turku, Turku FI-20521, Finland
| | - Erkki Eerola
- Department of Medical Microbiology and Immunology, University of Turku, Turku FI-20521, Finland
| | - Antti J Hakanen
- Antimicrobial Resistance Unit, National Institute for Health and Welfare, Turku FI-20521, Finland
| | - Niko Moritz
- Turku Clinical Biomaterials Centre, Institute of Dentistry, University of Turku, Turku FI-20521, Finland
| | - Mirva Söderström
- Department of Pathology, Turku University Hospital, University of Turku, Turku FI-20521, Finland
| | - Tiina Saanijoki
- Turku PET Centre, Turku University Hospital, University of Turku, Turku FI-20521, Finland
| | - Sirpa Jalkanen
- Department of Medical Microbiology and Immunology, University of Turku, Turku FI-20521, Finland ; MediCity Research Laboratory, University of Turku, Turku FI-20521, Finland
| | - Anne Roivainen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku FI-20521, Finland ; Turku Center for Disease Modeling, University of Turku, Turku FI-20521, Finland
| | - Hannu T Aro
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, Turku University Hospital, University of Turku, Turku FI-20521, Finland
| |
Collapse
|
456
|
Authimoolam SP, Vasilakes AL, Shah NM, Puleo DA, Dziubla TD. Synthetic oral mucin mimic from polymer micelle networks. Biomacromolecules 2014; 15:3099-111. [PMID: 24992241 PMCID: PMC4130247 DOI: 10.1021/bm5006917] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Mucin networks are formed in the
oral cavity by complexation of
glycoproteins with other salivary proteins, yielding a hydrated lubricating
barrier. The function of these networks is linked to their structural,
chemical, and mechanical properties. Yet, as these properties are
interdependent, it is difficult to tease out their relative importance.
Here, we demonstrate the ability to recreate the fibrous like network
through a series of complementary rinses of polymeric worm-like micelles,
resulting in a 3-dimensional (3D) porous network that can be deposited
layer-by-layer onto any surface. In this work, stability, structure,
and microbial capture capabilities were evaluated as a function of
network properties. It was found that network structure alone was
sufficient for bacterial capture, even with networks composed of the
adhesion-resistant polymer, poly(ethylene glycol). The synthetic networks
provide an excellent, yet simple, means of independently characterizing
mucin network properties (e.g., surface chemistry, stiffness, and
pore size).
Collapse
Affiliation(s)
- Sundar P Authimoolam
- Department of Chemical and Materials Engineering, College of Engineering, University of Kentucky , 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | | | | | | | | |
Collapse
|
457
|
Sandrini S, Alghofaili F, Freestone P, Yesilkaya H. Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression. BMC Microbiol 2014; 14:180. [PMID: 24996423 PMCID: PMC4105557 DOI: 10.1186/1471-2180-14-180] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/26/2014] [Indexed: 12/13/2022] Open
Abstract
Background Host signals are being shown to have a major impact on the bacterial phenotype. One of them is the endogenously produced catecholamine stress hormones, which are also used therapeutically as inotropes. Recent work form our laboratories have found that stress hormones can markedly increase bacterial growth and virulence. This report reveals that Streptococcus pneumoniae, a commensal that can also be a major cause of community acquired and nosocomial pneumonia, is highly inotrope responsive. Therapeutic levels of the stress hormone norepinephrine increased pneumococcal growth via a mechanism involving provision of iron from serum-transferrin and inotrope uptake, as well as enhancing expression of key genes in central metabolism and virulence. Collectively, our data suggests that Streptococcus pneumoniae recognises host stress as an environmental cue to initiate growth and pathogenic processes. Results Effects of a clinically attainable concentration of norepinephrine on S. pneumoniae pathogenicity were explored using in vitro growth and virulence assays, and RT-PCR gene expression profiling of genes involved in metabolism and virulence. We found that norepinephrine was a potent stimulator of growth, via a mechanism involving norepinephrine-delivery of transferrin-iron and internalisation of the inotrope. Stress hormone exposure also markedly increased biofilm formation. Importantly, gene profiling showed that norepinephrine significantly enhanced expression of genes involved in central metabolism and host colonisation. Analysis of the response of the pneumococcal pspA and pspC mutants to the stress hormone showed them to have a central involvement in the catecholamine response mechanism. Conclusions Collectively, our evidence suggests that the pneumococcus has mechanisms to recognise and process host stress hormones to augment its virulence properties. The ability to respond to host stress signals may be important for the pneumococcal transition from colonization to invasion mode, which is key to its capacity to cause life-threatening pneumonia, septicaemia and meningitis.
Collapse
Affiliation(s)
| | | | - Primrose Freestone
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK.
| | | |
Collapse
|
458
|
The Pseudomonas aeruginosa CreBC two-component system plays a major role in the response to β-lactams, fitness, biofilm growth, and global regulation. Antimicrob Agents Chemother 2014; 58:5084-95. [PMID: 24936599 DOI: 10.1128/aac.02556-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous versatile environmental microorganism with a remarkable ability to grow under diverse environmental conditions. Moreover, P. aeruginosa is responsible for life-threatening infections in immunocompromised and cystic fibrosis patients, as the extraordinary capacity of this pathogen to develop antimicrobial resistance dramatically limits our therapeutic arsenal. Its large genome carries an outstanding number of genes belonging to regulatory systems, including multiple two-component sensor-regulator systems that modulate the response to the different environmental stimuli. Here, we show that one of two systems, designated CreBC (carbon source responsive) and BlrAB (β-lactam resistance), might be of particular relevance. We first identified the stimuli triggering the activation of the CreBC system, which specifically responds to penicillin-binding protein 4 (PBP4) inhibition by certain β-lactam antibiotics. Second, through an analysis of a large comprehensive collection of mutants, we demonstrate an intricate interconnection between the CreBC system, the peptidoglycan recycling pathway, and the expression of the concerning chromosomal β-lactamase AmpC. Third, we show that the CreBC system, and particularly its effector inner membrane protein CreD, plays a major role in bacterial fitness and biofilm development, especially in the presence of subinhibitory concentrations of β-lactams. Finally, global transcriptomics reveals broad regulatory functions of CreBC in basic physiological aspects, particularly anaerobic respiration, in both the presence and absence of antibiotics. Therefore, the CreBC system is envisaged as a potentially interesting target for improving the efficacy of β-lactams against P. aeruginosa infections.
Collapse
|
459
|
Marvasi M, Chen C, Carrazana M, Durie IA, Teplitski M. Systematic analysis of the ability of Nitric Oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7. AMB Express 2014; 4:42. [PMID: 24995149 PMCID: PMC4070026 DOI: 10.1186/s13568-014-0042-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/10/2014] [Indexed: 12/28/2022] Open
Abstract
Biofilms in the industrial environment could be problematic. Encased in extracellular polymeric substances, pathogens within biofilms are significantly more resistant to chlorine and other disinfectants. Recent studies suggest that compounds capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of sessile bacteria and provide a foundation for novel approaches to controlling biofilms formed by some microorganisms. In this work, we compared the ability of five nitric oxide donors (molsidomine, MAHMA NONOate, diethylamine NONOate, diethylamine NONOate diethylammonium salt, spermine NONOate) to dislodge biofilms formed by non-typhoidal Salmonella enterica and pathogenic E. coli on plastic and stainless steel surfaces at different temperatures. All five nitric oxide donors induced significant (35-80%) dispersal of biofilms, however, the degree of dispersal and the optimal dispersal conditions varied. MAHMA NONOate and molsidomine were strong dispersants of the Salmonella biofilms formed on polystyrene. Importantly, molsidomine induced dispersal of up to 50% of the pre-formed Salmonella biofilm at 4°C, suggesting that it could be effective even under refrigerated conditions. Biofilms formed by E. coli O157:H7 were also significantly dispersed. Nitric oxide donor molecules were highly active within 6 hours of application. To better understand mode of action of these compounds, we identified Salmonella genomic region recA-hydN, deletion of which led to an insensitivity to the nitric oxide donors.
Collapse
|
460
|
Iebba V, Totino V, Santangelo F, Gagliardi A, Ciotoli L, Virga A, Ambrosi C, Pompili M, De Biase RV, Selan L, Artini M, Pantanella F, Mura F, Passariello C, Nicoletti M, Nencioni L, Trancassini M, Quattrucci S, Schippa S. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic fibrosis isolates. Front Microbiol 2014; 5:280. [PMID: 24926292 PMCID: PMC4046265 DOI: 10.3389/fmicb.2014.00280] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 05/22/2014] [Indexed: 01/05/2023] Open
Abstract
Bdellovibrio bacteriovorus is a predator bacterial species found in the environment and within the human gut, able to attack Gram-negative prey. Cystic fibrosis (CF) is a genetic disease which usually presents lung colonization by Pseudomonas aeruginosa or Staphylococcus aureus biofilms. Here, we investigated the predatory behavior of B. bacteriovorus against these two pathogenic species with: (1) broth culture; (2) "static" biofilms; (3) field emission scanning electron microscope (FESEM); (4) "flow" biofilms; (5) zymographic technique. We had the first evidence of B. bacteriovorus survival with a Gram-positive prey, revealing a direct cell-to-cell contact with S. aureus and a new "epibiotic" foraging strategy imaged with FESEM. Mean attaching time of HD100 to S. aureus cells was 185 s, while "static" and "flow" S. aureus biofilms were reduced by 74 (at 24 h) and 46% (at 20 h), respectively. Furthermore, zymograms showed a differential bacteriolytic activity exerted by the B. bacteriovorus lysates on P. aeruginosa and S. aureus. The dual foraging system against Gram-negative (periplasmic) and Gram-positive (epibiotic) prey could suggest the use of B. bacteriovorus as a "living antibiotic" in CF, even if further studies are required to simulate its in vivo predatory behavior.
Collapse
Affiliation(s)
- Valerio Iebba
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Valentina Totino
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Floriana Santangelo
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Antonella Gagliardi
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Luana Ciotoli
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Alessandra Virga
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Cecilia Ambrosi
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Monica Pompili
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Riccardo V De Biase
- Department of Pediatrics and Neuropsychiatry, "Sapienza" University Rome, Italy
| | - Laura Selan
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Marco Artini
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Fabrizio Pantanella
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Francesco Mura
- Sapienza Nanoscience and Nanotecnology Laboratories, Department of Fundamental and Applied Sciences for Engineering, "Sapienza" University Rome, Italy
| | - Claudio Passariello
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Mauro Nicoletti
- Section of Microbiology, Department of Biomedical Sciences, University G. D'Annunzio Chieti, Italy
| | - Lucia Nencioni
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Maria Trancassini
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Serena Quattrucci
- Department of Pediatrics and Neuropsychiatry, "Sapienza" University Rome, Italy
| | - Serena Schippa
- Microbiology Section, Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| |
Collapse
|
461
|
Alexandre Y, Le Berre R, Barbier G, Le Blay G. Screening of Lactobacillus spp. for the prevention of Pseudomonas aeruginosa pulmonary infections. BMC Microbiol 2014; 14:107. [PMID: 24766663 PMCID: PMC4040502 DOI: 10.1186/1471-2180-14-107] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/22/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that significantly increases morbidity and mortality in nosocomial infections and cystic fibrosis patients. Its pathogenicity especially relies on the production of virulence factors or resistances to many antibiotics. Since multiplication of antibiotic resistance can lead to therapeutic impasses, it becomes necessary to develop new tools for fighting P. aeruginosa infections. The use of probiotics is one of the ways currently being explored. Probiotics are microorganisms that exert a positive effect on the host's health and some of them are known to possess antibacterial activities. Since most of their effects have been shown in the digestive tract, experimental data compatible with the respiratory environment are strongly needed. The main goal of this study was then to test the capacity of lactobacilli to inhibit major virulence factors (elastolytic activity and biofilm formation) associated with P. aeruginosa pathogenicity. RESULTS Sixty-seven lactobacilli were isolated from the oral cavities of healthy volunteers. These isolates together with 20 lactobacilli isolated from raw milks, were tested for their capacity to decrease biofilm formation and activity of the elastase produced by P. aeruginosa PAO1. Ten isolates, particularly efficient, were accurately identified using a polyphasic approach (API 50 CHL, mass-spectrometry and 16S/rpoA/pheS genes sequencing) and typed by pulsed-field gel electrophoresis (PFGE). The 8 remaining strains belonging to the L. fermentum (6), L. zeae (1) and L. paracasei (1) species were sensitive to all antibiotics tested with the exception of the intrinsic resistance to vancomycin. The strains were all able to grow in artificial saliva. CONCLUSION Eight strains belonging to L. fermentum, L. zeae and L. paracasei species harbouring anti-elastase and anti-biofilm properties are potential probiotics for fighting P. aeruginosa pulmonary infections. However, further studies are needed in order to test their innocuity and their capacity to behave such as an oropharyngeal barrier against Pseudomonas aeruginosa colonisation in vivo.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antibiosis
- Bacterial Proteins/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Electrophoresis, Gel, Pulsed-Field
- Female
- Healthy Volunteers
- Humans
- Lactobacillus/classification
- Lactobacillus/genetics
- Lactobacillus/isolation & purification
- Lactobacillus/physiology
- Male
- Mass Spectrometry
- Middle Aged
- Milk/microbiology
- Molecular Sequence Data
- Mouth/microbiology
- Pseudomonas aeruginosa/growth & development
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Young Adult
Collapse
Affiliation(s)
- Youenn Alexandre
- Université de Brest, EA 3882-Laboratoire Universitaire de Biodiversité et d’Écologie Microbienne (LUBEM), Faculté de Médecine, 22 avenue Camille Desmoulins, 29200 Brest, France
| | - Rozenn Le Berre
- Université de Brest, EA 3882-Laboratoire Universitaire de Biodiversité et d’Écologie Microbienne (LUBEM), Faculté de Médecine, 22 avenue Camille Desmoulins, 29200 Brest, France
- Département de Médecine Interne et Pneumologie, CHRU La Cavale-Blanche, 29200 Brest, France
| | - Georges Barbier
- Université de Brest, EA 3882-Laboratoire Universitaire de Biodiversité et d’Écologie Microbienne (LUBEM), Parvis Blaise Pascal, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Gwenaelle Le Blay
- Université de Brest, EA 3882-Laboratoire Universitaire de Biodiversité et d’Écologie Microbienne (LUBEM), Parvis Blaise Pascal, Technopôle Brest-Iroise, 29280 Plouzané, France
- Université de Brest, CNRS, IFREMER, UMR 6197-Laboratoire de Microbiologie des Environnement Extrêmes (LMEE), Institut Universitaire Européen de la Mer, Place Nicolas Copernic, Technopôle Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
462
|
Tremblay YD, Hathroubi S, Jacques M. [Bacterial biofilms: their importance in animal health and public health]. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2014; 78:110-116. [PMID: 24688172 PMCID: PMC3962273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared to their planktonic counterparts. The ability to form biofilms is now considered an attribute of many microorganisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Furthermore, the presence of biofilms on surfaces found at farms, slaughterhouses or food processing plants will have an impact on the efficacy of disinfection protocols. Surprisingly, biofilm formation by bacterial pathogens of veterinary or zoonotic importance has received relatively little attention. The objective of this brief Review article is to bring awareness about the importance of biofilms to animal health stakeholders.(Translated by the authors).
Collapse
Affiliation(s)
| | | | - Mario Jacques
- Adresser toute correspondance à Docteur Mario Jacques; téléphone : 450-773-8521 (poste 8348); fax : 450-778-8108; e-mail :
| |
Collapse
|
463
|
Lu J, Turnbull L, Burke CM, Liu M, Carter DA, Schlothauer RC, Whitchurch CB, Harry EJ. Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. PeerJ 2014; 2:e326. [PMID: 24711974 PMCID: PMC3970805 DOI: 10.7717/peerj.326] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Chronic wounds are a major global health problem. Their management is difficult and costly, and the development of antibiotic resistance by both planktonic and biofilm-associated bacteria necessitates the use of alternative wound treatments. Honey is now being revisited as an alternative treatment due to its broad-spectrum antibacterial activity and the inability of bacteria to develop resistance to it. Many previous antibacterial studies have used honeys that are not well characterized, even in terms of quantifying the levels of the major antibacterial components present, making it difficult to build an evidence base for the efficacy of honey as an antibiofilm agent in chronic wound treatment. Here we show that a range of well-characterized New Zealand manuka-type honeys, in which two principle antibacterial components, methylglyoxal and hydrogen peroxide, were quantified, can eradicate biofilms of a range of Staphylococcus aureus strains that differ widely in their biofilm-forming abilities. Using crystal violet and viability assays, along with confocal laser scanning imaging, we demonstrate that in all S. aureus strains, including methicillin-resistant strains, the manuka-type honeys showed significantly higher anti-biofilm activity than clover honey and an isotonic sugar solution. We observed higher anti-biofilm activity as the proportion of manuka-derived honey, and thus methylglyoxal, in a honey blend increased. However, methylglyoxal on its own, or with sugar, was not able to effectively eradicate S. aureus biofilms. We also demonstrate that honey was able to penetrate through the biofilm matrix and kill the embedded cells in some cases. As has been reported for antibiotics, sub-inhibitory concentrations of honey improved biofilm formation by some S. aureus strains, however, biofilm cell suspensions recovered after honey treatment did not develop resistance towards manuka-type honeys. New Zealand manuka-type honeys, at the concentrations they can be applied in wound dressings are highly active in both preventing S. aureus biofilm formation and in their eradication, and do not result in bacteria becoming resistant. Methylglyoxal requires other components in manuka-type honeys for this anti-biofilm activity. Our findings support the use of well-defined manuka-type honeys as a topical anti-biofilm treatment for the effective management of wound healing.
Collapse
Affiliation(s)
- Jing Lu
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine M. Burke
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Michael Liu
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Dee A. Carter
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | | | - Elizabeth J. Harry
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
464
|
Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 131:53-64. [DOI: 10.1016/j.jphotobiol.2014.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/28/2013] [Accepted: 01/07/2014] [Indexed: 11/16/2022]
|
465
|
Fiebig A, Herrou J, Fumeaux C, Radhakrishnan SK, Viollier PH, Crosson S. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion. PLoS Genet 2014; 10:e1004101. [PMID: 24465221 PMCID: PMC3900383 DOI: 10.1371/journal.pgen.1004101] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022] Open
Abstract
In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA) that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ). Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AF); (SC)
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Coralie Fumeaux
- Department of Microbiology and Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), University of Geneva Medical School, Geneva, Switzerland
| | - Sunish K. Radhakrishnan
- Department of Microbiology and Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), University of Geneva Medical School, Geneva, Switzerland
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), University of Geneva Medical School, Geneva, Switzerland
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Microbiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AF); (SC)
| |
Collapse
|
466
|
Abstract
The microtiter plate (also called 96-well plate) assay for studying biofilm formation is a method which allows for the observation of bacterial adherence to an abiotic surface. In this assay, bacteria are incubated in vinyl "U"-bottom or other types of 96-well microtiter plates. Following incubation, planktonic bacteria are rinsed away, and the remaining adherent bacteria (biofilms) are stained with crystal violet dye, thus allowing visualization of the biofilm. If quantitation is desired, the stained biofilms are solubilized and transferred to a 96-well optically clear flat-bottom plate for measurement by spectrophotometry.
Collapse
|
467
|
Tarquinio K, Confreda K, Shurko J, LaPlante K. Activities of tobramycin and polymyxin E against Pseudomonas aeruginosa biofilm-coated medical grade endotracheal tubes. Antimicrob Agents Chemother 2013; 58:1723-9. [PMID: 24379207 PMCID: PMC3957908 DOI: 10.1128/aac.01178-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/26/2013] [Indexed: 01/17/2023] Open
Abstract
Indwelling medical devices have become a major source of nosocomial infections, especially Pseudomonas aeruginosa infections, which remain the most common cause of ventilator-associated pneumonia (VAP) in neonates and children. Using medical grade polyvinyl chloride endotracheal tubes (ETTs), the activity of tobramycin and polymyxin E was quantified in a simulated prevention and treatment static time-kill model using biofilm-forming P. aeruginosa. The model simulated three clinical conditions: (i) planktonic bacteria grown in the presence of antibiotics (tobramycin and polymyxin E) without ETTs, (ii) planktonic bacteria grown in the presence of P. aeruginosa, antibiotic, and ETTs (simulating prevention), and (iii) a 24-h-formed P. aeruginosa biofilm grown on ETTs prior to antibiotic exposure (simulating treatment). In the model simulating "prevention" (conditions 1 and 2 above), tobramycin alone or in combination with polymyxin E was more bactericidal than polymyxin E alone at 24 h using a concentration of greater than 2 times the MIC. However, after a 24-h-old biofilm was allowed to form on the ETTs, neither monotherapy nor combination therapy over 24 h exhibited bactericidal or bacteriostatic effects. Against the same pathogens, tobramycin and polymyxin E, alone or in combination, exhibited bactericidal activity prior to biofilm attachment to the ETTs; however, no activity was observed once biofilm formed on ETTs. These findings support surveillance culturing to identify pathogens for a rapid and targeted approach to therapy, especially when P. aeruginosa is a potential pathogen.
Collapse
Affiliation(s)
- Keiko Tarquinio
- Pediatric Critical Care Medicine, Hasbro Children's Hospital, Rhode Island Hospital, Providence, Rhode Island, USA
- Rhode Island Infectious Diseases (RIID) Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- University of Rhode Island, Department of Pharmacy Practice, Kingston, Rhode Island, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kelsey Confreda
- Pediatric Critical Care Medicine, Hasbro Children's Hospital, Rhode Island Hospital, Providence, Rhode Island, USA
- Rhode Island Infectious Diseases (RIID) Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
| | - James Shurko
- University of Rhode Island, Department of Pharmacy Practice, Kingston, Rhode Island, USA
| | - Kerry LaPlante
- Rhode Island Infectious Diseases (RIID) Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- University of Rhode Island, Department of Pharmacy Practice, Kingston, Rhode Island, USA
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
468
|
Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization. Appl Environ Microbiol 2013; 80:1498-506. [PMID: 24362428 DOI: 10.1128/aem.03461-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although biofilm-based bioprocesses have been increasingly used in various applications, the long-term robust and efficient biofilm performance remains one of the main bottlenecks. In this study, we demonstrated that biofilm cohesiveness and performance of Shewanella oneidensis can be enhanced through disrupting putrescine biosynthesis. Through random transposon mutagenesis library screening, one hyperadherent mutant strain, CP2-1-S1, exhibiting an enhanced capability in biofilm formation, was obtained. Comparative analysis of the performance of biofilms formed by S. oneidensis MR-1 wild type (WT) and CP2-1-S1 in removing dichromate (Cr2O7(2-)), i.e., Cr(VI), from the aqueous phase showed that, compared with the WT biofilms, CP2-1-S1 biofilms displayed a substantially lower rate of cell detachment upon exposure to Cr(VI), suggesting a higher cohesiveness of the mutant biofilms. In addition, the amount of Cr(III) immobilized by CP2-1-S1 biofilms was much larger, indicating an enhanced performance in Cr(VI) bioremediation. We further showed that speF, a putrescine biosynthesis gene, was disrupted in CP2-1-S1 and that the biofilm phenotypes could be restored by both genetic and chemical complementations. Our results also demonstrated an important role of putrescine in mediating matrix disassembly in S. oneidensis biofilms.
Collapse
|
469
|
Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli. J Bacteriol 2013; 196:931-9. [PMID: 24336940 DOI: 10.1128/jb.00985-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biofilm formation on catheters is thought to contribute to persistence of catheter-associated urinary tract infections (CAUTI), which represent the most frequent nosocomial infections. Knowledge of genetic factors for catheter colonization is limited, since their role has not been assessed using physicochemical conditions prevailing in a catheterized human bladder. The current study aimed to combine data from a dynamic catheterized bladder model in vitro with in vivo expression analysis for understanding molecular factors relevant for CAUTI caused by Escherichia coli. By application of the in vitro model that mirrors the physicochemical environment during human infection, we found that an E. coli K-12 mutant defective in type 1 fimbriae, but not isogenic mutants lacking flagella or antigen 43, was outcompeted by the wild-type strain during prolonged catheter colonization. The importance of type 1 fimbriae for catheter colonization was verified using a fimA mutant of uropathogenic E. coli strain CFT073 with human and artificial urine. Orientation of the invertible element (IE) controlling type 1 fimbrial expression in bacterial populations harvested from the colonized catheterized bladder in vitro suggested that the vast majority of catheter-colonizing cells (up to 88%) express type 1 fimbriae. Analysis of IE orientation in E. coli populations harvested from patient catheters revealed that a median level of ∼73% of cells from nine samples have switched on type 1 fimbrial expression. This study supports the utility of the dynamic catheterized bladder model for analyzing catheter colonization factors and highlights a role for type 1 fimbriae during CAUTI.
Collapse
|
470
|
Chlorhexidine activity against bacterial biofilms. Am J Infect Control 2013; 41:e119-22. [PMID: 23910527 DOI: 10.1016/j.ajic.2013.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND A biofilm is a complex microbiological ecosystem deposited on surfaces. Microorganisms in form of biofilms are of particular clinical concern because of the poor response to antimicrobial treatments. This study aimed to determine whether bacterial and fungal biofilms are able to resist the antimicrobial activity of chlorhexidine, a powerful antiseptic widely used in the hospital environment. METHODS Disk diffusion and susceptibility tests were conducted in accordance with Clinical and Laboratory Standards Institute standards for the determination of biofilm inhibitory concentration. Chlorhexidine was tested first at a minimum inhibitory concentration and then at higher concentrations when it was not able to destroy the biofilm. The plates were developed with a solution of 0.1% crystal violet, and readings were made at an optical density of 570 nm. RESULTS Chlorhexidine demonstrated excellent antimicrobial activity for most microorganisms tested in their free form, but was less effective against biofilms of Acinetobacter baumannii, Escherichia coli, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa. CONCLUSION This study confirms that microorganisms in biofilms have greater resistance to chlorhexidine, likely owing to the mechanisms of resistance conferred to the structure of biofilms.
Collapse
|
471
|
Transcriptional activation of the mrkA promoter of the Klebsiella pneumoniae type 3 fimbrial operon by the c-di-GMP-dependent MrkH protein. PLoS One 2013; 8:e79038. [PMID: 24244411 PMCID: PMC3828302 DOI: 10.1371/journal.pone.0079038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/18/2013] [Indexed: 01/11/2023] Open
Abstract
The Gram-negative bacterial pathogen Klebsiella pneumoniae forms biofilms to facilitate colonization of biotic and abiotic surfaces. The formation of biofilms by K. pneumoniae requires the expression of type 3 fimbriae: elongate proteinaceous filaments extruded by a chaperone-usher system in the bacterial outer membrane. The expression of the mrkABCDF cluster that encodes this fimbrial system is strongly positively regulated by MrkH, a transcriptional activator that responds to the second messenger, c-di-GMP. In this study, we analyzed the mechanism by which the MrkH protein activates transcriptional initiation from the mrkA promoter. A mutational analysis supported by electrophoretic mobility shift assays demonstrated that a 12-bp palindromic sequence (the MrkH box) centered at -78.5 is the binding site of MrkH. Deletion of half a turn, but not a full turn, of DNA located between the MrkH box and the mrkA promoter destroyed the ability of MrkH to activate mrkA transcription. In addition, a 10-bp AT-rich sequence (the UP element) centered at -63.5 contributed significantly to MrkH-dependent mrkA transcription. In vivo analysis of rpoA mutants showed that the R265 and E273 determinants in the C-terminal domain of RNA polymerase α subunit are needed for MrkH-mediated activation of mrkA transcription. Furthermore, results from mutagenesis of the mrkH gene suggest that the N-terminal region of the protein is involved in transcriptional activation. Taken together, our results suggest that MrkH activates mrkA expression by interacting directly with RNA polymerase, to overcome the inefficient transcriptional initiation caused by the presence of defective core promoter elements.
Collapse
|
472
|
Abidi SH, Sherwani SK, Siddiqui TR, Bashir A, Kazmi SU. Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol 2013; 13:57. [PMID: 24134792 PMCID: PMC3852958 DOI: 10.1186/1471-2415-13-57] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 10/09/2013] [Indexed: 12/13/2022] Open
Abstract
Background The contaminated contact lens provides Pseudomonas aeruginosa an ideal site for attachment and biofilm production. Continuous contact of the eye to the biofilm-infested lens can lead to serious ocular diseases, such as keratitis (corneal ulcers). The biofilms also prevent effective penetration of the antibiotics, which increase the chances of antibiotic resistance. Methods For this study, 22 Pseudomonas aeruginosa isolates were obtained from 36 contact lenses and 14 contact lens protective fluid samples. These isolates were tested against eight commonly used antibiotics using Kirby-Bauer disk diffusion method. The biofilm forming potential of these isolates was also evaluated using various qualitative and quantitative techniques. Finally, a relationship between biofilm formation and antibiotic resistance was also examined. Results The isolates of Pseudomonas aeruginosa tested were found resistant to most of the antibiotics tested. Qualitative and quantitative biofilm analysis revealed that most of the isolates exhibited strong biofilm production. The biofilm production was significantly higher in isolates that were multi-drug resistant (p < 0.0001). Conclusion Our study indicates that multi-drug resistant, biofilm forming Pseudomonas aeruginosa isolates are mainly involved in contact lens associated infections. This appears to be the first report from Pakistan, which analyzes both antibiotic resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolates from contact lens of the patients with contact lens associated infections.
Collapse
Affiliation(s)
- Syed H Abidi
- Immunology and Infectious Diseases Research Lab, Department of Microbiology, University of Karachi, Karachi, Pakistan.
| | | | | | | | | |
Collapse
|
473
|
Applying insights from biofilm biology to drug development — can a new approach be developed? Nat Rev Drug Discov 2013; 12:791-808. [DOI: 10.1038/nrd4000] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
474
|
Orsinger-Jacobsen SJ, Patel SS, Vellozzi EM, Gialanella P, Nimrichter L, Miranda K, Martinez LR. Use of a stainless steel washer platform to study Acinetobacter baumannii adhesion and biofilm formation on abiotic surfaces. MICROBIOLOGY-SGM 2013; 159:2594-2604. [PMID: 24025603 DOI: 10.1099/mic.0.068825-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acinetobacter baumannii is a frequent cause of hospital-acquired pneumonia, and has recently increased in incidence as the causative agent of severe disease in troops wounded in Afghanistan and Iraq. Clinical approaches are limited since A. baumannii strains isolated from patients are extremely resistant to current antimicrobials. A. baumannii can survive desiccation and during outbreaks has been recovered from various sites in the patients' environment. To better understand its prevalence in hospital settings, we used a stainless steel washer (SSW) platform to investigate A. baumannii biofilm formation on abiotic surfaces. Scanning electron microscopy demonstrated that A. baumannii forms strong biofilms on stainless steel surfaces. This platform was combined with a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay to observe the metabolic activity of bacterial cells, and to facilitate the manipulation and comparison of multiple A. baumannii clinical strains. A strong correlation between XTT and c.f.u. assays was demonstrated. To complement the cell viability assays, A. baumannii biofilm mass was measured by crystal violet staining. Furthermore, the effect of commonly used disinfectants and environmental stressors on A. baumannii biofilms and planktonic cells was compared and characterized. Biofilms on SSWs were significantly more resistant than their planktonic counterparts, providing additional evidence that may allow us to understand the high prevalence of this microbe in hospital settings. Our results validate that SSWs are a simple, versatile and innovative method to study A. baumannii biofilms in vitro.
Collapse
Affiliation(s)
| | - Shenan S Patel
- Department of Biomedical Sciences, Long Island University-Post, Brookville, NY, USA
| | - Ernestine M Vellozzi
- Department of Biomedical Sciences, Long Island University-Post, Brookville, NY, USA
| | | | - Leonardo Nimrichter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis R Martinez
- Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Departments of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Biomedical Sciences, Long Island University-Post, Brookville, NY, USA
| |
Collapse
|
475
|
Porphyromonas gingivalis and Treponema denticola synergistic polymicrobial biofilm development. PLoS One 2013; 8:e71727. [PMID: 23990979 PMCID: PMC3753311 DOI: 10.1371/journal.pone.0071727] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/08/2013] [Indexed: 11/30/2022] Open
Abstract
Chronic periodontitis has a polymicrobial biofilm aetiology and interactions between key bacterial species are strongly implicated as contributing to disease progression. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia have all been implicated as playing roles in disease progression. P. gingivalis cell-surface-located protease/adhesins, the gingipains, have been suggested to be involved in its interactions with several other bacterial species. The aims of this study were to determine polymicrobial biofilm formation by P. gingivalis, T. denticola and T. forsythia, as well as the role of P. gingivalis gingipains in biofilm formation by using a gingipain null triple mutant. To determine homotypic and polymicrobial biofilm formation a flow cell system was employed and the biofilms imaged and quantified by fluorescent in situ hybridization using DNA species-specific probes and confocal scanning laser microscopy imaging. Of the three species, only P. gingivalis and T. denticola formed mature, homotypic biofilms, and a strong synergy was observed between P. gingivalis and T. denticola in polymicrobial biofilm formation. This synergy was demonstrated by significant increases in biovolume, average biofilm thickness and maximum biofilm thickness of both species. In addition there was a morphological change of T. denticola in polymicrobial biofilms when compared with homotypic biofilms, suggesting reduced motility in homotypic biofilms. P. gingivalis gingipains were shown to play an essential role in synergistic polymicrobial biofilm formation with T. denticola.
Collapse
|
476
|
Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother 2013; 57:5527-35. [PMID: 23979744 DOI: 10.1128/aac.01481-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235), known as high-risk clones, are responsible for epidemics of nosocomial infections by multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains worldwide. We explored the potential biological parameters that may explain the success of these clones. A total of 20 isolates from each of 4 resistance groups (XDR, MDR, ModR [resistant to 1 or 2 classes], and MultiS [susceptible to all antipseudomonals]), recovered from a multicenter study of P. aeruginosa bloodstream infections performed in 10 Spanish hospitals, were analyzed. A further set of 20 XDR isolates belonging to epidemic high-risk clones (ST-175 [n = 6], ST-111 [n = 7], and ST-235 [n = 7]) recovered from different geographical locations was also studied. When unknown, genotypes were documented through multilocus sequence typing. The biological parameters evaluated included twitching, swimming, and swarming motility, biofilm formation, production of pyoverdine and pyocyanin, spontaneous mutant frequencies, and the in vitro competition index (CI) obtained with a flow cytometry assay. All 20 (100%) XDR, 8 (40%) MDR, and 1 (5%) ModR bloodstream isolate from the multicenter study belonged to high-risk clones. No significant differences were observed between clonally diverse ModR and MultiS isolates for any of the parameters. In contrast, MDR/XDR high-risk clones showed significantly increased biofilm formation and mutant frequencies but significantly reduced motility (twitching, swimming, and swarming), production of pyoverdine and pyocyanin, and fitness. The defined biological markers of high-risk clones, which resemble those resulting from adaptation to chronic infections, could be useful for the design of specific treatment and infection control strategies.
Collapse
|
477
|
Billings N, Ramirez Millan M, Caldara M, Rusconi R, Tarasova Y, Stocker R, Ribbeck K. The extracellular matrix Component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 2013; 9:e1003526. [PMID: 23950711 PMCID: PMC3738486 DOI: 10.1371/journal.ppat.1003526] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/14/2013] [Indexed: 02/01/2023] Open
Abstract
Bacteria within biofilms secrete and surround themselves with an extracellular matrix, which serves as a first line of defense against antibiotic attack. Polysaccharides constitute major elements of the biofilm matrix and are implied in surface adhesion and biofilm organization, but their contributions to the resistance properties of biofilms remain largely elusive. Using a combination of static and continuous-flow biofilm experiments we show that Psl, one major polysaccharide in the Pseudomonas aeruginosa biofilm matrix, provides a generic first line of defense toward antibiotics with diverse biochemical properties during the initial stages of biofilm development. Furthermore, we show with mixed-strain experiments that antibiotic-sensitive “non-producing” cells lacking Psl can gain tolerance by integrating into Psl-containing biofilms. However, non-producers dilute the protective capacity of the matrix and hence, excessive incorporation can result in the collapse of resistance of the entire community. Our data also reveal that Psl mediated protection is extendible to E. coli and S. aureus in co-culture biofilms. Together, our study shows that Psl represents a critical first bottleneck to the antibiotic attack of a biofilm community early in biofilm development. Many bacteria have the ability to form multicellular communities, termed biofilms. An important characteristic of a biofilm is the ability of cells to synthesize and secrete an extracellular matrix. This matrix offers structural support, community organization, and added protection, often making the cells impervious to desiccation, predation, and antimicrobials. In this study, we investigate the contributions of polysaccharide components found in the extracellular matrix of Pseudomonas aeruginosa at progressive stages in biofilm development. We first show that one specific polysaccharide, Psl, provides an added defense for P. aeruginosa biofilms against antimicrobials of different properties for young biofilms. Then, by cultivating biofilms that contain both Psl producing and Psl non-producing strains, we find that P. aeruginosa, E. coli, and S. aureus species that lack Psl take advantage of the protection offered by cells producing Psl. Collectively, the data indicate that Psl is likely to play a key protective role in early development of P. aeruginosa biofilm associated infections.
Collapse
Affiliation(s)
- Nicole Billings
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Maria Ramirez Millan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Marina Caldara
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roberto Rusconi
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yekaterina Tarasova
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roman Stocker
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
478
|
Measurement of predation and biofilm formation under different ambient oxygen conditions using a simple gasbag-based system. Appl Environ Microbiol 2013; 79:5264-71. [PMID: 23811501 DOI: 10.1128/aem.01193-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are Gram-negative bacteria characterized by predatory behavior. The aim of this study was to evaluate the ability of the predators to prey in different oxygen environments. When placed on an orbital shaker, a positive association between the rate of aeration and predation was observed. To further examine the effects of elevated ambient oxygen levels on predation, a simple gasbag system was developed. Using the system, we were able to conduct experiments at ambient oxygen levels of 3% to 86%. When placed in gasbags and inflated with air, 50% O2, and 100% O2, positive predation was seen on both planktonic and biofilm-grown prey cells. However, in low-oxygen environments, predatory bacteria were able to attack only prey cells grown as biofilms. To further evaluate the gasbag system, biofilm development of Gram-positive and Gram-negative microorganisms was also measured. Although the gasbag system was found to be suitable for culturing bacteria that require a low-oxygen environment, it was not capable of supporting, with its current configuration, the growth of obligate anaerobes in liquid or agar medium.
Collapse
|
479
|
Giannouli M, Antunes LCS, Marchetti V, Triassi M, Visca P, Zarrilli R. Virulence-related traits of epidemic Acinetobacter baumannii strains belonging to the international clonal lineages I-III and to the emerging genotypes ST25 and ST78. BMC Infect Dis 2013; 13:282. [PMID: 23786621 PMCID: PMC3691691 DOI: 10.1186/1471-2334-13-282] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/18/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is responsible for large epidemics in hospitals, where it can persist for long time on abiotic surfaces. This study investigated some virulence-related traits of epidemic A. baumannii strains assigned to distinct MLST genotypes, including those corresponding to the international clones I-III as well as emerging genotypes responsible for recent epidemics. METHODS Genotyping of bacteria was performed by PFGE analysis and MLST according to the Pasteur's scheme. Biofilm formation on polystyrene plates was assessed by crystal violet staining; resistance to desiccation was evaluated on glass cover-slips when kept at room-temperature and 31% relative humidity; adherence to and invasion of A549 human alveolar epithelial cells were determined by the analysis of viable bacteria associated with or internalized by A549 human alveolar epithelial cells; Galleria mellonella killing assays were used to analyze the virulence of A. baumannii in vivo. RESULTS The ability to form biofilm was significantly higher for A. baumannnii strains assigned to ST2 (international clone II), ST25 and ST78 compared to other STs. All A. baumannii strains survived on dry surfaces for over 16 days, and strains assigned to ST1 (international clone I) and ST78 survived for up to 89 and 96 days, respectively. Adherence to A549 pneumocytes was higher for strains assigned to ST2, ST25 and ST78 than other genotypes; a positive correlation exists between adherence and biofilm formation. Strains assigned to ST78 also showed significantly higher ability to invade A549 cells. No significant differences in the killing of G. mellonella worms were found among strains. CONCLUSIONS Elevated resistance to desiccation, high biofilm-forming capacity on abiotic surfaces and adherence to A549 cells might have favoured the spread and persistence in the hospital environment of A. baumannii strains assigned to the international clones I and II and to the emerging genotypes ST25 and ST78.
Collapse
Affiliation(s)
- Maria Giannouli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
480
|
Karwacki MT, Kadouri DE, Bendaoud M, Izano EA, Sampathkumar V, Inzana TJ, Kaplan JB. Antibiofilm activity of Actinobacillus pleuropneumoniae serotype 5 capsular polysaccharide. PLoS One 2013; 8:e63844. [PMID: 23691104 PMCID: PMC3653790 DOI: 10.1371/journal.pone.0063844] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 04/09/2013] [Indexed: 12/14/2022] Open
Abstract
Cell-free extracts isolated from colony biofilms of Actinobacillus pleuropneumoniae serotype 5 were found to inhibit biofilm formation by Staphylococcus aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans, but not by A. pleuropneumoniae serotype 5 itself, in a 96-well microtiter plate assay. Physical and chemical analyses indicated that the antibiofilm activity in the extract was due to high-molecular-weight polysaccharide. Extracts isolated from a mutant strain deficient in the production of serotype 5 capsular polysaccharide did not exhibit antibiofilm activity. A plasmid harboring the serotype 5 capsule genes restored the antibiofilm activity in the mutant extract. Purified serotype 5 capsular polysaccharide also exhibited antibiofilm activity against S. aureus. A. pleuropneumoniae wild-type extracts did not inhibit S. aureus growth, but did inhibit S. aureus intercellular adhesion and binding of S. aureus cells to stainless steel surfaces. Furthermore, polystyrene surfaces coated with A. pleuropneumoniae wild-type extracts, but not with capsule-mutant extracts, resisted S. aureus biofilm formation. Our findings suggest that the A. pleuropneumoniae serotype 5 capsule inhibits cell-to-cell and cell-to-surface interactions of other bacteria. A. pleuropneumoniae serotype 5 capsular polysaccharide is one of a growing number of bacterial polysaccharides that exhibit broad-spectrum, nonbiocidal antibiofilm activity. Future studies on these antibiofilm polysaccharides may uncover novel functions for bacterial polysaccharides in nature, and may lead to the development of new classes of antibiofilm agents for industrial and clinical applications.
Collapse
Affiliation(s)
- Michael T. Karwacki
- Department of Oral Biology, New Jersey Dental School, Newark, New Jersey, United States of America
| | - Daniel E. Kadouri
- Department of Oral Biology, New Jersey Dental School, Newark, New Jersey, United States of America
| | - Meriem Bendaoud
- Department of Oral Biology, New Jersey Dental School, Newark, New Jersey, United States of America
| | - Era A. Izano
- Department of Oral Biology, New Jersey Dental School, Newark, New Jersey, United States of America
| | - Vandana Sampathkumar
- Department of Oral Biology, New Jersey Dental School, Newark, New Jersey, United States of America
| | - Thomas J. Inzana
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jeffrey B. Kaplan
- Department of Biology, American University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
481
|
Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013; 2:288-356. [PMID: 25437038 PMCID: PMC4235718 DOI: 10.3390/pathogens2020288] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.
Collapse
Affiliation(s)
- David Lebeaux
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Ashwini Chauhan
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
482
|
Kim W, Tengra FK, Young Z, Shong J, Marchand N, Chan HK, Pangule RC, Parra M, Dordick JS, Plawsky JL, Collins CH. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS One 2013; 8:e62437. [PMID: 23658630 PMCID: PMC3639165 DOI: 10.1371/journal.pone.0062437] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/20/2013] [Indexed: 01/18/2023] Open
Abstract
Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.
Collapse
Affiliation(s)
- Wooseong Kim
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
483
|
Zhang L, Fritsch M, Hammond L, Landreville R, Slatculescu C, Colavita A, Mah TF. Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One 2013; 8:e61625. [PMID: 23637868 PMCID: PMC3634840 DOI: 10.1371/journal.pone.0061625] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 03/12/2013] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas aeruginosa is a key opportunistic pathogen characterized by its biofilm formation ability and high-level multiple antibiotic resistance. By screening a library of random transposon insertion mutants with an increased biofilm-specifc antibiotic susceptibility, we previously identified 3 genes or operons of P. aeruginosa UCBPP-PA14 (ndvB, PA1875–1877 and tssC1) that do not affect biofilm formation but are involved in biofilm-specific antibiotic resistance. In this study, we demonstrate that PA0756–0757 (encoding a putative two-component regulatory system), PA2070 and PA5033 (encoding hypothetical proteins of unknown function) display increased expression in biofilm cells and also have a role in biofilm-specific antibiotic resistance. Furthermore, deletion of each of PA0756, PA2070 and PA5033 resulted in a significant reduction of lethality in Caenorhabditis elegans, indicating a role for these genes in both biofilm-specific antibiotic resistance and persistence in vivo. Together, these data suggest that these genes are potential targets for antimicrobial agents.
Collapse
Affiliation(s)
- Li Zhang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Meredith Fritsch
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Lisa Hammond
- Dartmouth College, Hanover, New Hampshire, United States of America
| | - Ryan Landreville
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | | | - Thien-Fah Mah
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
484
|
Shanks RMQ, Dashiff A, Alster JS, Kadouri DE. Isolation and identification of a bacteriocin with antibacterial and antibiofilm activity from Citrobacter freundii. Arch Microbiol 2013; 194:575-87. [PMID: 22290290 DOI: 10.1007/s00203-012-0793-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/12/2011] [Accepted: 01/12/2012] [Indexed: 11/28/2022]
Abstract
Multi- and pan-antibiotic-resistant bacteria area major health challenge in hospital settings. Furthermore,when susceptible bacteria establish surface-attached biofilm populations, they become recalcitrant to antimicrobial therapy. Therefore, there is a need for novel antimicrobials that are effective against multi-drug-resistant and surface-attached bacteria. A screen to identify prokaryote-derived antimicrobials from a panel of over 100 bacterial strains was performed. One compound isolated from Citrobacter freundii exhibited antimicrobial activity against a wide range of Gram-negative bacteria and was effective against biofilms. Random transposon mutagenesis was performed to find mutants unable to produce the antimicrobial compound.Transposons mapped to a bacteriocin gene located on a small plasmid capable of replication in Escherichia coli. The plasmid was sequenced and found to be highly similar to a previously described colicinogenic plasmid.Expression of the predicted bacteriocin immunity gene conferred bacteriocin immunity to E. coli. The predicted bacteriocin gene, colA-43864, expressed in E. coli was sufficient to generate anti-microbial activity, and purified recombinant ColA-43864 was highly effective in killing E. coli, Citrobacter species, and Klebsiella pneumoniae cells in a planktonic and biofilm state. This study suggests that bacteriocins can be an effective way to control surface-attached pathogenic bacteria.
Collapse
Affiliation(s)
- Robert M Q Shanks
- Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
485
|
Lee JY, Peck KR, Ko KS. Selective advantages of two major clones of carbapenem-resistant Pseudomonas aeruginosa isolates (CC235 and CC641) from Korea: antimicrobial resistance, virulence and biofilm-forming activity. J Med Microbiol 2013; 62:1015-1024. [PMID: 23558139 DOI: 10.1099/jmm.0.055426-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The characteristics of carbapenem-resistant P. aeruginosa (CRPA) isolates from Korea were investigated. Two major clones, clonal complex (CC) 235 and CC641, were identified. CC235, an important international clone, might have been imported recently in Korea as this clone displayed a homogeneous genotype, oprD mutation and antimicrobial resistance profile. While 13 ST235 isolates harboured the blaIMP-6 gene, which conferred high-level meropenem resistance, CC641 isolates showed high biofilm-forming activity. CC235 and CC641 isolates showed distinct distribution of ferripyoverdine receptor type and virulence markers. While all CC235 isolates were of the fpvAIIb type and exoS(-)/exoU(+), CC641 isolates were exoS(+)/exoU(-), and all but one showed the fpvAIII type. CC235 and CC641 isolates were also characterized by different extracellular protease activity: staphylolysin and elastase activities in CC235 and CC641, respectively. Two major CRPA clones in Korea seem to be predominant, reflecting their selective advantage by virtue of antimicrobial resistance, virulence and biofilm-forming activity.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Kwan Soo Ko
- Asia Pacific Foundation for Infectious Diseases, Seoul 135-710, Korea.,Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| |
Collapse
|
486
|
UV and cold tolerance of a pigment-producing Antarctic Janthinobacterium sp. Ant5-2. Extremophiles 2013; 17:367-78. [DOI: 10.1007/s00792-013-0525-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
487
|
Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, Murray CK. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis 2013; 13:47. [PMID: 23356488 PMCID: PMC3568419 DOI: 10.1186/1471-2334-13-47] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/23/2013] [Indexed: 02/03/2023] Open
Abstract
Background Biofilm formation is a major virulence factor contributing to the chronicity of infections. To date few studies have evaluated biofilm formation in infecting isolates of patients including both Gram-positive and Gram-negative multidrug-resistant (MDR) species in the context of numerous types of infectious syndromes. Herein, we investigated the biofilm forming capacity in a large collection of single patient infecting isolates and compared the relationship between biofilm formation to various strain characteristics. Methods The biofilm-forming capacity of 205 randomly sampled clinical isolates from patients, collected from various anatomical sites, admitted for treatment at Brooke Army Medical Center (BAMC) from 2004–2011, including methicillin-resistant/methicillin susceptible Staphylococcus aureus (MRSA/MSSA) (n=23), Acinetobacter baumannii (n=53), Pseudomonas aeruginosa (n=36), Klebsiella pneumoniae (n=54), and Escherichia coli (n=39), were evaluated for biofilm formation using the high-throughput microtiter plate assay and scanning electron microscopy (SEM). Relationships between biofilm formation to clonal type, site of isolate collection, and MDR phenotype were evaluated. Furthermore, in patients with relapsing infections, serial strains were assessed for their ability to form biofilms in vitro. Results Of the 205 clinical isolates tested, 126 strains (61.4%) were observed to form biofilms in vitro at levels greater than or equal to the Staphylococcus epidermidis, positive biofilm producing strain, with P. aeruginosa and S. aureus having the greatest number of biofilm producing strains. Biofilm formation was significantly associated with specific clonal types, the site of isolate collection, and strains positive for biofilm formation were more frequently observed to be MDR. In patients with relapsing infections, the majority of serial isolates recovered from these individuals were observed to be strong biofilm producers in vitro. Conclusions This study is the first to evaluate biofilm formation in a large collection of infecting clinical isolates representing diverse types of infections. Our results demonstrate: (1) biofilm formation is a heterogeneous property amongst clinical strains which is associated with certain clonal types, (2) biofilm forming strains are more frequently isolated from non-fluid tissues, in particular bone and soft tissues, (3) MDR pathogens are more often biofilm formers, and (4) strains from patients with persistent infections are positive for biofilm formation.
Collapse
Affiliation(s)
- Carlos J Sanchez
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Ft, Sam Houston, San Antonio, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
488
|
Abstract
Curli are proteinaceous fibrous structures produced on the surface of many gram-negative bacteria. As a major constituent of the extracellular matrix, curli mediate interactions between the bacteria and its environment, and as such, curli play a critical role in biofilm formation. Curli fibers share biophysical properties with a growing number of remarkably stable and ordered protein aggregates called amyloid. Here we describe experimental methods to study the biogenesis and assembly of curli by exploiting their amyloid properties. We also present methods to analyze curli-mediated biofilm formation. These approaches are straightforward and can easily be adapted to study other bacterially produced amyloids.
Collapse
|
489
|
New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 2012; 57:996-1005. [PMID: 23254430 DOI: 10.1128/aac.01952-12] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The need for novel antibacterial strategies and the awareness of the importance of quorum sensing (QS) in bacterial infections have stimulated research aimed at identifying QS inhibitors (QSIs). However, clinical application of QSIs identified so far is still distant, likely due to their unsuitability for use in humans. A promising way to overcome this problem is searching for anti-QS side activity among the thousands of drugs approved for clinical use in the treatment of different diseases. Here, we applied this strategy to the search for QSIs, by screening a library of FDA-approved compounds for their ability to inhibit the QS response in the Gram-negative pathogen Pseudomonas aeruginosa. We found that the anthelmintic drug niclosamide strongly inhibits the P. aeruginosa QS response and production of acyl-homoserine lactone QS signal molecules. Microarray analysis showed that niclosamide affects the transcription of about 250 genes, with a high degree of target specificity toward the QS-dependent regulon. Phenotypic assays demonstrated that niclosamide suppresses surface motility and production of the secreted virulence factors elastase, pyocyanin, and rhamnolipids, and it reduces biofilm formation. In accordance with the strong antivirulence activity disclosed in vitro, niclosamide prevented P. aeruginosa pathogenicity in an insect model of acute infection. Besides the finding that an FDA-approved drug has a promising antivirulence activity against one of the most antibiotic-resistant bacterial pathogens, this work provides a proof of concept that a lateral anti-QS activity can be detected among drugs already used in humans, validating a new approach to identify QSIs that could easily move into clinical applications.
Collapse
|
490
|
Ledizet M, Murray TS, Puttagunta S, Slade MD, Quagliarello VJ, Kazmierczak BI. The ability of virulence factor expression by Pseudomonas aeruginosa to predict clinical disease in hospitalized patients. PLoS One 2012; 7:e49578. [PMID: 23152923 PMCID: PMC3495863 DOI: 10.1371/journal.pone.0049578] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/10/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that frequently causes hospital acquired colonization and infection. Accurate identification of host and bacterial factors associated with infection could aid treatment decisions for patients with P. aeruginosa cultured from clinical sites. METHODS We identified a prospective cohort of 248 hospitalized patients with positive P. aeruginosa cultures. Clinical data were analyzed to determine whether an individual met predefined criteria for infection versus colonization. P. aeruginosa isolates were tested for the expression of multiple phenotypes previously associated with virulence in animal models and humans. Logistic regression models were constructed to determine the degree of association between host and bacterial factors with P. aeruginosa infection of the bloodstream, lung, soft tissue and urinary tract. RESULTS One host factor (i.e. diabetes mellitus), and one bacterial factor, a Type 3 secretion system positive phenotype, were significantly associated with P. aeruginosa infection in our cohort. Subgroup analysis of patients with P. aeruginosa isolated from the urinary tract revealed that the presence of a urinary tract catheter or stent was an additional factor for P. aeruginosa infection. CONCLUSIONS Among hospitalized patients with culture-documented P. aeruginosa, infection is more likely to be present in those with diabetes mellitus and those harboring a Type 3 secretion positive bacterial strain.
Collapse
Affiliation(s)
- Michel Ledizet
- L2 Diagnostics, New Haven, Connecticut, United States of America
| | - Thomas S. Murray
- Department of Pediatrics (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sailaja Puttagunta
- Department of Medicine, Sections of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Martin D. Slade
- Department of Occupational & Environmental Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Vincent J. Quagliarello
- Department of Medicine, Sections of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Department of Medicine, Sections of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
491
|
Novel targets of the CbrAB/Crc carbon catabolite control system revealed by transcript abundance in Pseudomonas aeruginosa. PLoS One 2012; 7:e44637. [PMID: 23115619 PMCID: PMC3480352 DOI: 10.1371/journal.pone.0044637] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/06/2012] [Indexed: 01/22/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity) motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA) CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase), acsA (acetyl-CoA synthetase), bkdR (regulator of branched-chain amino acid catabolism) and aroP2 (aromatic amino acid uptake protein). Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF) sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.
Collapse
|
492
|
Shen C, Luo Y, Nou X, Bauchan G, Zhou B, Wang Q, Millner P. Enhanced inactivation of Salmonella and Pseudomonas biofilms on stainless steel by use of T-128, a fresh-produce washing aid, in chlorinated wash solutions. Appl Environ Microbiol 2012; 78:6789-98. [PMID: 22752180 PMCID: PMC3457470 DOI: 10.1128/aem.01094-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/25/2012] [Indexed: 11/20/2022] Open
Abstract
The effect of the washing aid T-128 (generally recognized as safe [GRAS] formulation, composed mainly of phosphoric acid and propylene glycol) on inactivation of Salmonella and Pseudomonas populations in biofilms on stainless steel was evaluated under conditions of increasing organic matter loads in chlorinated wash solutions dominated by hypochlorous acid. Biofilms were formed statically on stainless steel coupons suspended in 2% lettuce extract after inoculation with Salmonella enterica serovar Thompson or Newport or with Pseudomonas fluorescens. Coupons with biofilms were washed in chlorine solutions (0, 0.5, 1, 2, 5, 10, or 20 mg/liter at pH 6.5, 5.0 and 2.9), with or without T-128, and with increasing loads of organic matter (0, 0.25, 0.5, 0.75, or 1.0% lettuce extract). Cell populations on coupons were dispersed using intermittent, pulsed ultrasonication and vortexing and enumerated by colony counts on XLT-4 or Pseudomonas agars. Cell responses to fluorescent viability staining of biofilm treatment washing solutions were examined using confocal laser scanning microscopy. Results showed that 0.1% T-128 (without chlorine) reduced P. fluorescens biofilm populations by 2.5 log(10) units but did not reduce Salmonella populations. For both Salmonella and Pseudomonas, the sanitizing effect of free chlorine (1.0 to 5.0 mg/liter) was enhanced (P < 0.05) when it was combined with T-128. Application of T-128 decreased the free chlorine depletion rate caused by increasing organic matter in wash waters and significantly (P < 0.05) augmented inactivation of bacteria in biofilms compared to treatments without T-128. Image analysis of surfaces stained with SYTO and propidium iodide corroborate the cultural assay results showing that T-128 can aid in reducing pathogen viability in biofilms and thus can aid in sanitizing stainless steel contact surfaces during processing of fresh-cut produce.
Collapse
Affiliation(s)
- Cangliang Shen
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Yaguang Luo
- U.S. Department of Agriculture, Agricultural Research Service, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
| | - Xiangwu Nou
- U.S. Department of Agriculture, Agricultural Research Service, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
| | - Gary Bauchan
- U.S. Department of Agriculture, Agricultural Research Service, Electron and Confocal Microscopy Unit, Beltsville, Maryland, USA
| | - Bin Zhou
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Patricia Millner
- U.S. Department of Agriculture, Agricultural Research Service, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
493
|
de Oliveira MMM, Brugnera DF, do Nascimento JA, Piccoli RH. Control of planktonic and sessile bacterial cells by essential oils. FOOD AND BIOPRODUCTS PROCESSING 2012. [DOI: 10.1016/j.fbp.2012.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
494
|
Ryall B, Eydallin G, Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 2012; 76:597-625. [PMID: 22933562 PMCID: PMC3429624 DOI: 10.1128/mmbr.05028-11] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior.
Collapse
Affiliation(s)
- Ben Ryall
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
495
|
OmpA-mediated biofilm formation is essential for the commensal bacterium Sodalis glossinidius to colonize the tsetse fly gut. Appl Environ Microbiol 2012; 78:7760-8. [PMID: 22941073 DOI: 10.1128/aem.01858-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many bacteria successfully colonize animals by forming protective biofilms. Molecular processes that underlie the formation and function of biofilms in pathogenic bacteria are well characterized. In contrast, the relationship between biofilms and host colonization by symbiotic bacteria is less well understood. Tsetse flies (Glossina spp.) house 3 maternally transmitted symbionts, one of which is a commensal (Sodalis glossinidius) found in several host tissues, including the gut. We determined that Sodalis forms biofilms in the tsetse gut and that this process is influenced by the Sodalis outer membrane protein A (OmpA). Mutant Sodalis strains that do not produce OmpA (Sodalis ΔOmpA mutants) fail to form biofilms in vitro and are unable to colonize the tsetse gut unless endogenous symbiotic bacteria are present. Our data indicate that in the absence of biofilms, Sodalis ΔOmpA mutant cells are exposed to and eliminated by tsetse's innate immune system, suggesting that biofilms help Sodalis evade the host immune system. Tsetse is the sole vector of pathogenic African trypanosomes, which also reside in the fly gut. Acquiring a better understanding of the dynamics that promote Sodalis colonization of the tsetse gut may enhance the development of novel disease control strategies.
Collapse
|
496
|
Kishi M, Hasegawa Y, Nagano K, Nakamura H, Murakami Y, Yoshimura F. Identification and characterization of novel glycoproteins involved in growth and biofilm formation by Porphyromonas gingivalis. Mol Oral Microbiol 2012; 27:458-70. [PMID: 23134611 DOI: 10.1111/j.2041-1014.2012.00659.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Porphyromonas gingivalis has been implicated as a major pathogen associated with chronic periodontitis. To extend our knowledge of post-translational protein glycosylation in P. gingivalis, a proteomic analysis involving two-dimensional polyacrylamide gel electrophoresis combined with carbohydrate staining and mass spectrometry was performed. Four novel glycoproteins, PGN0743, PGN0876, PGN1513 and PGN0729, in P. gingivalis ATCC 33277 were identified. These four identified glycoproteins possess a range of biochemical activities and cellular localization. PGN0743 contains a sequence motif identifying it as a FKBP-type cis-trans isomerase, which has activity usually associated with chaperone functions. PGN0876 and PGN1513 contain tetratricopeptide repeat domains that mediate protein-protein interactions. PGN0729 encodes the outer membrane protein 41 precursor, which was previously identified as Pgm6, and is homologous to the OmpA protein in Escherichia coli. Several different types of glycoprotein were identified, suggesting that P. gingivalis possesses a general mechanism for protein glycosylation. PGN0743-deficient and PGN0876-deficient mutants were constructed to examine the role(s) of the two identified glycoproteins. Both mutants showed a decreased growth rate under nutrient-limited conditions and reduced biofilm formation activity. These results suggest that the novel glycoproteins PGN0743 and PGN0876 play an important role in the growth and colonization of P. gingivalis.
Collapse
Affiliation(s)
- M Kishi
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
497
|
The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog 2012; 8:e1002760. [PMID: 22719254 PMCID: PMC3375315 DOI: 10.1371/journal.ppat.1002760] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/03/2012] [Indexed: 12/19/2022] Open
Abstract
The genetic adaptation of pathogens in host tissue plays a key role in the establishment of chronic infections. While whole genome sequencing has opened up the analysis of genetic changes occurring during long-term infections, the identification and characterization of adaptive traits is often obscured by a lack of knowledge of the underlying molecular processes. Our research addresses the role of Pseudomonas aeruginosa small colony variant (SCV) morphotypes in long-term infections. In the lungs of cystic fibrosis patients, the appearance of SCVs correlates with a prolonged persistence of infection and poor lung function. Formation of P. aeruginosa SCVs is linked to increased levels of the second messenger c-di-GMP. Our previous work identified the YfiBNR system as a key regulator of the SCV phenotype. The effector of this tripartite signaling module is the membrane bound diguanylate cyclase YfiN. Through a combination of genetic and biochemical analyses we first outline the mechanistic principles of YfiN regulation in detail. In particular, we identify a number of activating mutations in all three components of the Yfi regulatory system. YfiBNR is shown to function via tightly controlled competition between allosteric binding sites on the three Yfi proteins; a novel regulatory mechanism that is apparently widespread among periplasmic signaling systems in bacteria. We then show that during long-term lung infections of CF patients, activating mutations invade the population, driving SCV formation in vivo. The identification of mutational "scars" in the yfi genes of clinical isolates suggests that Yfi activity is both under positive and negative selection in vivo and that continuous adaptation of the c-di-GMP network contributes to the in vivo fitness of P. aeruginosa during chronic lung infections. These experiments uncover an important new principle of in vivo persistence, and identify the c-di-GMP network as a valid target for novel anti-infectives directed against chronic infections.
Collapse
|
498
|
Chavez-Dozal A, Hogan D, Gorman C, Quintanal-Villalonga A, Nishiguchi MK. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol Ecol 2012; 81:562-73. [PMID: 22486781 DOI: 10.1111/j.1574-6941.2012.01386.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 02/03/2023] Open
Abstract
Biofilms are increasingly recognized as being the predominant form for survival for most bacteria in the environment. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. Here, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. The results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms, including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships.
Collapse
Affiliation(s)
- Alba Chavez-Dozal
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8001, USA
| | | | | | | | | |
Collapse
|
499
|
Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob Agents Chemother 2012; 56:4112-22. [PMID: 22585230 DOI: 10.1128/aac.00373-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Polysorbate 80 (PS80) is a nonionic surfactant and detergent that inhibits biofilm formation by Pseudomonas aeruginosa at concentrations as low as 0.001% and is well tolerated in human tissues. However, certain clinical and laboratory strains (PAO1) of P. aeruginosa are able to form biofilms in the presence of PS80. To better understand this resistance, we performed transposon mutagenesis with a PS80-resistant clinical isolate, PA738. This revealed that mutation of algC rendered PA738 sensitive to PS80 biofilm inhibition. AlgC contributes to the biosynthesis of the exopolysaccharides Psl and alginate, as well as lipopolysaccharide and rhamnolipid. Analysis of mutations downstream of AlgC in these biosynthetic pathways established that disruption of the psl operon was sufficient to render the PA738 and PAO1 strains sensitive to PS80-mediated biofilm inhibition. Increased levels of Psl production in the presence of arabinose in a strain with an arabinose-inducible psl promoter were correlated with increased biofilm formation in PS80. In P. aeruginosa strains MJK8 and ZK2870, known to produce both Pel and Psl, disruption of genes in the psl but not the pel operon conferred susceptibility to PS80-mediated biofilm inhibition. The laboratory strain PA14 does not produce Psl and does not form biofilms in PS80. However, when PA14 was transformed with a cosmid containing the psl operon, it formed biofilms in the presence of PS80. Taken together, these data suggest that production of the exopolysaccharide Psl by P. aeruginosa promotes resistance to the biofilm inhibitor PS80.
Collapse
|
500
|
Murray TS, Okegbe C, Gao Y, Kazmierczak BI, Motterlini R, Dietrich LEP, Bruscia EM. The carbon monoxide releasing molecule CORM-2 attenuates Pseudomonas aeruginosa biofilm formation. PLoS One 2012; 7:e35499. [PMID: 22563385 PMCID: PMC3338523 DOI: 10.1371/journal.pone.0035499] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/19/2012] [Indexed: 12/16/2022] Open
Abstract
Chronic infections resulting from biofilm formation are difficult to eradicate with current antimicrobial agents and consequently new therapies are needed. This work demonstrates that the carbon monoxide-releasing molecule CORM-2, previously shown to kill planktonic bacteria, also attenuates surface-associated growth of the Gram-negative pathogen Pseudomonas aeruginosa by both preventing biofilm maturation and killing bacteria within the established biofilm. CORM-2 treatment has an additive effect when combined with tobramycin, a drug commonly used to treat P. aeruginosa lung infections. CORM-2 inhibited biofilm formation and planktonic growth of the majority of clinical P. aeruginosa isolates tested, for both mucoid and non-mucoid strains. While CORM-2 treatment increased the production of reactive oxygen species by P. aeruginosa biofilms, this increase did not correlate with bacterial death. These data demonstrate that CO-RMs possess potential novel therapeutic properties against a subset of P. aeruginosa biofilm related infections.
Collapse
Affiliation(s)
- Thomas S. Murray
- Departments of Pediatrics, Yale University School of Medicine New Haven, Connecticut, United States of America
- Laboratory Medicine, Yale University School of Medicine New Haven, Connecticut, United States of America
| | - Chinweike Okegbe
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Yuan Gao
- Laboratory Medicine, Yale University School of Medicine New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Internal Medicine, Yale University School of Medicine New Haven, Connecticut, United States of America
| | | | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Emanuela M. Bruscia
- Departments of Pediatrics, Yale University School of Medicine New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|