451
|
Liu X, Zhao M, Fan X, Fu Y. Reshaping the active pocket of esterase Est816 for resolution of economically important racemates. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01028j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight 2-arylpropionic acids with high E values were generated by engineered Est816, which overcomes the contradiction between the wide substrate scope and high enantioselectivity of esterases.
Collapse
Affiliation(s)
- Xiaolong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng Zhao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
452
|
Fukuda Y, Inoue T. Structural insights into a C2 domain protein specifically found in tardigrades. Protein Sci 2020; 30:513-518. [PMID: 33226149 PMCID: PMC7784755 DOI: 10.1002/pro.4002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
Some tardigrades can survive extremely desiccated conditions through transition into a state called anhydrobiosis. Anhydrobiotic tardigrades have proteins unique to them and they are thought to be keys to the understanding of unusual desiccation resistance. In fact, previous transcriptome data show that several tardigrade‐specific proteins are significantly upregulated under desiccated conditions. However, their physiological roles and chemical properties have been ambiguous because they show low or no similarity of amino acid sequences to proteins found in other organisms. Here, we report a crystal structure of one of such proteins. This protein shows a β‐sandwich structure composed of 8 β‐strands, three Ca2+‐binding sites, and hydrophobic residues on Ca2+‐binding (CBD) loops, which resemble characteristics of C2 domain proteins. We therefore conveniently describe this protein as tardigrade C2 domain protein (TC2P). Because the C2 domain functions as a Ca2+‐mediated membrane docking module, which is related to signal transduction or membrane trafficking, TC2Ps may play a role in Ca2+‐triggered phenomenon under desiccated situations. Our finding provides not only structural insights into a newly discovered desiccation‐related protein family but also insights into the evolution and diversity of C2 domain proteins. PDB Code(s): 7DF2;
Collapse
Affiliation(s)
- Yohta Fukuda
- Graduate School of Pharmaceutical Science, Osaka University, Osaka, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Osaka, Japan
| |
Collapse
|
453
|
McGuire BE, Hettle AG, Vickers C, King DT, Vocadlo DJ, Boraston AB. The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens. J Biol Chem 2020; 295:18426-18435. [PMID: 33127644 PMCID: PMC7939477 DOI: 10.1074/jbc.ra120.015776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Indexed: 11/30/2022] Open
Abstract
α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1-3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure-function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1-3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1-3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.
Collapse
Affiliation(s)
- Bailey E McGuire
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Andrew G Hettle
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Chelsea Vickers
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Dustin T King
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
454
|
Kazakov AS, Sofin AD, Avkhacheva NV, Denesyuk AI, Deryusheva EI, Rastrygina VA, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Interferon Beta Activity Is Modulated via Binding of Specific S100 Proteins. Int J Mol Sci 2020; 21:ijms21249473. [PMID: 33322098 PMCID: PMC7764042 DOI: 10.3390/ijms21249473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Interferon-β (IFN-β) is a pleiotropic cytokine used for therapy of multiple sclerosis, which is also effective in suppression of viral and bacterial infections and cancer. Recently, we reported a highly specific interaction between IFN-β and S100P lowering IFN-β cytotoxicity to cancer cells (Int J Biol Macromol. 2020; 143: 633–639). S100P is a member of large family of multifunctional Ca2+-binding proteins with cytokine-like activities. To probe selectivity of IFN-β—S100 interaction with respect to S100 proteins, we used surface plasmon resonance spectroscopy, chemical crosslinking, and crystal violet assay. Among the thirteen S100 proteins studied S100A1, S100A4, and S100A6 proteins exhibit strictly Ca2+-dependent binding to IFN-β with equilibrium dissociation constants, Kd, of 0.04–1.5 µM for their Ca2+-bound homodimeric forms. Calcium depletion abolishes the S100—IFN-β interactions. Monomerization of S100A1/A4/A6 decreases Kd values down to 0.11–1.0 nM. Interferon-α is unable of binding to the S100 proteins studied. S100A1/A4 proteins inhibit IFN-β-induced suppression of MCF-7 cells viability. The revealed direct influence of specific S100 proteins on IFN-β activity uncovers a novel regulatory role of particular S100 proteins, and opens up novel approaches to enhancement of therapeutic efficacy of IFN-β.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Alexander D. Sofin
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Nadezhda V. Avkhacheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Alexander I. Denesyuk
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Andrey S. Sokolov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Ekaterina A. Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, 142290 Pushchino, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (A.I.D.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| |
Collapse
|
455
|
Dai L, Qin L, Hu Y, Huang JW, Hu Z, Min J, Sun Y, Guo RT. Structural dissection of unnatural ginsenoside-biosynthetic UDP-glycosyltransferase Bs-YjiC from Bacillus subtilis for substrate promiscuity. Biochem Biophys Res Commun 2020; 534:73-78. [PMID: 33310191 DOI: 10.1016/j.bbrc.2020.11.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Glycosylation catalyzed by uridine diphosphate-dependent glycosyltransferases (UGT) contributes to the chemical and functional diversity of a number of natural products. Bacillus subtilis Bs-YjiC is a robust and versatile UGT that holds potentials in the biosynthesis of unnatural bioactive ginsenosides. To understand the molecular mechanism underlying the substrate promiscuity of Bs-YjiC, we solved crystal structures of Bs-YjiC and its binary complex with uridine diphosphate (UDP) at resolution of 2.18 Å and 2.44 Å, respectively. Bs-YjiC adopts the classical GT-B fold containing the N-terminal and C-terminal domains that accommodate the sugar acceptor and UDP-glucose, respectively. Molecular docking indicates that the spacious sugar-acceptor binding pocket of Bs-YjiC might be responsible for its broad substrate spectrum and unique glycosylation patterns toward protopanaxadiol-(PPD) and PPD-type ginsenosides. Our study reveals the structural basis for the aglycone promiscuity of Bs-YjiC and will facilitate the protein engineering of Bs-YjiC to synthesize novel bioactive glycosylated compounds.
Collapse
Affiliation(s)
- Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Lujiao Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zheyang Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
456
|
Ouzounis CA. A recent origin of Orf3a from M protein across the coronavirus lineage arising by sharp divergence. Comput Struct Biotechnol J 2020; 18:4093-4102. [PMID: 33363705 PMCID: PMC7749296 DOI: 10.1016/j.csbj.2020.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
The genome of SARS-CoV-2, the coronavirus responsible for the Covid-19 pandemic, encodes a number of accessory genes. The longest accessory gene, Orf3a, plays important roles in the virus lifecycle indicated by experimental findings, known polymorphisms, its evolutionary trajectory and a distinct three-dimensional fold. Here we show that supervised, sensitive database searches with Orf3a detect weak, yet significant and highly specific similarities to the M proteins of coronaviruses. The similarity profiles can be used to derive low-resolution three-dimensional models for M proteins based on Orf3a as a structural template. The models also explain the emergence of Orf3a from M proteins and suggest a recent origin across the coronavirus lineage, enunciated by its restricted phylogenetic distribution. This study provides evidence for the common origin of M and Orf3a families and proposes for the first time a working model for the structure of the universally distributed M proteins in coronaviruses, consistent with the properties of both protein families.
Collapse
Affiliation(s)
- Christos A. Ouzounis
- Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece
| |
Collapse
|
457
|
Tonozuka T, Kitamura J, Nagaya M, Kawai R, Nishikawa A, Hirano K, Tamura K, Fujii T, Tochio T. Crystal structure of a glycoside hydrolase family 68 β-fructosyltransferase from Beijerinckia indica subsp. indica in complex with fructose. Biosci Biotechnol Biochem 2020; 84:2508-2520. [DOI: 10.1080/09168451.2020.1804317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
An enzyme belonging to glycoside hydrolase family 68 (GH68) from Beijerinckia indica subsp. indica NBRC 3744 was expressed in Escherichia coli. Biochemical characterization showed that the enzyme was identified to be a β-fructosyltransferase (BiBftA). Crystallization of a full-length BiBftA was initially attempted, but no crystals were obtained. We constructed a variant in which 5 residues (Pro199-Gly203) and 13 residues (Leu522-Gln534) in potentially flexible regions were deleted, and we successfully crystallized this variant BiBftA. BiBftA is composed of a five-bladed β-propeller fold as in other GH68 enzymes. The structure of BiBftA in complex with fructose unexpectedly indicated that one β-fructofuranose (β-Fruf) molecule and one β-fructopyranose molecule bind to the catalytic pocket. The orientation of β-Fruf at subsite −1 is tilted from the orientation observed in most GH68 enzymes, presenting a second structure of a GH68 enzyme in complex with the tilted binding mode of β-Fruf.
Collapse
Affiliation(s)
- Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Junichi Kitamura
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mika Nagaya
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Reika Kawai
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | |
Collapse
|
458
|
Maeda S, Yamamoto H, Kinch LN, Garza CM, Takahashi S, Otomo C, Grishin NV, Forli S, Mizushima N, Otomo T. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat Struct Mol Biol 2020; 27:1194-1201. [PMID: 33106659 PMCID: PMC7718406 DOI: 10.1038/s41594-020-00520-2] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
De novo formation of the double-membrane compartment autophagosome is seeded by small vesicles carrying membrane protein autophagy-related 9 (ATG9), the function of which remains unknown. Here we find that ATG9A scrambles phospholipids of membranes in vitro. Cryo-EM structures of human ATG9A reveal a trimer with a solvated central pore, which is connected laterally to the cytosol through the cavity within each protomer. Similarities to ABC exporters suggest that ATG9A could be a transporter that uses the central pore to function. Moreover, molecular dynamics simulation suggests that the central pore opens laterally to accommodate lipid headgroups, thereby enabling lipids to flip. Mutations in the pore reduce scrambling activity and yield markedly smaller autophagosomes, indicating that lipid scrambling by ATG9A is essential for membrane expansion. We propose ATG9A acts as a membrane-embedded funnel to facilitate lipid flipping and to redistribute lipids added to the outer leaflet of ATG9 vesicles, thereby enabling growth into autophagosomes.
Collapse
Affiliation(s)
- Shintaro Maeda
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Christina M Garza
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Satoru Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chinatsu Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
459
|
Klein TA, Grebenc DW, Gandhi SY, Shah VS, Kim Y, Whitney JC. Structure of the Extracellular Region of the Bacterial Type VIIb Secretion System Subunit EsaA. Structure 2020; 29:177-185.e6. [PMID: 33238147 DOI: 10.1016/j.str.2020.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Gram-positive bacteria use type VII secretion systems (T7SSs) to export effector proteins that manipulate the physiology of nearby prokaryotic and eukaryotic cells. Several mycobacterial T7SSs have established roles in virulence. By contrast, the genetically distinct T7SSb pathway found in Firmicutes bacteria more often functions to mediate bacterial competition. A lack of structural information on the T7SSb has limited the understanding of effector export by this protein secretion apparatus. Here, we present the 2.4 Å crystal structure of the extracellular region of the T7SSb subunit EsaA from Streptococcus gallolyticus. Our structure reveals that homodimeric EsaA is an elongated, arrow-shaped protein with a surface-accessible "tip", which in some species of bacteria serves as a receptor for lytic bacteriophages. Because it is the only T7SSb subunit large enough to traverse the peptidoglycan layer of Firmicutes, we propose that EsaA plays a critical role in transporting effectors across the entirety of the Gram-positive cell envelope.
Collapse
Affiliation(s)
- Timothy A Klein
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Dirk W Grebenc
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shil Y Gandhi
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Vraj S Shah
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science, Argonne National Laboratory, Argonne, IL, USA
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
460
|
Strayer EC, Lu S, Ribeiro J, Andersen JF. Salivary complement inhibitors from mosquitoes: Structure and mechanism of action. J Biol Chem 2020; 296:100083. [PMID: 33199367 PMCID: PMC7948415 DOI: 10.1074/jbc.ra120.015230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Inhibition of the alternative pathway (AP) of complement by saliva from Anopheles mosquitoes facilitates feeding by blocking production of the anaphylatoxins C3a and C5a, which activate mast cells leading to plasma extravasation, pain, and itching. We have previously shown that albicin, a member of the SG7 protein family from An. Albimanus, blocks the AP by binding to and inhibiting the function of the C3 convertase, C3bBb. Here we show that SG7.AF, the albicin homolog from An. freeborni, has a similar potency to albicin but is more active in the presence of properdin, a plasma protein that acts to stabilize C3bBb. Conversely, albicin is highly active in the absence or presence of properdin. Albicin and SG7.AF stabilize the C3bBb complex in a form that accumulates on surface plasmon resonance (SPR) surfaces coated with properdin, but SG7.AF binds with lower affinity than albicin. Albicin induces oligomerization of the complex in solution, suggesting that it is oligomerization that leads to stabilization on SPR surfaces. Anophensin, the albicin ortholog from An. stephensi, is only weakly active as an inhibitor of the AP, suggesting that the SG7 family may play a different functional role in this species and other species of the subgenus Cellia, containing the major malaria vectors in Africa and Asia. Crystal structures of albicin and SG7.AF reveal a novel four-helix bundle arrangement that is stabilized by an N-terminal hydrogen bonding network. These structures provide insight into the SG7 family and related mosquito salivary proteins including the platelet-inhibitory 30 kDa family.
Collapse
Affiliation(s)
- Ethan C Strayer
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - Stephen Lu
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - Jose Ribeiro
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA.
| |
Collapse
|
461
|
Xie J, Ke M, Xu L, Lin S, Huang J, Zhang J, Yang F, Wu J, Yan Z. Structure of the human sodium leak channel NALCN in complex with FAM155A. Nat Commun 2020; 11:5831. [PMID: 33203861 PMCID: PMC7672056 DOI: 10.1038/s41467-020-19667-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
NALCN, a sodium leak channel expressed mainly in the central nervous system, is responsible for the resting Na+ permeability that controls neuronal excitability. Dysfunctions of the NALCN channelosome, NALCN with several auxiliary subunits, are associated with a variety of human diseases. Here, we report the cryo-EM structure of human NALCN in complex with FAM155A at an overall resolution of 3.1 angstroms. FAM155A forms extensive interactions with the extracellular loops of NALCN that may help stabilize NALCN in the membrane. A Na+ ion-binding site, reminiscent of a Ca2+ binding site in Cav channels, is identified in the unique EEKE selectivity filter. Despite its 'leaky' nature, the channel is closed and the intracellular gate is sealed by S6I, II-III linker and III-IV linker. Our study establishes the molecular basis of Na+ permeation and voltage sensitivity, and provides important clues to the mechanistic understanding of NALCN regulation and NALCN channelosome-related diseases.
Collapse
Affiliation(s)
- Jiongfang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Meng Ke
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Lizhen Xu
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Shiyi Lin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jin Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jiabei Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
462
|
Zhou J, Pecqueur L, Aučynaitė A, Fuchs J, Rutkienė R, Vaitekūnas J, Meškys R, Boll M, Fontecave M, Urbonavičius J, Golinelli-Pimpaneau B. Structural Evidence for a [4Fe-5S] Intermediate in the Non-Redox Desulfuration of Thiouracil. Angew Chem Int Ed Engl 2020; 60:424-431. [PMID: 32929873 DOI: 10.1002/anie.202011211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 11/10/2022]
Abstract
We recently discovered a [Fe-S]-containing protein with in vivo thiouracil desulfidase activity, dubbed TudS. The crystal structure of TudS refined at 1.5 Å resolution is reported; it harbors a [4Fe-4S] cluster bound by three cysteines only. Incubation of TudS crystals with 4-thiouracil trapped the cluster with a hydrosulfide ligand bound to the fourth non-protein-bonded iron, as established by the sulfur anomalous signal. This indicates that a [4Fe-5S] state of the cluster is a catalytic intermediate in the desulfuration reaction. Structural data and site-directed mutagenesis indicate that a water molecule is located next to the hydrosulfide ligand and to two catalytically important residues, Ser101 and Glu45. This information, together with modeling studies allow us to propose a mechanism for the unprecedented non-redox enzymatic desulfuration of thiouracil, in which a [4Fe-4S] cluster binds and activates the sulfur atom of the substrate.
Collapse
Affiliation(s)
- Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jonathan Fuchs
- Faculty of Biology-Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Matthias Boll
- Faculty of Biology-Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| |
Collapse
|
463
|
Zhang N, Chang Y, Tseng R, Ovchinnikov S, Schwarz R, LiWang A. Solution NMR structure of Se0862, a highly conserved cyanobacterial protein involved in biofilm formation. Protein Sci 2020; 29:2274-2280. [PMID: 32949024 PMCID: PMC7586914 DOI: 10.1002/pro.3952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022]
Abstract
Biofilms are accumulations of microorganisms embedded in extracellular matrices that protect against external factors and stressful environments. Cyanobacterial biofilms are ubiquitous and have potential for treatment of wastewater and sustainable production of biofuels. But the underlying mechanisms regulating cyanobacterial biofilm formation are unclear. Here, we report the solution NMR structure of a protein, Se0862, conserved across diverse cyanobacterial species and involved in regulation of biofilm formation in the cyanobacterium Synechococcus elongatus PCC 7942. Se0862 is a class α+β protein with ααββββαα topology and roll architecture, consisting of a four-stranded β-sheet that is flanked by four α-helices on one side. Conserved surface residues constitute a hydrophobic pocket and charged regions that are likely also present in Se0862 orthologs.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Chemistry and Chemical BiologyUniversity of CaliforniaMercedCaliforniaUSA
| | - Yong‐Gang Chang
- Department of Chemistry and Chemical BiologyUniversity of CaliforniaMercedCaliforniaUSA
- Monash UniversityVictoriaAustralia
| | - Roger Tseng
- Department of Chemistry and Chemical BiologyUniversity of CaliforniaMercedCaliforniaUSA
- United States Department of AgricultureAmesIAUSA
| | | | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar‐Ilan UniversityRamat‐GanIsrael
| | - Andy LiWang
- Department of Chemistry and Chemical BiologyUniversity of CaliforniaMercedCaliforniaUSA
- Center for Cellular and Biomolecular MachinesUniversity of CaliforniaMercedCaliforniaUSA
- Health Sciences Research InstituteUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
464
|
Teles E Oliveira DM, Marroquim MSC, de Serpa Brandão RMS, da Mata Sousa LCD, das Chagas Alves Lima F, do Monte SJH, de Sousa Lima AV, Coelho AGB, Costa JMS, Ramos RM, Miranda Pereira E, da Silva AS. pHLA3D: Updating the database of predicted three-dimensional structures of HLA with HLA-DR, HLA-DQ and HLA-DP molecules. Hum Immunol 2020; 82:8-10. [PMID: 33129577 DOI: 10.1016/j.humimm.2020.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023]
Abstract
To improve the availability of three-dimensional (3D) structures of HLA molecules, we created the pHLA3D database. In its first version, we modeled and published 106 3D structures of HLA class I molecules from the HLA-A, HLA-B, and HLA-C loci. This paper presents an update of this database, providing more 127 3D structures of HLA class II molecules (41 DR, 42 DQ, and 44 DP), predicted via homology modeling with MODELLER and SWISS-MODEL. These new 3D structures of HLA class II molecules are now freely available at pHLA3D (www.phla3d.com.br) for immunologists and other researchers working with HLA molecules.
Collapse
Affiliation(s)
| | | | | | - Luiz Claudio Demes da Mata Sousa
- Laboratory of Immunogenetics and Molecular Biology, Federal University of Piauí, Teresina, PI, Brazil; Department of Computation, Federal University of Piauí, Teresina, PI, Brazil
| | - Francisco das Chagas Alves Lima
- Research Group in Computational Quantum Chemistry & Pharmaceutical Planning, State University of Piauí, Teresina, PI, Brazil; Department of Chemistry, State University of Piauí, Teresina, PI, Brazil
| | | | | | | | | | - Ricardo Martins Ramos
- Research Laboratory in Information Systems, Federal Institute of Piauí, Teresina, PI, Brazil; Department of Information, Environment, Health and Food Production, Federal Institute of Piauí, Teresina, PI, Brazil
| | - Ester Miranda Pereira
- Laboratory of Immunogenetics and Molecular Biology, Federal University of Piauí, Teresina, PI, Brazil
| | - Adalberto Socorro da Silva
- Laboratory of Immunogenetics and Molecular Biology, Federal University of Piauí, Teresina, PI, Brazil; Department of Biology, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
465
|
Yang J, Guan X, Zhang D, Zhao P, Guo S, Kuang Z. Crystal structure of the SPRY domain-containing protein 7 reveals unique structural features. Biochem Biophys Res Commun 2020; 531:350-356. [PMID: 32800543 DOI: 10.1016/j.bbrc.2020.07.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022]
Abstract
The SPRY/B30.2 domain is one of the most abundant protein domains found in eukaryotes. Vast majority of the SPRY domain-containing proteins are multi-domain proteins. The SPRY domain-containing protein 7 (SPRY7, also named C13orf1, and named chronic lymphocytic leukemia deletion region gene 6 protein, CCLD6, encoded by the spryd7 gene) is the smallest SPRY domain protein in human that does not contain other accessory domains. Here we have determined the crystal structure of human SPRY7 at a resolution of 1.62 Å and found that SPRY7 has some unique structural features that are not present in other previously reported SRPY domain structures. Overall, SPRY7 may represent an evolutionary early version of the SPRY domain, and subsequent loop insertions and expansions, residue substitutions, as well as domain combinations have rendered the SPRY domain versatile binding specificities and broad biological functions. These results serve as a useful basis for a profound characterization of the molecular interactions of SPRY7.
Collapse
Affiliation(s)
- Jinjin Yang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Biomedicine, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| | - Xueyan Guan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Biomedicine, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| | - Danting Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Biomedicine, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| | - Panqi Zhao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Biomedicine, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| | - Shujun Guo
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Biomedicine, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| | - Zhihe Kuang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Biomedicine, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China.
| |
Collapse
|
466
|
Sun S, He H, Ma Y, Xu J, Chen G, Sun Y, Xiong X. Inactivation of ribosomal protein S27-like impairs DNA interstrand cross-link repair by destabilization of FANCD2 and FANCI. Cell Death Dis 2020; 11:852. [PMID: 33051438 PMCID: PMC7555897 DOI: 10.1038/s41419-020-03082-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ribosomal protein S27-like (RPS27L), an evolutionarily conserved ribosomal protein and a direct p53 target, plays an important role in maintenance of genome integrity. We have previously reported that RPS27L regulates radiation sensitivity via the MDM2-p53 and MDM2-MRN-ATM axes. Whether and how RPS27L modulates DNA interstrand cross-link (ICL) repair is unknown. Here we identified that RPS27L binds to FANCD2 and FANCI, two Fanconi anemia (FA) proteins functioning in ICL repair pathway. Upon RPS27L knockdown, the levels of FANCD2 and FANCI are reduced due to accelerated degradation via p62-mediated autophagy-lysosome pathway, which is abrogated by chloroquine (CQ) treatment or Beclin 1 knockdown. Biologically, RPS27L knockdown suppresses FANCD2 foci formation and impairs ICL repair upon exposure to ICL-inducing agent mitomycin C (MMC) in lung cancer cells. This effect of MMC sensitization can be partially reversed by CQ treatment. Together, our study shows that RPS27L positively regulates ICL repair by binding with FANCD2 and FANCI to prevent their degradation via autophagy-lysosome system.
Collapse
Affiliation(s)
- Siyuan Sun
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Hengqian He
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Yuanyuan Ma
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Department of Urology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Xiufang Xiong
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
467
|
Crystal Structure of Mannose Specific IIA Subunit of Phosphotransferase System from Streptococcus pneumoniae. Molecules 2020; 25:molecules25204633. [PMID: 33053673 PMCID: PMC7587183 DOI: 10.3390/molecules25204633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is a frequent bacterial pathogen of the human respiratory tract causing pneumonia, meningitis and sepsis, a serious healthcare burden in all age groups. S. pneumoniae lacks complete respiratory chain and relies on carbohydrate fermentation for energy generation. One of the essential components for this includes the mannose phosphotransferase system (Man-PTS), which plays a central role in glucose transport and exhibits a broad specificity for a range of hexoses. Importantly, Man-PTS is involved in the global regulation of gene expression for virulence determinants. We herein report the three-dimensional structure of the EIIA domain of S. pneumoniae mannose phosphotransferase system (SpEIIA-Man). Our structure shows a dimeric arrangement of EIIA and reveals a detailed molecular description of the active site. Since PTS transporters are exclusively present in microbes and sugar transporters have already been suggested as valid targets for antistreptococcal antibiotics, our work sets foundation for the future development of antimicrobial strategies against Streptococcus pneumoniae.
Collapse
|
468
|
Stiegler AL, Boggon TJ. The pseudoGTPase group of pseudoenzymes. FEBS J 2020; 287:4232-4245. [PMID: 32893973 PMCID: PMC7544640 DOI: 10.1111/febs.15554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are emerging as significant mediators and regulators of signal transduction. These proteins maintain enzyme folds and topologies, but are disrupted in the conserved motifs required for enzymatic activity. Among the pseudoenzymes, the pseudoGTPase group of atypical GTPases has recently expanded and includes the Rnd and RGK groups, RhoH and the RhoBTB proteins, mitochondrial RhoGTPase and centaurin-γ groups, CENP-M, dynein LIC, Entamoeba histolytica RabX3, leucine-rich repeat kinase 2, and the p190RhoGAP proteins. The wide range of cellular functions associated with pseudoGTPases includes cell migration and adhesion, membrane trafficking and cargo transport, mitosis, mitochondrial activity, transcriptional control, and autophagy, placing the group in an expanding portfolio of signaling pathways. In this review, we examine how the pseudoGTPases differ from canonical GTPases and consider their mechanistic and functional roles in signal transduction. We review the amino acid differences between the pseudoGTPases and discuss how these proteins can be classified based on their ability to bind nucleotide and their enzymatic activity. We discuss the molecular and structural consequences of amino acid divergence from canonical GTPases and use comparison with the well-studied pseudokinases to illustrate the classifications. PseudoGTPases are fast becoming recognized as important mechanistic components in a range of cellular roles, and we provide a concise discussion of the currently identified members of this group. ENZYMES: small GTPases; EC number: EC 3.6.5.2.
Collapse
Affiliation(s)
- Amy L. Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
469
|
Singh R, Deshmukh S, Kumar A, Goyal VD, Makde RD. Crystal structure of XCC3289 from Xanthomonas campestris: homology with the N-terminal substrate-binding domain of Lon peptidase. Acta Crystallogr F Struct Biol Commun 2020; 76:488-494. [PMID: 33006577 PMCID: PMC7531242 DOI: 10.1107/s2053230x20011875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2023] Open
Abstract
LonA peptidase is a major component of the protein quality-control mechanism in both prokaryotes and the organelles of eukaryotes. Proteins homologous to the N-terminal domain of LonA peptidase, but lacking its other domains, are conserved in several phyla of prokaryotes, including the Xanthomonadales order. However, the function of these homologous proteins (LonNTD-like proteins) is not known. Here, the crystal structure of the LonNTD-like protein from Xanthomonas campestris (XCC3289; UniProt Q8P5P7) is reported at 2.8 Å resolution. The structure was solved by molecular replacement and contains one polypeptide in the asymmetric unit. The structure was refined to an Rfree of 29%. The structure of XCC3289 consists of two domains joined by a long loop. The N-terminal domain (residues 1-112) consists of an α-helix surrounded by β-sheets, whereas the C-terminal domain (residues 123-193) is an α-helical bundle. The fold and spatial orientation of the two domains closely resembles those of the N-terminal domains of the LonA peptidases from Escherichia coli and Mycobacterium avium. The structure is also similar to that of cereblon, a substrate-recognizing component of the E3 ubiquitin ligase complex. The N-terminal domains of both LonA and cereblon are known to be involved in specific protein-protein interactions. This structural analysis suggests that XCC3289 and other LonNTD-like proteins might also be capable of such protein-protein interactions.
Collapse
Affiliation(s)
- Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sonali Deshmukh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Venuka Durani Goyal
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Ravindra D. Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
470
|
In silico studies on the interaction of phage displayed biorecognition element (TFQAFDLSPFPS) with the structural protein VP28 of white spot syndrome virus. J Mol Model 2020; 26:264. [PMID: 32914310 DOI: 10.1007/s00894-020-04524-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023]
Abstract
White spot disease caused by the white spot syndrome virus (WSSV) incurs a huge loss to the shrimp farming industry. Since no effective therapeutic measures are available, early detection and prevention of the disease are indispensable. Towards this goal, we previously identified a 12-mer phage displayed peptide (designated as pep28) with high affinity for VP28, the structural protein of the white spot syndrome virus (WSSV). The peptide pep28 was successfully used as a biorecognition probe in the lateral flow assay developed for rapid, on-site detection of WSSV. To unravel the structural determinants for the selective binding between VP28 and pep28, we used bioinformatics, structural modeling, protein-protein docking, and binding-free energy studies. We performed atomistic molecular dynamics simulations of pep28-pIII model totaling 300 ns timescale. The most representative pep28-pIII structure from the simulation was used for docking with the crystal structure of VP28. Our results reveal that pep28 binds in a surface groove of the monomeric VP28 β-barrel and makes several hydrogen bonds and non-polar interactions. Ensemble-based binding-free energy studies reveal that the binding is dominated by non-polar interactions. Our studies provide molecular level insights into the binding mechanism of pep28 with VP28, which explain why the peptide is selective and can assist in modifying pep28 for its practical use, both as a biorecognition probe and a therapeutic.
Collapse
|
471
|
Williamson ZA, Chaton CT, Ciocca WA, Korotkova N, Korotkov KV. PE5-PPE4-EspG 3 heterotrimer structure from mycobacterial ESX-3 secretion system gives insight into cognate substrate recognition by ESX systems. J Biol Chem 2020; 295:12706-12715. [PMID: 32675282 PMCID: PMC7476729 DOI: 10.1074/jbc.ra120.012698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/06/2020] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis has evolved numerous type VII secretion (ESX) systems to secrete multiple factors important for both growth and virulence across their cell envelope. ESX-1, ESX-3, and ESX-5 systems have been shown to each secrete a distinct set of substrates, including PE and PPE families of proteins, named for conserved Pro-Glu and Pro-Pro-Glu motifs in their N termini. Proper secretion of the PE-PPE proteins requires the presence of EspG, with each system encoding its own unique copy. There is no cross-talk between any of the ESX systems, and how each EspG recognizes its subset of PE-PPE proteins is currently unknown. The only current structural characterization of PE-PPE-EspG heterotrimers is from the ESX-5 system. Here we present the crystal structure of the PE5mt-PPE4mt-EspG3mm heterotrimer from the ESX-3 system. Our heterotrimer reveals that EspG3mm interacts exclusively with PPE4mt in a similar manner to EspG5, shielding the hydrophobic tip of PPE4mt from solvent. The C-terminal helical domain of EspG3mm is dynamic, alternating between "open" and "closed" forms, and this movement is likely functionally relevant in the unloading of PE-PPE heterodimers at the secretion machinery. In contrast to the previously solved ESX-5 heterotrimers, the PE-PPE heterodimer of our ESX-3 heterotrimer is interacting with its chaperone at a drastically different angle and presents different faces of the PPE protein to the chaperone. We conclude that the PPE-EspG interface from each ESX system has a unique shape complementarity that allows each EspG to discriminate among noncognate PE-PPE pairs.
Collapse
Affiliation(s)
- Zachary A Williamson
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine T Chaton
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - William A Ciocca
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Natalia Korotkova
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Konstantin V Korotkov
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
472
|
Sivaraman H, Er SY, Choong YK, Gavor E, Sivaraman J. Structural Basis of SARS-CoV-2- and SARS-CoV-Receptor Binding and Small-Molecule Blockers as Potential Therapeutics. Annu Rev Pharmacol Toxicol 2020; 61:465-493. [PMID: 32574109 DOI: 10.1146/annurev-pharmtox-061220-093932] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Over the past two decades, deadly coronaviruses, with the most recent being the severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) 2019 pandemic, have majorly challenged public health. The path for virus invasion into humans and other hosts is mediated by host-pathogen interactions, specifically virus-receptor binding. An in-depth understanding of the virus-receptor binding mechanism is a prerequisite for the discovery of vaccines, antibodies, and small-molecule inhibitors that can interrupt this interaction and prevent or cure infection. In this review, we discuss the viral entry mechanism, the known structural aspects of virus-receptor interactions (SARS-CoV-2 S/humanACE2, SARS-CoV S/humanACE2, and MERS-CoV S/humanDPP4), the key protein domains and amino acid residues involved in binding, and the small-molecule inhibitors and other drugs that have (as of June 2020) exhibited therapeutic potential. Specifically, we review the potential clinical utility of two transmembrane serine protease 2 (TMPRSS2)-targeting protease inhibitors, nafamostat mesylate and camostat mesylate, as well as two novel potent fusion inhibitors and the repurposed Ebola drug, remdesivir, which is specific to RNA-dependent RNA polymerase, against human coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Hariharan Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543;
| | - Shi Yin Er
- Department of Biological Sciences, National University of Singapore, Singapore 117543;
| | - Yeu Khai Choong
- Department of Biological Sciences, National University of Singapore, Singapore 117543;
| | - Edem Gavor
- Department of Biological Sciences, National University of Singapore, Singapore 117543;
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543;
| |
Collapse
|
473
|
Lin MH, Kuo PC, Chiu YC, Chang YY, Chen SC, Hsu CH. The crystal structure of protein-transporting chaperone BCP1 from Saccharomyces cerevisiae. J Struct Biol 2020; 212:107605. [PMID: 32805410 DOI: 10.1016/j.jsb.2020.107605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
Abstract
BCP1 is a protein enriched in the nucleus that is required for Mss4 nuclear export and identified as the chaperone of ribosomal protein Rpl23 in Saccharomyces cerevisiae. According to sequence homology, BCP1 is related to the mammalian BRCA2-interacting protein BCCIP and belongs to the BCIP protein family (PF13862) in the Pfam database. However, the BCIP family has no discernible similarity to proteins with known structure. Here, we report the crystal structure of BCP1, presenting an α/β fold in which the central antiparallel β-sheet is flanked by helices. Protein structural classification revealed that BCP1 has similarity to the GNAT superfamily but no conserved substrate-binding residues. Further modeling and protein-protein docking work provide a plausible model to explain the interaction between BCP1 and Rpl23. Our structural analysis presents the first structure of BCIP family and provides a foundation for understanding the molecular basis of BCP1 as a chaperone of Rpl23 for ribosome biosynthesis.
Collapse
Affiliation(s)
- Meng-Hsuan Lin
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Po-Chih Kuo
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chih Chiu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Yu-Yung Chang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Chia Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
474
|
Molecular biology and structure of a novel penaeid shrimp densovirus elucidate convergent parvoviral host capsid evolution. Proc Natl Acad Sci U S A 2020; 117:20211-20222. [PMID: 32747554 DOI: 10.1073/pnas.2008191117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The giant tiger prawn (Penaeus monodon) is a decapod crustacean widely reared for human consumption. Currently, viruses of two distinct lineages of parvoviruses (PVs, family Parvoviridae; subfamily Hamaparvovirinae) infect penaeid shrimp. Here, a PV was isolated and cloned from Vietnamese P. monodon specimens, designated Penaeus monodon metallodensovirus (PmMDV). This is the first member of a third divergent lineage shown to infect penaeid decapods. PmMDV has a transcription strategy unique among invertebrate PVs, using extensive alternative splicing and incorporating transcription elements characteristic of vertebrate-infecting PVs. The PmMDV proteins have no significant sequence similarity with other PVs, except for an SF3 helicase domain in its nonstructural protein. Its capsid structure, determined by cryoelectron microscopy to 3-Å resolution, has a similar surface morphology to Penaeus stylirostris densovirus, despite the lack of significant capsid viral protein (VP) sequence similarity. Unlike other PVs, PmMDV folds its VP without incorporating a βA strand and displayed unique multimer interactions, including the incorporation of a Ca2+ cation, attaching the N termini under the icosahedral fivefold symmetry axis, and forming a basket-like pentamer helix bundle. While the PmMDV VP sequence lacks a canonical phospholipase A2 domain, the structure of an EDTA-treated capsid, determined to 2.8-Å resolution, suggests an alternative membrane-penetrating cation-dependent mechanism in its N-terminal region. PmMDV is an observed example of convergent evolution among invertebrate PVs with respect to host-driven capsid structure and unique as a PV showing a cation-sensitive/dependent basket structure for an alternative endosomal egress.
Collapse
|
475
|
Abstract
The last universal cellular ancestor (LUCA) is the most recent population of organisms from which all cellular life on Earth descends. The reconstruction of the genome and phenotype of the LUCA is a major challenge in evolutionary biology. Given that all life forms are associated with viruses and/or other mobile genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by projecting back in time using the extant distribution of viruses across the two primary domains of life, bacteria and archaea, and tracing the evolutionary histories of some key virus genes, we attempt a reconstruction of the LUCA virome. Even a conservative version of this reconstruction suggests a remarkably complex virome that already included the main groups of extant viruses of bacteria and archaea. We further present evidence of extensive virus evolution antedating the LUCA. The presence of a highly complex virome implies the substantial genomic and pan-genomic complexity of the LUCA itself.
Collapse
|
476
|
Wilkinson RC, Rahman Pour R, Jamshidi S, Fülöp V, Bugg TDH. Extracellular alpha/beta-hydrolase from Paenibacillus species shares structural and functional homology to tobacco salicylic acid binding protein 2. J Struct Biol 2020; 210:107496. [PMID: 32224091 DOI: 10.1016/j.jsb.2020.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
An alpha/ beta hydrolase annotated as a putative salicylate esterase within the genome of a species of Paenibacillus previously identified from differential and selective growth on Kraft lignin was structurally and functionally characterised. Feruloyl esterases are key to the degradation of lignin in several bacterial species and although this activity was investigated, no such activity was observed. The crystal structure of the Paenibacillus esterase, here denoted as PnbE, was determined at 1.32 Å resolution, showing high similarity to Nicotiana tabacum salicylic acid binding protein 2 from the protein database. Structural similarities between these two structures across the core domains and key catalytic residues were observed, with superposition of catalytic residues giving an RMSD of 0.5 Å across equivalent Cα atoms. Conversely, the cap domains of PnbE and Nicotiana tabacum SABP2 showed greater divergence with decreased flexibility in the PnbE cap structure. Activity of PnbE as a putative methyl salicylate esterase was supported with binding studies showing affinity for salicylic acid and functional studies showing methyl salicylate esterase activity. We hypothesise that this activity could enrich Paenibacillus sp. within the rhizosphere by increasing salicylic acid concentrations within the soil.
Collapse
Affiliation(s)
| | | | - Shirin Jamshidi
- School of Cancer and Pharmaceutical Sciences, King's College London, SE1 9NH, UK
| | - Vilmos Fülöp
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
477
|
Holm L. DALI and the persistence of protein shape. Protein Sci 2020; 29:128-140. [PMID: 31606894 PMCID: PMC6933842 DOI: 10.1002/pro.3749] [Citation(s) in RCA: 467] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022]
Abstract
DALI is a popular resource for comparing protein structures. The software is based on distance-matrix alignment. The associated web server provides tools to navigate, integrate and organize some data pushed out by genomics and structural genomics. The server has been running continuously for the past 25 years. Structural biologists routinely use DALI to compare a new structure against previously known protein structures. If significant similarities are discovered, it may indicate a distant homology, that is, that the structures are of shared origin. This may be significant in determining the molecular mechanisms, as these may remain very similar from a distant predecessor to the present day, for example, from the last common ancestor of humans and bacteria. Meta-analysis of independent reference-based evaluations of alignment accuracy and fold discrimination shows DALI at top rank in six out of 12 studies. The web server and standalone software are available from http://ekhidna2.biocenter.helsinki.fi/dali.
Collapse
Affiliation(s)
- Liisa Holm
- Institute of Biotechnology, Helsinki Institute of Life Sciences and Research Program of Evolutionary and Organismal BiologyFaculty of Biosciences, University of HelsinkiHelsinkiFinland
| |
Collapse
|