451
|
Martinez S, Andreu A, Mecklenburg N, Echevarria D. Cellular and molecular basis of cerebellar development. Front Neuroanat 2013; 7:18. [PMID: 23805080 PMCID: PMC3693072 DOI: 10.3389/fnana.2013.00018] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 01/14/2023] Open
Abstract
Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering, and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification, and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.
Collapse
Affiliation(s)
- Salvador Martinez
- Experimental Embryology Lab, Consejo Superior de Investigaciones Científicas, Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez Alicante, Spain
| | | | | | | |
Collapse
|
452
|
Li J, Yu L, Gu X, Ma Y, Pasqualini R, Arap W, Snyder EY, Sidman RL. Tissue plasminogen activator regulates Purkinje neuron development and survival. Proc Natl Acad Sci U S A 2013; 110:E2410-9. [PMID: 23674688 PMCID: PMC3696779 DOI: 10.1073/pnas.1305010110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cerebellar cortex is centrally involved in motor coordination and learning, and its sole output is provided by Purkinje neurons (PNs). Growth of PN dendrites and their major synaptic input from granule cell parallel fiber axons takes place almost entirely in the first several postnatal weeks. PNs are more vulnerable to cell death than most other neurons, but the mechanisms remain unclear. We find that the homozygous nervous (nr) mutant mouse's 10-fold-increased cerebellar tissue plasminogen activator (tPA), a part of the tPA/plasmin proteolytic system, influences several different molecular mechanisms, each regulating a key aspect of postnatal PN development, followed by selective PN necrosis, as follows. (i) Excess endogenous or exogenous tPA inhibits dendritic growth in vivo and in vitro by activating protein kinase Cγ and phosphorylation of microtubule-associated protein 2. (ii) tPA/plasmin proteolysis impairs parallel fiber-PN synaptogenesis by blocking brain-derived neurotrophic factor/tyrosine kinase receptor B signaling. (iii) Voltage-dependent anion channel 1 (a mitochondrial and plasma membrane protein) bound with kringle 5 (a peptide derived from the excess plasminogen) promotes pathological enlargement and rounding of PN mitochondria, reduces mitochondrial membrane potential, and damages plasma membranes. These abnormalities culminate in young nr PN necrosis that can be mimicked in wild-type PNs by exogenous tPA injection into cerebellum or prevented by endogenous tPA deletion in nr:tPA-knockout double mutants. In sum, excess tPA/plasmin, through separate downstream molecular mechanisms, regulates postnatal PN dendritogenesis, synaptogenesis, mitochondrial structure and function, and selective PN viability.
Collapse
Affiliation(s)
| | - Lili Yu
- Department of Anatomy and Neurobiology, Boston University Medical School, Boston, MA 02118
| | - Xuesong Gu
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Yinghua Ma
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065
| | - Renata Pasqualini
- David H. Koch Center, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Wadih Arap
- David H. Koch Center, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Evan Y. Snyder
- Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
453
|
Esposito G, Paşca SP. Motor abnormalities as a putative endophenotype for Autism Spectrum Disorders. Front Integr Neurosci 2013; 7:43. [PMID: 23781177 PMCID: PMC3678087 DOI: 10.3389/fnint.2013.00043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/15/2013] [Indexed: 11/21/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) represent a complex group of behaviorally defined conditions with core deficits in social communication and the presence of repetitive and restrictive behaviors. To date, neuropathological studies have failed to identify pathognomonic cellular features for ASDs and there remains a fundamental disconnection between the complex clinical aspects of ASDs and the underlying neurobiology. Although not listed among the core diagnostic domains of impairment in ASDs, motor abnormalities have been consistently reported across the spectrum. In this perspective article, we summarize the evidence that supports the use of motor abnormalities as a putative endophenotype for ASDs. We argue that because these motor abnormalities do not directly depend on social or linguistic development, they may serve as an early disease indicator. Furthermore, we propose that stratifying patients based on motor development could be useful not only as an outcome predictor and in identifying more specific treatments for different ASDs categories, but also in exposing neurobiological mechanisms.
Collapse
Affiliation(s)
- Gianluca Esposito
- RIKEN Brain Science Institute, Unit for Affiliative Social BehaviorWako-Shi, Saitama, Japan
| | - Sergiu P. Paşca
- Department of Neurobiology, Stanford University School of MedicineStanford, CA, USA
| |
Collapse
|
454
|
Cerebellar granule cells are generated postnatally in humans. Brain Struct Funct 2013; 219:1271-86. [PMID: 23716277 DOI: 10.1007/s00429-013-0565-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/22/2013] [Indexed: 12/22/2022]
Abstract
How many cerebellar granule cells are generated pre- or postnatally in human is unknown. Using a rigorous design-based stereologic approach we investigated postmortem cerebella from 14 children who died between the first postnatal day (P1) and 11 months of age (M11). We found a statistically significant (p < 0.05) age-related increase in the total number of granule cells from 5.9 × 10(9) at M1 to 37.6 × 10(9) at M10/11 per cerebellar half but not in the total number of Purkinje cells (12.1 × 10(6) at M1 vs. 13.9 × 10(6) at M10/11 per cerebellar half). Accordingly, approximately 85 % of the cerebellar granule cells are generated postnatally in human, and the number of granule cells per Purkinje cell in the human cerebellum increases from 485 at M1 to 2,700 at M10/11, approximately. These data indicate that the human cerebellum has a much higher functional plasticity during the first year of life than previously thought, and may respond very sensitively to internal and external influences during this time. This has important implications for several neuropsychiatric conditions in which cerebellar involvement has been demonstrated.
Collapse
|
455
|
Kapp SK. Empathizing with sensory and movement differences: moving toward sensitive understanding of autism. Front Integr Neurosci 2013; 7:38. [PMID: 23745107 PMCID: PMC3662878 DOI: 10.3389/fnint.2013.00038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/30/2013] [Indexed: 01/14/2023] Open
Affiliation(s)
- Steven K. Kapp
- Human Development and Psychology Division, Graduate School of Education and Information Studies, University of California Los AngelesLos Angeles, CA, USA
| |
Collapse
|
456
|
Sarachana T, Hu VW. Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder. Mol Autism 2013; 4:14. [PMID: 23697635 PMCID: PMC3665583 DOI: 10.1186/2040-2392-4-14] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/24/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We have recently identified the nuclear hormone receptor RORA (retinoic acid-related orphan receptor-alpha) as a novel candidate gene for autism spectrum disorder (ASD). Our independent cohort studies have consistently demonstrated the reduction of RORA transcript and/or protein levels in blood-derived lymphoblasts as well as in the postmortem prefrontal cortex and cerebellum of individuals with ASD. Moreover, we have also shown that RORA has the potential to be under negative and positive regulation by androgen and estrogen, respectively, suggesting the possibility that RORA may contribute to the male bias of ASD. However, little is known about transcriptional targets of this nuclear receptor, particularly in humans. METHODS Here we identify transcriptional targets of RORA in human neuronal cells on a genome-wide level using chromatin immunoprecipitation (ChIP) with an anti-RORA antibody followed by whole-genome promoter array (chip) analysis. Selected potential targets of RORA were then validated by an independent ChIP followed by quantitative PCR analysis. To further demonstrate that reduced RORA expression results in reduced transcription of RORA targets, we determined the expression levels of the selected transcriptional targets in RORA-deficient human neuronal cells, as well as in postmortem brain tissues from individuals with ASD who exhibit reduced RORA expression. RESULTS The ChIP-on-chip analysis reveals that RORA1, a major isoform of RORA protein in human brain, can be recruited to as many as 2,764 genomic locations corresponding to promoter regions of 2,544 genes across the human genome. Gene ontology analysis of this dataset of genes that are potentially directly regulated by RORA1 reveals statistically significant enrichment in biological functions negatively impacted in individuals with ASD, including neuronal differentiation, adhesion and survival, synaptogenesis, synaptic transmission and plasticity, and axonogenesis, as well as higher level functions such as development of the cortex and cerebellum, cognition, memory, and spatial learning. Independent ChIP-quantitative PCR analyses confirm binding of RORA1 to promoter regions of selected ASD-associated genes, including A2BP1, CYP19A1, ITPR1, NLGN1, and NTRK2, whose expression levels (in addition to HSD17B10) are also decreased in RORA1-repressed human neuronal cells and in prefrontal cortex tissues from individuals with ASD. CONCLUSIONS Findings from this study indicate that RORA transcriptionally regulates A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, and strongly suggest that reduction of this sex hormone-sensitive nuclear receptor in the brain causes dysregulated expression of these ASD-relevant genes as well as their associated pathways and functions which, in turn, may contribute to the underlying pathobiology of ASD.
Collapse
Affiliation(s)
- Tewarit Sarachana
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC, 20037, USA.
| | | |
Collapse
|
457
|
Mosconi MW, Luna B, Kay-Stacey M, Nowinski CV, Rubin LH, Scudder C, Minshew N, Sweeney JA. Saccade adaptation abnormalities implicate dysfunction of cerebellar-dependent learning mechanisms in Autism Spectrum Disorders (ASD). PLoS One 2013; 8:e63709. [PMID: 23704934 PMCID: PMC3660571 DOI: 10.1371/journal.pone.0063709] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/05/2013] [Indexed: 11/19/2022] Open
Abstract
The cerebellar vermis (lobules VI-VII) has been implicated in both postmortem and neuroimaging studies of autism spectrum disorders (ASD). This region maintains the consistent accuracy of saccadic eye movements and plays an especially important role in correcting systematic errors in saccade amplitudes such as those induced by adaptation paradigms. Saccade adaptation paradigms have not yet been used to study ASD. Fifty-six individuals with ASD and 53 age-matched healthy controls performed an intrasaccadic target displacement task known to elicit saccadic adaptation reflected in an amplitude reduction. The rate of amplitude reduction and the variability of saccade amplitude across 180 adaptation trials were examined. Individuals with ASD adapted slower than healthy controls, and demonstrated more variability of their saccade amplitudes across trials prior to, during and after adaptation. Thirty percent of individuals with ASD did not significantly adapt, whereas only 6% of healthy controls failed to adapt. Adaptation rate and amplitude variability impairments were related to performance on a traditional neuropsychological test of manual motor control. The profile of impaired adaptation and reduced consistency of saccade accuracy indicates reduced neural plasticity within learning circuits of the oculomotor vermis that impedes the fine-tuning of motor behavior in ASD. These data provide functional evidence of abnormality in the cerebellar vermis that converges with previous reports of cellular and gross anatomic dysmorphology of this brain region in ASD.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Departments of Psychiatry and Pediatrics, University of Texas Southwestern, Dallas, Texas, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
458
|
Splitting of the cerebellar vermis in juvenile rats--effects on social behavior, vocalization and motor activity. Behav Brain Res 2013; 250:293-8. [PMID: 23685319 DOI: 10.1016/j.bbr.2013.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/21/2022]
Abstract
Radical resection of malignant midline tumors of the posterior fossa in childhood followed by adjuvant therapies like chemotherapy or radiotherapy often leads to longterm survival and even healing of such patients. Therefore, quality of life becomes particular important. Postoperative neurological deficits, such as cerebellar mutism and ataxia have been attributed to splitting of the cerebellar vermis to remove these tumors. Here, we tested the effect of vermian splitting in juvenile rats on social behavior, vocalization and motor activity. Juvenile male Sprague Dawley rats, aged 23 days, underwent vermian splitting under general anesthesia after medial suboccipital craniotomy (lesioned group, n=16). In sham-lesioned rats, only craniotomy was performed and the dura was opened with release of cerebrospinal fluid (n=16). Naïve rats served as controls (n=14). All groups were tested on day 0 (before surgery), and on days 1-4 and 7 after surgery for locomotor activity, motor coordination, social behavior, and ultrasound vocalization during social interaction. Finally, splitting of the vermis was histologically verified. Social interaction was reduced for two days after surgery in lesioned rats compared to sham-lesioned rats and controls. Vocalization was decreased for one day compared to controls. Locomotor activity was disturbed for several days after surgery in both lesioned and sham-lesioned rats as compared to controls. Deficient social behavior and vocalization after surgery are related to vermian splitting in juvenile rats. These results indicate that similar to the human context vermian splitting can reduce communicative drive in the early postsurgical phase.
Collapse
|
459
|
Rogers TD, McKimm E, Dickson PE, Goldowitz D, Blaha CD, Mittleman G. Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Front Syst Neurosci 2013; 7:15. [PMID: 23717269 PMCID: PMC3650713 DOI: 10.3389/fnsys.2013.00015] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/23/2013] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders are a group of neurodevelopmental disorders characterized by deficits in social skills and communication, stereotyped and repetitive behavior, and a range of deficits in cognitive function. While the etiology of autism is unknown, current research indicates that abnormalities of the cerebellum, now believed to be involved in cognitive function and the prefrontal cortex (PFC), are associated with autism. The current paper proposes that impaired cerebello-cortical circuitry could, at least in part, underlie autistic symptoms. The use of animal models that allow for manipulation of genetic and environmental influences are an effective means of elucidating both distal and proximal etiological factors in autism and their potential impact on cerebello-cortical circuitry. Some existing rodent models of autism, as well as some models not previously applied to the study of the disorder, display cerebellar and behavioral abnormalities that parallel those commonly seen in autistic patients. The novel findings produced from research utilizing rodent models could provide a better understanding of the neurochemical and behavioral impact of changes in cerebello-cortical circuitry in autism.
Collapse
Affiliation(s)
- Tiffany D Rogers
- Department of Psychology, The University of Memphis Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
460
|
Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 2013; 68:122-35. [PMID: 22981949 PMCID: PMC3632377 DOI: 10.1016/j.neuropharm.2012.08.015] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 12/21/2022]
Abstract
Reelin is a glycoprotein that serves important roles both during development (regulation of neuronal migration and brain lamination) and in adulthood (maintenance of synaptic function). A number of neuropsychiatric disorders including autism, schizophrenia, bipolar disorder, major depression, Alzheimer's disease and lissencephaly share a common feature of abnormal Reelin expression in the brain. Altered Reelin expression has been hypothesized to impair neuronal connectivity and synaptic plasticity, leading ultimately to the cognitive deficits present in these disorders. The mechanisms for abnormal Reelin expression in some of these disorders are currently unknown although possible explanations include early developmental insults, mutations, hypermethylation of the promoter for the Reelin gene (RELN), miRNA silencing of Reelin mRNA, FMRP underexpression and Reelin processing abnormalities. Increasing Reelin expression through pharmacological therapies may help ameliorate symptoms resulting from Reelin deficits. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| | - S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| |
Collapse
|
461
|
McCleery JP, Elliott NA, Sampanis DS, Stefanidou CA. Motor development and motor resonance difficulties in autism: relevance to early intervention for language and communication skills. Front Integr Neurosci 2013; 7:30. [PMID: 23630476 PMCID: PMC3634796 DOI: 10.3389/fnint.2013.00030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/11/2013] [Indexed: 01/03/2023] Open
Abstract
Research suggests that a sub-set of children with autism experience notable difficulties and delays in motor skills development, and that a large percentage of children with autism experience deficits in motor resonance. These motor-related deficiencies, which evidence suggests are present from a very early age, are likely to negatively affect social-communicative and language development in this population. Here, we review evidence for delayed, impaired, and atypical motor development in infants and children with autism. We then carefully review and examine the current language and communication-based intervention research that is relevant to motor and motor resonance (i.e., neural "mirroring" mechanisms activated when we observe the actions of others) deficits in children with autism. Finally, we describe research needs and future directions and developments for early interventions aimed at addressing the speech/language and social-communication development difficulties in autism from a motor-related perspective.
Collapse
Affiliation(s)
- Joseph P. McCleery
- School of Psychology, University of BirminghamWest Midlands, Birmingham, UK
| | | | | | | |
Collapse
|
462
|
Hardy MW, LaGasse AB. Rhythm, movement, and autism: using rhythmic rehabilitation research as a model for autism. Front Integr Neurosci 2013; 7:19. [PMID: 23543915 PMCID: PMC3610079 DOI: 10.3389/fnint.2013.00019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/10/2013] [Indexed: 11/13/2022] Open
Abstract
Recently, there has been increased focus on movement and sensory abnormalities in autism spectrum disorders (ASD). This has come from research demonstrating cortical and cerebellar differences in autism, with suggestion of early cerebellar dysfunction. As evidence for an extended profile of ASD grows, there are vast implications for treatment and therapy for individuals with autism. Persons with autism are often provided behavioral or cognitive strategies for navigating their environment; however, these strategies do not consider differences in motor functioning. One accommodation that has not yet been explored in the literature is the use of auditory rhythmic cueing to improve motor functioning in ASD. The purpose of this paper is to illustrate the potential impact of auditory rhythmic cueing for motor functioning in persons with ASD. To this effect, we review research on rhythm in motor rehabilitation, draw parallels to motor dysfunction in ASD, and propose a rationale for how rhythmic input can improve sensorimotor functioning, thereby allowing individuals with autism to demonstrate their full cognitive, behavioral, social, and communicative potential.
Collapse
Affiliation(s)
| | - A. Blythe LaGasse
- Center for Biomedical Research in Music, Colorado State UniversityFort Collins, CO, USA
| |
Collapse
|
463
|
Persico AM, Napolioni V. Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol 2013; 36:82-90. [DOI: 10.1016/j.ntt.2012.09.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023]
|
464
|
Cohen IL, Gardner JM, Karmel BZ, Phan HTT, Kittler P, Gomez TR, Gonzalez MG, Lennon EM, Parab S, Barone A. Neonatal brainstem function and 4-month arousal-modulated attention are jointly associated with autism. Autism Res 2013; 6:11-22. [PMID: 23165989 PMCID: PMC3578986 DOI: 10.1002/aur.1259] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/26/2012] [Indexed: 11/10/2022]
Abstract
The authors evaluated the contribution of initially abnormal neonatal auditory brainstem responses (ABRs) and 4-month arousal-modulated attention visual preference to later autism spectrum disorder (ASD) behaviors in neonatal intensive care unit (NICU) graduates. A longitudinal study design was used to compare NICU graduates with normal ABRs (n = 28) to those with initially abnormal ABRs (n = 46) that later resolved. At 4 months postterm age, visual preference (measured after feeding) for a random check pattern flashing at 1, 3, or 8 Hz and gestational age (GA) served as additional predictors. Outcome measures were PDD Behavior Inventory (PDDBI) scores at 3.4 years (standard deviation = 1.2), and developmental quotients (DQ) obtained around the same age with the Griffiths Mental Development Scales (GMDS). Preferences for higher rates of stimulation at 4 months were highly correlated with PDDBI scores (all P-values < 0.01) and the GMDS Hearing and Speech DQ, but only in those with initially abnormal ABRs. Effects were strongest for a PDDBI social competence measure most associated with a diagnosis of autism. For those with abnormal ABRs, increases in preference for higher rates of stimulation as infants were linked to nonlinear increases in severity of ASD at 3 years and to an ASD diagnosis. Abnormal ABRs were associated with later reports of repetitive and ritualistic behaviors irrespective of 4-month preference for stimulation. The joint occurrence of initially abnormal neonatal ABRs and preference for more stimulation at 4 months, both indices of early brainstem dysfunction, may be a marker for the development of autism in this cohort.
Collapse
Affiliation(s)
- Ira L Cohen
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
465
|
Abstract
The elucidation of epigenetic alterations in the autism brain has potential to provide new insights into the molecular mechanisms underlying abnormal gene expression in this disorder. Given strong evidence that engrailed-2 (EN-2) is a developmentally expressed gene relevant to cerebellar abnormalities and autism, the epigenetic evaluation of this candidate gene was undertaken in 26 case and control post-mortem cerebellar samples. Assessments included global DNA methylation, EN-2 promoter methylation, EN-2 gene expression and EN-2 protein levels. Chromatin immunoprecipitation was used to evaluate trimethylation status of histone H3 lysine 27 (H3K27) associated with gene downregulation and histone H3 lysine 4 (H3K4) associated with gene activation. The results revealed an unusual pattern of global and EN-2 promoter region DNA hypermethylation accompanied by significant increases in EN-2 gene expression and protein levels. Consistent with EN-2 overexpression, histone H3K27 trimethylation mark in the EN-2 promoter was significantly decreased in the autism samples relative to matched controls. Supporting a link between reduced histone H3K27 trimethylation and increased EN-2 gene expression, the mean level of histone H3K4 trimethylation was elevated in the autism cerebellar samples. Together, these results suggest that the normal EN-2 downregulation that signals Purkinje cell maturation during late prenatal and early-postnatal development may not have occurred in some individuals with autism and that the postnatal persistence of EN-2 overexpression may contribute to autism cerebellar abnormalities.
Collapse
|
466
|
Becker EBE, Stoodley CJ. Autism spectrum disorder and the cerebellum. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:1-34. [PMID: 24290381 DOI: 10.1016/b978-0-12-418700-9.00001-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cerebellum has been long known for its importance in motor learning and coordination. Recently, anatomical, clinical, and neuroimaging studies strongly suggest that the cerebellum supports cognitive functions, including language and executive functions, as well as affective regulation. Furthermore, the cerebellum has emerged as one of the key brain regions affected in autism. Here, we discuss our current understanding of the role of the cerebellum in autism, including evidence from genetic, molecular, clinical, behavioral, and neuroimaging studies. Cerebellar findings in autism suggest developmental differences at multiple levels of neural structure and function, indicating that the cerebellum is an important player in the complex neural underpinnings of autism spectrum disorder, with behavioral implications beyond the motor domain.
Collapse
Affiliation(s)
- Esther B E Becker
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
467
|
Chukoskie L, Townsend J, Westerfield M. Motor Skill in Autism Spectrum Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:207-49. [DOI: 10.1016/b978-0-12-418700-9.00007-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
468
|
Blatt GJ. The neuropathology of autism. SCIENTIFICA 2012; 2012:703675. [PMID: 24278731 PMCID: PMC3820437 DOI: 10.6064/2012/703675] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 06/02/2023]
Abstract
Autism is a behaviorally defined neurodevelopmental disorder that affects over 1% of new births in the United States and about 2% of boys. The etiologies are unknown and they are genetically complex. There may be epigenetic effects, environmental influences, and other factors that contribute to the mechanisms and affected neural pathway(s). The underlying neuropathology of the disorder has been evolving in the literature to include specific brain areas in the cerebellum, limbic system, and cortex. Part(s) of structures appear to be affected most rather than the entire structure, for example, select nuclei of the amygdala, the fusiform face area, and so forth. Altered cortical organization characterized by more frequent and narrower minicolumns and early overgrowth of the frontal portion of the brain, affects connectivity. Abnormalities include cytoarchitectonic laminar differences, excess white matter neurons, decreased numbers of GABAergic cerebellar Purkinje cells, and other events that can be traced developmentally and cause anomalies in circuitry. Problems with neurotransmission are evident by recent receptor and binding site studies especially in the inhibitory GABA system likely contributing to an imbalance of excitatory/inhibitory transmission. As postmortem findings are related to core behavior symptoms, and technology improves, researchers are gaining a much better perspective of contributing factors to the disorder.
Collapse
Affiliation(s)
- Gene J. Blatt
- Department of Anatomy & Neurobiology, School of Medicine, Boston University, 72 East Concord Street L 1004, Boston, MA 02118, USA
| |
Collapse
|
469
|
Alzghoul L, Bortolato M, Delis F, Thanos PK, Darling RD, Godar SC, Zhang J, Grant S, Wang GJ, Simpson KL, Chen K, Volkow ND, Lin RCS, Shih JC. Altered cerebellar organization and function in monoamine oxidase A hypomorphic mice. Neuropharmacology 2012; 63:1208-17. [PMID: 22971542 PMCID: PMC3442946 DOI: 10.1016/j.neuropharm.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/27/2012] [Accepted: 08/08/2012] [Indexed: 11/26/2022]
Abstract
Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-A(Neo)), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-A(Neo) mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO-A(Neo) mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO-A(Neo) mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum.
Collapse
Affiliation(s)
- Loai Alzghoul
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
470
|
Motor difficulties in autism spectrum disorder: linking symptom severity and postural stability. J Autism Dev Disord 2012. [PMID: 23132272 DOI: 10.1007/s10803‐012‐1702‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Postural stability is a fundamental aspect of motor ability that allows individuals to sustain and maintain the desired physical position of one's body. The present study examined postural stability in average-IQ adolescents and adults with Autism Spectrum Disorder (ASD). Twenty-six individuals with ASD and 26 age-and-IQ-matched individuals with typical development stood on one leg or two legs with eyes opened or closed on a Wii balance board. Results indicated significant group differences in postural stability during one-legged standing, but there were no significant group differences during two-legged standing. This suggests that static balance during more complex standing postures is impaired in average-IQ individuals with ASD. Further, current ASD symptoms were related to postural stability during two-legged standing in individuals with ASD. Future directions and clinical implications are discussed.
Collapse
|
471
|
Reith RM, McKenna J, Wu H, Hashmi SS, Cho SH, Dash PK, Gambello MJ. Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiol Dis 2012; 51:93-103. [PMID: 23123587 DOI: 10.1016/j.nbd.2012.10.014] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/19/2012] [Accepted: 10/13/2012] [Indexed: 12/17/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a dominant tumor suppressor disorder caused by mutations in either TSC1 or TSC2. TSC causes substantial neuropathology, often leading to autism spectrum disorders (ASDs) in up to 60% of patients. The anatomic and neurophysiologic links between these two disorders are not well understood. We have generated and characterized a novel TSC mouse model with Purkinje cell specific Tsc2 loss. These Tsc2f/-;Cre mice exhibit progressive Purkinje cell degeneration. Since loss of Purkinje cells is a well reported postmortem finding in patients with ASD, we conducted a series of behavior tests to asses if Tsc2f/-;Cre mice displayed autistic-like deficits. Tsc2f/-;Cre mice demonstrated increased repetitive behavior as assessed with marble burying activity. Using the three chambered apparatus to asses social behavior, we found that Tsc2f/-;Cre mice showed behavioral deficits, exhibiting no preference between a stranger mouse and an inanimate object, or between a novel and a familiar mouse. We also detected social deficits in Tsc2f/f;Cre mice, suggesting that Purkinje cell pathology is sufficient to induce ASD-like behavior. Importantly, social behavior deficits were prevented with rapamycin treatment. Altogether, these results demonstrate that loss of Tsc2 in Purkinje cells in a Tsc2-haploinsufficient background leads to autistic-like behavioral deficits. These studies provide compelling evidence that Purkinje cell loss and/or dysfunction may be an important link between TSC and ASD as well as a general anatomic phenomenon that contributes to the ASD phenotype.
Collapse
Affiliation(s)
- R Michelle Reith
- Program in Human and Molecular Genetics, UT Health, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
472
|
|
473
|
Randolph-Gips M, Srinivasan P. Modeling autism: a systems biology approach. J Clin Bioinforma 2012; 2:17. [PMID: 23043674 PMCID: PMC3507704 DOI: 10.1186/2043-9113-2-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/09/2012] [Indexed: 12/13/2022] Open
Abstract
Autism is the fastest growing developmental disorder in the world today. The prevalence of autism in the US has risen from 1 in 2500 in 1970 to 1 in 88 children today. People with autism present with repetitive movements and with social and communication impairments. These impairments can range from mild to profound. The estimated total lifetime societal cost of caring for one individual with autism is $3.2 million US dollars. With the rapid growth in this disorder and the great expense of caring for those with autism, it is imperative for both individuals and society that techniques be developed to model and understand autism. There is increasing evidence that those individuals diagnosed with autism present with highly diverse set of abnormalities affecting multiple systems of the body. To this date, little to no work has been done using a whole body systems biology approach to model the characteristics of this disorder. Identification and modelling of these systems might lead to new and improved treatment protocols, better diagnosis and treatment of the affected systems, which might lead to improved quality of life by themselves, and, in addition, might also help the core symptoms of autism due to the potential interconnections between the brain and nervous system with all these other systems being modeled. This paper first reviews research which shows that autism impacts many systems in the body, including the metabolic, mitochondrial, immunological, gastrointestinal and the neurological. These systems interact in complex and highly interdependent ways. Many of these disturbances have effects in most of the systems of the body. In particular, clinical evidence exists for increased oxidative stress, inflammation, and immune and mitochondrial dysfunction which can affect almost every cell in the body. Three promising research areas are discussed, hierarchical, subgroup analysis and modeling over time. This paper reviews some of the systems disturbed in autism and suggests several systems biology research areas. Autism poses a rich test bed for systems biology modeling techniques.
Collapse
Affiliation(s)
- Mary Randolph-Gips
- Systems Engineering and Computer Engineering, University of Houston - Clear Lake, 2700 Bay Area Bvd, Houston, TX, 77058, USA.
| | | |
Collapse
|
474
|
Vakalopoulos C. The Developmental Basis of Visuomotor Capabilities and the Causal Nature of Motor Clumsiness to Cognitive and Empathic Dysfunction. THE CEREBELLUM 2012; 12:212-23. [DOI: 10.1007/s12311-012-0416-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
475
|
Heck DH, Gu W, Cao Y, Qi S, Lacaria M, Lupski JR. Opposing phenotypes in mice with Smith-Magenis deletion and Potocki-Lupski duplication syndromes suggest gene dosage effects on fluid consumption behavior. Am J Med Genet A 2012; 158A:2807-14. [PMID: 22991245 DOI: 10.1002/ajmg.a.35601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/12/2012] [Indexed: 11/12/2022]
Abstract
A quantitative long-term fluid consumption and fluid-licking assay was performed in two mouse models with either an ∼2 Mb genomic deletion, Df(11)17, or the reciprocal duplication copy number variation (CNV), Dp(11)17, analogous to the human genomic rearrangements causing either Smith-Magenis syndrome [SMS; OMIM #182290] or Potocki-Lupski syndrome [PTLS; OMIM #610883], respectively. Both mouse strains display distinct quantitative alterations in fluid consumption compared to their wild-type littermates; several of these changes are diametrically opposing between the two chromosome engineered mouse models. Mice with duplication versus deletion showed longer versus shorter intervals between visits to the waterspout, generated more versus less licks per visit and had higher versus lower variability in the number of licks per lick-burst as compared to their respective wild-type littermates. These findings suggest that copy number variation can affect long-term fluid consumption behavior in mice. Other behavioral differences were unique for either the duplication or deletion mutants; the deletion CNV resulted in increased variability of the licking rhythm, and the duplication CNV resulted in a significant slowing of the licking rhythm. Our findings document a readily quantitated complex behavioral response that can be directly and reciprocally influenced by a gene dosage effect.
Collapse
Affiliation(s)
- Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | | | | | | | | | | |
Collapse
|
476
|
Crespi B. Diametric gene-dosage effects as windows into neurogenetic architecture. Curr Opin Neurobiol 2012; 23:143-51. [PMID: 22995549 DOI: 10.1016/j.conb.2012.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/16/2012] [Accepted: 08/26/2012] [Indexed: 02/06/2023]
Abstract
Gene expression can be modulated in two opposite directions, towards higher or lower amounts of product. How do diametric changes in gene dosage influence neurological development and function? Recent studies of transgenic and knockout mouse models, genomic copy-number variants, imprinted-gene expression alterations, and sex-chromosome aneuploidies are revealing examples of 'mirror-extreme' brain and behavior phenotypes, which provide unique insights into neurodevelopmental architecture. These convergent studies quantitatively connect gene dosages with specific trajectories and outcomes, with important implications for the experimental dissection of normal neurological functions, the genetic analysis of psychiatric disorders, the development of pharmacological therapies, and mechanisms for the evolution of human brain and behavior.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
477
|
Ji L, Chauhan A, Chauhan V. Reduced activity of protein kinase C in the frontal cortex of subjects with regressive autism: relationship with developmental abnormalities. Int J Biol Sci 2012; 8:1075-84. [PMID: 22949890 PMCID: PMC3432855 DOI: 10.7150/ijbs.4742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/19/2012] [Indexed: 11/19/2022] Open
Abstract
Autism is a neurodevelopmental disorder with unknown etiology. In some cases, typically developing children regress into clinical symptoms of autism, a condition known as regressive autism. Protein kinases are essential for G-protein-coupled receptor-mediated signal transduction, and are involved in neuronal functions, gene expression, memory, and cell differentiation. Recently, we reported decreased activity of protein kinase A (PKA) in the frontal cortex of subjects with regressive autism. In the present study, we analyzed the activity of protein kinase C (PKC) in the cerebellum and different regions of cerebral cortex from subjects with regressive autism, autistic subjects without clinical history of regression, and age-matched control subjects. In the frontal cortex of subjects with regressive autism, PKC activity was significantly decreased by 57.1% as compared to age-matched control subjects (p = 0.0085), and by 65.8% as compared to non-regressed autistic subjects (p = 0.0048). PKC activity was unaffected in the temporal, parietal and occipital cortices, and in the cerebellum in both autism groups, i.e., regressive and non-regressed autism as compared to control subjects. These results suggest brain region-specific alteration of PKC activity in the frontal cortex of subjects with regressive autism. Further studies showed a negative correlation between PKC activity and restrictive, repetitive and stereotyped pattern of behavior (r= -0.084, p = 0.0363) in autistic individuals, suggesting involvement of PKC in behavioral abnormalities in autism. These findings suggest that regression in autism may be attributed, in part, to alterations in G-protein-coupled receptor-mediated signal transduction involving PKA and PKC in the frontal cortex.
Collapse
Affiliation(s)
- Lina Ji
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | | | | |
Collapse
|