451
|
Humphrey MB, Bryan J, Cooper TA, Berget SM. A 32-nucleotide exon-splicing enhancer regulates usage of competing 5' splice sites in a differential internal exon. Mol Cell Biol 1995; 15:3979-88. [PMID: 7623794 PMCID: PMC230637 DOI: 10.1128/mcb.15.8.3979] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Large alternatively spliced internal exons are uncommon in vertebrate genes, and the mechanisms governing their usage are unknown. In this report, we examined alternative splicing of a 1-kb internal exon from the human caldesmon gene containing two regulated 5' splice sites that are 687 nucleotides apart. In cell lines normally splicing caldesmon RNA via utilization of the exon-internal 5' splice site, inclusion of the differential exon required a long purine-rich sequence located between the two competing 5' splice sites. This element consisted of four identical 32-nucleotide purine-rich repeats that resemble exon-splicing enhancers (ESE) identified in other genes. One 32-nucleotide repeat supported exon inclusion, repressed usage of the terminal 5' splice site, and functioned in a heterologous exon dependent on exon enhancers for inclusion, indicating that the caldesmon purine-rich sequence can be classified as an ESE. The ESE was required for utilization of the internal 5' splice site only in the presence of the competing 5' splice site and had no effect when placed downstream of the terminal 5' splice site. In the absence of the internal 5' splice site, the ESE activated a normally silent cryptic 5' splice site near the natural internal 5' splice site, indicating that the ESE stimulates upstream 5' splice site selection. We propose that the caldesmon ESE functions to regulate competition between two 5' splice sites within a differential internal exon.
Collapse
Affiliation(s)
- M B Humphrey
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
452
|
Hummel M, Lim HB, Laimins LA. Human papillomavirus type 31b late gene expression is regulated through protein kinase C-mediated changes in RNA processing. J Virol 1995; 69:3381-8. [PMID: 7745684 PMCID: PMC189050 DOI: 10.1128/jvi.69.6.3381-3388.1995] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of the human papillomavirus (HPV) capsid genes, L1 and L2, as well as amplification of viral DNA and virion assembly occur in the terminally differentiated layers of infected stratified squamous epithelium in vivo. These processes can be duplicated in the laboratory through the use of organotypic or raft cultures. When CIN612 cells, which contain episomal copies of the high-risk HPV type 31b, are allowed to differentiate in raft cultures, the expression of transcripts encoding the early genes E1--E4 and E5 is induced. These transcripts are initiated at the differentiation-dependent P742 promoter located in the middle of the E7 open reading frame. Exposure of raft cultures to activators of protein kinase C, such as phorbol esters, results in the further induction of late gene expression as well as virion assembly. In this study, we have investigated the mechanism by which activators of protein kinase C induce late gene expression. The major L1 transcript was found to be encoded by a bicistronic E1--E4, L1 RNA which initiated at the differentiation-dependent promoter P742. Additional low-level expression of L1-containing RNAs was also observed from the early-region promoter, P97. The major L2 transcripts were found to be encoded by E1--E4, E5, L2, L1 RNAs which were also initiated in the early region, probably at the differentiation-specific promoter P742. While early and late RNAs were found to be expressed from the same promoter, they differed in utilization of splicing and polyadenylation sites. Raft cultures treated with activators of protein kinase C induced expression of late genes, but no change in the abundance of early RNAs initiated at the P742 promoter was observed. Thus, the increase in late gene expression was likely due to changes in RNA processing or stabilization rather than an increase in the rate of transcription from P742. Regulation of HPV late gene expression therefore occurs at two levels: differentiation-dependent induction of the P742 promoter, which can be mimicked in vitro by growth in raft cultures, and posttranscriptional changes that can be induced by activation of protein kinase C. These posttranscriptional changes may occur through inactivation or down-regulation of splicing factors which inhibit use of the late region polyadenylation site, resulting in increased stability of late region transcripts.
Collapse
Affiliation(s)
- M Hummel
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
453
|
Abstract
The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta-galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.
Collapse
Affiliation(s)
- H Siomi
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | |
Collapse
|
454
|
Stolow DT, Haynes SR. Cabeza, a Drosophila gene encoding a novel RNA binding protein, shares homology with EWS and TLS, two genes involved in human sarcoma formation. Nucleic Acids Res 1995; 23:835-43. [PMID: 7708500 PMCID: PMC306767 DOI: 10.1093/nar/23.5.835] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously described a partial Drosophila cDNA, clone P19, which bears homology to members of the RNA recognition motif (RRM) family of proteins [Haynes et al. (1987) Proc. Natl. Acad. Sci. USA, 84, 1819-1823]. RNA binding as well as involvement in RNA processing has been demonstrated for some RRM proteins. We report here the further characterization of P19, which we renamed cabeza (caz). caz is located on the X chromosome at position 14B. Using Northern analysis, at least four transcripts from the caz gene were observed at varying levels during development. caz mRNA and protein are enriched in the brain and central nervous system during embryogenesis. In addition, the protein is enriched in the adult head. UV crosslinking was used to demonstrate in vitro RNA binding activity for full-length recombinant caz protein and for the caz RRM domain. Sequence analysis revealed caz is related to two human genes, EWS and TLS, which are involved in chromosomal translocations. The fusion of EWS and TLS to other cellular genes results in sarcoma formation. In addition to their overall structural organization and sequence similarity, these three genes share an RRM which is divergent from typical RRMs. Therefore, it appears that these genes constitute a new sub-family of RNA binding proteins.
Collapse
Affiliation(s)
- D T Stolow
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
455
|
Saito N, Kawai K, Nowak TS. Reexpression of developmentally regulated MAP2c mRNA after ischemia: colocalization with hsp72 mRNA in vulnerable neurons. J Cereb Blood Flow Metab 1995; 15:205-15. [PMID: 7860654 DOI: 10.1038/jcbfm.1995.26] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Levels of mRNAs encoding the microtubule-associated proteins MAP2b and MAP2c as well as the 70-kDa stress protein [72-kDa heat shock protein (hsp72)] were evaluated in postischemic rat brain by in situ hybridization with oligonucleotide probes corresponding to the known rat sequences. Rats were subjected to 10-min cardiac arrest, produced by compression of major thoracic vessels, followed by resuscitation. The normally expressed MAP2b mRNA showed transient twofold elevations in all hippocampal neuron populations at 6-h recirculation, followed by a return to control levels by 24 h. MAP2b hybridization was progressively lost thereafter from the vulnerable CA1 and outer cortical layers, preceding both the fall in immunoreactive MAP2b and the eventual cell loss in these regions. The depletion of MAP2b mRNA coincided with an increase in the alternatively spliced MAP2c in vulnerable regions during 12-48 h of recirculation, precisely overlapping the late component of hsp72 expression that persisted in these cell populations. Previous studies have suggested that the initial induction of hsp72 provides an index of potential postischemic injury in neuron populations that may or may not be injured, while lasting hsp72 mRNA expression is associated with cell damage. In contrast, the present results demonstrate that MAP2c expression under these conditions occurs uniquely in neuron populations subject to injury. Available evidence suggests that MAP2c expression represents a plastic response in subpopulations of neurons that will survive in these regions, although it remains to be explicitly determined whether it may also be transiently expressed in dying cells. In any case, these observations demonstrate that reexpression of developmentally regulated MAP2c mRNA is a relatively late postischemic response in vulnerable cell populations, indicating that pathways regulating MAP2 splicing may be closely associated with mechanisms of neuron injury and/or recovery.
Collapse
Affiliation(s)
- N Saito
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
456
|
Siebel CW, Admon A, Rio DC. Soma-specific expression and cloning of PSI, a negative regulator of P element pre-mRNA splicing. Genes Dev 1995; 9:269-83. [PMID: 7867926 DOI: 10.1101/gad.9.3.269] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PSI is an RNA-binding protein involved in repressing splicing of the P element third intron in Drosophila somatic cell extracts. PSI produced in bacteria restores splicing inhibition to an extract relieved of inhibitory activity, indicating that PSI plays a direct role in somatic inhibition. Sequence analysis of cDNAs encoding PSI reveals three KH RNA-binding domains, a conserved motif also found in the yeast splicing regulator MER1. Notably, PSI is expressed highly in somatic embryonic nuclei but is undetectable in germ-line cells. In contrast, hrp48, another protein implicated in somatic inhibition, is found in the nucleus and cytoplasm of both tissues. The splicing inhibitory properties and soma-specific expression of PSI may be sufficient to explain the germ-line-specific transposition of P elements.
Collapse
Affiliation(s)
- C W Siebel
- Department of Molecular and Cell Biology, University of California at Berkeley 94720
| | | | | |
Collapse
|
457
|
Weighardt F, Biamonti G, Riva S. Nucleo-cytoplasmic distribution of human hnRNP proteins: a search for the targeting domains in hnRNP A1. J Cell Sci 1995; 108 ( Pt 2):545-55. [PMID: 7769000 DOI: 10.1242/jcs.108.2.545] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
hnRNP A1 (34 kDa) is an RNA binding protein consisting of two tandemly arranged RNA binding domains C-terminally linked to a glycine-rich auxiliary domain (2 × RBD-Gly). A1 belongs to the set of polypeptides that bind nascent hnRNA in the nucleus to form the so called hnRNP complexes. These complexes seem to be involved both in pre-mRNA processing and in the nuclear export of mRNA. In fact A1, along with other hnRNP proteins, is exported from the nucleus probably bound to mRNA and is immediately re-imported. A1 nuclear re-import, which requires active transcription, is not mediated by a canonical nuclear localisation signal (NLS). To identify the determinants of A1 subcellular localisation we developed an expression vector for studying the localisation, in transiently transfected cells, of the different structural motifs of A1 fused to a small reporter protein (chloramphenicol acetyltransferase, CAT; 26 kDa). We demonstrate that a 30 amino acid sequence in the glycine-rich domain (YNDFGNYNNQSSNFGPMKGGNFGGRSSGPY), which bears no resemblance to canonical NLS, is necessary and sufficient to target the protein to the nucleus. Our data suggest that this targeting sequence might act by mediating the interaction of A1 with a NLS-containing nuclear import complex. On the other hand, the nuclear export of A1 requires at least one RNA binding domain in accord with the hypothesis that A1 exits from the nucleus bound to mRNA. We propose a mechanism for the nucleo-cytoplasmic shuttling of A1 that envisages a specific role for the different structural domains and can explain the dependence of nuclear import from active transcription.
Collapse
Affiliation(s)
- F Weighardt
- Istituto di Genetica Biochimica ed Evoluzionistica del CNR, Università degli Studi di Pavia, Italy
| | | | | |
Collapse
|
458
|
Lazinski DW, Taylor JM. Intracellular cleavage and ligation of hepatitis delta virus genomic RNA: regulation of ribozyme activity by cis-acting sequences and host factors. J Virol 1995; 69:1190-200. [PMID: 7529331 PMCID: PMC188692 DOI: 10.1128/jvi.69.2.1190-1200.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During replication, a ribozyme within the genomic RNA of hepatitis delta virus cleaves multimeric precursors to release a unit-length linear intermediate. Intramolecular ligation of this intermediate produces the circular genomic RNA. Although one copy of the ribozyme is reconstituted by such ligation, it does not subsequently cleave and destroy the circular conformation. We have identified cis-acting attenuator sequences that prevent self-cleavage of the circular product by base pairing with and inactivating the ribozyme. Furthermore, we have shown that during the initial processing of the multimeric precursor RNA, host-specific factors activate the ribozyme by preventing its association with the attenuator sequences. Thus, we demonstrate a novel switching mechanism that regulates ribozyme activity inside the cell.
Collapse
Affiliation(s)
- D W Lazinski
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497
| | | |
Collapse
|
459
|
Kozu T, Henrich B, Schäfer KP. Structure and expression of the gene (HNRPA2B1) encoding the human hnRNP protein A2/B1. Genomics 1995; 25:365-71. [PMID: 7789969 DOI: 10.1016/0888-7543(95)80035-k] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a major nuclear protein and one of the major components of the hnRNP core complex in mammalian cells. We first determined the complete sequence of the human gene for hnRNP protein A2 (HNRPA2B1). The human HNRPA2B1 gene exists in a single copy over 9 kb in length. The gene was split into 12 exons, including a 36-nucleotide mini-exon, which was specific to the hnRNP protein B1, providing genetic evidence that the B1 mRNA was generated from the primary HNRPA2B1 transcript by alternative splicing. The 5' region of HNRPA2B1 was GC-rich and contained several DNA motifs for the binding of several transcription factors, which included 2 CCAAT boxes and no TATA sequences. The 5' ends of the mRNA were mapped to multiple positions. These structural features are characteristic of promoter regions of housekeeping genes. Northern blot and RT-PCR analyses of the HNRPA2B1 transcripts revealed levels of B1 mRNA from 2 to 5% of total A2/B1 transcripts and showed that both A2 and B1 mRNAs were transcribed in all human cell lines and mouse tissues studied. The structural and evolutionary characteristics of the A2 and A1 proteins as they relate to each other are discussed.
Collapse
Affiliation(s)
- T Kozu
- Department of Immunology and Virology, Saitama Cancer Center Research Institute, Japan
| | | | | |
Collapse
|
460
|
|
461
|
Imperiale MJ, Akusjnärvi G, Leppard KN. Post-transcriptional control of adenovirus gene expression. Curr Top Microbiol Immunol 1995; 199 ( Pt 2):139-71. [PMID: 7555066 DOI: 10.1007/978-3-642-79499-5_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M J Imperiale
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | |
Collapse
|
462
|
|
463
|
Santama N, Benjamin PR, Burke JF. Alternative RNA splicing generates diversity of neuropeptide expression in the brain of the snail Lymnaea: in situ analysis of mutually exclusive transcripts of the FMRFamide gene. Eur J Neurosci 1995; 7:65-76. [PMID: 7711938 DOI: 10.1111/j.1460-9568.1995.tb01021.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the CNS of the snail Lymnaea stagnalis, Phe-Met-Arg-Phe-amide (FMRFamide)-like and additional novel neuropeptides are encoded by a common, multi-exon gene. This complex locus, comprising at least five exons, is subject to post-transcriptional regulation at the level of alternative RNA splicing. Our aim was first to analyse the pattern by which exons of this neuropeptide locus combine during splicing of the primary RNA transcript, and second to investigate the functional significance of splicing by mapping the expression and neuronal localization in the CNS of the alternative mRNA transcripts, in the context of defined neuronal networks and single identified neurons. The approach was a combination of comparative in situ hybridization and immunocytochemistry, using a battery of exon-specific oligonucleotides and anti-peptide antisera. The analysis illustrated that exons III, IV and V were always coexpressed and colocalized whereas the expression of exon II was always differential and mutually exclusive. Both sets of exons were, however, coexpressed with exon I: the total number of exon I-expressing neurons was equal to the combined number of neurons expressing exon III/IV/V and neurons expressing exon II. In addition, it was revealed that the extreme 5' of exon II, encoding a potential hydrophobic leader signal, was not expressed in the CNS of Lymnaea but was apparently spliced out during RNA processing. Both mRNA transcripts of the FMRFamide locus, type 1 (exons I/II) and type 2 (exons I/III/IV/V), were translated in the CNS and the resulting protein precursors were also expressed in a mutually exclusive fashion, as were their respective transcripts. The expression of alternative transcripts within identified networks or neuronal clusters was heterogeneous, as exemplified by the cardiorespiratory network. On the basis of this work and a previous cDNA analysis, we put forward a revised model of differential splicing and expression of the FMRFamide gene in the CNS of Lymnaea.
Collapse
Affiliation(s)
- N Santama
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | |
Collapse
|
464
|
Regulated immunoglobulin (Ig) RNA processing does not require specific cis-acting sequences: non-Ig RNA can be alternatively processed in B cells and plasma cells. Mol Cell Biol 1994. [PMID: 7969129 DOI: 10.1128/mcb.14.12.7891] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative RNA processing of the heavy-chain immunoglobulin mu gene is regulated during B-cell maturation and requires competition between splice and cleavage-polyadenylation reactions that have balanced efficiencies. Studies with modified mu genes have failed to identify gene-specific sequences required for regulation. Thus, the only important feature for regulation may be the balanced competing splice and cleavage-polyadenylation reactions themselves. If this is so, then alternative RNA processing from any gene with similar competitive RNA processing pathways should also be regulated when expression is compared between B cells and plasma cells. To test this prediction, two nonimmunoglobulin genes engineered to have competing splice and cleavage-polyadenylation reactions were expressed in B cells and plasma cells. The ratios of alternative RNAs produced from both genes are different in the two cell types; like the mu gene, relatively more spliced RNA is produced in B cells than in plasma cells. Also, in a survey of mu gene expression in nine non-B-cell lines, only a T-cell line had an expression pattern similar to that of B cells; the expression patterns of all other lines resembled that of the plasma cells. Therefore, regulated mu RNA processing must be mediated by changes in general processing factors whose activity or abundance is regulated, most likely, in B cells.
Collapse
|
465
|
Wilson SM, Datar KV, Paddy MR, Swedlow JR, Swanson MS. Characterization of nuclear polyadenylated RNA-binding proteins in Saccharomyces cerevisiae. J Biophys Biochem Cytol 1994; 127:1173-84. [PMID: 7962083 PMCID: PMC2120247 DOI: 10.1083/jcb.127.5.1173] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To study the functions of heterogeneous nuclear ribonucleoproteins (hnRNPs), we have characterized nuclear polyadenylated RNA-binding (Nab) proteins from Saccharomyces cerevisiae. Nab1p, Nab2p, and Nab3p were isolated by a method which uses UV light to cross-link proteins directly bound to poly(A)+ RNA in vivo. We have previously characterized Nab2p, and demonstrated that it is structurally related to human hnRNPs. Here we report that Nab1p is identical to the Np13p/Nop3p protein recently implicated in both nucleocytoplasmic protein shuttling and pre-rRNA processing, and characterize a new nuclear polyadenylated RNA-binding protein, Nab3p. The intranuclear distributions of the Nab proteins were analyzed by three-dimensional immunofluorescence optical microscopy. All three Nab proteins are predominantly localized within the nucleoplasm in a pattern similar to the distribution of hnRNPs in human cells. The NAB3 gene is essential for cell viability and encodes an acidic ribonucleoprotein. Loss of Nab3p by growth of a GAL::nab3 mutant strain in glucose results in a decrease in the amount of mature ACT1, CYH2, and TPI1 mRNAs, a concomitant accumulation of unspliced ACT1 pre-mRNA, and an increase in the ratio of unspliced CYH2 pre-mRNA to mRNA. These results suggest that the Nab proteins may be required for packaging pre-mRNAs into ribonucleoprotein structures amenable to efficient nuclear RNA processing.
Collapse
Affiliation(s)
- S M Wilson
- Department of Immunology and Medical Microbiology, University of Florida, College of Medicine, Gainesville 32610-0266
| | | | | | | | | |
Collapse
|
466
|
Peterson ML. Regulated immunoglobulin (Ig) RNA processing does not require specific cis-acting sequences: non-Ig RNA can be alternatively processed in B cells and plasma cells. Mol Cell Biol 1994; 14:7891-8. [PMID: 7969129 PMCID: PMC359328 DOI: 10.1128/mcb.14.12.7891-7898.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alternative RNA processing of the heavy-chain immunoglobulin mu gene is regulated during B-cell maturation and requires competition between splice and cleavage-polyadenylation reactions that have balanced efficiencies. Studies with modified mu genes have failed to identify gene-specific sequences required for regulation. Thus, the only important feature for regulation may be the balanced competing splice and cleavage-polyadenylation reactions themselves. If this is so, then alternative RNA processing from any gene with similar competitive RNA processing pathways should also be regulated when expression is compared between B cells and plasma cells. To test this prediction, two nonimmunoglobulin genes engineered to have competing splice and cleavage-polyadenylation reactions were expressed in B cells and plasma cells. The ratios of alternative RNAs produced from both genes are different in the two cell types; like the mu gene, relatively more spliced RNA is produced in B cells than in plasma cells. Also, in a survey of mu gene expression in nine non-B-cell lines, only a T-cell line had an expression pattern similar to that of B cells; the expression patterns of all other lines resembled that of the plasma cells. Therefore, regulated mu RNA processing must be mediated by changes in general processing factors whose activity or abundance is regulated, most likely, in B cells.
Collapse
Affiliation(s)
- M L Peterson
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington 40536-0093
| |
Collapse
|
467
|
Abstract
SR proteins are essential splicing factors that also influence 5' splice site choice. We show that addition of excess mixed SR proteins to a HeLa in vitro splicing system stimulates utilization of a novel 5' splice site (site 125) within the intron of the standard adenovirus pre-mRNA substrate. When U1 snRNPs are debilitated by sequestering the 5' end of U1 snRNA with a 2'-O-methyl oligoribonucleotide, excess SR proteins not only rescue splicing at the normal site and site 125 but also activate yet another 5' splice site (site 47) in the adenovirus intron. One SR protein, SC35, is sufficient to exhibit the above activities. The possibility that excess SR proteins recruit residual unblocked U1 snRNPs to participate in 5' splice site recognition has been ruled out by psoralen cross-linking studies, which demonstrate that the 2'-O-methyl oligoribonucleotide effectively blocks 5' splice site/U1 interaction. Native gel analysis reveals a nearly normal splicing complex profile in the 2'-O-methyl oligoribonucleotide pretreated, SR protein-supplemented extract. These results indicate that SR proteins can replace some functions of the U1 snRNP but underscore the contribution of U1 to the fidelity of 5' splice site selection.
Collapse
Affiliation(s)
- W Y Tarn
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
468
|
Cohen JB, Snow JE, Spencer SD, Levinson AD. Suppression of mammalian 5' splice-site defects by U1 small nuclear RNAs from a distance. Proc Natl Acad Sci U S A 1994; 91:10470-4. [PMID: 7937977 PMCID: PMC45042 DOI: 10.1073/pnas.91.22.10470] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
One of the earliest events in the process of intron removal from mRNA precursors is the establishment of a base-pairing interaction between U1 small nuclear (sn) RNA and the 5' splice site. Mutations at the 5' splice site that prevent splicing can often be suppressed by coexpression of U1 snRNAs with compensatory changes, but in yeast, accurate splicing is not restored when the universally conserved first intron base is changed. In our mammalian system as well, such a mutation could not be suppressed, but the complementary U1 caused aberrant splicing 12 bases downstream. This result is reminiscent of observations in yeast that aberrant 5' splice sites can be activated by U1 snRNA from a distance. Using a rapid, qualitative protein expression assay, we provide evidence that 5' splice-site mutations can be suppressed in mammalian cells by U1 snRNAs with complementarity to a range of sequences upstream or downstream of the site. Our approach uncouples in vivo the commitment-activation step of mammalian splicing from the process of 5' splice-site definition and as such will facilitate the genetic characterization of both.
Collapse
Affiliation(s)
- J B Cohen
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, School of Medicine, PA 15261
| | | | | | | |
Collapse
|
469
|
Spikes DA, Kramer J, Bingham PM, Van Doren K. SWAP pre-mRNA splicing regulators are a novel, ancient protein family sharing a highly conserved sequence motif with the prp21 family of constitutive splicing proteins. Nucleic Acids Res 1994; 22:4510-9. [PMID: 7971282 PMCID: PMC308487 DOI: 10.1093/nar/22.21.4510] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Regulators responsible for the pervasive, nonsex-specific alternative pre-mRNA splicing characteristic of metazoans are almost entirely unknown or uncertain. We describe here a novel family of splicing regulators present throughout metazoans. Specifically, we analyze two nematode (Caenorhabditis elegans) genes. One, CeSWAP, is a cognate of the suppressor-of-white-apricot (DmSWAP) splicing regulator from the arthropod Drosophila. Our results define the ancient, conserved SWAP protein family whose members share a colinearly arrayed series of novel sequence motifs. Further, we describe evidence that the CeSWAP protein autoregulates its levels by feedback control of splicing of its own pre-mRNA analogously to the DmSWAP protein and as expected of a splicing regulator. The second nematode gene, Ceprp21, encodes an abundant nuclear cognate of the constitutive yeast splicing protein, prp21, on the basis of several lines of evidence. Our analysis defines prp21 as a second novel, ancient protein family. One of the motifs conserved in prp21 proteins--designated surp--is shared with SWAP proteins. Several lines of evidence indicate that both new families of surp-containing proteins act at the same (or very similar) step in early prespliceosome assembly. We discuss implications of our results for regulated metazoan pre-mRNA splicing.
Collapse
Affiliation(s)
- D A Spikes
- Department of Biochemistry and Cell Biology, University of New York, Stony Brook, NY 11794
| | | | | | | |
Collapse
|
470
|
Cardinali B, Cohen PT, Lamond AI. Protein phosphatase 1 can modulate alternative 5' splice site selection in a HeLa splicing extract. FEBS Lett 1994; 352:276-80. [PMID: 7925986 DOI: 10.1016/0014-5793(94)00973-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies using HeLa in vitro splicing extracts have shown that changes in the relative concentrations of constitutive protein splicing factors can affect the choice between competing 5' splice sites in alternatively spliced mammalian pre-mRNAs. Here we report that treatment of a HeLa splicing extract with human protein phosphatase 1 strongly inhibits formation of mRNA spliced to the distal 5' splice site while stimulating relative use of the proximal 5' splice site. This effect is not observed if spliceosomes assemble prior to protein phosphatase 1 treatment. These data show that alternative splicing in HeLa extracts can be mediated by changes in protein modification as well as by changes in the relative concentration of splicing factors. Changes in protein phosphorylation may thus provide a rapid mechanism for cells to respond to stimuli that require an alteration in alternative splicing patterns.
Collapse
Affiliation(s)
- B Cardinali
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
471
|
Cáceres JF, Stamm S, Helfman DM, Krainer AR. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 1994; 265:1706-9. [PMID: 8085156 DOI: 10.1126/science.8085156] [Citation(s) in RCA: 516] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.
Collapse
|
472
|
Van den Bosch L, Eggermont J, De Smedt H, Mertens L, Wuytack F, Casteels R. Regulation of splicing is responsible for the expression of the muscle-specific 2a isoform of the sarco/endoplasmic-reticulum Ca(2+)-ATPase. Biochem J 1994; 302 ( Pt 2):559-66. [PMID: 7522437 PMCID: PMC1137264 DOI: 10.1042/bj3020559] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tissue-specific alternative processing of sarco/endoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) transcripts generates functionally different Ca2+ pump isoforms in muscle compared with non-muscle tissues. In non-muscle cells, the SERCA2 pre-mRNA can be polyadenylated at a site located between the donor and acceptor splice site of an intron which is only removed in muscle tissues. To define the cis-active elements involved in differential processing, we constructed a minigene (pCM beta SERCA2) containing the 3' end of the SERCA2 gene. When stably transfected into a myogenic cell line, minigene transcripts were differentially processed depending on the differentiation state of the cells. This proves that the essential elements required for regulated processing are present in the construct. Furthermore, co-transfection of the pCM beta SERCA2 minigene and a myogenin expression vector in a fibroblast cell line induced muscle-specific splicing of transcripts from pCM beta SERCA2. This shows that trans-acting factor(s) responsible for muscle-specific processing can be induced by one of the important regulatory genes of muscle differentiation. Inactivation of the non-muscle poly(A) site did not induce splicing in non-muscle cells. This excludes a simple competition model between splicing and polyadenylation, but it is consistent with splicing being very inefficient in non-muscle cells. Moreover, splicing could be induced in non-muscle cells by optimizing the muscle-specific donor splice site and/or by shortening the intron length. We therefore propose that expression of the muscle-specific SERCA2a isoform is the result of activation of an otherwise inefficient splicing process.
Collapse
Affiliation(s)
- L Van den Bosch
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
473
|
|
474
|
Wang J, Bell LR. The Sex-lethal amino terminus mediates cooperative interactions in RNA binding and is essential for splicing regulation. Genes Dev 1994; 8:2072-85. [PMID: 7958879 DOI: 10.1101/gad.8.17.2072] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sex-lethal (Sxl) acts as a binary switch that regulates Drosophila sexual differentiation and dosage compensation and also maintains a stable female state through autoregulation. As part of a cascade of genes that are regulated by sex-specific splicing, Sxl controls the sex-specific splicing of transformer (tra) RNA and also its own RNA. Sxl contains two RNP-CS (RNA-binding) domains and is known to bind tra pre-mRNA near the alternative 3' splice site, thus blocking use of that site to give the female-specific splicing pattern. Here, we test how Sxl protein interacts with Sxl RNA during autoregulation. We show that Sxl not only binds Sxl pre-mRNA near the alternative 3' splice site but also at distant, multiple sites surrounding the Sxl alternative exon. Moreover, Sxl binds cooperatively at these multiple sites. The Sxl amino terminus is essential for the cooperative interaction and is also required for regulatory activity in vivo. It appears that this region of Sxl protein, which resembles regions in some other RNA-binding proteins, is a domain that mediates protein-protein interactions during RNA binding and plays an important role in splicing regulation.
Collapse
Affiliation(s)
- J Wang
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340
| | | |
Collapse
|
475
|
The concentration of B52, an essential splicing factor and regulator of splice site choice in vitro, is critical for Drosophila development. Mol Cell Biol 1994. [PMID: 8035814 DOI: 10.1128/mcb.14.8.5360] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B52 is a Drosophila melanogaster protein that plays a role in general and alternative splicing in vitro. It is homologous to the human splicing factor ASF/SF2 which is essential for an early step(s) in spliceosome assembly in vitro and also regulates 5' and 3' alternative splice site choice in a concentration-dependent manner. In vitro, B52 can function as both a general splicing factor and a regulator of 5' alternative splice site choice. Its activity in vivo, however, is largely uncharacterized. In this study, we have further characterized B52 in vivo. Using Western blot (immunoblot) analysis and whole-mount immunofluorescence, we demonstrate that B52 is widely expressed throughout development, although some developmental stages and tissues appear to have higher B52 levels than others do. In particular, B52 accumulates in ovaries, where it is packaged into the developing egg and is localized to nuclei by the late blastoderm stage of embryonic development. We also overexpressed this protein in transgenic flies in a variety of developmental and tissue-specific patterns to examine the effects of altering the concentration of this splicing factor in vivo. We show that, in many cell types, changing the concentration of B52 adversely affects the development of the organism. We discuss the significance of these observations with regard to previous in vitro results.
Collapse
|
476
|
Hirose T, Sugita M, Sugiura M. Characterization of a cDNA encoding a novel type of RNA-binding protein in tobacco: its expression and nucleic acid-binding properties. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:360-6. [PMID: 8078461 DOI: 10.1007/bf00286687] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A cDNA encoding an RNA-binding protein (ribonucleoprotein or RNP) was isolated from a tobacco (Nicotiana sylvestris) cDNA library. The predicted protein (termed RGP-2) is 259 amino acids in length and consists of an N-terminal sequence of 39 amino acids, a consensus sequence type RNA-binding domain of 82 amino acids, a glycine-rich domain of 83 amino acids and an acidic C-terminal domain of 46 amino acids. It is distinct from the RGP-1 proteins previously reported, which consist of an RNA-binding domain in the N-terminal half and a glycine-rich domain in the C-terminal half. Homology searches revealed that RGP-2 is a novel consensus sequence-type RNA-binding protein. Its RNA-binding domain is structurally related to those of some chloroplast RNPs, while the amino acid composition of its glycine-rich domain (rich in glycine and asparagine) is similar to those in animal heterogeneous nuclear RNPs (hnRNP) A1 and A2/B1. The RGP-2 gene seems to be a single-copy gene, and its transcripts accumulate mainly in cultured cells and roots. A nucleic acid-binding assay using RGP-2 protein synthesized in vitro confirmed that it is an RNA-binding protein. Based on its greater affinity for total tobacco RNA than for poly(G) and poly(U), RGP-2 is suggested to bind to specific RNA sequences, probably G/U-rich regions. Quantitative analysis of the nucleic acid-binding properties of RGP-2 and RGP-1b indicates that they bind differently to nucleic acids. A possible role for RGP-2 is discussed in relation to known functions of animal hnRNP proteins.
Collapse
Affiliation(s)
- T Hirose
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
477
|
Kraus ME, Lis JT. The concentration of B52, an essential splicing factor and regulator of splice site choice in vitro, is critical for Drosophila development. Mol Cell Biol 1994; 14:5360-70. [PMID: 8035814 PMCID: PMC359055 DOI: 10.1128/mcb.14.8.5360-5370.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
B52 is a Drosophila melanogaster protein that plays a role in general and alternative splicing in vitro. It is homologous to the human splicing factor ASF/SF2 which is essential for an early step(s) in spliceosome assembly in vitro and also regulates 5' and 3' alternative splice site choice in a concentration-dependent manner. In vitro, B52 can function as both a general splicing factor and a regulator of 5' alternative splice site choice. Its activity in vivo, however, is largely uncharacterized. In this study, we have further characterized B52 in vivo. Using Western blot (immunoblot) analysis and whole-mount immunofluorescence, we demonstrate that B52 is widely expressed throughout development, although some developmental stages and tissues appear to have higher B52 levels than others do. In particular, B52 accumulates in ovaries, where it is packaged into the developing egg and is localized to nuclei by the late blastoderm stage of embryonic development. We also overexpressed this protein in transgenic flies in a variety of developmental and tissue-specific patterns to examine the effects of altering the concentration of this splicing factor in vivo. We show that, in many cell types, changing the concentration of B52 adversely affects the development of the organism. We discuss the significance of these observations with regard to previous in vitro results.
Collapse
Affiliation(s)
- M E Kraus
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
478
|
Abstract
In eukaryotic cells, a multitude of RNA-binding proteins play key roles in the posttranscriptional regulation of gene expression. Characterization of these proteins has led to the identification of several RNA-binding motifs, and recent experiments have begun to illustrate how several of them bind RNA. The significance of these interactions is reflected in the recent discoveries that several human and other vertebrate genetic disorders are caused by aberrant expression of RNA-binding proteins. The major RNA-binding motifs are described and examples of how they may function are given.
Collapse
Affiliation(s)
- C G Burd
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | |
Collapse
|
479
|
Yang X, Bani MR, Lu SJ, Rowan S, Ben-David Y, Chabot B. The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 5' splice site selection in vivo. Proc Natl Acad Sci U S A 1994; 91:6924-8. [PMID: 8041722 PMCID: PMC44310 DOI: 10.1073/pnas.91.15.6924] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recent in vitro results suggest that the heterogeneous nuclear ribonucleoparticle (hnRNP) A1 protein modulates alternative splicing by favoring distal 5' splice site (5'SS) selection and exon skipping. We used a mouse erythroleukemia (MEL) cell line (CB3C7) deficient in the expression of hnRNP A1 to test whether variations in hnRNP A1 and AlB protein levels affected alternative splicing in vivo. In contrast to A1-expressing MEL cell lines, CB3C7 cells preferentially selected the proximal 13S and 12S 5'SS on the adenovirus E1A pre-mRNA. Transiently expressing the A1 or A1B cDNA in CB3C7 cells shifted 5'SS selection toward the more distal 9S donor site. A1 protein synthesis was required for this effect since the expression of a mutated A1 cDNA did not affect 5'SS selection. These results demonstrate that in vivo variations in hnRNP A1 protein levels can influence 5'SS selection.
Collapse
Affiliation(s)
- X Yang
- Département de Microbiologie, Faculté de Médecine, Université de Sherbrooke, PQ Canada
| | | | | | | | | | | |
Collapse
|
480
|
Siebel CW, Kanaar R, Rio DC. Regulation of tissue-specific P-element pre-mRNA splicing requires the RNA-binding protein PSI. Genes Dev 1994; 8:1713-25. [PMID: 7958851 DOI: 10.1101/gad.8.14.1713] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Binding of a multiprotein complex to a 5' exon inhibitory element appears to repress splicing of the Drosophila P-element third intron (IVS3) in the soma. We have purified 97- and 50-kD proteins that interact specifically with the inhibitory element using RNA affinity chromatography. Antibodies specific for the 97-kD protein relieve inhibition of IVS3 splicing in somatic extracts, providing direct evidence that inhibition requires this protein, P-element somatic inhibitor (PSI). We identify the 50-kD protein as hrp48, a protein similar to the mammalian splicing factor hnRNP A1, and show that hrp48 recognizes specific nucleotides in a pseudo-5' splice site within the inhibitory element. The results indicate that PSI is an alternative splicing factor that regulates tissue-specific splicing, probably through interactions with generally expressed factors such as hrp48.
Collapse
Affiliation(s)
- C W Siebel
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
481
|
Tsukahara T, Casciato C, Helfman DM. Alternative splicing of beta-tropomyosin pre-mRNA: multiple cis-elements can contribute to the use of the 5'- and 3'-splice sites of the nonmuscle/smooth muscle exon 6. Nucleic Acids Res 1994; 22:2318-25. [PMID: 8036160 PMCID: PMC523690 DOI: 10.1093/nar/22.12.2318] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously found that the splicing of exon 5 to exon 6 in the rat beta-TM gene required that exon 6 first be joined to the downstream common exon 8 (Helfman et al., Genes and Dev. 2, 1627-1638, 1988). Pre-mRNAs containing exon 5, intron 5 and exon 6 are not normally spliced in vitro. We have carried out a mutational analysis to determine which sequences in the pre-mRNA contribute to the inability of this precursor to be spliced in vitro. We found that mutations in two regions of the pre-mRNA led to activation of the 3'-splice site of exon 6, without first joining exon 6 to exon 8. First, introduction of a nine nucleotide poly U tract upstream of the 3'-splice site of exon 6 results in the splicing of exon 5 to exon 6 with as little as 35 nucleotides of exon 6. Second, introduction of a consensus 5'-splice site in exon 6 led to splicing of exon 5 to exon 6. Thus, three distinct elements can act independently to activate the use of the 3'-splice site of exon 6: (1) the sequences contained within exon 8 when joined to exon 6, (2) a poly U tract in intron 5, and (3) a consensus 5'-splice site in exon 6. Using biochemical assays, we have determined that these sequence elements interact with distinct cellular factors for 3'-splice site utilization. Although HeLa cell nuclear extracts were able to splice all three types of pre-mRNAs mentioned above, a cytoplasmic S100 fraction supplemented with SR proteins was unable to efficiently splice exon 5 to exon 6 using precursors in which exon 6 was joined to exon 8. We also studied how these elements contribute to alternative splice site selection using precursors containing the mutually exclusive, alternatively spliced cassette comprised of exons 5 through 8. Introduction of the poly U tract upstream of exon 6, and changing the 5'-splice site of exon 6 to a consensus sequence, either alone or in combination, facilitated the use of exon 6 in vitro, such that exon 6 was spliced more efficiently to exon 8. These data show that intron sequences upstream of an exon can contribute to the use of the downstream 5'-splice, and that sequences surrounding exon 6 can contribute to tissue-specific alternative splice site selection.
Collapse
|
482
|
Qian Z, Wilusz J. GRSF-1: a poly(A)+ mRNA binding protein which interacts with a conserved G-rich element. Nucleic Acids Res 1994; 22:2334-43. [PMID: 8036161 PMCID: PMC523692 DOI: 10.1093/nar/22.12.2334] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Computer predictions identified similarities to a 14-base G-rich element in numerous mRNAs at a variety of locations. A Northwestern screening strategy was used to obtain a cDNA clone from a HeLa cell library using the G-rich RNA element as a probe. A cellular protein (called GRSF-1), which was encoded by this cDNA, binds RNAs containing the G-rich element. GRSF-1 was distinct from DSEF-1, a nuclear protein we have previously identified that interacts with the G-rich element, based on differences in molecular weight and partial peptide maps, as well as the lack of cross-reactivity with GRSF-1 specific monoclonal antibodies. Using indirect immunofluorescence microscopy, we localized GRSF-1 to the cytoplasm. In vivo UV cross-linking further demonstrated that GRSF-1 was bound to poly(A)+ mRNA in living human cells. Western blot analysis revealed four cytoplasmic proteins which expressed GRSF-1 specific epitopes. GRSF-1 contains three potential RNA recognition motifs and two auxiliary domains. Curiously, the domain organization of GRSF-1 is similar to the RNA binding proteins PUB1, ELAV, HuD, Hel-N1, mcs94-1 and RBP9.
Collapse
Affiliation(s)
- Z Qian
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School and Graduate School of Biomedical Sciences, Newark 07103
| | | |
Collapse
|
483
|
Biamonti G, Ruggiu M, Saccone S, Della Valle G, Riva S. Two homologous genes, originated by duplication, encode the human hnRNP proteins A2 and A1. Nucleic Acids Res 1994; 22:1996-2002. [PMID: 8029005 PMCID: PMC308112 DOI: 10.1093/nar/22.11.1996] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 belongs, with A1, B1 and B2, to the basic protein subset of the hnRNP complex in mammalian cells. All these proteins share a modular structure consisting of two conserved RNA binding domains linked to less conserved Gly-rich domains (2xRBD-Gly). In the framework of our studies on the genetic basis of hnRNP proteins structure and diversity we have isolated and sequenced the A2 gene and compared it to the previously described A1 gene. The A2 gene, which exists in a single copy on Ch. 7 band p15, is split in 12 exons including an alternatively spliced 36 nt mini exon specific for the human hnRNP protein B1. In this work we show that the intron/exon organisation of the A2 gene is identical to that of the A1 gene over the entire length, indicating a common origin by gene duplication. Moreover the comparison of corresponding exons evidences significant conservation also in the apparently divergent Gly-rich domains that could define previously unenvisaged structural and/or functional motifs. The A2 gene promoter is also analysed in comparison to that of the A1 gene.
Collapse
Affiliation(s)
- G Biamonti
- Istituto di Genetica Biochimica ed Evoluzionistica del CNR, Pavia, Italy
| | | | | | | | | |
Collapse
|
484
|
Mohr U, Koczan D, Linder D, Hobom G, Erhardt G. A single point mutation results in A allele-specific exon skipping in the bovine alpha s1-casein mRNA. Gene X 1994; 143:187-92. [PMID: 8206372 DOI: 10.1016/0378-1119(94)90095-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bovine alpha s1-casein (alpha s1-CN) allele A is found in low allelic frequencies among different cattle breeds and is known to be characterized by the deletion of amino-acid residues 14 to 26 of the mature protein (as defined via the most common allele B), and a corresponding deletion of 39 bp from its cDNA. Based upon the genomic sequence of bovine alpha s1-CN [Koczan et al., Nucleic Acids Res. 19 (1991) 5591-5596], this allelic deviation can be interpreted as an absence of exon 4 from the A allele mRNA and protein product. We demonstrate that this allelic aberration is not caused by a genomic deletion across the exon-4 DNA, but is correlated with a single point mutation at position +6 in the splice donor sequence distal of exon 4, which results in upstream exon skipping during the serial splice reactions of the A allele alpha s1-CN pre-mRNA. The A-allele-specific mutation at position +6 is able to interrupt the perfect complementarity of the intron-4 splice donor signal (positions one to eight) with U1-snRNA, which may then no longer be able to compensate for a rather weak exon-4 upstream splice acceptor sequence in facilitating the initial binding of U2 auxiliary factor/65-kDa (U2AF65) to that polypyrimidine tract. This interpretation of the exon skipping mechanism in alpha s1-CN allele A is in agreement with similar results obtained [Hoffmann and Grabowski, Genes Dev. 6 (1992) 2554-2568] in an analysis of the rat preprotachykinin-encoding gene and in vitro experiments.
Collapse
Affiliation(s)
- U Mohr
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität Giessen, Germany
| | | | | | | | | |
Collapse
|
485
|
Cobianchi F, Biamonti G, Maconi M, Riva S. Human hnRNP protein A1: a model polypeptide for a structural and genetic investigation of a broad family of RNA binding proteins. Genetica 1994; 94:101-14. [PMID: 7896132 DOI: 10.1007/bf01443425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The hnRNP fiber is the substrate on which pre-mRNA processing occurs. The protein moiety of the fiber (hnRNP proteins) constitutes a broad family of RNA binding proteins that revealed, upon molecular analysis, a number of interesting features. Heterogeneous nuclear ribonucleoprotein A1 is a major component of the human hnRNP complex. In recent years this protein has attracted great attention because of several emerging evidences of its direct involvement in pre-mRNA processing and it has become one of the best characterized RNA binding proteins. Detailed knowledge of the structure of protein A1 has laid the basis for the understanding of its function, and for this reason A1 can be considered as a model polypeptide for the investigation of a large number of RNA binding proteins. In this work we report recent findings regarding the binding properties of protein A1 as well as new data on the gene structure of A1 and of its closely related hnRNP protein A2. Our results show that a single A1 molecule contains the determinants for simultaneous binding of two single-stranded nucleic acid molecules and we demonstrate that the glycine-rich domain of A1, isolated from the rest of the molecule, is capable of sustaining protein-protein interactions. These features probably account for the reannealing activity of the protein and for its capacity to modulate the binding of snRNPs to intron sequences in vitro. Comparison of A1 and A2 gene sequences revealed a remarkable conservation of the overall structural organization, suggesting important functions for the different structural elements.
Collapse
Affiliation(s)
- F Cobianchi
- Istituto di Genetica Biochimica ed Evoluzionistica, CNR, Pavia, Italy
| | | | | | | |
Collapse
|
486
|
Denhez F, Lafyatis R. Conservation of regulated alternative splicing and identification of functional domains in vertebrate homologs to the Drosophila splicing regulator, suppressor-of-white-apricot. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33989-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
487
|
Abstract
Replication of human immunodeficiency virus type 1 requires expression of the viral trans activator Rev. Rev binds to a highly structured RNA, the Rev response element, which is present in singly spliced and unspliced genomic viral RNAs. Although Rev helps to transport these transcripts from the nucleus to the cytoplasm, the mechanism(s) involved is not fully understood. Using the yeast two-hybrid system, we isolated a murine protein (YL2) that interacts with the basic domain of Rev, which is essential for the function of Rev in vivo and for the inhibitory splicing activity of Rev in vitro. YL2 has 92% identity to a human 32-kDa protein (p32), which copurifies with alternative splicing factor SF2/ASF. Furthermore, we found that whereas expression of YL2 greatly potentiated the activity of Rev, antisense YL2 transcripts blocked the effects of Rev in mammalian cells. YL2 also increased the activities of Rex on the Rex response element and of hybrid Rev proteins fused to Tat and the coat protein of bacteriophage MS2 on their respective RNAs. Thus, YL2 or p32 is a cellular protein that modulates the function of human immunodeficiency virus type 1 Rev.
Collapse
Affiliation(s)
- Y Luo
- Howard Hughes Medical Institute, San Francisco, California
| | | | | |
Collapse
|
488
|
Flickinger TW, Salz HK. The Drosophila sex determination gene snf encodes a nuclear protein with sequence and functional similarity to the mammalian U1A snRNP protein. Genes Dev 1994; 8:914-25. [PMID: 7926776 DOI: 10.1101/gad.8.8.914] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alternative splicing controls the expression of many genes, including the Drosophila sex determination gene Sex-lethal. Previous studies have suggested that snf plays a role in regulating Sex-lethal splicing. Here, we demonstrate that snf is an integral component of the machinery required for splice site recognition. We have cloned snf and found that it has sequence homology to the mammalian U1A and U2B" snRNP proteins. Moreover, we establish that snf encodes a Drosophila protein shown previously to have functional similarity to U1A. Finally, with the isolation and analysis of a null mutation, we demonstrate that snf is an essential gene. These studies provide the first demonstration, in a multicellular organism, that mutations in a U1 snRNP protein alter splicing in vivo.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Autoantigens
- Base Sequence
- Cross Reactions
- Drosophila/embryology
- Drosophila Proteins
- Genes, Insect/genetics
- Genes, Lethal/genetics
- Genomic Library
- Models, Genetic
- Molecular Sequence Data
- Phenotype
- RNA Splicing
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA-Binding Proteins
- Restriction Mapping
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoprotein, U1 Small Nuclear/immunology
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/immunology
- Sequence Homology, Amino Acid
- Sex Differentiation/genetics
- snRNP Core Proteins
Collapse
Affiliation(s)
- T W Flickinger
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955
| | | |
Collapse
|
489
|
Zuo P, Manley JL. The human splicing factor ASF/SF2 can specifically recognize pre-mRNA 5' splice sites. Proc Natl Acad Sci U S A 1994; 91:3363-7. [PMID: 7512732 PMCID: PMC43577 DOI: 10.1073/pnas.91.8.3363] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ASF/SF2 is a human protein previously shown to function in in vitro pre-mRNA splicing as an essential factor necessary for all splices and also as an alternative splicing factor, capable of switching selection of 5' splice sites. To begin to study the protein's mechanism of action, we have investigated the RNA binding properties of purified recombinant ASF/SF2. Using UV crosslinking and gel shift assays, we demonstrate that the RNA binding region of ASF/SF2 can interact with RNA in a sequence-specific manner, recognizing the 5' splice site in each of two different pre-mRNAs. Point mutations in the 5' splice site consensus can reduce binding by as much as a factor of 100, with the largest effects observed in competition assays. These findings support a model in which ASF/SF2 aids in the recognition of pre-mRNA 5' splice sites.
Collapse
Affiliation(s)
- P Zuo
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | |
Collapse
|
490
|
Exclusion of an alternatively spliced exon in human ATP synthase gamma-subunit pre-mRNA requires de novo protein synthesis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99901-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
491
|
Abstract
Information from yeast and mammalian pre-mRNA splicing systems has advanced our understanding of the roles of protein factors in the early steps of spliceosome assembly. New results on the stereochemistry of nuclear pre-mRNA splicing and data on the transposition of Group II self-splicing introns in vivo have fuelled the long-running debate on the evolution of introns and RNA splicing.
Collapse
Affiliation(s)
- A J Newman
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
492
|
Matunis EL, Kelley R, Dreyfuss G. Essential role for a heterogeneous nuclear ribonucleoprotein (hnRNP) in oogenesis: hrp40 is absent from the germ line in the dorsoventral mutant squid. Proc Natl Acad Sci U S A 1994; 91:2781-4. [PMID: 8146191 PMCID: PMC43454 DOI: 10.1073/pnas.91.7.2781] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Drosophila melanogaster hrp40 proteins are abundant nuclear pre-mRNA-binding proteins that are similar to the heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins of vertebrates. Recently, hrp40 has been shown to be encoded by the squid gene, which is required for dorsoventral axis formation during oogenesis. Eggs and embryos from homozygous squid mothers are severely dorsalized, and complete deletion of the squid gene results in lethality. Here we have examined the expression and localization of hrp40 in wild-type and squid mutant ovaries. Using a monoclonal antibody specific for hrp40, the same isoforms of hrp40 are detected in both wild-type and squid ovaries, but the amount of hrp40 is reduced in squid ovaries. Furthermore, immunolocalization of hrp40 in wild-type egg chambers shows that hrp40 is present in the nurse cells, oocyte, and follicle cells. In contrast, in squid mutant egg chambers, hrp40 is absent from the germ-line-derived nurse cells and oocyte, but it is detected in the somatic follicle cells. The absence of hrp40 from the germ-line-derived cells of developing egg chambers is likely to lead to the striking dorsalized phenotype of squid eggs. In addition, dramatic stage-specific changes in the cellular localization of hrp40 are seen; the protein found in the nurse cell nuclei during early stages of oogenesis migrates to the cytoplasm at later stages. These findings reveal dynamic patterns of expression and localization of hnRNP proteins during development and provide evidence for an essential role for hnRNP proteins.
Collapse
Affiliation(s)
- E L Matunis
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | | | |
Collapse
|
493
|
Matunis MJ, Xing J, Dreyfuss G. The hnRNP F protein: unique primary structure, nucleic acid-binding properties, and subcellular localization. Nucleic Acids Res 1994; 22:1059-67. [PMID: 7512260 PMCID: PMC307930 DOI: 10.1093/nar/22.6.1059] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
More than 20 different heterogeneous nuclear ribonucleoproteins (hnRNPs) are associated with pre-mRNAs in the nucleus of mammalian cells and these proteins appear to influence pre-mRNA processing and other aspects of mRNA metabolism and transport. The arrangement of hnRNP proteins on pre-mRNAs is likely to be unique for each RNA and may be determined by the different RNA-binding preferences of each of these proteins. hnRNP F (M(r) = 53 kD, pI = 6.1) and hnRNP H (M(r) = 56 kD, pI = 6.7-7.1) are abundant components of immunopurified hnRNP complexes and they have distinct nucleic acid binding properties. Unlike other hnRNP proteins which display a varying range of affinities for different ribonucleotidehomopolymers and ssDNA, hnRNP F and hnRNP H bind only to poly(rG) in vitro. hnRNP F and hnRNP H were purified from HeLa cells by poly(rG) affinity chromatography and oligonucleotides derived from peptide sequences were used to isolate a cDNA encoding hnRNP F. The predicted amino acid sequence of hnRNP F revealed a novel protein with three repeated domains related to the RNP consensus sequence RNA-binding domain. Monoclonal antibodies produced against bacterially expressed hnRNP F were specific for both hnRNP F and hnRNP H and recognized related proteins in divergent organisms, including in the yeast Saccharomyces cerevisiae. hnRNP F and hnRNP H are thus highly related immunologically and they share identical peptides. Interestingly, immunofluorescence microscopy revealed that hnRNP F and hnRNP H are concentrated in discrete regions of the nucleoplasm, in contrast to the general nucleoplasmic distribution of previously characterized hnRNP proteins. The unique RNA-binding properties, amino acid sequence and distinct intranuclear localization of hnRNP F and hnRNP H make them novel hnRNP proteins that are likely to be important for the processing of RNAs containing guanosine-rich sequences.
Collapse
Affiliation(s)
- M J Matunis
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | | | |
Collapse
|
494
|
Cusick ME. RNP1, a new ribonucleoprotein gene of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 1994; 22:869-77. [PMID: 8139928 PMCID: PMC307894 DOI: 10.1093/nar/22.5.869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A previously unidentified ribonucleoprotein (RNP) gene of yeast has been cloned and sequenced. The gene, named RNP1, was found adjacent to a previously sequenced gene encoding the second gene for ribosomal protein L4. RNP1 contains two RNA Recognition Motifs (RRM), [alternatively known as RNA binding Domains (RBD)], but unlike most RNP genes does not contain any auxiliary simple sequence domains. The first RRM (RRM1) most resembles RRM domains found in the hnRNP A/B class of RNP proteins. The second RRM (RRM2) most resembles a RRM so far seen only in the single RRM of the yeast SSB1 gene. Two null mutants of RNP1 that were created, a frameshift disruption and a complete deletion of the gene, were viable, demonstrating that the gene is not essential for cell growth. Two double null mutants of yeast RNP genes that were created (delta RNP1/delta SSB1 and delta SSB1/delta NPL3) were also viable. A fragment identical in size to the RRM1 domain could be amplified by PCR from the DNA of fungi, plants, and animals, using primers matching the ends of this domain, indicating that the structure of RRM1 is conserved. Another potential open reading frame on the same cloned fragment of DNA encodes a gene product whose structure resembles that of a seven-transmembrane-segment membrane receptor protein.
Collapse
Affiliation(s)
- M E Cusick
- Department of Medical Biochemistry and Genetics, Texas A&M College of Medicine, College Station 77843-1114
| |
Collapse
|
495
|
Celis JE, Olsen E. A qualitative and quantitative protein database approach identifies individual and groups of functionally related proteins that are differentially regulated in simian virus 40 (SV40) transformed human keratinocytes: an overview of the functional changes associated with the transformed phenotype. Electrophoresis 1994; 15:309-44. [PMID: 8055864 DOI: 10.1002/elps.1150150153] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A qualitative and quantitative two-dimensional (2-D) gel database approach has been used to identify individual and groups of proteins that are differentially regulated in simian virus 40 (SV40) transformed human keratinocytes (K14). Five hundred and sixty [35S]methionine-labeled proteins (462 isoelectric focusing, IEF; 98 nonequilibrium pH gradient electrophoresis, NEPHGE), out of the 3038 recorded in the master keratinocyte database, were excised from dry, silver-stained gels of normal proliferating primary keratinocytes and K14 cells and the radioactivity was determined by liquid scintillation counting. Two hundred and thirty five proteins were found to be either up- (177) or down-regulated (58) in the transformed cells by 50% or more, and of these, 115 corresponded to known proteins in the keratinocyte database (J.E. Celis et al., Electrophoresis 1993, 14, 1091-1198). The lowest abundance acidic protein quantitated was present in about 60,000 molecules per cell, assuming a value of 10(8) molecules per cell for total actin. The results identified individual, and groups of functionally related proteins that are differentially regulated in K14 keratinocytes and that play a role in a variety of cellular activities that include general metabolism, the cytoskeleton, DNA replication and cell proliferation, transcription and translation, protein folding, assembly, repair and turnover, membrane traffic, signal transduction, and differentiation. In addition, the results revealed several transformation sensitive proteins of unknown identity in the database as well as known proteins of yet undefined functions. Within the latter group, members of the S100 protein family--whose genes are clustered on human chromosome 1q21--were among the highest down-regulated proteins in K14 keratinocytes. Visual inspection of films exposed for different periods of time revealed only one new protein in the transformed K14 keratinocytes and this corresponded to keratin 18, a cytokeratin expressed mainly by simple epithelia. Besides providing with the first global overview of the functional changes associated with the transformed phenotype of human keratinocytes, the data strengthened previous evidence indicating that transformation results in the abnormal expression of normal genes rather than in the expression of new ones.
Collapse
Affiliation(s)
- J E Celis
- Institute of Medical Biochemistry, Aarhus University, Denmark
| | | |
Collapse
|
496
|
Burd CG, Dreyfuss G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J 1994; 13:1197-204. [PMID: 7510636 PMCID: PMC394929 DOI: 10.1002/j.1460-2075.1994.tb06369.x] [Citation(s) in RCA: 354] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.
Collapse
Affiliation(s)
- C G Burd
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | |
Collapse
|
497
|
Abstract
Identification of 5' splice sites requires that limited and dispersed sequence information be interpreted precisely. Both snRNAs and proteins are required for this process. The selection of 5' splice sites in alternative splicing is closely related to that in constitutive splicing, and uses the same components in somewhat different ways.
Collapse
|
498
|
Amrein H, Hedley ML, Maniatis T. The role of specific protein-RNA and protein-protein interactions in positive and negative control of pre-mRNA splicing by Transformer 2. Cell 1994; 76:735-46. [PMID: 8124712 DOI: 10.1016/0092-8674(94)90512-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have investigated the function of different structural domains of the Drosophila splicing regulator Transformer 2 (Tra2). We find that the ribonucleoprotein consensus sequence (RNP-CS) of Tra2 is required for male fertility and positive and negative control of alternative splicing in transgenic flies, as well as for in vitro binding of recombinant Tra2 to doublesex and tra2 pre-mRNAs. Thus, all of the known functions of Tra2 require specific protein-RNA interactions. We also show that one of the two arginine-serine (RS)-rich domains of Tra2 is dispensable, while the other is essential for all of the in vivo functions. Part of this domain is also required for RNA binding in vitro. Significantly, the essential RS domain is also required for specific protein-protein interactions. We find that Tra2 interacts with itself, with the splicing regulator Transformer, and with the general splicing factor SF2 in vitro and in the yeast two-hybrid system. These results demonstrate that both protein-RNA and protein-protein interactions are involved in tra2-dependent activation and repression of alternative splicing.
Collapse
Affiliation(s)
- H Amrein
- Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
499
|
Two different sequence elements within exon 4 are necessary for calcitonin-specific splicing of the human calcitonin/calcitonin gene-related peptide I pre-mRNA. Mol Cell Biol 1994. [PMID: 8289835 DOI: 10.1128/mcb.14.2.951] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The calcitonin (CT)/calcitonin gene-related peptide I (CGRP-I) gene (CALC-I gene) is subject to alternative tissue-specific processing of its primary transcript. CT mRNA is the predominant mRNA produced in thyroid C cells, whereas CT gene-related peptide I mRNA is the main product in neurons of the central and peripheral nervous systems. The CT-specific exon 4 is surrounded by weak processing sites. In this study we have investigated whether exon 4 sequences are involved in the tissue-specific selection of the exon 4 splice acceptor site. The results indicate that two separate elements, termed A and B, in the 5' part of exon 4 are required for production of CT-specific RNA. These sequences are located between nucleotides 67 and 88 (A) and nucleotides 117 and 146 (B) relative to the 5' end of exon 4. Variation of the distance between these sequence elements and the 3' splice site of exon 4 does not change the processing choice. These sequence elements are functionally equivalent. CT-specific splicing requires the presence of both sequence A and B or duplicates of either sequence element in exon 4. The effect of these sequences on the RNA processing choice is overruled by mutation of the CT-specific uridine branch acceptor nucleotide into a commonly preferred adenosine residue.
Collapse
|
500
|
van Oers CC, Adema GJ, Zandberg H, Moen TC, Baas PD. Two different sequence elements within exon 4 are necessary for calcitonin-specific splicing of the human calcitonin/calcitonin gene-related peptide I pre-mRNA. Mol Cell Biol 1994; 14:951-60. [PMID: 8289835 PMCID: PMC358450 DOI: 10.1128/mcb.14.2.951-960.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The calcitonin (CT)/calcitonin gene-related peptide I (CGRP-I) gene (CALC-I gene) is subject to alternative tissue-specific processing of its primary transcript. CT mRNA is the predominant mRNA produced in thyroid C cells, whereas CT gene-related peptide I mRNA is the main product in neurons of the central and peripheral nervous systems. The CT-specific exon 4 is surrounded by weak processing sites. In this study we have investigated whether exon 4 sequences are involved in the tissue-specific selection of the exon 4 splice acceptor site. The results indicate that two separate elements, termed A and B, in the 5' part of exon 4 are required for production of CT-specific RNA. These sequences are located between nucleotides 67 and 88 (A) and nucleotides 117 and 146 (B) relative to the 5' end of exon 4. Variation of the distance between these sequence elements and the 3' splice site of exon 4 does not change the processing choice. These sequence elements are functionally equivalent. CT-specific splicing requires the presence of both sequence A and B or duplicates of either sequence element in exon 4. The effect of these sequences on the RNA processing choice is overruled by mutation of the CT-specific uridine branch acceptor nucleotide into a commonly preferred adenosine residue.
Collapse
Affiliation(s)
- C C van Oers
- Institute of Molecular Biology and Medical Biotechnology, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|