451
|
Mozrzymas JW, Cherubini E. Changes in intracellular calcium concentration affect desensitization of GABAA receptors in acutely dissociated P2-P6 rat hippocampal neurons. J Neurophysiol 1998; 79:1321-8. [PMID: 9497413 DOI: 10.1152/jn.1998.79.3.1321] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The whole cell configuration of the patch-clamp technique was used to study the effects of different cytosolic calcium concentrations [Ca2+]i on desensitization kinetics of gamma-aminobutyric acid (GABA)-activated receptors in acutely dissociated rat hippocampal neurons. Two different intrapipette concentrations of the calcium chelator 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 11 and 0.9 mM, respectively) were used to yield a low (1.2 x 10(-8) M) or a high (2.2 x 10(-6) M) [Ca2+]i. In low [Ca2+]i, peak values of GABA-evoked currents (20 microM) evoked at -30 mV, were significantly larger than those recorded in high calcium [2,970 +/- 280 (SE) pA vs. 1,870 +/- 150 pA]. The extent of desensitization, assessed from steady-state to peak ratio was significantly higher in high calcium conditions (0.14 +/- 0.007 vs. 0.11 +/- 0.008). Similar effects of -Ca2+-i on desensitization were observed with GABA (100 microM). Recovery from desensitization, measured at 30 s interval with double pulse protocol was significantly slower in high [Ca2+]i than in low [Ca2+]i (54 +/- 3% vs. 68 +/- 2%). The current-voltage relationship of GABA-evoked currents was linear in the potential range between -50 and 50 mV. The kinetics of desensitization process including the rate of onset, extent of desensitization, and recovery were voltage independent. The run down of GABA-evoked currents was faster with the higher intracellular calcium concentration. The run down process was accompanied by changes in desensitization kinetics: in both high and low [Ca2+]i desensitization rate was progressively increasing with time as the slow component of the desensitization onset was converted into the fast one. In excised patches, the desensitization kinetics was much faster and more profound than in the whole cell configuration, indicating the involvement of intracellular factors in regulation of this process. In conclusion, [Ca2+]i affects the desensitization of GABAA receptors possibly by activating calcium-dependent enzymes that regulate their phosphorylation state. This may lead to modifications in cell excitability because of changes in GABA-mediated synaptic currents.
Collapse
Affiliation(s)
- J W Mozrzymas
- Biophysics Sector and Istituto Nazionale Fisica della Materia Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
| | | |
Collapse
|
452
|
Obrietan K, van den Pol AN. GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons. J Neurophysiol 1998; 79:1360-70. [PMID: 9497417 DOI: 10.1152/jn.1998.79.3.1360] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the CNS, gamma-aminobutyric acid (GABA) affects neuronal activity through both the ligand-gated GABAA receptor channel and the G protein-coupled GABAB receptor. In the mature nervous system, both receptor subtypes decrease neural excitability, whereas in most neurons during development, the GABAA receptor increases neural excitability and raises cytosolic Ca2+ levels. We used Ca2+ digital imaging to test the hypothesis that GABAA receptor-mediated Ca2+ rises were regulated by GABAB receptor activation. In young, embryonic day 18, hypothalamic neurons cultured for 5 +/- 2 days in vitro, we found that cytosolic Ca2+ rises triggered by synaptically activated GABAA receptors were dramatically depressed (>80%) in a dose-dependent manner by application of the GABAB receptor agonist baclofen (100 nM-100 microM). Coadministration of the GABAB receptor antagonist 2-hydroxy-saclofen or CGP 35348 reduced the inhibitory action of baclofen. Administration of the GABAB antagonist alone elicited a reproducible Ca2+ rise in >25% of all synaptically active neurons, suggesting that synaptic GABA release exerts a tonic inhibitory tone on GABAA receptor-mediated Ca2+ rises via GABAB receptor activation. In the presence of tetrodotoxin the GABAA receptor agonist muscimol elicited robust postsynaptic Ca2+ rises that were depressed by baclofen coadministration. Baclofen-mediated depression of muscimol-evoked Ca2+ rises were observed in both the cell bodies and neurites of hypothalamic neurons taken at embryonic day 15 and cultured for three days, suggesting that GABAB receptors are functionally active at an early stage of neuronal development. Ca2+ rises elicited by electrically induced synaptic release of GABA were largely inhibited (>86%) by baclofen. These results indicate that GABAB receptor activation depresses GABAA receptor-mediated Ca2+ rises by both reducing the synaptic release of GABA and decreasing the postsynaptic Ca2+ responsiveness. Collectively, these data suggest that GABAB receptors play an important inhibitory role regulating Ca2+ rises elicited by GABAA receptor activation. Changes in cytosolic Ca2+ during early neural development would, in turn, profoundly affect a wide array of physiological processes, such as gene expression, neurite outgrowth, transmitter release, and synaptogenesis.
Collapse
Affiliation(s)
- K Obrietan
- Department of Biological Science, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
453
|
Grabauskas G, Bradley RM. Tetanic stimulation induces short-term potentiation of inhibitory synaptic activity in the rostral nucleus of the solitary tract. J Neurophysiol 1998; 79:595-604. [PMID: 9463424 DOI: 10.1152/jn.1998.79.2.595] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whole cell recordings from neurons in the rostral nucleus of the solitary tract (rNST) were made to explore the effect of high-frequency tetanic stimulation on inhibitory postsynaptic potentials (IPSPs). IPSPs were elicited in the rNST by local electrical stimulation after pharmacological blockade of excitatory synaptic transmission. Tetanic stimulation at frequencies of 10-30 Hz resulted in sustained hyperpolarizing IPSPs that had a mean amplitude of -68 mV. The hyperpolarization resulted in a decrease in neuronal input resistance and was blocked by the gamma-aminobutyric acid-A (GABAA) antagonist bicuculline. For most of the neurons (n = 87/102), tetanic stimulation resulted in a maximum hyperpolarization immediately after initiation of the tetanic stimulation, but for some neurons the maximum was achieved after three or more consecutive shock stimuli in the tetanic train of stimuli. When the extracellular Ca2+ concentration was reduced, the maximum IPSP amplitude was reached after several consecutive shock stimuli in the tetanic train for all neurons. Tetanic stimulation at frequencies of 30 Hz and higher resulted in IPSPs that were not sustained but decayed to a more positive level of hyperpolarization. In some neurons the decay was sufficient to become depolarizing and resulted in a biphasic IPSP. It was possible to evoke this biphasic IPSP in all the neurons tested if the cells were hyperpolarized to -75 to -85 mV. The ionic mechanism of the depolarizing IPSPs was examined and was found to be due to an elevation of the extracellular K+ concentration and accumulation of intracellular Cl-. Tetanic stimulation increased the mean 80-ms decay time constant of a single shock-evoked IPSP up to 8 s. The length of the IPSP decay time constant was dependent on the duration and frequency of the tetanic stimulation as well as the extracellular Ca2+ concentration. Afferent sensory input to the rNST consists of trains of relatively high-frequency spike discharges similar to the tetanic stimulation frequencies used to elicit the IPSPs in the brain slices. Thus the short-term changes in inhibitory synaptic activity in the slice preparation probably occur in vivo and may play a key role in taste processing by facilitating synaptic integration.
Collapse
Affiliation(s)
- G Grabauskas
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
454
|
Velísek L, Velísková J, Moshé SL. Site-specific effects of local pH changes in the substantia nigra pars reticulata on flurothyl-induced seizures. Brain Res 1998; 782:310-3. [PMID: 9526079 DOI: 10.1016/s0006-8993(97)01299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Local cerebral changes of acid-base balance may interfere with neuronal communication. Acidosis enhances and alkalosis suppresses GABAA receptor neurotransmission while there are opposite effects on NMDA receptor transmission. In this study, we determined site-specific effects of acidified solutions of Na-HEPES-artificial cerebrospinal fluid infused into the anterior or posterior area of the substantia nigra pars reticulata (SNR) in rats. Two levels of pH were compared: 6.7 and 7.4. Rats were challenged with flurothyl and the threshold for clonic and tonic-clonic seizures was determined. In the anterior SNR, there were no differences between the effects of the solution with pH 6.7 and 7.4 on flurothyl seizures. In contrast in the posterior SNR, microinfusions with pH 6.7 had proconvulsant effects. The results suggest that local pH changes may have site-specific effects on seizure susceptibility in vivo.
Collapse
Affiliation(s)
- L Velísek
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
455
|
Abstract
Glioma cells in acute slices and in primary culture, and glioma-derived human cell lines were screened for the presence of functional GABA(A) receptors. Currents were measured in whole-cell voltage clamp in response to gamma-aminobutyric acid (GABA). While cells from the most malignant glioma, the glioblastoma multiforme, did not respond to GABA, an inward current (under our experimental conditions with high Cl- concentration in the pipette) was induced in gliomas of lower grades, namely in 71% of oligodendroglioma cells and in 62% of the astrocytoma cells. Glioma cell lines did not express functional GABA(A) receptors, irrespective of the malignancy of the tumour they originate from. The currents elicited by application of GABA were due to activation of GABA(A) receptors; the specific agonist muscimol mimicked the response, the antagonists bicuculline and picrotoxin blocked the GABA-activated current and the benzodiazepine receptor agonist flunitrazepam augmented the GABA-induced current and the benzodiazepine inverse agonist DMCM decreased the GABA current. Cells were heterogeneous with respect to the direction of the current flow as tested in gramicidin perforated patches: in some cells GABA hyperpolarized the membrane, while in the majority it triggered a depolarization. Moreover, GABA triggered an increase in [Ca2+]i in the majority of the tumour cells due to the activation of Ca2+ channels. Our results suggest a link between the expression of GABA receptors and the growth of glioma cells as the disappearance of functional GABA(A) receptors parallels unlimited growth typical for malignant tumours and immortal cell lines.
Collapse
Affiliation(s)
- C Labrakakis
- Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | | | | |
Collapse
|
456
|
Lopantsev V, Avoli M. Participation of GABAA-mediated inhibition in ictallike discharges in the rat entorhinal cortex. J Neurophysiol 1998; 79:352-60. [PMID: 9425204 DOI: 10.1152/jn.1998.79.1.352] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spontaneous, synchronous activity induced by 4-aminopyridine (4AP, 50 microM) in the adult rat entorhinal cortex was analyzed with simultaneous field potential and intracellular recordings in an in vitro slice preparation. Four-AP induced isolated negative-going field potentials (interval of occurrence = 27.6 +/- 9.9 (SD) s; n = 27 slices) that corresponded to intracellular long-lasting depolarizations (LLDs), and ictallike epileptiform discharges (interval of occurrence = 10.4 +/- 5.7 min; n = 27 slices) that were initiated by the negative field potentials. LLDs recorded with K-acetate-filled microelectrodes triggered few action potentials of variable amplitude and had a duration of 1.7 +/- 0.8 s (n = 26 neurons), a peak amplitude of 11.8 +/- 5.0 mV (n = 26 neurons) and a reversal potential of -66.2 +/- 3.9 mV (n = 17 neurons). The ictal discharges studied with K-acetate microelectrodes consisted of prolonged depolarizations (duration = 72.9 +/- 44.3 s; peak amplitude = 29.2 +/- 11.4 mV; n = 25 neurons) with action-potential firing during both the tonic and the clonic phase. These depolarizations had a reversal potential of -45.3 +/- 3.8 mV (n = 4 neurons). Intracellular Cl- diffusion from KCl-filled microelectrodes made both LLDs and ictal depolarizations increase in amplitude (30.5 +/- 8.2 mV, n = 8 and 41.8 +/- 9.8 mV, n = 6 neurons, respectively). LLDs recorded with KCl and 2-(trimethyl-amino)N-(2, 6-dimethylphenyl)-acetamide (QX-314) microelectrodesreached an amplitude of 36.3 +/- 5.2 mV, lasted 12.5 +/- 6.5 s, and had a reversal potential of -31.3 +/- 2.5 mV (n = 4 neurons); under these recording procedures the ictal discharge amplitude was 41.5 +/- 5.0 mV and the reversal potential -24.0 +/- 7.0 mV (n = 4 neurons). The N-methyl-D-aspartate (NMDA) receptor antagonist 3,3-(2-carboxy-piperazine-4-yl)-pro-pyl-l-phosphonate (10 microM, n = 5 neurons) alone or concomitant with the nonNMDA receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (10 microM, n = 4 neurons) abolished ictal discharges, without influencing LLDs. LLDs were blocked by the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline methiodide (BMI, 10 microM, n = 6 neurons) or the mu-opioid receptor agonist (-Ala2-N-Me-Phe, Gly-ol) enkephalin (DAGO, 10 microM, n = 2 neurons). Application of BMI (n = 4 neurons) or DAGO (n = 2 neurons) to control the medium abolished LLDs and ictal discharges but disclosed a novel type of epileptiform depolarization that lasted 3.5 +/- 1.2 s and occurred every 5.2 +/- 2.6 s (n = 6 neurons). Our data indicate that 4AP induces in the rat entorhinal cortex a synchronous, GABA-mediated potential that is instrumental in initiating NMDA-dependent, ictal discharges. Moreover we present evidence for an active role played by GABAA-mediated potentials in the maintenance and termination of these prolonged epileptiform events.
Collapse
Affiliation(s)
- V Lopantsev
- Research Group on Cell Biology of Excitable Tissue, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
457
|
Möck M, Schwarz C, Thier P. Electrophysiological properties of rat pontine nuclei neurons In vitro II. Postsynaptic potentials. J Neurophysiol 1997; 78:3338-50. [PMID: 9405548 DOI: 10.1152/jn.1997.78.6.3338] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We investigated the postsynaptic responses of neurons of the rat pontine nuclei (PN) by performing intracellular recordings in parasagittal slices of the pontine brain stem. Postsynaptic potentials (PSPs) were evoked by brief (0.1 ms) negative current pulses (10-250 microA) applied to either the cerebral peduncle or the pontine tegmentum. First, excitatory postsynaptic potentials (EPSPs) could be evoked readily from peduncular stimulation sites. These EPSPs exhibited short latencies, a nonlinear increment in response to increased stimulation currents, and an unconventional dependency on the somatic membrane potential. Pharmacological blockade of the synaptic transmission using 6,7-dinitroquinoxaline-2, 3-dione and ,-2-amino-5-phosphonovaleric acid, selective antagonists of the alpha-amino-3-hydroxy-5-methyl-4-isoxazilepropionate- (AMPA) and the N-methyl--aspartate (NMDA)-type glutamate receptors, showed that these EPSPs were mediated exclusively by excitatory amino acids via both AMPA and NMDA receptors. Moreover, the pharmacological experiments indicated the existence of voltage-sensitive but NMDA receptor-independent amplification of EPSPs. Second, stimulations at peduncular and tegmental sites also elicited inhibitory postsynaptic potentials (IPSPs) in a substantial proportion of pontine neurons. The short latencies of all IPSPs argued against the participation of inhibitory interneurons. Their sensitivity to bicuculline and reversal potentials around -70 mV suggested that they were mediated by gamma-aminobutyric acid-A (GABAA) receptors. In addition to single PSPs, sequences consisting of two to four distinct EPSPs could be recorded after stimulation of the cerebral peduncle. Most remarkably, the onset latencies of the following EPSPs were multiples of the first one indicating the involvement of intercalated synapses. Finally, we used the classic paired-pulse paradigm to study whether the temporal structure of inputs influences the synaptic transmission onto pontine neurons. Pairs of electrical stimuli applied to the cerebral peduncle resulted in a marked enhancement of the amplitude of the second EPSP for interstimulus intervals of 10-100 ms. Delays >200 ms left the EPSP amplitude unaltered. These data provide evidence for a complex synaptic integration and an intrinsic connectivity within the PN too elaborate to support the previous notion that the PN are simply a relay station.
Collapse
Affiliation(s)
- M Möck
- Sektion für Visuelle Sensomotorik, Neurologische Universitätsklinik Tübingen, 72076 Tubingen, Germany
| | | | | |
Collapse
|
458
|
Lamsa K, Kaila K. Ionic mechanisms of spontaneous GABAergic events in rat hippocampal slices exposed to 4-aminopyridine. J Neurophysiol 1997; 78:2582-91. [PMID: 9356408 DOI: 10.1152/jn.1997.78.5.2582] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ionic mechanisms of spontaneous GABAergic events in rat hippocampal slices exposed to 4-aminopyridine. J. Neurophysiol. 78: 2582-2591, 1997. Ion-selective (H+ and K+) microelectrode techniques as well as conventional extra- and intracellular recordings were used to study the ionic mechanisms of propagating spontaneous GABAergic events (SGEs) in rat hippocampal slices exposed to 4-aminopyridine (4-AP, 50-100 mu M). All experiments were made in the presence of antagonists of ionotropic glutamate receptors [10 mu M 6-nitro-7-sulphamoylbenzoquinoxaline-2,3-dione (NBQX) and 40 mu M -2-amino-5-phosphonopentanoic acid (AP5)]. The SGEs were composed of a negative-going change in field potential with a temporally coincident increase (0.7 +/- 0.3 mM; mean +/- SE) in extracellular K+ ([K+]o) and an alkaline transient (0.01-0.08 units) in extracellular pH (pHo) in stratum radiatum of the area CA1. Simultaneous intracellular recordings showed a triphasic hyperpolarization-depolarization-late hyperpolarization response in pyramidal cells. Application of pentobarbital sodium (PB, 100 mu M) decreased the interval between SGEs from a mean value of 35 to approximately 20 s and shortened the period of refractoriness of stimulus-evoked propagating events. This was accompanied by an increase in the amplitude of the field potential response of the [K+]o and the pHo shifts and of the depolarizing phase of the pyramidal-cell response. The SGEs were completely blocked by the gamma-aminobutyric acid-A (GABAA) receptor antagonist, picrotoxin (PiTX; 100 mu M). The amplitudes of the negative-going field potential and of the depolarizing phase of the pyramidal-cell response as well as the ionic shifts associated with SGEs were strongly suppressed in the nominal absence of CO2/HCO-3. There was a five-fold increase in the interevent interval, and propagating SGEs could not be evoked by stimuli given at intervals shorter than approximately 2-3 min. Exposure to inhibitors of carbonic anhydrase, benzolamide (BA; 10 micro M) or ethoxyzolamide (EZA; 50 mu M) fully blocked the alkaline pHo transients and turned them into acid shifts. The poorly membrane-permeant BA had no discernible effect on the other components of the SGEs, but application of EZA had effects reminiscent to those of CO2/HCO-3-free medium. Addition of the GABAA receptor-permeant weak-acid anion, formate (20 mM) reestablished the SGEs that were first suppressed by exposure to the CO2/HCO-3-free medium. No SGEs were seen in the presence of a similar concentration of the GABAA receptor-impermeant anion propionate. Unlike the alkaline transients associated with HCO-3-driven SGEs, those supported by formate were not blocked by BA. The present data suggest that an inward current carried by bicarbonate is necessary for the generation of SGEs and that the GABAA receptor-mediated excitatory coupling among GABAergic interneurons is essentially dependent on the availability of intracellular bicarbonate.
Collapse
Affiliation(s)
- K Lamsa
- Department of Biosciences, Division of Animal Physiology, University of Helsinki, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
459
|
Payne JA. Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol Cell Physiol 1997; 273:C1516-25. [PMID: 9374636 DOI: 10.1152/ajpcell.1997.273.5.c1516] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The neuronal K-Cl cotransporter isoform (KCC2) was functionally expressed in human embryonic kidney (HEK-293) cell lines. Two stably transfected HEK-293 cell lines were prepared: one expressing an epitope-tagged KCC2 (KCC2-22T) and another expressing the unaltered KCC2 (KCC2-9). The KCC2-22T cells produced a glycoprotein of approximately 150 kDa that was absent from HEK-293 control cells. The 86Rb influx in both cell lines was significantly greater than untransfected control HEK-293 cells. The KCC2-9 cells displayed a constitutively active 86Rb influx that could be increased further by 1 mM N-ethylmaleimide (NEM) but not by cell swelling. Both furosemide [inhibition constant (Ki) approximately 25 microM] and bumetanide (Ki approximately 55 microM) inhibited the NEM-stimulated 86Rb influx in the KCC2-9 cells. This diuretic-sensitive 86Rb influx in the KCC2-9 cells, operationally defined as KCC2 mediated, required external Cl- but not external Na+ and exhibited a high apparent affinity for external Rb+(K+) [Michaelis constant (Km) = 5.2 +/- 0.9 (SE) mM; n = 5] but a low apparent affinity for external Cl- (Km > 50 mM). On the basis of thermodynamic considerations as well as the unique kinetic properties of the KCC2 isoform, it is hypothesized that KCC2 may serve a dual function in neurons: 1) the maintenance of low intracellular Cl- concentration so as to allow Cl- influx via ligand-gated Cl- channels and 2) the buffering of external K+ concentration ([K+]o) in the brain.
Collapse
Affiliation(s)
- J A Payne
- Department of Human Physiology, University of California, School of Medicine, Davis 95616, USA
| |
Collapse
|
460
|
Qian H, Li L, Chappell RL, Ripps H. GABA receptors of bipolar cells from the skate retina: actions of zinc on GABA-mediated membrane currents. J Neurophysiol 1997; 78:2402-12. [PMID: 9356392 DOI: 10.1152/jn.1997.78.5.2402] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
GABA receptors of bipolar cells from the skate retina: actions of zinc on GABA-mediated membrane currents. J. Neurophysiol. 78: 2402-2412, 1997. gamma-Aminobutyric acid (GABA)-induced currents were recorded from isolated bipolar cells of the skate retina using perforated patch-clamp methodology. Pharmacological analysis of the responses, using selective agonists and antagonists of the major classes of GABA receptor, revealed the presence of both GABAA and GABAC receptors at both the dendrites and axon terminals of the bipolar cells. The two receptor types showed very different reactions to zinc, a divalent metallic cation that was detected in the synaptic terminal region of skate photoreceptors. Currents mediated by the activation of GABAC receptors were down-regulated by zinc, a feature that is typical of the action of zinc on GABAC receptors. On the other hand, the effects of zinc on GABAA receptor-mediated activity was highly dependent on zinc concentration. Unlike the GABAA receptors on other neurons, responses mediated by activation of the GABAA receptor of skate bipolar cells were significantly enhanced by zinc concentrations in the range of 0. 1-100 mu M; at higher concentrations of zinc (>100 mu M), response amplitudes were suppressed below control levels. The enhancement of GABAA receptor activity on skate bipolar cells showed little voltage dependence, suggesting that zinc is acting on the extracellular domain of the GABAA receptor. In the presence of 10 mu M zinc, the dose-response curve for 4,5,6, 7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; a GABAA agonist that suppresses GABAC-activated currents) was shifted to the left of the curve obtained in the absence of zinc, but without a significant change in the response maximum. This finding indicates that the enhancing effect of zinc is due primarily to its ability to increase the sensitivity of the GABAA receptor. The novel enhancement of neuronal GABAA receptor activity by zinc, observed previously in the GABAA-mediated responses of skate Müller (glial) cells, may reflect the presence of a unique subtype of GABAA receptor on the bipolar and Müller cells of the skate retina.
Collapse
Affiliation(s)
- H Qian
- The Marine Biological Laboratories, Woods Hole, Massachusetts 02543, USA
| | | | | | | |
Collapse
|
461
|
Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 1997. [PMID: 9315888 DOI: 10.1523/jneurosci.17-20-07662.1997] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biphasic GABAA-mediated postsynaptic responses can be readily evoked in CA1 pyramidal neurons of rat hippocampal slices by high-frequency stimulus (HFS) trains in the presence of ionotropic glutamate receptor antagonists. In the present experiments with sharp microelectrodes, whole-cell techniques, and K+-selective microelectrodes, an HFS train (40 pulses at 100 Hz) applied in stratum radiatum close to the recording site evoked a brief hyperpolarizing IPSP (hIPSP), which turned into a prolonged (2-3 sec) depolarization (GABA-mediated depolarizing postsynaptic potential; GDPSP). The I-V relationships of the postsynaptic currents (hIPSC and GDPSC) had distinct characteristics: the hIPSC and the early GDPSC showed outward rectification, whereas the late GDPSC was reduced with positive voltage steps to zero or beyond (inward rectification), but often no clear reversal was seen. That two distinct currents contribute to the generation of the GDPSP was also evident from the finding that a second HFS train at peak or late GDPSP induced a prompt GABAA-mediated hyperpolarization. The GDPSP/C was dependent on the availability of bicarbonate, but not on interstitial or intrapyramidal carbonic anhydrase activity. The HFS train evoked a rapid GABAA-mediated bicarbonate-dependent increase in the extracellular K+ concentration ([K+]o), and the GDPSP followed the K+ transient in a sub-Nernstian manner. The spatial and pharmacological characteristics of the [K+]o shift indicated that it is generated by a local network of GABAergic interneurons. The brief ascending phase of the GDPSP is linked to a K+-dependent accumulation of intracellular Cl-. Thereafter, a nonsynaptic mechanism, a direct depolarizing effect of the [K+]o shift, is responsible for the most conspicuous characteristics of the GDPSP: its large amplitude and prolonged duration.
Collapse
|
462
|
Abstract
GABA is the most prevalent inhibitory transmitter in the adult brain where it reduces neuronal activity mainly by opening chloride channels and hyperpolarizing the membrane potential. Surprisingly, after some types of neuronal trauma, GABA exerts a different action, depolarizing the membrane potential, raising cytoplasmic calcium levels, and increasing neuronal activity. After trauma, GABA can generate cytoplasmic calcium rises even larger than those elicited by the excitatory transmitter glutamate. Large GABA-mediated increases in intracellular calcium could be toxic. Furthermore, if inhibitory neuronal circuits switched to excitatory actions, maladaptive signaling may be generated in affected pathways. These depolarizing actions of GABA after injury are similar to GABA's function in early neuronal development. Neuronal injury, thus, may generate a recapitulation of GABA's role in ontogeny. NEUROSCIENTIST 3:281–286, 1997
Collapse
|
463
|
Labrakakis C, Müller T, Schmidt K, Kettenmann H. GABA(A) receptor activation triggers a Cl- conductance increase and a K+ channel blockade in cerebellar granule cells. Neuroscience 1997; 79:177-89. [PMID: 9178874 DOI: 10.1016/s0306-4522(96)00644-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
GABA(A) receptor activation in cerebellar granule cells induced a complex physiological response, namely the activation of a Cl- conductance in concert with a blockade of the resting K+ outward conductance (by 71% as compared to controls). Both responses were mediated by the activation of GABA(A) receptors, since they were both mimicked by the GABA(A) receptor agonist muscimol and antagonized by picrotoxin and bicuculline. A substantial decrease of the mean open time of single, outwardly rectifying K+ channels was triggered by GABA as revealed from cell-attached recordings; this finding implies that an intracellular pathway links GABA(A) receptors and K+ channels. Furthermore, this action of GABA is mediated through the cytoplasm, as experiments with the cell-attached patch-clamp technique show. GABA induced a prominent membrane depolarization ranging from 10 to 25 mV as revealed by current-clamp recordings of gramicidin (or nystatin) permeabilized patches, thus selecting conditions not to perturb the physiological Cl- gradient across the cell. Our findings imply that the GABA-activated Cl- current depolarized the membrane as described for immature neurons. The blockade of the resting K+ channel conductance acts in concert and both mechanisms lead to this substantial depolarizing event.
Collapse
Affiliation(s)
- C Labrakakis
- Max-Delbrück-Center for Molecular Medicine, Cellular Neurosciences, Berlin, Germany
| | | | | | | |
Collapse
|
464
|
Abstract
Following alpha-latrotoxin application to cerebellar slices, bursts of miniature IPSCs (mIPSCs) were observed in interneurons of the molecular layer. Within bursts, mIPSCs had homogeneous amplitudes with a narrow Gaussian distribution. Analysis of successive event amplitudes revealed an interaction between consecutive IPSCs, indicating that bursts originate at single release sites. A mean receptor occupancy of 76% was calculated. IPSCs within a burst were analyzed using nonstationary noise analysis. The results indicate that individual release sites differ in the number, unitary conductance, and peak opening probability of their postsynaptic channels. In addition, the IPSC decay kinetics were very different among release sites. Finally, a significant correlation was found between several pairs of single site synaptic parameters.
Collapse
Affiliation(s)
- C Auger
- Arbeitsgruppe Zelluläre Neurobiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Federal Republic of Germany
| | | |
Collapse
|
465
|
Huang R, Bossut DF, Somjen GG. Enhancement of whole cell synaptic currents by low osmolarity and by low [NaCl] in rat hippocampal slices. J Neurophysiol 1997; 77:2349-59. [PMID: 9163362 DOI: 10.1152/jn.1997.77.5.2349] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We recorded whole cell currents of patch-clamped neurons in stratum pyramidale of CA1 region of rat hippocampal tissue slices. Synaptic currents were evoked by orthodromic stimulation while holding potential of the neuron was varied from hyperpolarized to depolarized levels. Extracellular osmolarity (pi(o)) was lowered by superfusion with artificial cerebrospinal fluid in which NaCl concentration ([NaCl]) was reduced. The effect of low extracellular NaCl was tested in additional trials in which NaCl was substituted by isosmolar fructose. Both lowering of pi(o) and isosmotic lowering of extracellular [NaCl] ([NaCl]o) caused reversible increase of excitatory postsynaptic currents. The effect of lowering pi(o) was concentration dependent, and it was significantly stronger than the effect of equivalent isosmotic lowering of [NaCl]o. Inhibitory postsynaptic currents also increased in many but not in all cases. Lowering of pi(o) caused a prolongation of the time constant of relaxation of the capacitive charging current induced by small hyperpolarizing voltage steps. A virtual input capacitance, calculated by dividing this time constant by the input resistance, increased during hypotonic exposure. Isosmotic lowering of [NaCl]o had no effect on time constant or input capacitance. Depolarizing voltage commands evoked spikelike inward currents presumably representing Na+-dependent action potentials generated outside the voltage-clamped region of the cell. These current spikes became smaller in low pi(o) and in low [NaCl]o. Broader, voltage-dependent, presumably Ca2+-mediated inward currents became more prominent during hypotonic exposure. We conclude that lowering of [NaCl]o causes enhancement of excitatory synaptic transmission. Transmission may be facilitated by the uptake of Ca2+ into presynaptic terminals as well as into postsynaptic target neurons, induced by the low [NaCl]o. Lowering of pi(o) enhances synaptic transmission more than does a corresponding isosmotic lowering of [NaCl]. The excess increase recorded from the cell soma in low pi(o) may in part be due to changing electrotonic length caused by the swelling of dendrites.
Collapse
Affiliation(s)
- R Huang
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
466
|
Dzoljic M, Gelb AW. Intravenous anaesthetics: some cellular sites of action. EUROPEAN JOURNAL OF ANAESTHESIOLOGY. SUPPLEMENT 1997; 15:3-7. [PMID: 9202931 DOI: 10.1097/00003643-199705001-00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intravenous anaesthetics have diverse effects on neurones within the central nervous system. Only those that occur at clinical concentrations are likely to be relevant. The dominant effect of many agents is the potentiation of the inhibitory neurotransmitter gamma amino butyric acid (GABA) by various mechanisms while inhibiting the effects of excitatory transmitters seems to be less dominant, except for ketamine.
Collapse
Affiliation(s)
- M Dzoljic
- London Health Sciences Centre, Ontario, Canada
| | | |
Collapse
|
467
|
|
468
|
Lückermann M, Trapp S, Ballanyi K. GABA- and glycine-mediated fall of intracellular pH in rat medullary neurons in situ. J Neurophysiol 1997; 77:1844-52. [PMID: 9114240 DOI: 10.1152/jn.1997.77.4.1844] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the region of the ventral respiratory group in brain stem slices from neonatal rats, intracellular pH (pHi) and membrane currents (I(m)) or potentials were measured in neurons dialyzed with the pH-sensitive dye 2',7'-bis-carboxyethyl-5(6)-carboxyfluorescein. Currents and increases in membrane conductance (g(m)) during bath application of 0.1 or 1 mM gamma-aminobutyric acid (GABA) were accompanied by a delayed mean fall of pHi by 0.17 and 0.25 pH units, respectively, from a pHi baseline of 7.33. These effects were reversibly suppressed by 50-100 microM bicuculline. Similar effects on I(m), g(m), and pHi were revealed on administration of 0.1 or 1 mM glycine. These responses were abolished by 10-100 microM strychnine. Dialysis of the cells with 15-30 microM carbonic anhydrase led to an acceleration of the kinetics and a potentiation of the GABA-induced pHi decrease. GABA- and glycine-evoked pHi decreases were very similar during recordings with either high- or low-Cl- patch electrodes, although the reversal potential of the accompanying currents differed by approximately 60 mV. The GABA-induced pHi decrease, but not the accompanying I(m) and g(m) responses, was suppressed in CO2/HCO3(-)-free, N-2-hydroxy-ethylpiperazine-N'-2-ethane sulphonic acid pH-buffered solution. Depolarization from -60 to +30 mV resulted in a sustained fall of pHi by maximally 0.5 pH units. In this situation, the GABA-induced fall of pHi turned into an intracellular alkalosis of 0.09-0.15 pH units. The results confirm and extend previous findings obtained in vivo that GABA- or glycine-induced intracellular acidosis of respiratory neurons is due to efflux of HCO3- via the receptor-coupled Cl- channel.
Collapse
Affiliation(s)
- M Lückermann
- II. Physiologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|
469
|
Taira T, Lamsa K, Kaila K. Posttetanic excitation mediated by GABA(A) receptors in rat CA1 pyramidal neurons. J Neurophysiol 1997; 77:2213-8. [PMID: 9114269 DOI: 10.1152/jn.1997.77.4.2213] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The contributions of gamma-aminobutyric acid (GABA) receptors to posttetanic excitation of CA1 pyramidal neurons in rat hippocampal slices were studied using extracellular and intracellular recording techniques. Synaptic responses were evoked on tetanic stimulation (100-200 Hz, 40-100 pulses) applied in stratum radiatum close (300-600 microm) to the recording site. Under control conditions, tetanic stimulation resulted in a triphasic depolarization/hyperpolarization/sustained depolarization sequence in area CA1 pyramidal cells. The late depolarization usually gave rise to a prolonged (< or = 3 s) spike firing. The late depolarization and the associated spike firing were blocked both specifically and completely (within a time window of 3-6 min starting from picrotoxin application) by the GABA(A) receptor antagonist picrotoxin (PiTX, 100 microM). Paradoxically, at this early stage of PiTX application, overall neuronal firing was attenuated to a higher degree than what was achieved by ionotropic glutamate antagonists. Complete block of ionotropic glutamate receptors by the antagonists D-2-amino-5-phosphonopentoate (AP5, 80 microM), 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX, 10 microM), and ketamine (50 microM) blocked the initial fast depolarization and suppressed the late one. Exposure to a permeable inhibitor of carbonic anhydrase, ethoxyzolamide (EZA, 50 microM) inhibited the late, apparently GABA-mediated depolarization. It is concluded that GABA can provide the main posttetanic excitatory drive in the adult hippocampus. The present results suggest that intense activation of GABAergic interneurons may accentuate the excitation of principal neurons and, hence, play an important facilitatory role in the induction of long-term potentiation (LTP) and epileptogenesis.
Collapse
Affiliation(s)
- T Taira
- Department of Biosciences, University of Helsinki, Finland
| | | | | |
Collapse
|
470
|
Miyata H, Nagayama T, Takahata M. Two types of identified ascending interneurons with distinct GABA receptors in the crayfish terminal abdominal ganglion. J Neurophysiol 1997; 77:1213-23. [PMID: 9084591 DOI: 10.1152/jn.1997.77.3.1213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
More than half of the identified ascending interneurons originating in the terminal abdominal ganglion of the crayfish received inhibitory sensory inputs from hair afferents innervating the tailfan on the side contralateral to their main branches. Biochemical aspects of this transverse lateral inhibition of ascending interneurons were examined by the use of neurophysiological and pharmacological techniques. Local application of gamma-aminobutyric acid (GABA) and its agonist muscimol into the neuropil induced membrane hyperpolarization of identified ascending interneurons with an increase in membrane conductance. Because the reversal potential of inhibitory postsynaptic potential (IPSPs) in ascending interneurons elicited by the sensory stimulation and GABA injection was similar, and the sensory-stimulated IPSPs of the interneurons were blocked by GABA and muscimol application, this study strongly suggests a GABAergic nature for transverse lateral inhibition of ascending interneurons. According to the response to the GABAA antagonists bicuculline and picrotoxin, ascending interneurons were classified into two types, picrotoxin-sensitive and picrotoxin-insensitive interneurons. Identified ascending interneurons VE-1 and RO-4 showed a pharmacological profile similar to that of the classical GABAA receptor of the vertebrates. Bath application of both bicuculline and picrotoxin reversibly reduced the amplitudes of IPSPs. The other identified ascending interneurons CA-1, RO-1, and RO-2 were not affected significantly by the bath application of GABAA and GABAB antagonists, although bath application of low-chloride saline reversed the sensory-stimulated IPSPs. IPSPs of the picrotoxin-sensitive interneurons had a rather faster time course and shorter duration in comparison with those of the picrotoxin-insensitive interneurons.
Collapse
Affiliation(s)
- H Miyata
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
471
|
Vibert N, De Waele C, Serafin M, Babalian A, Mühlethaler M, Vidal PP. The vestibular system as a model of sensorimotor transformations. A combined in vivo and in vitro approach to study the cellular mechanisms of gaze and posture stabilization in mammals. Prog Neurobiol 1997; 51:243-86. [PMID: 9089790 DOI: 10.1016/s0301-0082(96)00057-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To understand the cellular mechanisms underlying behaviours in mammals, the respective contributions of the individual properties characterizing each neuron, as opposed to the properties emerging from the organization of these neurons in functional networks, have to be evaluated. This requires the use, in the same species, of various in vivo and in vitro experimental preparations. The present review is meant to illustrate how such a combined in vivo in vitro approach can be used to investigate the vestibular-related neuronal networks involved in gaze and posture stabilization, together with their plasticity, in the adult guinea-pig. Following first a general introduction on the vestibular system, the second section describes various in vivo experiments aimed at characterizing gaze and posture stabilization in that species. The third and fourth parts of the review deal with the combined in vivo-in vitro investigations undertaken to unravel the physiological and pharmacological properties of vestibulo-ocular and vestibulo-spinal networks, together with their functional implications. In particular, we have tried to use the central vestibular neurons as examples to illustrate how the preparation of isolated whole brain can be used to bridge the gap between the results obtained through in vitro, intracellular recordings on slices and those collected in vivo, in the behaving animal.
Collapse
Affiliation(s)
- N Vibert
- Laboratoire de Physiologie de la Perception et de l' Action, CNRS-College de France, UMR C-9950, Paris, France
| | | | | | | | | | | |
Collapse
|
472
|
Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R. Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 1997; 18:243-55. [PMID: 9052795 DOI: 10.1016/s0896-6273(00)80265-2] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We asked whether GABA(A) and NMDA receptors may act in synergy in neonatal hippocampal slices, at a time when GABA exerts a depolarizing action. The GABA(A) receptor agonist isoguvacine reduced the voltage-dependent Mg2+ block of single NMDA channels recorded in cell-attached configuration from P(2-5) CA3 pyramidal neurons and potentiated the Ca2+ influx through NMDA channels. The synaptic response evoked by electrical stimulation of stratum radiatum was mediated by a synergistic interaction between GABA(A) and NMDA receptors. Network-driven Giant Depolarizing Potentials, which are a typical feature of the neonatal hippocampal network, provided coactivation of GABA(A) and NMDA receptors and were associated with spontaneous and synchronous Ca2+ increases in CA3 pyramidal neurons. Thus, at the early stages of development, GABA is a major excitatory transmitter that acts in synergy with NMDA receptors. This provides in neonatal neurons a hebbian stimulation that may be involved in neuronal plasticity and network formation in the developing hippocampus.
Collapse
Affiliation(s)
- X Leinekugel
- INSERM Unité 29, Hôpital de Port-Royal, Paris, France
| | | | | | | | | |
Collapse
|
473
|
Abstract
GABA is the dominant inhibitory neurotransmitter in the CNS. By opening Cl- channels, GABA generally hyperpolarizes the membrane potential, decreases neuronal activity, and reduces intracellular Ca2+ of mature neurons. In the present experiment, we show that after neuronal trauma, GABA, both synaptically released and exogenously applied, exerted a novel and opposite effect, depolarizing neurons and increasing intracellular Ca2+. Different types of trauma that were effective included neurite transection, replating, osmotic imbalance, and excess heat. The depolarizing actions of GABA after trauma increased Ca2+ levels up to fourfold in some neurons, occurred in more than half of the severely injured neurons, and was long lasting (>1 week). The mechanism for the reversed action of GABA appears to be a depolarized Cl- reversal potential that results in outward rather than inward movement of Cl-, as revealed by gramicidin-perforated whole-cell patch-clamp recording. The consequent depolarization and resultant activation of the nimodipine sensitive L- and conotoxin-sensitive N-type voltage-activated Ca2+ channel allows extracellular Ca2+ to enter the neuron. The long-lasting capacity to raise Ca2+ may give GABA a greater role during recovery from trauma in modulating gene expression, and directing and enhancing outgrowth of regenerating neurites. On the negative side, by its depolarizing actions, GABA could increase neuronal damage by raising cytosolic Ca2+ levels in injured cells. Furthermore, the excitatory actions of GABA after neuronal injury may contribute to maladaptive signal transmission in affected GABAergic brain circuits.
Collapse
|
474
|
Muir JK, Lobner D, Monyer H, Choi DW. GABAA receptor activation attenuates excitotoxicity but exacerbates oxygen-glucose deprivation-induced neuronal injury in vitro. J Cereb Blood Flow Metab 1996; 16:1211-8. [PMID: 8898693 DOI: 10.1097/00004647-199611000-00015] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We examined the effects of GABA receptor stimulation on the neuronal death induced by exogenously added excitatory amino acids or combined oxygen-glucose deprivation in mouse cortical cell cultures. Death induced by exposure to NMDA, AMPA, or kainate was attenuated by addition of GABA or the GABAA receptor agonist, muscimol, but not by the GABAB receptor agonist, baclofen. The antiexcitotoxic effect of GABAA receptor agonists was blocked by bicuculline or picrotoxin. In contrast, GABA or muscimol, but not baclofen, markedly increased the neuronal death induced by oxygen-glucose deprivation. Muscimol potentiation of neuronal death was associated with increased glutamate efflux to the bathing medium, and increased cellular 45Ca2+ accumulation; it was blocked by MK-801, but not NBQX, suggesting mediation by NMDA receptors. Bicuculline only weakly attenuated muscimol potentiation of oxygen-glucose deprivation-induced neuronal death, probably because it itself increased this death. Present results raise a note of caution in the proposed use of GABAA receptor stimulation to limit ischemic brain damage in vivo.
Collapse
Affiliation(s)
- J K Muir
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
475
|
Abstract
This article summarizes findings related to a synchronous, GABA-mediated potential that may contribute to the initiation and spread of epileptiform discharges within the brain. This phenomenon is observed in cortical structures such as the hippocampus, the entorhinal cortex, and the neocortex during application of low concentrations of 4-aminopyridine and is characterized at the intracellular level by a long-lasting membrane depolarization. The synchronous, GABA-mediated potential continues to occur after blockade of excitatory synaptic transmission and relays on the synchronous firing of inhibitory interneurons and consequent activation of postsynaptic (mainly type A) GABA receptors leading to a transient elevation of [K+]O. Studies performed in young rat hippocampus indicate that the synchronous, GABA-mediated potential may play a role in initiating ictal discharges under normal conditions (i.e., when excitatory amino acid receptors are operant). Moreover, a similar phenomenon may also occur in adult rat entorhinal cortex. These findings therefore indicate a novel role that is played by GABAA receptors in limbic structures. The ability of this synchronous GABA-mediated potential to propagate in the absence of excitatory synaptic transmission may also be relevant for the propagation of synchronous activity outside conventional neuronal-synapse dependent pathways. This condition may occur in brain structures with neuronal loss and consequent disruption of normal excitatory synaptic connections such as mesial limbic structures of temporal lobe epilepsy patients with Ammon's horn sclerosis.
Collapse
Affiliation(s)
- M Avoli
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
476
|
Davies CH, Collingridge GL. Regulation of EPSPs by the synaptic activation of GABAB autoreceptors in rat hippocampus. J Physiol 1996; 496 ( Pt 2):451-70. [PMID: 8910229 PMCID: PMC1160890 DOI: 10.1113/jphysiol.1996.sp021698] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Intracellular recording was used to study the influence of GABAB autoreceptor-mediated regulation of monosynaptic GABAA and GABAB receptor-mediated hyperpolarizing inhibitory postsynaptic potentials (IPSPAs and IPSPBs, respectively) on alpha-amino-3-hydroxy-5-methyl -4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated excitatory postsynaptic potentials (EPSPAs and EPSPNs, respectively) in the CA1 region of rat hippocampal slices. To achieve this, synaptic potential were evoked monosynaptically by near stimulation following blockade of either EPSPNs, by the NMDA receptor antagonist (R)-2-amino-5-phosphonopentanoate (AP5; 0.05 mM), or EPSPAs, by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 0.01 mM). 2. Paired-pulse stimulation at 3-50 Hz caused an increase in the duration (paired-pulse widening) of EPSPAs, which paralleled the time course of paired-pulse depression of monosynaptic IPSCs, and a potentiation of the amplitude (paired-pulse potentiation) of EPSPAs, which did not. Paired-pulse stimulation also caused frequency-dependent changes in EPSPNs. At frequencies > 40 Hz it produced paired-pulse depression of EPSPNs, along with marked summation of IPSPS, and at frequencies < 40 Hz it caused paired-pulsed enlargement of EPSPNs, concomitant with a reduction in IPSPS. 3. Paired-pulse potentiation of EPSPAs at 50 Hz was enhanced by picrotoxin (0.1 mM) but was not significantly affected by 3-amino-propyl(diethoxymethyl)phosphinic acid (CGP 35348; 1 mM). Paired-pulse depression of EPSPNs at 50 Hz was converted to paired-pulse enlargement by picrotoxin but was unaffected by CGP 35348. These effects can be explained by block of IPSPAs by picrotoxin. 4. Paired-pulsed widening of EPSPAs at 5 Hz was occluded by picrotoxin and abolished by CGP 35348. Similarly, paired-pulsed enlargement of EPSPNs at 5 Hz was occluded, and in some cases converted to paired-pulse depression, by picrotoxin. The effects of CGP 35348 were more complex in that this antagonist reduced paired-pulse enlargement of EPSPNs in control medium whereas it eliminated paired-pulsed depression of EPSPNs in the presence of picrotoxin, effects consistent with its block of GABAB autoreceptors and IPSPBS, respectively. 5. 'Priming' using a 'priming stimulation protocol' (a single 'priming stimulus' followed at 1-50 Hz ('priming frequency') by a 'primed burst' of four shocks at 20-100 Hz ('burst frequency')) caused an increase in both 'primed' EPSPAs and EPSPNs compared with 'unprimed' EPSPAs and EPSPNs. This effect was optimal when the respective priming and burst frequencies were 5 and 100 Hz. 6. In the presence of either picrotoxin or CGP 35348 the primed EPSPAs and EPSPNs resembled unprimed EPSPAs and EPSPNs, respectively. This was because picrotoxin occluded whereas CGP 35348 blocked the effect of priming on EPSPS. 7. CGP 35348 had only modest effects on EPSPAs but enhanced EPSPNs evoked by a tetanus (20 stimuli at 100 Hz), in either the presence or absence of picrotoxin. In the absence of picrotoxin, CGP 35348 also promoted depolarization by enhancing a depolarizing GABAA receptor-mediated component (IPSPD). These effects can all be attributed to block of IPSPBS by CGP 35348. 8. CGP 35348 blocked the induction of long-term potentiation (LTP) of extracellularly recorded field EPSPs elicited by a priming stimulation protocol in control medium but was ineffective in the presence of picrotoxin. CGP 35348 was also ineffective at preventing tetanus-induced LTP (100 Hz, 1 s) in both the absence and presence of picrotoxin. 9. These data demonstrate the complex regulation of AMPA and NMDA receptor-mediated EPSPs during various patterns of synaptic activation caused by the dynamic changes in GABA-mediated synaptic inhibition, which are orchestrated by GABAA autoreceptors in a frequency-dependent
Collapse
Affiliation(s)
- C H Davies
- Department of Pharmacology, University of Edinburgh, UK.
| | | |
Collapse
|
477
|
Staley K, Smith R, Schaack J, Wilcox C, Jentsch TJ. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 1996; 17:543-51. [PMID: 8816717 DOI: 10.1016/s0896-6273(00)80186-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of GABAA receptor activation varies from inhibition to excitation depending on the state of the transmembrane anionic concentration gradient (delta anion). delta anion was genetically altered in cultured dorsal root ganglion neurons via adenoviral vector-mediated expression of ClC-2, a Cl- channel postulated to regulate the Cl- concentration in neurons in which GABAA receptor activation is predominantly inhibitory. ClC-2 expression was verified by the presence of the appropriate mRNA, protein, and membrane conductance. CIC-2 expression resulted in a large negative shift in the Cl- equilibrium potential (ECl) that attenuated the GABA-mediated membrane depolarization and prevented GABAA receptor-mediated action potentials. These results establish that gene transfer of transmembrane ion channels to neurons can be used to demonstrate their physiological function, and that delta anion can be genetically manipulated to alter the function of neuronal GABAA receptors in situ.
Collapse
Affiliation(s)
- K Staley
- Department of Neurology, University of Colorado, Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
478
|
Adelsberger H, von Beckerath N, Dudel J. Characterization and molecular reaction scheme of a chloride channel expressed after axotomy in crayfish. Pflugers Arch 1996; 432:867-75. [PMID: 8772138 DOI: 10.1007/s004240050210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nerve to the deep extensor abdominal muscle (DEAM) in crayfish species Astacus astacus, containing four excitatory and one inhibitory motor axons, was cut in the third segment on one side of the animal. The distal axon stump was not subject to phagocytosis but was present for months after the axotomy. The two lateral bundles of the DEAM were prepared 4-6 weeks after the axotomy. The gamma-aminobutyric-acid-(GABA-) activated chloride channel of these bundles was characterized by applying pulses of GABA to outside-out patches of the muscle membrane and measuring the responses. Based on the dose/response relationship of the peak current and of the rise time as well as on single-channel kinetics, a detailed molecular scheme for the reaction of the channel with GABA was derived. This scheme contains four binding steps of the agonist to the receptor and two open states. Simulations of the dose/response relationships with this model resulted in a set of rate constants which generate proper fits. In comparison to the channels present in innervated muscles, the channels of denervated muscles have a higher affinity for GABA, a lower single-channel conductance, four versus five binding steps, and non-cooperative binding. The first three of these adaptations of denervated muscles correspond to similar changes in denervated vertebrate muscles.
Collapse
Affiliation(s)
- H Adelsberger
- Physiologisches Institut der Technischen Universtität München, Biedersteinerstrasse 29, D-80802 Munich, Germany
| | | | | |
Collapse
|
479
|
Abstract
Cytoplasmic calcium plays a key role in neurite growth. In contrast to previous work suggesting that gamma aminobutyrate's (GABA) role in regulating growth cone calcium is primarily to antagonize the effects of glutamate, we report that GABA can act in an excitatory manner on developing hypothalamic neurites, independently raising calcium in growing neurites and their growth cones. Time-lapse digital video and confocal laser microscopy with the calcium-sensitive dyes fluo-3 and fura-2 were used to study the influence of GABA on neurite calcium levels. GABA (10 microM) evoked a calcium rise in both bicarbonate- and Hepes-based buffers. The calcium rise was greatly reduced after chloride transport was blocked. GABA raised calcium by stimulating the cell body, resulting in an increase in calcium throughout the neuronal cell body and dendritic arbor. GABA also acted locally, stimulating a neuritic calcium rise only in a single dendrite or growth cone. In some neurites and growth cones during early development, GABA generated a greater calcium rise than did glutamate. Bicuculline, a GABAA receptor antagonist, reduced calcium levels in neurites of young synaptically coupled neurons, indicating that ongoing synaptic release of GABA raised neuritic calcium. These data suggest that during early development, GABA may play a significant role in regulating process growth and modulating the formation of early connections in the hypothalamus. Our data support the hypothesis that GABA receptors are functionally active and may play a calcium regulating role similar to that of glutamate in neuronal development. This is particularly true in early development, as later in development GABA's role becomes more inhibitory, and glutamate plays the primary excitatory role.
Collapse
Affiliation(s)
- K Obrietan
- Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
480
|
Rigo JM, Belachew S, Coucke P, Leprince P, Malgrange B, Rogister B, Moonen G. Astroglia-released factor with negative allosteric modulatory properties at the GABA A receptor. Biochem Pharmacol 1996; 52:465-73. [PMID: 8687501 DOI: 10.1016/0006-2952(96)00249-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously shown, using whole-cell patch-clamp techniques, that astrocytes release a negative allosteric modulator of the gamma-aminobutyric acid type A receptor (GABAA receptor) with beta-carboline-like properties, thus, likely to act at the benzodiazepine site. Here, using patch-clamp and binding techniques, we confirm that the low-molecular-weight fraction of astroglia-conditioned medium (ACM lmf) contains a factor(s) that negatively modulates GABAA-receptor function. This factor, like beta-carbolines, enhances the specific binding of [35S]t-butyl bicyclophosphorothionate (TBPS) to adult rat cortical membranes in the presence of GABA. However, it fails to interact with various ligands of the benzodiazepine (BZD) site of the GABAA receptor ([3H]flunitrazepam, [3H]Ro 15-1788 and [3H]Ro 15-4513). The question of the actual binding site of the astroglia-derived factor on the GABAA receptor, thus, remains open and can be addressed only after the purification of the active molecule(s) of ACM Imf has been completed, and a labeled form of the endogenous ligand becomes available. Taken together, however, the data suggest that type 1 astrocytes are able to modulate the effects of the main inhibitory neurotransmission in the central nervous system.
Collapse
Affiliation(s)
- J M Rigo
- Laboratory of Human Physiology and Pathophysiology, University of Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
481
|
Schmid G, Bonanno G, Raiteri M. Functional evidence for two native GABAA receptor subtypes in adult rat hippocampus and cerebellum. Neuroscience 1996; 73:697-704. [PMID: 8809791 DOI: 10.1016/0306-4522(96)00085-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Studies of molecular cloning predict great heterogeneity for the GABAA receptor; however, evidence for functionally and pharmacologically distinct native GABAA receptors is relatively scarce. In this work we have compared some of the functional and pharmacological properties of two GABAA receptors previously shown to be present in the adult rat central nervous system. In superfused hippocampal synaptosomes activation of GABAA receptors increased the basal release of [3H]noradrenaline (EC50 for GABA = 3.2 microM). In contrast, the overflow evoked by depolarization with high-K+ (12 or 35 mM) was not affected. Conversely, GABAA receptor activation led to potentiation of the K(+)-evoked overflow of [3H]D-aspartate from cerebellar synaptosomes (EC50 for GABA = 1.3 microM) whereas the basal release remained unchanged. GABA and muscimol also potentiated the K(+)-evoked overflow of endogenous glutamate in cerebellum. Diazepam enhanced the GABA (3 microM)-evoked [3H]noradrenaline release (EC50 = 65 nM). The diazepam potentiation of the GABA- or muscimol-evoked release of [3H]noradrenaline was inversely related to the agonist concentration. The effect of diazepam was reversed by the benzodiazepine antagonist flumazenil. Zolpidem mimicked diazepam (EC50 = 14 nM). The increase of the K(+)-evoked overflow of [3H]D-aspartate (or of endogenous glutamate) elicited by GABA or muscimol in cerebellar synaptosomes was not affected by benzodiazepines (diazepam or clonazepam) or by zolpidem. On the other hand, Ro 15-4513, an inverse agonist at the benzodiazepine site, strongly inhibited (EC50 = 7 nM) the enhancement by GABA (3 microM) of the K(+)-evoked [3H]D-aspartate overflow in cerebellar synaptosomes; the effect of Ro 15-4513 was reversed by flumazenil. These results suggest the existence in the central nervous system of the adult rat of two native pharmacological-subtypes of the GABAA receptor having different function, regional distribution and neuronal location; the receptors require different membrane potential to be activated and display different sensitivity to benzodiazepines and to drugs acting at benzodiazepine sites.
Collapse
Affiliation(s)
- G Schmid
- Istituto di Farmacologia e Farmacognosia, Genova, Italy
| | | | | |
Collapse
|
482
|
Abstract
Application of 4-aminopyridine (4AP, 50 microM) to combined slices of adult rat hippocampus-entorhinal cortex-induced ictal and interictal epileptiform discharges, as well as slow field potentials that were abolished by the mu-opioid agonist [D-Ala2,N-Me-Phe4,Gly-ol5] enkephalin (DAGO, 10 microM) or the GABAA receptor antagonist bicuculline methiodide (BMI, 10 microM); hence, they represented synchronous GABA-mediated potentials. Ictal discharges originated in the entorhinal cortex and propagated to the hippocampus, whereas interictal activity of CA3 origin was usually recorded in the hippocampus. The GABA-mediated potentials had no fixed site of origin or modality of propagation; they closely preceded (0.2-5 sec) and thus appeared to initiate ictal discharges. Only ictal discharges were blocked by the antagonist of the NMDA receptor 3,3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (CPP, 10 microM), whereas the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) abolished all epileptiform activities. The GABA-mediated potentials continued to occur synchronously in all regions even after concomitant application of CNQX and CPP. [K+]o elevations were recorded in the entorhinal cortex during the ictal discharge (peak values = 13.9 +/- 0.9 mM) and the synchronous GABA-mediated potentials (peak values = 4.2 +/- 0.1 mM); the latter increases were presumably attributable to postsynaptic GABAa-receptor activation because they were abolished by DAGO or BMI. Their role in initiating ictal activity was demonstrated by using DAGO, which abolished both GABA-mediated synchronous potentials and ictal discharges. These data indicate that NMDA-mediated ictal discharges induced by 4AP originate in the entorhinal cortex; such a conclusion is in line with clinical evidence obtained in temporal lobe epilepsy patients. 4AP also induces GABA-mediated potentials that spread within the limbic system when excitatory transmission is blocked and may play a role in initiating ictal discharge by increasing [K+]o.
Collapse
|
483
|
Abstract
Cl(-)-stimulated and ethacrynic acid-sensitive ATPase (Cl(-)-ATPase) of plasma membrane origin in the rat brain is a candidate for an active outwardly directed Cl- translocating system. Biochemistry of Cl(-)-ATPase and ATP-dependent Cl- transport (Km values for ATP and Cl-, nucleotide specificity, pH dependency, and sensitivity to ethacrynic acid) suggested that Cl(-)-ATPase is an ATP-driven Cl- pump. Activity of the reconstituted Cl(-)-ATPase/pump increased in the presence of phosphatidylinositol-4-monophosphate, and this pump activity further increased at an inside-positive membrane potential or in the presence of a protonophore, suggesting that the Cl(-)-ATPase/pump is an electrogenic Cl- transporter, probably regulated by phosphoinositide turnover in vivo. In cultured hippocampal pyramidal cell-like neurons from embryonic rat brain, ethacrynic acid and ATP-consuming treatment increased, but furosemide, an inhibitor of Na+/K+/Cl- cotransporter, decreased, [Cl-]i when monitored using Cl(-)-sensitive fluorescent probes. The stationary levels of [Cl-]i were lower and the effects of ethacrynic acid were more prominent in perikarya than in dendrites, while the effects of furosemide were more obvious in dendrites than in perikarya. The lower perikaryonic [Cl-]i and the marked effects of ethacrynic acid were observed in the later stage rather than in the early stage of culture. Thus, region-specific localization and developmental changes in the activities of Cl- transporters probably result in uneven and age-dependent distribution of Cl- in the neurons.
Collapse
Affiliation(s)
- C Inagaki
- Department of Pharmacology, Kansai Medical University, Osaka, Japan
| | | | | |
Collapse
|
484
|
Avoli M, Louvel J, Kurcewicz I, Pumain R, Barbarosie M. Extracellular free potassium and calcium during synchronous activity induced by 4-aminopyridine in the juvenile rat hippocampus. J Physiol 1996; 493 ( Pt 3):707-17. [PMID: 8799893 PMCID: PMC1159019 DOI: 10.1113/jphysiol.1996.sp021416] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Field potential recordings and measurements of the extracellular concentration of free K+ ([K+]o) and Ca2+ ([Ca2+]o) were made during application of 4-aminopyridine (4-AP, 50 microM) in hippocampal slices that were obtained from 11- to 32-day-old rats. 2. Spontaneous field potentials recorded under this experimental condition in the CA3 stratum radiatum of slices from rats < 23 days old consisted of interictal (duration, 0.2-1.4 s; intervals of occurrence, 0.9-3.4 s) and ictal epileptiform discharges (duration, 5-46 s; intervals of occurrence, 22-259 s) and negative-going potentials that often preceded the onset of ictal discharge. Ictal activity became rare in slices from rats > 25 days old. 3. The negative-going potential (which also corresponded to the ictal discharge onset) was associated with [K+]o increases to 9.4 +/- 3.6 mM (mean +/- S.D.) from 3.25 mM baseline (n = 11 slices). [K+]o remained elevated at 5-6 mM throughout the ictal event. Decreases in [Ca2+]o (from 1.8 mM baseline to 1.3 +/- 0.1 mM, n = 7) were observed during the ictal discharge. 4. Interictal and ictal discharges were abolished by the non-N-methyl-D-aspartate (NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX, 10 microM). CNQX and the NMDA receptor antagonist 3-((+/-)-2-carboxypiperazine-4-yl)propyl-1-phosphonic acid (CPP) did not influence negative-going potentials or the associated [K+]o increases (peak values were 8.7 +/- 3.2 mM, n = 8), that were blocked, however, by bicuculline methiodide (BMI, 10 microM). 5. The mu-opioid receptor agonist (D-Ala2,N-Me-Phe4,Gly5-ol)-enkephalin (DAGO, 10 microM) which inhibits GABA release from interneurons, prevented the occurrence of both GABA-mediated synchronous potentials and subsequent ictal discharges (n = 6) as well as the [K+]o elevations. DAGO effects were antagonized by naloxone (10 microM; n = 4). 6. The GABA-mediated [K+]o elevations changed as a function of age. In hippocampal slices obtained from 11- to 17-day-old rats, peak values of 10.6 +/- 2.0 mM (n = 10) and half-width durations of 8.7 +/- 1.3 s (n = 7) were observed. In slices obtained from 25- to 32-day-old animals these parameters were 5.2 +/- 0.5 mM (n = 13) and 4.6 +/- 1.1 s (n = 4), respectively. 7. This study shows that, in the juvenile rat hippocampus, 4-AP induces a glutamatergic independent synchronous potential that is due to GABA released from inhibitory terminals and is associated with an increase in [K+]o. This [K+]o elevation undergoes age-dependent changes, and is instrumental in synchronizing neurons thus initiating prolonged epileptiform discharges.
Collapse
Affiliation(s)
- M Avoli
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
485
|
Krishek BJ, Amato A, Connolly CN, Moss SJ, Smart TG. Proton sensitivity of the GABA(A) receptor is associated with the receptor subunit composition. J Physiol 1996; 492 ( Pt 2):431-43. [PMID: 9019540 PMCID: PMC1158838 DOI: 10.1113/jphysiol.1996.sp021319] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Modulation of GABA(A) receptors by external H(+) was examined in cultured rat sympathetic neurones, and in Xenopus laevis oocytes and human embryonic kidney (HEK) cells expressing recombinant GABA(A) receptors composed of combinations of alpha 1, beta 1, beta 2, gamma 2S and delta subunits. 2. Changing the external pH from 7.4 reduced GABA-activated currents in sympathetic neurones. pH titration of the GABA-induced current was fitted with a pH model which predicted that H(+) interact with two sites (PK(a) values of 6.4 and 7.2). 3. For alpha 1 beta 1 GABA(A) receptors, low external pH (< 7.4) enhanced responses to GABA. pH titration predicted the existence of two sites with PK(a) values of 6.6 and 7.5. The GABA concentration-response curve was shifted to the left by low pH and non-competitively inhibited at high pH (> 7.4). 4. alpha 1 beta 1 gamma 2S receptor constructs were not affected by external pH, whereas exchanging the beta 1 subunit for beta 2 conferred a sensitivity to pH, with predicted PK(a) values of 5.16 and 9.44. 5. Low pH enhanced the responses to GABA on alpha 1 beta 1 delta subunits, whilst high pH caused an inhibition (PK(a) values of 6.6 and 9.9). The GABA concentration-response curves were enhanced (pH 5.4) or reduced (pH 9.4) with no changes in the GABA EC(50). 6. Immunoprecipitation with subunit and epitope-specific antisera to alpha 1, beta 1 and delta subunits demonstrated that these subunits could co-assemble in cell membranes. 7. Expression of alpha 1 beta 1 gamma 2S delta constructs resulted in a 'bell-shaped' pH titration relationship. Increasing or decreasing external pH inhibited the responses to GABA. 8. The pH sensitivity of recombinant GABA(A) receptors expressed in HEK cells was generally in accordance with data accrued from Xenopus oocytes. However, rapid application of GABA to alpha 1 beta 1 constructs at high pH (> 7.4) caused an increased peak and reduced steady-state current, with a correspondingly increased rate of desensitization. 9. Modulation of GABA(A) receptor function was apparently unaffected by the internal pH. Moreover, pH values between 5 and 9.5 did not significantly affect the charge distribution on the zwitterionic GABA molecules. 10. In conclusion, this study demonstrates that external pH can either enhance, have little effect, or reduce GABA-activated responses, and this is apparently dependent on the receptor subunit composition. The potential importance of H(+) sensitivity of GABA(A) receptors is discussed.
Collapse
Affiliation(s)
- B J Krishek
- School of Pharmacy, Department of Pharmacology, London, UK
| | | | | | | | | |
Collapse
|
486
|
Hornung JP, Fritschy JM. Developmental profile of GABAA-receptors in the marmoset monkey: expression of distinct subtypes in pre- and postnatal brain. J Comp Neurol 1996; 367:413-30. [PMID: 8698901 DOI: 10.1002/(sici)1096-9861(19960408)367:3<413::aid-cne7>3.0.co;2-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Gamma aminobutyric acid (GABA)A-receptors are expressed in fetal mammalian brain before the onset of synaptic inhibition, suggesting their involvement in brain development. In this study, we have analyzed the maturation of the GABAA-receptor in the marmoset monkey forebrain to determine whether distinct receptor subtypes are expressed at particular stages of pre- and postnatal ontogeny. The distribution of the subunits alpha 1, alpha 2, and beta 2,3 was investigated immunohistochemically between embryonic day 100 (6 weeks before birth) and adulthood. Prenatally, the alpha 2- and beta 2,3-subunit-immunoreactivity (-IR) was prominent throughout the forebrain, whereas the alpha 1-subunit-IR appeared in selected regions shortly before birth. The alpha 2-subunit-IR disappeared gradually to become restricted to a few regions in adult forebrain. By contrast, the alpha 1-subunit-IR increased dramatically after birth and replaced the alpha 2-subunit in the basal forebrain, pallidum, thalamus, and most of the cerebral cortex. Staining for the beta 2,3-subunits was ubiquitous at every age examined, indicating their association with either the alpha 1- or the alpha 2-subunit in distinct receptor subtypes. In neocortex, the alpha 1 -subunit-IR was first located selectively to layers IV and VI of primary somatosensory and visual areas. Postnatally, it increased throughout the cortex, with the adult pattern being established only during the second year. The switch in expression of the alpha 1- and alpha 2- subunits indicates that the subunit composition of major GABAA-receptor subtypes changes during ontogeny. This change coincides with synaptogenesis, suggesting that the emergence of alpha 1- GABAA-receptors parallels the formation of inhibitory circuits. A similar pattern has been reported in rat, indicating that the developmental regulation of GABAA-receptors is conserved across species, possibly including man. However, the marmoset brain is more mature than the rat brain at the onset of alpha 1-subunit expression, suggesting that alpha 1-GABAA-receptors are largely dispensable in utero, but may be required for information processing after birth.
Collapse
Affiliation(s)
- J P Hornung
- Institute of Anatomy, University of Lausanne, Switzerland
| | | |
Collapse
|
487
|
Piccolino M, Byzov AL, Kurennyi DE, Pignatelli A, Sappia F, Wilkinson M, Barnes S. Low-calcium-induced enhancement of chemical synaptic transmission from photoreceptors to horizontal cells in the vertebrate retina. Proc Natl Acad Sci U S A 1996; 93:2302-6. [PMID: 8637867 PMCID: PMC39790 DOI: 10.1073/pnas.93.6.2302] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
According to the classical calcium hypothesis of synaptic transmission, the release of neurotransmitter from presynaptic terminals occurs through an exocytotic process triggered by depolarization-induced presynaptic calcium influx. However, evidence has been accumulating in the last two decades indicating that, in many preparations, synaptic transmitter release can persist or even increase when calcium is omitted from the perfusing saline, leading to the notion of a "calcium-independent release" mechanism. Our study shows that the enhancement of synaptic transmission between photoreceptors and horizontal cells of the vertebrate retina induced by low-calcium media is caused by an increase of calcium influx into presynaptic terminals. This paradoxical effect is accounted for by modifications of surface potential on the photoreceptor membrane. Since lowering extracellular calcium concentration may likewise enhance calcium influx into other nerve cells, other experimental observations of "calcium-independent" release may be reaccommodated within the framework of the classical calcium hypothesis without invoking unconventional processes.
Collapse
Affiliation(s)
- M Piccolino
- Dipartimento di Biologia, Università di Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
488
|
Engblom AC, Eriksson KS, Akerman KE. Glycine and GABAA receptor-mediated chloride fluxes in synaptoneurosomes from different parts of the rat brain. Brain Res 1996; 712:74-83. [PMID: 8705310 DOI: 10.1016/0006-8993(95)01484-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Strychnine-sensitive, inhibitory glycine receptors have not until lately been considered to play a significant role in neurotransmission in mammalian forebrain regions. In order to investigate the role of glycine as a neurotransmitter in brain we have measured glycine induced chloride fluxes in different adult rat forebrain areas using synaptoneurosomes and a chloride-sensitive fluorescent indicator. The results have been compared to those obtained with GABA. The synaptoneurosomes from every brain area investigated responded to both glycine and GABA with chloride fluxes in a picrotoxin sensitive manner. The effect of glycine was inhibited by strychnine, which had no effect on the GABA-induced Cl-flux. Bicuculline inhibited the effect of GABA, but had no effect on the glycine-induced Cl-flux. Addition of GABA did not affect the response to glycine and vice versa. The endogenous content of glycine and GABA in the synaptoneurosome preparations was about the same and synaptoneurosomes from every brain area investigated released both glycine and GABA upon depolarisation with KCl. The depolarisation induced release of both GABA and glycine was partly Ca(2+)-dependent and partly Ca(2+)-independent. These results indicate that glycine can induce inhibitory Cl- fluxes distinct from GABA induced fluxes in every investigated brain area and that glycine can be released upon depolarisation.
Collapse
Affiliation(s)
- A C Engblom
- Deparment of Biochemistry and Pharmacy, Abo Akademi University, Finland.
| | | | | |
Collapse
|
489
|
Adelsberger H, von Beckerath N, Parzefall F, Dudel J. A molecular scheme for the reaction between gamma-aminobutyric acid and the most abundant chloride channel on crayfish deep extensor abdominal muscle. Pflugers Arch 1996; 431:680-9. [PMID: 8596717 DOI: 10.1007/bf02253830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Single-channel measurements were performed with the aim of constructing a detailed molecular scheme for the reaction between gamma-aminobutyric acid (GABA) and a chloride channel of crayfish deep extensor abdominal muscle (DEAM). GABA was applied in pulses to outside-out patches of muscle membrane, and, based on the dose-response of the peak currents and of their rise times, a linear model with five binding steps has been proposed. Evaluation of the single-channel kinetics indicated at least three open states. Two of them originate most probably from the fully liganded receptor state and are grouped in mixed bursts due to their different life times. The third one appears independently, outside the bursts, and originates from a lower liganded receptor state. Simulations of the dose-responses and the open time distributions with this model led to a set of rate constants which generated relatively optimal fits.
Collapse
Affiliation(s)
- H Adelsberger
- Physiologisches Institut der Technischen Universität München, Biedersteinerstrasse 29, D-80802 Munich, Germany
| | | | | | | |
Collapse
|
490
|
Abstract
The regulation of H+ in nervous systems is a function of several processes, including H+ buffering, intracellular H+ sequestering, CO2 diffusion, carbonic anhydrase activity and membrane transport of acid/base equivalents across the cell membrane. Glial cells participate in all these processes and therefore play a prominent role in shaping acid/base shifts in nervous systems. Apart from a homeostatic function of H(+)-regulating mechanisms, pH transients occur in all three compartments of nervous tissue, neurones, glial cells and extracellular spaces (ECS), in response to neuronal stimulation, to neurotransmitters and hormones as well as secondary to metabolic activity and ionic membrane transport. A pivotal role for H+ regulation and shaping these pH transients must be assigned to the electrogenic and reversible Na(+)-HCO3-membrane cotransport, which appears to be unique to glial cells in nervous systems. Activation of this cotransporter results in the release and uptake of base equivalents by glial cells, processes which are dependent on the glial membrane potential. Na+/H+ and Cl-/HCO3-exchange, and possibly other membrane carriers, accomplish the set of tools in both glial cells and neurones to regulate their intracellular pH. Due to the pH dependence of a great variety of processes, including ion channel gating and conductances, synaptic transmission, intercellular communication via gap junctions, metabolite exchange and neuronal excitability, rapid and local pH transients may have signalling character for the information processing in nervous tissue. The impact of H+ signalling under both physiological and pathophysiological conditions will be discussed for a variety of nervous system functions.
Collapse
Affiliation(s)
- J W Deitmer
- Abteilung für Allgemeine Zoologie, Universität Kaiserslautern, Germany
| | | |
Collapse
|
491
|
Lee J, Taira T, Pihlaja P, Ransom BR, Kaila K. Effects of CO2 on excitatory transmission apparently caused by changes in intracellular pH in the rat hippocampal slice. Brain Res 1996; 706:210-6. [PMID: 8822358 DOI: 10.1016/0006-8993(95)01214-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is generally known that hyperventilation produces an increase in neuronal excitability. However, the mechanism whereby a change in CO2 partial pressure (PCO2) leads to changes in neural excitability is not known. We have studied this phenomenon in rat hippocampal slices using double-barrelled microelectrodes for simultaneous recording of field excitatory postsynaptic potentials (EPSPs) and extracellular pH in stratum radiatum of area CA1. A drop in PCO2 from the control level, 36 mmHg to 7 mmHg, produced an increase in extracellular pH of 0.4-0.6 pH units and a transient increase in EPSP slope by about 20-30%. Despite the stable extracellular alkalosis, the EPSP reverted back to its original level within 10 min. Switching back to 36 mmHg PCO2 restored the original extracellular pH and caused a transient decrease in the EPSP slope. Pharmacological blockade of NMDA receptor and/or GABAA receptor had no influence on the effects of CO2. An increase in PCO2 to 145 mmHg led to a stable fall in extracellular pH by 0.6 units and to a transient 30-50% decrease in EPSP slope. The above results indicate that the CO2-induced changes in neuronal excitability were not caused by changes in extracellular pH but they might have been mediated by changes in intracellular pH. Indeed, exposing the slices to the permeant weak base, trimethylamine (20 mM), which is known to produce a rise in intracellular pH, increased the EPSP slope by 50-70%. Application of 20 mM propionate (a permeant weak acid) decreased the EPSP slope by 40-60%. We conclude that the transient changes in the EPSP seen in response to changes in PCO2 are mediated by in intracellular pH.
Collapse
Affiliation(s)
- J Lee
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
492
|
Pasternack M, Smirnov S, Kaila K. Proton modulation of functionally distinct GABAA receptors in acutely isolated pyramidal neurons of rat hippocampus. Neuropharmacology 1996; 35:1279-88. [PMID: 9014143 DOI: 10.1016/s0028-3908(96)00075-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have studied the effect of extracellular pH (pHo) on the GABAA receptor-mediated chloride conductance in acutely isolated pyramidal neurons from area CA1 of the rat hippocampus under whole-cell voltage clamp in bicarbonate-free solutions. The conductance evoked by saturating or near-saturating concentrations (200-1000 microM) of GABA showed a marked sensitivity to variations of pHo around 7.4. A decrease in pHo between 8.4 and 6.4 increased the GABAA receptor-mediated chloride conductance by about two-fold per pH unit. In contrast, when evoked by a low agonist concentration (1-10 microM) the conductance showed an equally marked decrease upon a decrease in pHo. The half-time for desensitization of the conductance induced by 500 microM GABA was around 900 ms at pHo 6.4 and 7.4, but decreased to 650 ms at pHo 8.4. A fall in pHo decreased the amount of desensitization of the conductance evoked by a 5 s application of 5 microM, but not of 500 microM, GABA. The concentration-response relationship of the GABA-induced conductance showed a local plateau between 50 and 100 microM of GABA, which was particularly evident at high pHo. Assuming two receptor populations with a high and a low affinity for GABA, the effect of H+ on the GABAA receptors could be explained as an increase in the EC50 of the high affinity receptor, and an apparently non-competitive potentiation of both the high and the low affinity receptors. The GABAA receptor-mediated conductance was markedly inhibited by 20-50 microM Zn2+. In addition, Zn2+ reverted the down-modulation by H+ observed at low GABA concentrations to up-modulation. Diazepam (1-10 microM) had only a marginal effect on the GABA-gated conductance. Taken together, the results suggest the coexistence in individual hippocampal neurons of two distinct GABAA receptor populations having differential sensitivities to H+. In the light of the inhibitory action of Zn2+ and the virtual absence of an effect of diazepam it is probable that a significant fraction of the GABAA receptors lack the gamma 2 subunit. The observation that an elevated pH has a strong suppressing effect on the conductance evoked by high concentrations of GABA may at least partly explain why an extracellular alkalosis leads to neuronal hyperexcitability.
Collapse
Affiliation(s)
- M Pasternack
- Department of Biosciences, University of Helsinki, Finland.
| | | | | |
Collapse
|
493
|
Abstract
Recent studies have revealed that excitation of specific nerve pathways can produce localized changes of pH in nervous tissue. It is important to determine both how these pH changes are generated and, even more importantly, how the excitability of neurons in the localized areas are affected. Evidence indicates that activation of both gamma-aminobutyric acid (GABA) and L-glutamate receptor channels in inhibitory and excitatory pathways, respectively, can raise extracellular pH (pHo) and lower intracellular pH (pHi). At the target location, it has been shown that several types of voltage-gated ion channels in neurons were modified by a change in pHi. These studies, taken together, enable us to hypothesize that intracellular hydrogen ions (H+) might function as neuromodulatory factors, like other types of intracellular second messengers. This hypothesis was tested by using horizontal cells enzymatically dissociated from catfish retina. We found that the high-voltage-activated (HVA) Ca2+ current, inward rectifier K+ current and hemi-gap junctional current are modulated by a change in intracellular H+ concentration, and that L-glutamate suppresses the HVA Ca2+ current by raising the intracellular H+ concentration. These observations support the hypothesis that intracellular H+, acting as a second messenger, governs neuronal excitability via modulation of ionic channel activity. This article reviews recent studies of ours and others on the effect of pHi upon neuronal function.
Collapse
Affiliation(s)
- K I Takahashi
- Division of Biological Sciences, Faculty of Commercial Sciences, Hiroshima Shudo University, Japan.
| | | |
Collapse
|
494
|
Abstract
gamma-Aminobutyric acid (GABA)A receptors for the inhibitory neurotransmitter GABA are likely to be found on most, if not all, neurons in the brain and spinal cord. They appear to be the most complicated of the superfamily of ligand-gated ion channels in terms of the large number of receptor subtypes and also the variety of ligands that interact with specific sites on the receptors. There appear to be at least 11 distinct sites on GABAA receptors for these ligands.
Collapse
Affiliation(s)
- G A Johnston
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology, University of Sydney, NSW, Australia
| |
Collapse
|
495
|
Abstract
gamma-Aminobutyric acid (GABA) is the most prominent of the inhibiting neurotransmitters in the brain. It exerts its main action through GABAA receptors. The receptors respond to the presence of GABA by the opening of an intrinsic anion channel. Hence, they belong to the molecular superfamily of ligand-gated ion channels. There exist in the brain multiple GABAA receptors that show differential distribution and developmental patterns. The receptors presumably form by the assembly of five proteins from at least three different subunits (alpha 1-6, beta 1-3 and gamma 1-3). The regulation of functional properties by benzodiazepine (BZ) receptor ligands, neurosteroids, GABA and its analogs differs dramatically with the alpha variant present in the complex. Additional variation of the GABAA receptors comes with the exchange of the gamma subunits. No clear picture exists for the role of the beta subunits, though they may play an important part in the sensitivity of the channel-receptor complex. The effects of BZ receptor ligands on animal behavior range from agonist effects, e.g. anxiolysis, sedation, and hypnosis, to inverse agonist effects, e.g. anxiety, alertness, and convulsions. The diversity of effects reflects the ubiquity of the GABAA/BZ receptors in the brain. Recent data provide some insight into the mechanism of action of BZ ligands, but no clear delineation can be drawn from a single ligand to a single behavioral effect. This may be due to the fact that intrinsic efficacies of the ligands differ between receptor subtypes, so that the diversity of native receptors is further complicated by the diversity of the mode the ligands act on GABAA receptor subtypes. The behavioral actions of alcohol (ethanol) are similar to those produced by GABAA receptor agonists. In agreement, alcohol-induced potentiation of GABAergic responses has often been observed at behavioral, electrophysiological and biochemical levels. Thus, there is clearly a GABAA-dependent component in the actions of alcohol. However, the site and mode of action of ethanol on GABAA/BZ receptors remain controversial.
Collapse
Affiliation(s)
- H Lüddens
- Center for Molecular Biology, University of Heidelberg, Germany
| | | |
Collapse
|