451
|
Hill ABT, Bressan FF, Murphy BD, Garcia JM. Applications of mesenchymal stem cell technology in bovine species. Stem Cell Res Ther 2019; 10:44. [PMID: 30678726 PMCID: PMC6345009 DOI: 10.1186/s13287-019-1145-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have received a great deal of attention over the past 20 years mainly because of the results that showed regeneration potential and plasticity that were much stronger than expected in prior decades. Recent findings in this field have contributed to progress in the establishment of cell differentiation methods, which have made stem cell therapy more clinically attractive. In addition, MSCs are easy to isolate and have anti-inflammatory and angiogenic capabilities. The use of stem cell therapy is currently supported by scientific literature in the treatment of several animal health conditions. MSC may be administered for autologous or allogenic therapy following either a fresh isolation or a thawing of a previously frozen culture. Despite the fact that MSCs have been widely used for the treatment of companion and sport animals, little is known about their clinical and biotechnological potential in the economically relevant livestock industry. This review focuses on describing the key characteristics of potential applications of MSC therapy in livestock production and explores the themes such as the concept, culture, and characterization of mesenchymal stem cells; bovine mesenchymal stem cell isolation; applications and perspectives on commercial interests and farm relevance of MSC in bovine species; and applications in translational research.
Collapse
Affiliation(s)
- Amanda Baracho Trindade Hill
- Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University, Via de Acesso Professor Paulo Donato Castelane - Vila Industrial, s/n, Jaboticabal, SP, 14884-900, Brazil. .,Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint Hyacinthe, QC, J2S 7C6, Canada.
| | - Fabiana Fernandes Bressan
- Campus Fernando Costa, University of São Paulo, Av. Duque de Caxias Norte, 225 - Zona Rural, Pirassununga, SP, 13635-900, Brazil
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint Hyacinthe, QC, J2S 7C6, Canada
| | - Joaquim Mansano Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University, Via de Acesso Professor Paulo Donato Castelane - Vila Industrial, s/n, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
452
|
Pieri NCG, de Souza AF, Botigelli RC, Machado LS, Ambrosio CE, Dos Santos Martins D, de Andrade AFC, Meirelles FV, Hyttel P, Bressan FF. Stem cells on regenerative and reproductive science in domestic animals. Vet Res Commun 2019; 43:7-16. [PMID: 30656543 DOI: 10.1007/s11259-019-9744-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Stem cells are undifferentiated and self-renewable cells that present new possibilities for both regenerative medicine and the understanding of early mammalian development. Adult multipotent stem cells are already widely used worldwide in human and veterinary medicine, and their therapeutic signalling, particularly with respect to immunomodulation, and their trophic properties have been intensively studied. The derivation of embryonic stem cells (ESCs) from domestic species, however, has been challenging, and the poor results do not reflect the successes obtained in mouse and human experiments. More recently, the generation of induced pluripotent stem cells (iPSCs) via the forced expression of specific transcription factors has been demonstrated in domestic species and has introduced new potentials in regenerative medicine and reproductive science based upon the ability of these cells to differentiate into a variety of cells types in vitro. For example, iPSCs have been differentiated into primordial germ-like cells (PGC-like cells, PGCLs) and functional gametes in mice. The possibility of using iPSCs from domestic species for this purpose would contribute significantly to reproductive technologies, offering unprecedented opportunities to restore fertility, to preserve endangered species and to generate transgenic animals for biomedical applications. Therefore, this review aims to provide an updated overview of adult multipotent stem cells and to discuss new possibilities introduced by the generation of iPSCs in domestic animals, highlighting the possibility of generating gametes in vitro via PGCL induction.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Lucas Simões Machado
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Eduardo Ambrosio
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Flavio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil.
| |
Collapse
|
453
|
McGrath M, Tam E, Sladkova M, AlManaie A, Zimmer M, de Peppo GM. GMP-compatible and xeno-free cultivation of mesenchymal progenitors derived from human-induced pluripotent stem cells. Stem Cell Res Ther 2019; 10:11. [PMID: 30635059 PMCID: PMC6329105 DOI: 10.1186/s13287-018-1119-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Human mesenchymal stem cells are a strong candidate for cell therapies owing to their regenerative potential, paracrine regulatory effects, and immunomodulatory activity. Yet, their scarcity, limited expansion potential, and age-associated functional decline restrict the ability to consistently manufacture large numbers of safe and therapeutically effective mesenchymal stem cells for routine clinical applications. To overcome these limitations and advance stem cell treatments using mesenchymal stem cells, researchers have recently derived mesenchymal progenitors from human-induced pluripotent stem cells. Human-induced pluripotent stem cell-derived progenitors resemble adult mesenchymal stem cells in morphology, global gene expression, surface antigen profile, and multi-differentiation potential, but unlike adult mesenchymal stem cells, it can be produced in large numbers for every patient. For therapeutic applications, however, human-induced pluripotent stem cell-derived progenitors must be produced without animal-derived components (xeno-free) and in accordance with Good Manufacturing Practice guidelines. Methods In the present study we investigate the effects of expanding mesodermal progenitor cells derived from two human-induced pluripotent stem cell lines in xeno-free medium supplemented with human platelet lysates and in a commercial high-performance Good Manufacturing Practice-compatible medium (Unison Medium). Results The results show that long-term culture in xeno-free and Good Manufacturing Practice-compatible media somewhat affects the morphology, expansion potential, gene expression, and cytokine profile of human-induced pluripotent stem cell-derived progenitors but supports cell viability and maintenance of a mesenchymal phenotype equally well as medium supplemented with fetal bovine serum. Conclusions The findings support the potential to manufacture large numbers of clinical-grade human-induced pluripotent stem cell-derived mesenchymal progenitors for applications in personalized regenerative medicine. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s13287-018-1119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Madison McGrath
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Edmund Tam
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Martina Sladkova
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Athbah AlManaie
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Giuseppe Maria de Peppo
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA.
| |
Collapse
|
454
|
Gorgun C, Reverberi D, Rotta G, Villa F, Quarto R, Tasso R. Isolation and Flow Cytometry Characterization of Extracellular-Vesicle Subpopulations Derived from Human Mesenchymal Stromal Cells. ACTA ACUST UNITED AC 2019; 48:e76. [PMID: 30624011 DOI: 10.1002/cpsc.76] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This unit describes protocols for isolating subpopulations of extracellular vesicles (EVs) purified from human adipose tissue-derived mesenchymal stromal cells by density gradient centrifugation and for characterizing them by flow cytometry (FCM). Determining the optimal strategy for isolating EVs is a critical step toward retrieving the maximal amount while ensuring the recovery of different vesicular subtypes. The first protocol details density gradient centrifugation to isolate both exosomes and microvesicles. In the second protocol, characterization of EV subpopulations by FCM is depicted, taking advantage of non-conventional modalities, in accordance with the latest technical indications. The procedures described here can be easily reproduced and can be employed regardless of the cell type used to obtain EVs. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Cansu Gorgun
- Department of Experimental Medicine, University of Genova, Genova, Italy.,U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniele Reverberi
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Federico Villa
- U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Rodolfo Quarto
- Department of Experimental Medicine, University of Genova, Genova, Italy.,U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Tasso
- Department of Experimental Medicine, University of Genova, Genova, Italy.,U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
455
|
Feng X, Zhang W, Yin W, Kang YJ. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells. Exp Biol Med (Maywood) 2019; 244:64-72. [PMID: 30614257 DOI: 10.1177/1535370218821063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPACT STATEMENT How to maintain the stemness of bone marrow mesenchymal stem cells (BMSCs) in cultures is a long-standing question. The present study found that mitochondrial dynamics affects the stemness of BMSCs in cultures and the retaining of mitochondrial fission enhances the stemness of BMSCs. This work thus provides a novel insight into strategic approaches to maintain the stemness of BMSCs in cultures in relation to the clinical application of bone-marrow stem cells.
Collapse
Affiliation(s)
- Xiaorong Feng
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China
| | - Wenjing Zhang
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,2 Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wen Yin
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China
| | - Y James Kang
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,2 Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
456
|
Kargozar S, Mozafari M, Hamzehlou S, Brouki Milan P, Kim HW, Baino F. Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. APPLIED SCIENCES 2019; 9:174. [DOI: 10.3390/app9010174] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of proper cells for bone tissue engineering remains a major challenge worldwide. Cells play a pivotal role in the repair and regeneration of the bone tissue in vitro and in vivo. Currently, a large number of differentiated (somatic) and undifferentiated (stem) cells have been used for bone reconstruction alone or in combination with different biomaterials and constructs (e.g., scaffolds). Although the results of the cell transplantation without any supporting or adjuvant material have been very effective with regard to bone healing. Recent advances in bone scaffolding are now becoming new players affecting the osteogenic potential of cells. In the present study, we have critically reviewed all the currently used cell sources for bone reconstruction and discussed the new horizons that are opening up in the context of cell-based bone tissue engineering strategies.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 144961-4535, Iran
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 14155-6447, Iran
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 144961-4535, Iran
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
457
|
Gauthier-Fisher A, Szaraz P, Librach CL. Pericytes in the Umbilical Cord. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:211-233. [DOI: 10.1007/978-3-030-11093-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
458
|
Chambers P, McCarthy HO, Dunne NJ. Emerging areas of bone repair materials. BONE REPAIR BIOMATERIALS 2019:411-446. [DOI: 10.1016/b978-0-08-102451-5.00016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
459
|
Päth G, Perakakis N, Mantzoros CS, Seufert J. Stem cells in the treatment of diabetes mellitus - Focus on mesenchymal stem cells. Metabolism 2019; 90:1-15. [PMID: 30342065 DOI: 10.1016/j.metabol.2018.10.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/25/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus type 1 and type 2 have become a global epidemic with dramatically increasing incidences. Poorly controlled diabetes is associated with severe life-threatening complications. Beside traditional treatment with insulin and oral anti-diabetic drugs, clinicians try to improve patient's care by cell therapies using embryonic stem cells (ESC), induced pluripotent stem cells (iPSC) and adult mesenchymal stem cells (MSC). ESC display a virtually unlimited plasticity, including the differentiation into insulin producing β-cells, but they raise ethical concerns and bear, like iPSC, the risk of tumours. IPSC may further inherit somatic mutations and remaining somatic transcriptional memory upon incomplete re-programming, but allow the generation of patient/disease-specific cell lines. MSC avoid such issues but have not been successfully differentiated into β-cells. Instead, MSC and their pericyte phenotypes outside the bone marrow have been recognized to secrete numerous immunomodulatory and tissue regenerative factors. On this account, the term 'medicinal signaling cells' has been proposed to define the new conception of a 'drug store' for injured tissues and to stay with the MSC nomenclature. This review presents the biological background and the resulting clinical potential and limitations of ESC, iPSC and MSC, and summarizes the current status quo of cell therapeutic concepts and trials.
Collapse
Affiliation(s)
- Günter Päth
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
460
|
de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Addressing the Manufacturing Challenges of Cell-Based Therapies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:225-278. [PMID: 31844924 DOI: 10.1007/10_2019_118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exciting developments in the cell therapy field over the last decades have led to an increasing number of clinical trials and the first cell products receiving marketing authorization. In spite of substantial progress in the field, manufacturing of cell-based therapies presents multiple challenges that need to be addressed in order to assure the development of safe, efficacious, and cost-effective cell therapies.The manufacturing process of cell-based therapies generally requires tissue collection, cell isolation, culture and expansion (upstream processing), cell harvest, separation and purification (downstream processing), and, finally, product formulation and storage. Each one of these stages presents significant challenges that have been the focus of study over the years, leading to innovative and groundbreaking technological advances, as discussed throughout this chapter.Delivery of cell-based therapies relies on defining product targets while controlling process variable impact on cellular features. Moreover, commercial viability is a critical issue that has had damaging consequences for some therapies. Implementation of cost-effectiveness measures facilitates healthy process development, potentially being able to influence end product pricing.Although cell-based therapies represent a new level in bioprocessing complexity in every manufacturing stage, they also show unprecedented levels of therapeutic potential, already radically changing the landscape of medical care.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
461
|
Burgess JK, Heijink IH. Paving the Road for Mesenchymal Stem Cell-Derived Exosome Therapy in Bronchopulmonary Dysplasia and Pulmonary Hypertension. STEM CELL-BASED THERAPY FOR LUNG DISEASE 2019. [PMCID: PMC7122497 DOI: 10.1007/978-3-030-29403-8_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic neonatal lung disease characterized by inflammation and arrest of alveolarization. Its common sequela, pulmonary hypertension (PH), presents with elevated pulmonary vascular resistance associated with remodeling of the pulmonary arterioles. Despite notable advancements in neonatal medicine, there is a severe lack of curative treatments to help manage the progressive nature of these diseases. Numerous studies in preclinical models of BPD and PH have demonstrated that therapies based on mesenchymal stem/stromal cells (MSCs) can resolve pulmonary inflammation and ameliorate the severity of disease. Recent evidence suggests that novel, cell-free approaches based on MSC-derived exosomes (MEx) might represent a compelling therapeutic alternative offering major advantages over treatments based on MSC transplantation. Here, we will discuss the development of MSC-based therapies, stressing the centrality of paracrine action as the actual vector of MSC therapeutic functionality, focusing on MEx. We will briefly present our current understanding of the biogenesis and secretion of MEx, and discuss potential mechanisms by which they afford such beneficial effects, including immunomodulation and restoration of homeostasis in diseased states. We will also review ongoing clinical trials using MSCs as treatment for BPD that pave the way for bringing cell-free, MEx-based therapeutics from the bench to the NICU setting.
Collapse
Affiliation(s)
- Janette K. Burgess
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Irene H. Heijink
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
462
|
Role of Mesenchymal Stem Cells—Derived Exosomes in Osteoarthritis Treatment. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Exosomes are nanovesicles that are involved in inter-cellular communication and are secreted by many types of cells. Exosomes secreted by stem cells can effectively transport bioactive proteins, messenger ribonucleic acids (mRNAs) and microribonucleic acids (miRNAs) organelles and play important roles in intercellular communication and the regulation of tissue regeneration. This transfer of bioactive molecules plays a main role in: tumor invasion and metastasis, immune and inflammation modulation, epithelial-mesenchymal transition and neurobiology. Mesenchymal Stem Cells (MSC) exosomes provide new perspectives for the development of an off-the-shelf and cell-free MSC therapy for the treatment of cartilage injuries and osteoarthritis. This report describes the progress in exosome studies and potential clinical use for osteoarthritis treatment.
Collapse
|
463
|
Sun T, Gao F, Li X, Cai Y, Bai M, Li F, Du L. A combination of ultrasound-targeted microbubble destruction with transplantation of bone marrow mesenchymal stem cells promotes recovery of acute liver injury. Stem Cell Res Ther 2018; 9:356. [PMID: 30594241 PMCID: PMC6311028 DOI: 10.1186/s13287-018-1098-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/29/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) can provide an additional source of therapeutic stem cells for regeneration of liver cells during acute liver injury (ALI). However, the insufficient hepatic homing by the transplanted BMSCs limits their applications. Ultrasound-targeted microbubble destruction (UTMD) has been reported to promote the homing of transplanted stem cells into the ischemic myocardium. In this study, we investigated whether UTMD promotes the hepatic homing of BMSCs in ALI rats and evaluated the therapeutic effect. Methods BMSCs were isolated from the femurs and tibias of Sprague-Dawley (SD) rats. The isolated BMSCs were stably transfected with a lentivirus expressing enhanced green fluorescent protein (EGFP) that can be visualized and quantified in vivo after transplantation. Both tumor necrosis factor α (TNF-α) and stromal cell-derived factor 1 (SDF-1) were used to verify the appropriate ultrasound parameters. The ALI rats were divided into four groups: control, BMSCs, UTMD, and UTMD + BMSCs. The protein and mRNA expression levels of SDF-1, intercellular cell adhesion molecule (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), hepatocyte growth factor (HGF), and monocyte chemotactic protein 1 (MCP-1) in the exposed livers were analyzed at 48 h after treatment. ALI recovery was determined by serum biochemical parameters and histology. Results The isolated rat BMSCs demonstrated a good proliferation potential that was both osteogenic and adipogenic in differentiation and expressed cluster of differentiation (CD) 29 and CD90, but not CD45 or CD11b/c. After BMSC and/or UTMD treatment, the number of GFP-labeled BMSCs in the UTMD + BMSCs group was significantly higher than that of the BMSCs group (9.8 ± 2.3 vs. 5.2 ± 1.1/per high-power field). Furthermore, the expression of GFP mRNA was performed for evaluation of the homing rate of BMSCs in injury sites as well. In addition, the expression levels of SDF-1, ICAM-1, VCAM-1, HGF, and MCP-1 were higher (p < 0.01) in UTMD+BMSCs group. The serum levels of biomarkers were significantly lower in the UTMD + BMSCs group, and the apoptotic rate of hepatocytes in the UTMD + BMSCs group was markedly lower than that of the BMSCs group (all p < 0.05). The hepatic pathology was significantly alleviated in the UTMD + BMSCs group. Conclusions UTMD treatment efficiently induced a favorable microenvironment for cell engraftment, resulting in improvement of hepatic homing of BMSCs, which was probably mediated through upregulation of the expression of adhesion molecules and cytokines. UTMD treatment appeared to be an effective and noninvasive approach to achieve better efficacy of BMSC-based therapy for repairing a severely injured liver. Electronic supplementary material The online version of this article (10.1186/s13287-018-1098-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Sun
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Feng Gao
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xin Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yingyu Cai
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Min Bai
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Fan Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Lianfang Du
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
464
|
Therapeutic Potential of Autologous Adipose-Derived Stem Cells for the Treatment of Liver Disease. Int J Mol Sci 2018; 19:ijms19124064. [PMID: 30558283 PMCID: PMC6321531 DOI: 10.3390/ijms19124064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Currently, the most effective therapy for liver diseases is liver transplantation, but its use is limited by organ donor shortage, economic reasons, and the requirement for lifelong immunosuppression. Mesenchymal stem cell (MSC) transplantation represents a promising alternative for treating liver pathologies in both human and veterinary medicine. Interestingly, these pathologies appear with a common clinical and pathological profile in the human and canine species; as a consequence, dogs may be a spontaneous model for clinical investigations in humans. The aim of this work was to characterize canine adipose-derived MSCs (cADSCs) and compare them to their human counterpart (hADSCs) in order to support the application of the canine model in cell-based therapy of liver diseases. Both cADSCs and hADSCs were successfully isolated from adipose tissue samples. The two cell populations shared a common fibroblast-like morphology, expression of stemness surface markers, and proliferation rate. When examining multilineage differentiation abilities, cADSCs showed lower adipogenic potential and higher osteogenic differentiation than human cells. Both cell populations retained high viability when kept in PBS at controlled temperature and up to 72 h, indicating the possibility of short-term storage and transportation. In addition, we evaluated the efficacy of autologous ADSCs transplantation in dogs with liver diseases. All animals exhibited significantly improved liver function, as evidenced by lower liver biomarkers levels measured after cells transplantation and evaluation of cytological specimens. These beneficial effects seem to be related to the immunomodulatory properties of stem cells. We therefore believe that such an approach could be a starting point for translating the results to the human clinical practice in future.
Collapse
|
465
|
Van de Putte D, Demarquay C, Van Daele E, Moussa L, Vanhove C, Benderitter M, Ceelen W, Pattyn P, Mathieu N. Adipose-Derived Mesenchymal Stromal Cells Improve the Healing of Colonic Anastomoses Following High Dose of Irradiation Through Anti-Inflammatory and Angiogenic Processes. Cell Transplant 2018; 26:1919-1930. [PMID: 29390877 PMCID: PMC5802630 DOI: 10.1177/0963689717721515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer patients treated with radiotherapy (RT) could develop severe late side effects that affect their quality of life. Long-term bowel complications after RT are mainly characterized by a transmural fibrosis that could lead to intestinal obstruction. Today, surgical resection is the only effective treatment. However, preoperative RT increases the risk of anastomotic leakage. In this study, we attempted to use mesenchymal stromal cells from adipose tissue (Ad-MSCs) to improve colonic anastomosis after high-dose irradiation. MSCs were isolated from the subcutaneous fat of rats, amplified in vitro, and characterized by flow cytometry. An animal model of late radiation side effects was induced by local irradiation of the colon. Colonic anastomosis was performed 4 wk after irradiation. It was analyzed another 4 wk later (i.e., 8 wk after irradiation). The Ad-MSC-treated group received injections several times before and after the surgical procedure. The therapeutic benefit of the Ad-MSC treatment was determined by colonoscopy and histology. The inflammatory process was investigated using Fluorine-182-Fluoro-2-Deoxy-d-Glucose Positron Emission Tomography and Computed Tomography (18F-FDG-PET/CT) imaging and macrophage infiltrate analyses. Vascular density was assessed using immunohistochemistry. Results show that Ad-MSC treatment reduces ulcer size, increases mucosal vascular density, and limits hemorrhage. We also determined that 1 Ad-MSC injection limits the inflammatory process, as evaluated through 18F-FDG-PET-CT (at 4 wk), with a greater proportion of type 2 macrophages after iterative cell injections (8 wk). In conclusion, Ad-MSC injections promote anastomotic healing in an irradiated colon through enhanced vessel formation and reduced inflammation. This study also determined parameters that could be improved in further investigations.
Collapse
Affiliation(s)
- Dirk Van de Putte
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christelle Demarquay
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Elke Van Daele
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Lara Moussa
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Marc Benderitter
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Wim Ceelen
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium.,4 Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Piet Pattyn
- 1 Department of Pediatric and Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Noëlle Mathieu
- 2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
466
|
Mesenchymal Stem Cells Ameliorate Hepatic Ischemia/Reperfusion Injury via Inhibition of Neutrophil Recruitment. J Immunol Res 2018; 2018:7283703. [PMID: 30622980 PMCID: PMC6304871 DOI: 10.1155/2018/7283703] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/23/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) remains a major problem in organ transplantation, which represents the main cause of graft dysfunction posttransplantation. Hepatic IRI is characterized by an excessive inflammatory response within the liver. Mesenchymal stem cells (MSCs) have been shown to be immunomodulatory cells and have the therapeutic action on IRI in several organs. However, the mechanism of regulatory effect of MSCs on IRI remains unclear. In the present study, we examined the impact of MSCs on hepatic inflammatory response such as neutrophil influx and liver damage in a rat model of 70% hepatic IRI. Treatment with MSCs protected rat against hepatic IRI, with significantly decreased serum levels of liver enzymes, attenuated hepatic neutrophil infiltration, reduced expression of apoptosis-associated proteins, and ameliorated liver pathological injury. MSCs also significantly enhanced the intracellular activation of p38 MAPK phosphorylation, which led to decreased expression of CXCR2 on the surface of neutrophils. In addition, MSCs significantly diminished neutrophil chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation in macrophages. These results demonstrate that MSCs significantly ameliorate hepatic IRI predominantly through its inhibitory effect on hepatic neutrophil migration and infiltration.
Collapse
|
467
|
Shu CC, Dart A, Bell R, Dart C, Clarke E, Smith MM, Little CB, Melrose J. Efficacy of administered mesenchymal stem cells in the initiation and co-ordination of repair processes by resident disc cells in an ovine (Ovis aries) large destabilizing lesion model of experimental disc degeneration. JOR Spine 2018; 1:e1037. [PMID: 31463452 PMCID: PMC6686814 DOI: 10.1002/jsp2.1037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/27/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Forty percent of low back pain cases are due to intervertebral disc degeneration (IVDD), with mesenchymal stem cells (MSCs) a reported treatment. We utilized an ovine IVDD model and intradiscal heterologous MSCs to determine therapeutic efficacy at different stages of IVDD. METHODOLOGY Three nonoperated control (NOC) sheep were used for MSC isolation. In 36 sheep, 6 × 20 mm annular lesions were made at three spinal levels using customized blades/scalpel handles, and IVDD was allowed to develop for 4 weeks in the Early (EA) and late Acute (LA) groups, or 12 weeks in the chronic (EST) group. Lesion IVDs received injections of 10 × 106 MSCs or PBS, and after 8 (EA), 22 (LA) or 14 (EST) weeks recuperation the sheep were sacrificed. Longitudinal lateral radiographs were used to determine disc heights. IVD glycosaminoglycan (GAG) and hydroxyproline contents were quantified using established methods. An Instron materials testing machine and customized jigs analyzed IVD (range of motion, neutral zone [NZ] and stiffness) in flexion/extension, lateral bending and axial rotation. qRTPCR gene profiles of key anabolic and catabolic matrix molecules were undertaken. Toluidine blue and hematoxylin and eosin stained IVD sections were histopathologically scoring by two blinded observers. RESULTS IVDD significantly reduced disc heights. MSC treatment restored 95% to 100% of disc height, maximally improved NZ and stiffness in flexion/extension and lateral bending in the EST group, restoring GAG levels. With IVDD qRTPCR demonstrated elevated catabolic gene expression (MMP2/3/9/13, ADAMTS4/5) in the PBS IVDs and expession normalization in MSC-treated IVDs. Histopathology degeneracy scores were close to levels of NOC IVDs in MSC IVDs but IVDD developed in PBS injected IVDs. DISCUSSION Administered MSCs produced recovery in degenerate IVDs, restored disc height, composition, biomechanical properties, down regulated MMPs and fibrosis, strongly supporting the efficacy of MSCs for disc repair.
Collapse
Affiliation(s)
- Cindy C. Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - Andrew Dart
- University of SydneyVeterinary Teaching HospitalCamdenNew South WalesAustralia
| | - Robin Bell
- University of SydneyVeterinary Teaching HospitalCamdenNew South WalesAustralia
| | - Christina Dart
- University of SydneyVeterinary Teaching HospitalCamdenNew South WalesAustralia
| | - Elizabeth Clarke
- Faculty of Medicine and HealthUniversity of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Murray Maxwell Biomechanics Laboratory, Kolling Institute of Medical Research, The Royal North Shore HospitalUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Margaret M. Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - Christopher B. Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Sydney Medical School, NorthernThe University of SydneySt LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Sydney Medical School, NorthernThe University of SydneySt LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
468
|
McIntyre JA, Jones IA, Han B, Vangsness CT. Intra-articular Mesenchymal Stem Cell Therapy for the Human Joint: A Systematic Review. Am J Sports Med 2018; 46:3550-3563. [PMID: 29099618 DOI: 10.1177/0363546517735844] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Stem cell therapy is emerging as a potential treatment of osteoarthritis (OA) and chondral defects (CDs). However, there is a great deal of heterogeneity in the literature. The indications for stem cell use, the ideal tissue source, and the preferred outcome measures for stem cell-based treatments have yet to be determined. PURPOSE To provide clinicians with a comprehensive overview of the entire body of the current human literature investigating the safety and efficacy of intra-articular mesenchymal stem cell (MSC) therapy in all joints. METHODS To provide a comprehensive overview of the current literature, all clinical studies investigating the safety and efficacy of intra-articular MSC therapy were included. PubMed, MEDLINE, and Cochrane Library databases were searched for published human clinical trials involving the use of MSCs for the treatment of OA and CDs in all joints. A total of 3867 publications were screened. RESULTS Twenty-eight studies met the criteria to be included in this review. Fourteen studies treating osteoarthritis and 14 studies treating focal chondral defects were included. MSCs originating from bone marrow (13), adipose tissue (12), synovial tissue (2), or peripheral blood (2) were administered to 584 distinct individuals. MSCs were administered into the knee (523 knees), foot/ankle (61), and hip (5). The mean follow-up time was 24.4 months after MSC therapy. All studies reported improvement from baseline in at least 1 clinical outcome measure, and no study reported major adverse events attributable to MSC therapy. DISCUSSION The studies included in this review suggest that intra-articular MSC therapy is safe. While clinical and, in some cases, radiological improvements were reported for both OA and CD trials, the overall quality of the literature was poor, and heterogeneity and lack of reproducibility limit firm conclusions regarding the efficacy of these treatments. CONCLUSION This review provides strong evidence that autologous intra-articular MSC therapy is safe, with generally positive clinical outcomes.
Collapse
Affiliation(s)
- James A McIntyre
- School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Ian A Jones
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - C Thomas Vangsness
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
469
|
Ansari AS, Yazid MD, Sainik NQAV, Razali RA, Saim AB, Idrus RBH. Osteogenic Induction of Wharton's Jelly-Derived Mesenchymal Stem Cell for Bone Regeneration: A Systematic Review. Stem Cells Int 2018; 2018:2406462. [PMID: 30534156 PMCID: PMC6252214 DOI: 10.1155/2018/2406462] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/27/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are emerging as a promising source for bone regeneration in the treatment of bone defects. Previous studies have reported the ability of WJ-MSCs to be induced into the osteogenic lineage. The purpose of this review was to systematically assess the potential of WJ-MSC differentiation into the osteogenic lineage. A comprehensive search was conducted in Medline via Ebscohost and Scopus, where relevant studies published between 1961 and 2018 were selected. The main inclusion criteria were that articles must be primary studies published in English evaluating osteogenic induction of WJ-MSCs. The literature search identified 92 related articles, but only 18 articles met the inclusion criteria. These include two animal studies, three articles containing both in vitro and in vivo assessments, and 13 articles on in vitro studies, all of which are discussed in this review. There were two types of osteogenic induction used in these studies, either chemical or physical. The studies demonstrate that WJ-MSCs are able to differentiate into osteogenic lineage and promote osteogenesis. In light of these observations, it is suggested that WJ-MSCs can be a potential source of stem cells for osteogenic induction, as an alternative to bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Ayu Suraya Ansari
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nur Qisya Afifah Veronica Sainik
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Rabiatul Adawiyah Razali
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000 Ampang, Selangor, Malaysia
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
470
|
Yu Z, Cai Y, Deng M, Li D, Wang X, Zheng H, Xu Y, Li W, Zhang W. Fat extract promotes angiogenesis in a murine model of limb ischemia: a novel cell-free therapeutic strategy. Stem Cell Res Ther 2018; 9:294. [PMID: 30409190 PMCID: PMC6225561 DOI: 10.1186/s13287-018-1014-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
Background The proangiogenic capacity of adipose tissue and its derivatives has been demonstrated in a variety of studies. The paracrine mechanism of the cellular component is considered to play a critical role in the regenerative properties of these tissues. However, cell-based therapy for clinical application has been hindered by limitations such as safety, immunogenicity issues, and difficulties in cell preservation, transportation, and phenotype control. In the current study, we aimed to produce a cell-free extract directly from human fat tissue and evaluate its potential therapeutic efficacy. Methods We developed a novel physical approach to produce a cell-free aqueous extract from human fat tissue (fat extract (FE)). The therapeutic potential of FE was investigated in the ischemic hindlimb model of nude mice. After establishment of hindlimb ischemia with ligation of the left femoral artery and intramuscular injection of FE, blood perfusion was monitored at days 0, 7, 14, 21, and 28. Tissue necrosis and capillary density were evaluated. Enzyme-linked immunosorbent assay was used to analyze the growth factors contained in FE. Moreover, the proliferation, migration, and tube formation ability were tested on human umbilical vein endothelial cells (HUVECs) in vitro when treated with FE. The proangiogenic ability of FE was further assessed in an in-vivo Matrigel plug assay. Results FE was prepared and characterized. The intramuscular injection of FE into the ischemic hindlimb of mice attenuated severe limb loss and increased blood flow and capillary density of the ischemic tissue. Enzyme-linked immunosorbent assay showed that FE contained high levels of various growth factors. When added as a cell culture supplement, FE promoted HUVEC proliferation, migration, and tube formation ability in a dose-dependent manner. The subcutaneous injection of Matrigel infused with FE enhanced vascular formation. Conclusions We developed a novel cell-free therapeutic agent, FE, produced from human adipose tissue. FE was able to attenuate ischemic injury and stimulate angiogenesis in ischemic tissues. This study indicates that FE may represent a novel cell-free therapeutic agent in the treatment of ischemic disorders.
Collapse
Affiliation(s)
- Ziyou Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yizuo Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Mingwu Deng
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Dong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Xiangsheng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Hongjie Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yuda Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Wei Li
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
471
|
Millán-Rivero JE, Nadal-Nicolás FM, García-Bernal D, Sobrado-Calvo P, Blanquer M, Moraleda JM, Vidal-Sanz M, Agudo-Barriuso M. Human Wharton's jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of anti-inflammatory and neurotrophic factors. Sci Rep 2018; 8:16299. [PMID: 30389962 PMCID: PMC6214908 DOI: 10.1038/s41598-018-34527-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is emerging as an ideal tool to restore the wounded central nervous system (CNS). MSCs isolated from extra-embryonic tissues have some advantages compared to MSCs derived from adult ones, such as an improved proliferative capacity, life span, differentiation potential and immunomodulatory properties. In addition, they are more immunoprivileged, reducing the probability of being rejected by the recipient. Umbilical cords (UCs) are a good source of MSCs because they are abundant, safe, non-invasively harvested after birth and, importantly, they are not encumbered with ethical problems. Here we show that the intravitreal transplant of Wharton´s jelly mesenchymal stem cells isolated from three different human UCs (hWJMSCs) delays axotomy-induced retinal ganglion cell (RGC) loss. In vivo, hWJMSCs secrete anti-inflammatory molecules and trophic factors, the latter alone may account for the elicited neuroprotection. Interestingly, this expression profile differs between naive and injured retinas, suggesting that the environment in which the hWJMSCs are modulates their secretome. Finally, even though the transplant itself is not toxic for RGCs, it is not innocuous as it triggers a transient but massive infiltration of Iba1+cells from the choroid to the retina that alters the retinal structure.
Collapse
Affiliation(s)
- Jose E Millán-Rivero
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Francisco M Nadal-Nicolás
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain.,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - David García-Bernal
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Paloma Sobrado-Calvo
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain.,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Miguel Blanquer
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Jose M Moraleda
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain.,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marta Agudo-Barriuso
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain. .,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
472
|
He JG, Xie QL, Li BB, Zhou L, Yan D. Exosomes Derived from IDO1-Overexpressing Rat Bone Marrow Mesenchymal Stem Cells Promote Immunotolerance of Cardiac Allografts. Cell Transplant 2018; 27:1657-1683. [PMID: 30311501 PMCID: PMC6299201 DOI: 10.1177/0963689718805375] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The immunosuppressive activity of mesenchymal stem cells (MSCs) has been exploited to induce tolerance after organ transplantation. The indoleamine 2,3-dioxygenase (IDO) may have beneficial effects in the immunoregulatory properties of MSCs. It was recently revealed that exosomes derived from MSCs play important roles in mediating the biological functions of MSCs. This study aimed to explore the roles of exosomes derived from MSCs in the induction of immune tolerance. METHODS Dendritic cells (DCs) and T-cells were cultured with exosomes derived from rat bone marrow MSCs (BMSCs) overexpressing IDO1 or controls. For the in-vivo study, rats received heart transplants and were treated with exosomes from IDO-BMSCs and heart function was evaluated. Flow cytometry was used to detect expression of cell surface markers. Cytokine levels were detected in culture supernatants or serum samples. Protein and microRNA expressions in exosomes were investigated by chips. RESULTS Exosomes from IDO-BMSCs cultured with DCs and T-cells (1) downregulated CD40, CD86, CD80, MHC-II, CD45RA, CD45RA+CD45RB, OX62, and upregulated CD274 expression, (2) increased the number of regulatory T-cells (Tregs) and decreased the number of CD8+ T-cells, and (3) decreased the levels of pro-inflammatory cytokines, but increased the levels of anti-inflammatory cytokines compared with the other groups. Transplanted rats, which were injected with exosomes from IDO-BMSCs, had reduced allograft-targeting immune responses and improved cardiac allograft function. Exosomes secreted by IDO-BMSCs exhibited significant upregulations of the immunoregulatory protein FHL-1, miR-540-3p, and a downregulation of miR-338-5p. CONCLUSION Exosomes derived from IDO-BMSCs can be used to promote immunotolerance and prolong the survival of cardiac allografts.
Collapse
Affiliation(s)
- Ji-Gang He
- Department of Cardiovascular Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Qiao-Li Xie
- Department of Cardiovascular Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Bei-Bei Li
- Department of Cardiovascular Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Liang Zhou
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Dan Yan
- Department of Intensive Care Unit, First People’s Hospital of Yunnan Province, Yunnan Province, China
| |
Collapse
|
473
|
Mohanraj B, Huang AH, Yeger-McKeever MJ, Schmidt MJ, Dodge GR, Mauck RL. Chondrocyte and mesenchymal stem cell derived engineered cartilage exhibits differential sensitivity to pro-inflammatory cytokines. J Orthop Res 2018; 36:2901-2910. [PMID: 29809295 PMCID: PMC7735382 DOI: 10.1002/jor.24061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/21/2018] [Indexed: 02/04/2023]
Abstract
Tissue engineering is a promising approach for the repair of articular cartilage defects, with engineered constructs emerging that match native tissue properties. However, the inflammatory environment of the damaged joint might compromise outcomes, and this may be impacted by the choice of cell source in terms of their ability to operate anabolically in an inflamed environment. Here, we compared the response of engineered cartilage derived from native chondrocytes and mesenchymal stem cells (MSCs) to challenge by TNFα and IL-1β in order to determine if either cell type possessed an inherent advantage. Compositional (extracellular matrix) and functional (mechanical) characteristics, as well as the release of catabolic mediators (matrix metalloproteinases [MMPs], nitric oxide [NO]) were assessed to determine cell- and tissue-level changes following exposure to IL-1β or TNF-α. Results demonstrated that MSC-derived constructs were more sensitive to inflammatory mediators than chondrocyte-derived constructs, exhibiting a greater loss of proteoglycans and functional properties at lower cytokine concentrations. While MSCs and chondrocytes both have the capacity to form functional engineered cartilage in vitro, this study suggests that the presence of an inflammatory environment is more likely to impair the in vivo success of MSC-derived cartilage repair. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2901-2910, 2018.
Collapse
Affiliation(s)
- Bhavana Mohanraj
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA. 19104
| | - Alice H. Huang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA. 19104
| | - Meira J. Yeger-McKeever
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104
| | - Megan J. Schmidt
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA. 19104,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA. 19104,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104,Address for Correspondence: Robert L. Mauck, Ph.D., Mary Black Ralston Professor of Orthopaedic Surgery, Professor of Bioengineering, Director, McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 114A Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6081, Phone: 215-898-3294,
| |
Collapse
|
474
|
Ciriza J, Saenz Del Burgo L, Gurruchaga H, Borras FE, Franquesa M, Orive G, Hernández RM, Pedraz JL. Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Deliv 2018; 25:1147-1160. [PMID: 29781340 PMCID: PMC6058697 DOI: 10.1080/10717544.2018.1474966] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
The combination of protein-coated graphene oxide (GO) and microencapsulation technology has moved a step forward in the challenge of improving long-term alginate encapsulated cell survival and sustainable therapeutic protein release, bringing closer its translation from bench to the clinic. Although this new approach in cell microencapsulation represents a great promise for long-term drug delivery, previous studies have been performed only with encapsulated murine C2C12 myoblasts genetically engineered to secrete murine erythropoietin (C2C12-EPO) within 160 µm diameter hybrid alginate protein-coated GO microcapsules implanted into syngeneic mice. Here, we show that encapsulated C2C12-EPO myoblasts survive longer and release more therapeutic protein by doubling the micron diameter of hybrid alginate-protein-coated GO microcapsules to 380 µm range. Encapsulated mesenchymal stem cells (MSC) genetically modified to secrete erythropoietin (D1-MSCs-EPO) within 380 µm-diameter hybrid alginate-protein-coated GO microcapsules confirmed this improvement in survival and sustained protein release in vitro. This improved behavior is reflected in the hematocrit increase of allogeneic mice implanted with both encapsulated cell types within 380 µm diameter hybrid alginate-protein-coated GO microcapsules, showing lower immune response with encapsulated MSCs. These results provide a new relevant step for the future clinical application of protein-coated GO on cell microencapsulation.
Collapse
Affiliation(s)
- Jesús Ciriza
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Laura Saenz Del Burgo
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Haritz Gurruchaga
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Francesc E Borras
- c REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol , Badalona , Spain
- d Department of Cell Biology, Physiology and Immunology , Universitat Autònoma de Barcelona , Bellaterra , Spain
- e Nephrology Service, Germans Trias i Pujol University Hospital , Badalona , Spain
| | - Marcella Franquesa
- c REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol , Badalona , Spain
- e Nephrology Service, Germans Trias i Pujol University Hospital , Badalona , Spain
| | - Gorka Orive
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Rosa Maria Hernández
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - José Luis Pedraz
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| |
Collapse
|
475
|
|
476
|
Mu K, Zhang J, Gu Y, Li H, Han Y, Cheng N, Feng X, Ding G, Zhang R, Zhao Y, Wang H. Cord-derived mesenchymal stem cells therapy for liver cirrhosis in children with refractory Henoch-Schonlein purpura: A case report. Medicine (Baltimore) 2018; 97:e13287. [PMID: 30461638 PMCID: PMC6392614 DOI: 10.1097/md.0000000000013287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
RATIONALE To explore the curative effect of human umbilical cord-derived mesenchymal stem cell (ucMSC) therapy for patients with liver cirrhosis complicated with immune thrombocytopenia and refractory Henoch-Schonlein purpura (HSP). PATIENT CONCERNS A 12-year-old boy presented to our hospital with an 11-month history of purpura on the skin of both lower limbs accompanied by thrombocytopenia. The patient had a history of repeated swelling and painful dorsum pedis, followed by skin redness. DIAGNOSIS Bone marrow slides showed megakaryocyte maturation disorder. Based on the pathology and drug abuse history, he was diagnosed with nodular cirrhosis, secondary allergic purpura, and thrombocytopenia, etiologies related to his drugs and an immune dysfunction. INTERVENTIONS ucMSC transplantation was performed, the liver damaging drugs were discontinued, and the appropriate liver immunosuppressive drugs were administered. ucMSCs were injected 8 times/wk in 2 months, with a median cell count of 5.65 × 10/L, ranging from 5.48 to 5.98 × 10/L. OUTCOMES As the patient's skin rash resolved, his platelets gradually increased to >150 × 10/L and liver transaminase levels gradually decreased to a normal level. Ultrasonography of the abdomen indicated that the round nodules in the liver decreased in size and that the spleen thickness also decreased. LESSONS This is a unique case of significant HSP with associated thrombocytopenia in a patient with liver cirrhosis. Long-term oral administration of excessive herbal medicine may cause liver damage. We believe that ucMSCs provide a novel approach for the treatment of liver cirrhosis.
Collapse
|
477
|
Zeira O, Scaccia S, Pettinari L, Ghezzi E, Asiag N, Martinelli L, Zahirpour D, Dumas MP, Konar M, Lupi DM, Fiette L, Pascucci L, Leonardi L, Cliff A, Alessandri G, Pessina A, Spaziante D, Aralla M. Intra-Articular Administration of Autologous Micro-Fragmented Adipose Tissue in Dogs with Spontaneous Osteoarthritis: Safety, Feasibility, and Clinical Outcomes. Stem Cells Transl Med 2018; 7:819-828. [PMID: 30035380 PMCID: PMC6216453 DOI: 10.1002/sctm.18-0020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022] Open
Abstract
Similar to the disease affecting humans, osteoarthritis (OA) is a painful musculoskeletal condition affecting 20% of the adult canine population. Several solutions have been proposed, but the results achieved to date are far from being satisfactory. New approaches, such as intra-articular delivery of cells (including mesenchymal stromal cells), have been proposed. Among the many sources, the adipose tissue is considered very promising. We evaluated the safety, feasibility, and efficacy of a single intra-articular injection of autologous and micro-fragmented adipose tissue (MFAT) in 130 dogs with spontaneous OA. MFAT was obtained using a minimally invasive technique in a closed system and injected in the intra- and/or peri-articular space. Clinical outcomes were determined using orthopedic examination and owners' scores for up to 6 months. In 78% of the dogs, improvement in the orthopedic score was registered 1 month after treatment and continued gradually up to 6 months when 88% of the dogs improved, 11% did not change, and 1% worsened compared with baseline. Considering the owners' scores at 6 months, 92% of the dogs significantly improved, 6% improved only slightly, and 2% worsened compared with baseline. No local or systemic major adverse effects were recorded. The results of this study suggest that MFAT injection in dogs with OA is safe, feasible, and beneficial. The procedure is time sparing and cost-effective. Post injection cytological investigation, together with the clinical evidence, suggests a long-term pain control role of this treatment. The spontaneous OA dog model has a key role in developing successful treatments for translational medicine. Stem Cells Translational Medicine 2018;7:819-828.
Collapse
Affiliation(s)
- Offer Zeira
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Simone Scaccia
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | | | - Erica Ghezzi
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Nimrod Asiag
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Laura Martinelli
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | | | - Maria P. Dumas
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Martin Konar
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Davide M. Lupi
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Laurence Fiette
- Unité d'Histopathologie Humaine et Modèles AnimauxInstitut PasteurParisFrance
| | - Luisa Pascucci
- Department of Veterinary MedicineUniversity of PerugiaItaly
| | | | | | - Giulio Alessandri
- Department of Cerebrovascular DiseasesIRCCS Besta Neurological InstituteMilanItaly
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanItaly
| | | | - Marina Aralla
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| |
Collapse
|
478
|
Milenkovic U, Albersen M, Castiglione F. The mechanisms and potential of stem cell therapy for penile fibrosis. Nat Rev Urol 2018; 16:79-97. [DOI: 10.1038/s41585-018-0109-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
479
|
Sun B, Peng J, Wang S, Liu X, Zhang K, Zhang Z, Wang C, Jing X, Zhou C, Wang Y. Applications of stem cell-derived exosomes in tissue engineering and neurological diseases. Rev Neurosci 2018; 29:531-546. [PMID: 29267178 DOI: 10.1515/revneuro-2017-0059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are extracellular vesicles with diameters of 30-100 nm that are key for intercellular communication. Almost all types of cell, including dendritic cells, T cells, mast cells, epithelial cells, neuronal cells, adipocytes, mesenchymal stem cells, and platelets, can release exosomes. Exosomes are present in human body fluids, such as urine, amniotic fluid, malignant ascites, synovial fluid, breast milk, cerebrospinal fluid, semen, saliva, and blood. Exosomes have biological functions in immune response, antigen presentation, intercellular communication, and RNA and protein transfer. This review provides a brief overview of the origin, morphological characteristics, enrichment and identification methods, biological functions, and applications in tissue engineering and neurological diseases of exosomes.
Collapse
Affiliation(s)
- Baichuan Sun
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopaedics, Beijing 100853, China
| | - Shoufeng Wang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Xuejian Liu
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Kaihong Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zengzeng Zhang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Chong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoguang Jing
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Chengfu Zhou
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopaedics, Beijing 100853, China
| |
Collapse
|
480
|
Conditioned Medium from Human Amnion-Derived Mesenchymal Stem Cells Regulates Activation of Primary Hepatic Stellate Cells. Stem Cells Int 2018; 2018:4898152. [PMID: 30402110 PMCID: PMC6196790 DOI: 10.1155/2018/4898152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs), or multipotent mesenchymal stromal cells, are present in almost all organs and tissues, including the amnion. Human amnion-derived mesenchymal stem cell (hAMSC) transplantation has been reported to ameliorate liver fibrosis in animal models. However, the mechanism for the prevention of liver fibrosis is poorly understood. In this study, we investigated the effects, and underlying mechanisms, of a conditioned medium obtained from hAMSC cultures (hAMSC-CM) on a primary culture of rat hepatic stellate cells (HSCs). We observed that in routine culture, hAMSC-CM in HSCs significantly inhibited the expression of alpha-smooth muscle actin (α-SMA), an activation marker of HSCs, and the production of collagen type 1 (COL1), a dominant component of the extracellular matrix (ECM) in the culture medium. In addition, hAMSC-CM upregulated the expression of ECM degradation-related genes, such as metalloproteinase- (Mmp-) 2, Mmp-9, Mmp-13, and tissue inhibitor of metalloproteinase- (Timp-) 1; however, it did not affect the expression of collagen type 1α1 (Col1a1). These regulatory effects on HSCs were concentration-dependent. A cell proliferation assay indicated that hAMSC-CM significantly suppressed HSC proliferation and downregulated the expression of cyclin B (Ccnb), a proliferation-related gene. Transforming growth factor-beta (TGF-β) treatment further activated HSCs and hAMSC-CM significantly inhibited the upregulation of α-Sma and Col1a1 induced by TGF-β. These findings demonstrated that hAMSC-CM can modulate HSC function via secretory factors and provide a plausible explanation for the protective role of hAMSCs in liver fibrosis.
Collapse
|
481
|
Abstract
Mesenchymal Stem Cells (MSCs) are a heterogeneous population of fibroblast-like cells which maintain self-renewability and pluripotency to differentiate into mesodermal cell lineages. The use of MSCs in clinical settings began with high enthusiasm and the number of MSC-based clinical trials has been rising ever since. However; the very unique characteristics of MSCs that made them suitable to for therapeutic use, might give rise to unwanted outcomes, including tumor formation and progression. In this paper, we present a model of carcinogenesis initiated by MSCs, which chains together the tissue organization field theory, the stem cell theory, and the inflammation-cancer chain. We believe that some tissue resident stem cells could be leaked cells from bone marrow MSC pool to various injured tissue, which consequently transform and integrate in the host tissue. If the injury persists or chronic inflammation develops, as a consequence of recurring exposure to growth factors, cytokines, etc. the newly formed tissue from MSCs, which still has conserved their mesenchymal and stemness features, go through rapid population expansion, and nullify their tumor suppressor genes, and hence give rise to neoplastic cell (carcinomas, sarcomas, and carcino-sarcomas). Considering the probability of this hypothesis being true, the clinical and therapeutic use of MSCs should be with caution, and the recipients' long term follow-up seems to be insightful.
Collapse
Affiliation(s)
- Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, PO.Box: 71345-1798, Shiraz, Iran.
| | - Shabnam Abtahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, PO.Box: 71345-1798, Shiraz, Iran
| |
Collapse
|
482
|
Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, Liao W, Kang Y. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther 2018; 9:247. [PMID: 30257711 PMCID: PMC6158854 DOI: 10.1186/s13287-018-1004-0] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/30/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background WNT5A is known to be involved in the pathogenesis of osteoarthritis. This study investigated the molecular mechanism of exosomal miR-92a-3p and WNT5A in chondrogenesis and cartilage degeneration. Methods Exosomal miR-92a-3p expression was assessed in vitro in a human mesenchymal stem cell (MSC) model of chondrogenesis and in normal and OA primary human chondrocytes (PHCs). MSCs and PHCs were treated with exosomes derived from MSC-miR-92a-3p (MSC-miR-92a-3p-Exos) or its antisense inhibitor (MSC-anti-miR-92a-3p-Exos), respectively. Small interfering RNAs (siRNAs) and luciferase reporter assay were used to reveal the molecular role of exosomal miR-92a-3p and WNT5A in chondrogenesis. The protective effect of exosomes in vivo was measured using Safranin-O and Fast Green staining and immunohistochemical staining. Results Exosomal miR-92a-3p expression was elevated in the MSC chondrogenic exosome, while it was significantly reduced in the OA chondrocyte-secreted exosome compared with normal cartilage. Treatment with MSC-miR-92a-3p-Exos promoted cartilage proliferation and matrix genes expression in MSCs and PHCs, respectively. In contrast, treatment with MSC-anti-miR-92a-3p-Exos repressed chondrogenic differentiation and reduced cartilage matrix synthesis by enhancing the expression of WNT5A. Luciferase reporter assay demonstrated that miR-92a-3p suppressed the activity of a reporter construct containing the 3’-UTR and inhibited WNT5A expression in both MSCs and PHCs. MSC-miR-92a-3p-Exos inhibit cartilage degradation in the OA mice model. Conclusions Our results suggest that exosomal miR-92a-3p regulates cartilage development and homeostasis by directly targeting WNT5A. This indicates that exosomal miR-92a-3p may act as a Wnt inhibitor and exhibits potential as a disease-modifying osteoarthritis drug. Electronic supplementary material The online version of this article (10.1186/s13287-018-1004-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guping Mao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ziji Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shu Hu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zongkun Chang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhiyu Huang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Weiming Liao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Yan Kang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, #58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
483
|
Zibara K, Ballout N, Mondello S, Karnib N, Ramadan N, Omais S, Nabbouh A, Caliz D, Clavijo A, Hu Z, Ghanem N, Gajavelli S, Kobeissy F. Combination of drug and stem cells neurotherapy: Potential interventions in neurotrauma and traumatic brain injury. Neuropharmacology 2018; 145:177-198. [PMID: 30267729 DOI: 10.1016/j.neuropharm.2018.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies. These treatments aim to ameliorate cellular degeneration, motor decline, cognitive and behavioral deficits. Recently, the use of neural stem cells (NSCs) coupled with selective drug therapy has emerged as an alternative treatment option for neural regeneration and behavioral rehabilitation post-neural injury. Given their neuroprotective abilities, NSC-based neurotherapy has been widely investigated and well-reported in numerous disease models, notably in trauma studies. In this review, we will elaborate on current updates in cell replacement therapy in the area of neurotrauma. In addition, we will discuss novel combination drug therapy treatments that have been investigated in conjunction with stem cells to overcome the limitations associated with stem cell transplantation. Understanding the regenerative capacities of stem cell and drug combination therapy will help improve functional recovery and brain repair post-TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kazem Zibara
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nabil Karnib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Naify Ramadan
- Department of Women's and Children's Health (KBH), Division of Clinical Pediatrics, Karolinska Institute, Sweden
| | - Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali Nabbouh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Daniela Caliz
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Angelica Clavijo
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Zhen Hu
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shyam Gajavelli
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
484
|
Santelli J, Lechevallier S, Baaziz H, Vincent M, Martinez C, Mauricot R, Parini A, Verelst M, Cussac D. Multimodal gadolinium oxysulfide nanoparticles: a versatile contrast agent for mesenchymal stem cell labeling. NANOSCALE 2018; 10:16775-16786. [PMID: 30156241 DOI: 10.1039/c8nr03263g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite a clear development of innovative therapies based on stem cell manipulation, the availability of new tools to better understand and follow stem cell behavior and improve their biomedical applications is not adequate. Indeed, an ideal tracking device must have good ability to label stem cells as well as complete neutrality relative to their biology. Furthermore, preclinical studies imply in vitro and in vivo approaches that often require several kinds of labeling and/or detection procedures. Consequently, the multimodality concept presented in this work may present a solution to this problem as it has the potential to combine complementary imaging techniques. Spherical europium-doped gadolinium oxysulfide (Gd2O2S:Eu3+) nanoparticles are presented as a candidate as they are detectable by (1) magnetic resonance (MRI), (2) X-ray and (3) photoluminescence imaging. Whole body in vivo distribution, elimination and toxicity evaluation revealed a high tolerance of nanoparticles with a long-lasting MRI signal and slow hepatobiliary and renal clearance. In vitro labeling of a wide variety of cells unveils the nanoparticle potential for efficient and universal cell tracking. Emphasis on mesenchymal stromal cells (MSCs) leads to the definition of optimal conditions for labeling and tracking in the context of cell therapy: concentrations below 50 μg mL-1 and diameters between 170 and 300 nm. Viability, proliferation, migration and differentiation towards mesodermal lineages are preserved under these conditions, and cell labeling appears to be persistent and without any leakage. Ex vivo detection of as few as five thousand Gd2O2S:Eu3+-labeled MSCs by MRI combined with in vitro examination with fluorescence microscopy highlights the feasibility of cell tracking in cell therapy using this new nanoplatform.
Collapse
Affiliation(s)
- Julien Santelli
- CEMES-CNRS, Université de Toulouse, CNRS 29, rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Marinowic DR, Zanirati G, Azevedo PN, De Souza EV, Bruzzo F, Silva SPD, Heuser EB, Machado DC, Da Costa JC. Umbilical Mononuclear Cells and Fibroblast Interaction Downregulate the Expression of Cell Cycle Negative Control Genes. Cell Reprogram 2018; 20:320-327. [PMID: 30204474 DOI: 10.1089/cell.2018.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human umbilical cord blood (HUCB) is an excellent source of adult stem cells, having the benefit of being younger than the bone marrow stem cells. The role of stem cells in the lesion repair mechanism is still being studied. We evaluated the capability of HUCB to interfere into the fibroblast dedifferentiation plasticity through cocultivation. Direct and indirect cocultures were maintained for 24, 48, and 72 hours. Coculture viability was evaluated by MTT assay. The messenger RNA was extracted, and the expression of p16 and p21 genes was estimated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The direct or indirect contact did not interfere with fibroblast cell viability. However, these direct and indirect contacts reduced the expression of p16 and p21 genes. A sigmoidal curve was applied to adjust gene expression against time, and a mathematical function was established for gene expression according to cell culture type. These results suggest that the differentiated cells were influenced by immature cells (HUCB) either by the direct contact or by signaling molecules, which alter their behavior and plasticity. Therefore our data may contribute to paracrine effects other than the commonly known to be responsible for the repair of lesions in stem cell therapy.
Collapse
Affiliation(s)
- Daniel Rodrigo Marinowic
- 1 Brain Institute of Rio Grande do Sul (BraIns) , Porto Alegre, Brazil .,2 Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre, Brazil
| | - Gabriele Zanirati
- 1 Brain Institute of Rio Grande do Sul (BraIns) , Porto Alegre, Brazil .,3 Graduate Program in Medicine, Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre, Brazil
| | - Pamella Nunes Azevedo
- 1 Brain Institute of Rio Grande do Sul (BraIns) , Porto Alegre, Brazil .,2 Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre, Brazil
| | | | - Fernanda Bruzzo
- 1 Brain Institute of Rio Grande do Sul (BraIns) , Porto Alegre, Brazil .,4 School of Medicine, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre, Brazil
| | | | - Eliete Biasotto Heuser
- 1 Brain Institute of Rio Grande do Sul (BraIns) , Porto Alegre, Brazil .,6 Mathematics Course, School of Sciences, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre, Brazil
| | - Denise Cantarelli Machado
- 1 Brain Institute of Rio Grande do Sul (BraIns) , Porto Alegre, Brazil .,2 Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre, Brazil .,4 School of Medicine, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- 1 Brain Institute of Rio Grande do Sul (BraIns) , Porto Alegre, Brazil .,2 Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre, Brazil .,3 Graduate Program in Medicine, Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre, Brazil .,4 School of Medicine, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre, Brazil
| |
Collapse
|
486
|
Gomes JP, Coatti GC, Valadares MC, Assoni AF, Pelatti MV, Secco M, Zatz M. Human Adipose-Derived CD146+ Stem Cells Increase Life Span of a Muscular Dystrophy Mouse Model More Efficiently than Mesenchymal Stromal Cells. DNA Cell Biol 2018; 37:798-804. [DOI: 10.1089/dna.2018.4158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Juliana P. Gomes
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Giuliana C. Coatti
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcos C. Valadares
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Amanda F. Assoni
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mayra V. Pelatti
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariane Secco
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
487
|
Yun S, Yun CW, Lee JH, Kim S, Lee SH. Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner. Biomol Ther (Seoul) 2018; 26:464-473. [PMID: 28835002 PMCID: PMC6131018 DOI: 10.4062/biomolther.2017.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/01/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022] Open
Abstract
Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or H2O2 exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.
Collapse
Affiliation(s)
- SeungPil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University, Seoul Hospital, Seoul 04401, Department of Medical Bioscience, Soonchunhyang University, Asan 31151, Republic of Korea
| | - Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - SangMin Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University, Seoul Hospital, Seoul 04401, Department of Medical Bioscience, Soonchunhyang University, Asan 31151, Republic of Korea
| |
Collapse
|
488
|
Chadid T, Morris A, Surowiec A, Robinson S, Sasaki M, Galipeau J, Pollack BP, Brewster LP. Reversible secretome and signaling defects in diabetic mesenchymal stem cells from peripheral arterial disease patients. J Vasc Surg 2018; 68:137S-151S.e2. [PMID: 30104096 DOI: 10.1016/j.jvs.2018.05.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Regenerative medicine seeks to stall or to reverse the pathologic consequences of chronic diseases. Many people with diabetes have peripheral arterial disease (PAD), which increases their already high risk of major amputation. Cellular therapies are a promising regenerative medicine approach to PAD that can be used to focally inject regenerative cells to endangered tissue beds. Mesenchymal stem cells (MSCs) are known to promote tissue regeneration through stromal support and paracrine stimulation of new blood vessels (angiogenesis). Whereas little is known about human diabetic MSCs (dMSCs), particularly those from patients with PAD, dMSCs have a limited expansion capacity but can be improved with human platelet lysate (PL) supplementation. PL is rich in many growth factors, including epidermal growth factor (EGF), which is known to be important to cell proliferation and survival signaling pathways. We hypothesize that dMSCs have a reversible defect in EGF receptor pathways. The objective of this work was to test this hypothesis using dMSCs from PAD patients. METHODS The secretome expression of EGF and prominent angiogens was characterized from bone marrow (BM)-derived and adipose tissue-derived (ATD) dMSCs from five patients (six limbs) undergoing major amputation. Western blot was used to characterize the AKT and extracellular signal-regulated protein kinases 1 and 2 expression in dMSCs under standard culture (5% fetal bovine serum plus fibroblast growth factor 2 [FGF2]), 5% human PL, or 5% fetal bovine serum plus EGF. Healthy donor MSCs were control cells. The angiogenic activity of BM- and ATD-dMSCs was tested on human umbilical vein endothelial cells (ECs). Paired t-test, analysis of variance, and Kruskal-Wallis tests were used as appropriate. RESULTS Both BM- and ATD-dMSCs had typical MSC surface marker expression and similar expansion profiles, and they did not express EGF in their secretome. PL supplementation of dMSCs improved AKT signaling, but they were resistant to FGF2 activation of extracellular signal-regulated protein kinases 1 and 2. EGF supplementation led to similar AKT expression as with PL, but PL had greater phosphorylation of AKT at 30 and 60 minutes. The conditioned media from both BM- and ATD-dMSCs had robust levels of prominent angiogens (vascular endothelial growth factor, monocyte chemoattractant protein 1, hepatocyte growth factor), which stimulated EC proliferation and migration, and the co-culture of dMSCs with ECs led to significantly longer EC sprouts in three-dimensional gel than EC-alone pellets. CONCLUSIONS PL and EGF supplementation improves AKT expression in dMSCs over that of FGF2, but PL improved pAKT over that of EGF. Thus, PL supplementation strategies may improve AKT signaling, which could be important to MSC survival in cellular therapies. Furthermore, BM- and ATD-dMSCs have similar secretomes and robust in vitro angiogenic activity, which supports pursuing dMSCs from both reservoirs in regenerative medicine strategies.
Collapse
Affiliation(s)
- Tatiana Chadid
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Andrew Morris
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Alexandra Surowiec
- School of Arts and Sciences, Departments of Biological Sciences and Anthropology, Vanderbilt University, Nashville, Tenn
| | - Scott Robinson
- Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Maiko Sasaki
- Department of Dermatology and Pathology, Emory University School of Medicine, Atlanta, Ga
| | - Jacques Galipeau
- Don and Marilyn Anderson Professor in Oncology and Director, Program for Advanced Cell Therapy, University of Wisconsin-Madison, Madison, Wisc
| | - Brian P Pollack
- Department of Dermatology and Pathology, Emory University School of Medicine, Atlanta, Ga
| | - Luke P Brewster
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Ga; Surgery and Research Services, Atlanta VA Medical Center, Atlanta, Ga.
| |
Collapse
|
489
|
Comparative efficacy of stem cells and secretome in articular cartilage regeneration: a systematic review and meta-analysis. Cell Tissue Res 2018; 375:329-344. [PMID: 30084022 DOI: 10.1007/s00441-018-2884-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
Collapse
|
490
|
Abstract
PURPOSE OF REVIEW The identity and functional roles of stem cell population(s) that contribute to fracture repair remains unclear. This review provides a brief history of mesenchymal stem cell (MSCs) and provides an updated view of the many stem/progenitor cell populations contributing to fracture repair. RECENT FINDINGS Functional studies show MSCs are not the multipotential stem cell population that form cartilage and bone during fracture repair. Rather, multiple studies have confirmed the periosteum is the primary source of stem/progenitor cells for fracture repair. Newer work is also identifying other stem/progenitor cells that may also contribute to healing. Although the heterogenous periosteal cells migrate to the fracture site and contribute directly to callus formation, other cell populations are involved. Pericytes and bone marrow stromal cells are now thought of as key secretory centers that mostly coordinate the repair process. Other populations of stem/progenitor cells from the muscle and transdifferentiated chondroctyes may also contribute to repair, and their functional role is an area of active research.
Collapse
Affiliation(s)
- Beth C Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, 72 East Concord St, Evans 243, Boston, MA, 02118, USA.
| | - Chelsea S Bahney
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
491
|
From DMEK to Corneal Endothelial Cell Therapy: Technical and Biological Aspects. J Ophthalmol 2018; 2018:6482095. [PMID: 30155283 PMCID: PMC6093046 DOI: 10.1155/2018/6482095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/13/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The main treatment available for restoration of the corneal endothelium is keratoplasty and DMEK provides faster visual recovery and better postoperative visual acuity when compared to DSAEK. However, the technical challenges related to this technique and the steep technical learning curve seem to prevent the overcoming of DSAEK in favor of DMEK. Furthermore, the outcome of lamellar keratoplasty techniques is influenced by problems related to corneal grafting tissue availability, management, and quality. On the other hand, improvements in the field of cell engineering have opened the way for the use of stem cells-derived corneal endothelial cells with regenerative intent. In this overview, latest findings in endothelial cell engineering are reported, and perspectives of clinical application of mesenchymal stem cells for corneal endothelial replacement and regeneration are evaluated.
Collapse
|
492
|
Bauer G, Elsallab M, Abou-El-Enein M. Concise Review: A Comprehensive Analysis of Reported Adverse Events in Patients Receiving Unproven Stem Cell-Based Interventions. Stem Cells Transl Med 2018; 7:676-685. [PMID: 30063299 PMCID: PMC6127222 DOI: 10.1002/sctm.17-0282] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
The promise of stem cell (SC) therapies to restore functions of damaged tissues and organs brings enormous hope to patients, their families, loved ones, and caregivers. However, limits may exist for which indications SC therapies might be useful, efficacious, and safe. Applications of innovative therapies within regulatory boundaries and within the framework of controlled clinical trials are the norm in the scientific and medical community; such a system minimizes patient risk by setting a clear and acceptable safety and efficacy profile for new therapeutics before marketing authorization. This careful clinical validation approach often takes time, which patients suffering from terminal or debilitating diseases do not have. Not validated, unproven stem cell interventions (SCI) that promise a working treatment or cure for severe diseases have therefore found their way into the patient community, and providers of such treatments often take advantage of the public's willingness to pay large amounts of money for the misguided hope of a reliable recovery from their illnesses. We conducted a review of scientific publications, clinical case reports, and mass media publications to assess the reported cases and safety incidents associated with unproven SCI. The review also analyzes the main factors that were identified as contributing to the emergence and global rise of the “stem cell tourism” phenomenon. stemcellstranslationalmedicine2018;1–10
Collapse
Affiliation(s)
- Gerhard Bauer
- University of California Davis, Institute For Regenerative Cures (IRC), Sacramento, California, USA
| | - Magdi Elsallab
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charite' - Universitatsmedizin Berlin, Berlin, Germany
| | - Mohamed Abou-El-Enein
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charite' - Universitatsmedizin Berlin, Berlin, Germany
| |
Collapse
|
493
|
Induction of Expression of CD271 and CD34 in Mesenchymal Stromal Cells Cultured as Spheroids. Stem Cells Int 2018; 2018:7357213. [PMID: 30154865 PMCID: PMC6091361 DOI: 10.1155/2018/7357213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cultured mesenchymal stromal cells (MSCs) are cells that can be used for tissue engineering or cell therapies owing to their multipotency and ability to secrete immunomodulatory and trophic molecules. Several studies suggest that MSCs can become pericytes when cocultured with endothelial cells (ECs) but failed to use pericyte markers not already expressed by MSCs. We hypothesized ECs could instruct MSCs to express the molecules CD271 or CD34, which are expressed by pericytes in situ but not by MSCs. CD271 is a marker of especial interest because it is associated with multipotency, a characteristic that wanes in MSCs as they are culture expanded. Consequently, surface expression of CD271 and CD34 was detected in roughly half of the MSCs cocultured with ECs as spheroids in the presence of insulin-like growth factor 1 (IGF-1). Conversely, expression of CD271 and CD34 was detected in a similar proportion of MSCs cultured under these conditions without ECs, and expression of these markers was low or absent when no IGF-1 was added. These findings indicate that specific culture conditions including IGF-1 can endow cultured MSCs with expression of CD271 and CD34, which may enhance the multipotency of these cells when they are used for therapeutic purposes.
Collapse
|
494
|
Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M. Trophic Effects of Mesenchymal Stem Cells in Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 23:515-528. [PMID: 28490258 DOI: 10.1089/ten.teb.2016.0365] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered to hold great therapeutic value for cell-based therapy and for tissue regeneration in particular. Recent evidence indicates that the main underlying mechanism for MSCs' beneficial effects in tissue regeneration is based on their capability to produce a large variety of bioactive trophic factors that stimulate neighboring parenchymal cells to start repairing damaged tissues. These new findings could potentially replace the classical paradigm of MSC differentiation and cell replacement. These bioactive factors have diverse actions like modulating the local immune system, enhancing angiogenesis, preventing cell apoptosis, and stimulating survival, proliferation, and differentiation of resident tissue specific cells. Therefore, MSCs are referred to as conductors of tissue repair and regeneration by secreting trophic mediators. In this review article, we have summarized the studies that focused on the trophic effects of MSC within the context of tissue regeneration. We will also highlight the various underlying mechanisms used by MSCs to act as trophic mediators. Besides the secretion of growth factors, we discuss two additional mechanisms that are likely to mediate MSC's beneficial effects in tissue regeneration, namely the production of extracellular vesicles and the formation of membrane nanotubes, which can both connect different cells and transfer a variety of trophic factors varying from proteins to mRNAs and miRNAs. Furthermore, we postulate that apoptosis of the MSCs is an integral part of the trophic effect during tissue repair.
Collapse
Affiliation(s)
- Yao Fu
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Lisanne Karbaat
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Ling Wu
- 2 Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, Los Angeles, California
| | - Jeroen Leijten
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Sanne K Both
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Marcel Karperien
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| |
Collapse
|
495
|
IGF-1-Overexpressing Mesenchymal Stem/Stromal Cells Promote Immunomodulatory and Proregenerative Effects in Chronic Experimental Chagas Disease. Stem Cells Int 2018; 2018:9108681. [PMID: 30140292 PMCID: PMC6081563 DOI: 10.1155/2018/9108681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been investigated for the treatment of diseases that affect the cardiovascular system, including Chagas disease. MSCs are able to promote their beneficial actions through the secretion of proregenerative and immunomodulatory factors, including insulin-like growth factor-1 (IGF-1), which has proregenerative actions in the heart and skeletal muscle. Here, we evaluated the therapeutic potential of IGF-1-overexpressing MSCs (MSC_IGF-1) in a mouse model of chronic Chagas disease. C57BL/6 mice were infected with Colombian strain Trypanosoma cruzi and treated with MSCs, MSC_IGF-1, or vehicle (saline) six months after infection. RT-qPCR analysis confirmed the presence of transplanted cells in both the heart and skeletal muscle tissues. Transplantation of either MSCs or MSC_IGF-1 reduced the number of inflammatory cells in the heart when compared to saline controls. Moreover, treatment with MSCs or MSC_IGF-1 significantly reduced TNF-α, but only MSC treatment reduced IFN-γ production compared to the saline group. Skeletal muscle sections of both MSC- and MSC_IGF-1-treated mice showed a reduction in fibrosis compared to saline controls. Importantly, the myofiber area was reduced in T. cruzi-infected mice, and this was recovered after treatment with MSC_IGF-1. Gene expression analysis in the skeletal muscle showed a higher expression of pro- and anti-inflammatory molecules in MSC_IGF-1-treated mice compared to MSCs alone, which significantly reduced the expression of TNF-α and IL-1β. In conclusion, our results indicate the therapeutic potential of MSC_IGF-1, with combined immunomodulatory and proregenerative actions to the cardiac and skeletal muscles.
Collapse
|
496
|
Magne B, Lataillade JJ, Trouillas M. Mesenchymal Stromal Cell Preconditioning: The Next Step Toward a Customized Treatment For Severe Burn. Stem Cells Dev 2018; 27:1385-1405. [PMID: 30039742 DOI: 10.1089/scd.2018.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last century, the clinical management of severe skin burns significantly progressed with the development of burn care units, topical antimicrobials, resuscitation methods, early eschar excision surgeries, and skin grafts. Despite these considerable advances, the present treatment of severe burns remains burdensome, and patients are highly susceptible to skin engraftment failure, infections, organ dysfunction, and hypertrophic scarring. Recent researches have focused on mesenchymal stromal cell (MSC) therapy and hold great promises for tissue repair, as reported in several animal studies and clinical cases. In the present review, we will provide an up-to-date outlook of the pathophysiology of severe skin burns, clinical treatment modalities and current limitations. We will then focus on MSCs and their potential in the burn wound healing both in in vitro and in vivo studies. A specific attention will be paid to the cell preconditioning approach, as a means of improving the MSC efficacy in the treatment of major skin burns. In particular, we will debate how several preconditioning cues would modulate the MSC properties to better match up with the burn pathophysiology in the course of the cell therapy. Finally, we will discuss the clinical interest and feasibility of a MSC-based therapy in comparison to their paracrine derivatives, including microvesicles and conditioned media for the treatment of major skin burn injuries.
Collapse
Affiliation(s)
- Brice Magne
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Jean-Jacques Lataillade
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Marina Trouillas
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| |
Collapse
|
497
|
Barrachina L, Romero A, Zaragoza P, Rodellar C, Vázquez FJ. Practical considerations for clinical use of mesenchymal stem cells: From the laboratory to the horse. Vet J 2018; 238:49-57. [PMID: 30103915 DOI: 10.1016/j.tvjl.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
Since the clinical use of mesenchymal stem cells (MSCs) for treating musculoskeletal injuries is gaining popularity, practitioners should be aware of the factors that may affect MSCs from tissue harvesting for MSC isolation to cell delivery into the injury site. This review provides equine practitioners with up-to-date, practical knowledge for the treatment of equine patients using MSCs. A brief overview of laboratory procedures affecting MSCs is provided, but the main focus is on shipping conditions, routes of administration, injection methods, and which commonly used products can be combined with MSCs and which products should be avoided as they have deleterious effects on cells. There are still several knowledge gaps regarding MSC-based therapies in horses. Therefore, it is important to properly manage the factors which are currently known to affect MSCs, to further strengthen the evidence basis of this treatment.
Collapse
Affiliation(s)
- L Barrachina
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain; Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - A Romero
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain; Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - P Zaragoza
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-Centro de Investigación y Tecnología de Aragón (CITA), Zaragoza, Spain
| | - C Rodellar
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-Centro de Investigación y Tecnología de Aragón (CITA), Zaragoza, Spain
| | - F J Vázquez
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain; Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
498
|
Gao H, Zhang X, Chen C, Li K, Ding D. Unity Makes Strength: How Aggregation-Induced Emission Luminogens Advance the Biomedical Field. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800074] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Heqi Gao
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Xiaoyan Zhang
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Kai Li
- Institute of Materials Research & Engineering; A*STAR; Singapore 138634 Singapore
- Department of Biomedical Engineering; Southern University of Science and Technology; Shenzhen Guangdong 510855 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| |
Collapse
|
499
|
Yu NH, Chun SY, Ha YS, Kim HT, Kim DH, Kim J, Chung JW, Lee JN, Song PH, Yoo ES, Kim BS, Kwon TG. Optimal Stem Cell Transporting Conditions to Maintain Cell Viability and Characteristics. Tissue Eng Regen Med 2018; 15:639-647. [PMID: 30603585 DOI: 10.1007/s13770-018-0133-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The preservation of stem cell viability and characteristics during cell transport from the bench to patients can significantly affect the success of cell therapy. Factors such as suspending medium, time, temperature, cell density, and container type could be considered for transport conditions. METHODS To establish optimal conditions, human amniotic fluid stem cells' (AFSCs) viabilities were analyzed under different media {DMEM(H), DMEM/F-12, K-SFM, RPMI 1640, α-MEM, DMEM(L), PBS or saline}, temperature (4, 22 or 37 °C), cell density (1 × 107 cells were suspended in 0.1, 0.5, 1.0 or 2.0 mL of medium) and container type (plastic syringe or glass bottle). After establishing the transport conditions, stem cell characteristics of AFSCs were compared to freshly prepared cells. RESULTS Cells transported in DMEM(H) showed relatively higher viability than other media. The optimized transport temperature was 4 °C, and available transport time was within 12 h. A lower cell density was associated with a better survival rate, and a syringe was selected as a transport container because of its clinical convenience. In compare of stem cell characteristics, the transported cells with established conditions showed similar potency as the freshly prepared cells. CONCLUSION Our findings can provide a foundation to optimization of conditions for stem cell transport.
Collapse
Affiliation(s)
- Na-Hee Yu
- 1Biomedical Research Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - So Young Chun
- 1Biomedical Research Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Yun-Sok Ha
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,3Department of Urology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Hyun Tae Kim
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| | - Dae Hwan Kim
- 5Department of Laboratory Animal Research Support Team, Yeungnam University Medical Center, 170 Hyunchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Jeongshik Kim
- Department of Pathology, Central Hospital, 480 Munsu-ro, Nam-gu, Ulsan, 44667 Korea
| | - Jae-Wook Chung
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| | - Jun Nyung Lee
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| | - Phil Hyun Song
- 7Department of Urology, College of Medicine, Yeungnam University, 170 Hyunchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Eun Sang Yoo
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,3Department of Urology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Bum Soo Kim
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,3Department of Urology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Tae Gyun Kwon
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| |
Collapse
|
500
|
Despite the donor's age, human adipose-derived stem cells enhance the maturation and development rates of porcine oocytes in a co-culture system. Theriogenology 2018; 115:57-64. [DOI: 10.1016/j.theriogenology.2017.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
|