451
|
Langevin SM, Stone RA, Bunker CH, Lyons-Weiler MA, LaFramboise WA, Kelly L, Seethala RR, Grandis JR, Sobol RW, Taioli E, PhD MD. MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer 2011; 117:1454-62. [PMID: 21425146 PMCID: PMC3117118 DOI: 10.1002/cncr.25689] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 08/05/2010] [Accepted: 08/30/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND The overall 5-year survival rate of approximately 60% for head and neck cancer patients has remained essentially unchanged over the past 30 years. MicroRNA-137 (miR-137) plays an essential role in cell-cycle control at the G1/S-phase checkpoint. However, the aberrant miR-137 promoter methylation observed in squamous cell carcinoma of the head and neck (SCCHN) suggests a tumor-specific molecular defect that may contribute to disease progression. METHODS The goal of this study was to assess, in formalin-fixed, paraffin-embedded tumor tissue, the association between miR-137 promoter methylation and survival (both overall and disease free) and with prognostic factors including stage, tumor size, lymph node positivity, tumor grade, and surgical tumor margin positivity. RESULTS The promoter methylation status of miR-137 was ascertained by methylation-specific polymerase chain reaction and detected in 11 of 67 SCCHN patients (16.4%), with no significant differences according to site (oral cavity, pharynx, larynx). Methylation of the miR-137 promoter was significantly associated with overall survival (hazard ratio, 3.68; 95% confidence interval, 1.01-13.38) but not with disease-free survival or any of the prognostic factors evaluated. CONCLUSIONS The results of this study indicate that miR-137 is methylated in tumor tissue from pharyngeal and laryngeal squamous cancers, in addition to oral squamous cell carcinoma, and that miR-137 promoter methylation has potential utility as a prognostic marker for SCCHN.
Collapse
Affiliation(s)
- Scott M. Langevin
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Roslyn A. Stone
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Clareann H. Bunker
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Maureen A. Lyons-Weiler
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Clinical Genomics Facility, University of Pittsburgh, Pittsburgh, PA, USA
| | - William A. LaFramboise
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Clinical Genomics Facility, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lori Kelly
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Clinical Genomics Facility, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raja R. Seethala
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jennifer R. Grandis
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert W. Sobol
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | | | - MD PhD
- Department of Epidemiology and Biostatistics, SUNY Downstate, Brooklyn, NY, USA
| |
Collapse
|
452
|
Hummel R, Watson DI, Smith C, Kist J, Michael MZ, Haier J, Hussey DJ. Mir-148a improves response to chemotherapy in sensitive and resistant oesophageal adenocarcinoma and squamous cell carcinoma cells. J Gastrointest Surg 2011; 15:429-438. [PMID: 21246413 DOI: 10.1007/s11605-011-1418-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/05/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Response to chemotherapy varies widely in patients with advanced oesophageal cancer. We investigated the impact of manipulating certain microRNAs on response to cisplatin and 5-fluorouracil (5-FU) in oesophageal cancer cells. METHODS Cisplatin-/5-fluorouracil-resistant oesophageal squamous cell carcinoma (SCC) and adenocarcinoma (EAC) cell lines were established, and the impact of ectopic upregulation of miR-106a and miR-148a on response to both drugs was assessed. RESULTS The impact of miR-106a-upregulation was inconsistent. Upregulation was followed by reduced sensitivity to cisplatin in chemotherapy-sensitive EAC cells (cell survival, +8.7 ± 0.8%; p = 0.003) and an improved response to 5-FU in cisplatin-resistant EAC cells (cell survival, -6.4 ± 2.5%; p = 0.011). MiR-148a upregulation significantly increased sensitivity to chemotherapy in seven out of ten cell lines, represented by a decrease in cell viability of 22.6 ± 7.9% to 50.5 ± 10.6% after cisplatin (p ≤ 0.014) and 6.0 ± 0.8% to 15.0 ± 4.1% after 5-FU treatment (p ≤ 0.012). The only cell lines in which miR-148a upregulation had no effect were cisplatin-resistant EAC exposed to cisplatin and 5-FU-sensitive and 5-FU-resistant SCC cells exposed to 5-FU. CONCLUSION MiR-148a sensitized chemotherapy-sensitive oesophageal cancer cell lines to cisplatin and, to a lesser extent, to 5-flurouracil and attenuated resistance in chemotherapy-resistant variants. Further experimental and clinical studies to investigate the exact mechanisms involved are warranted.
Collapse
Affiliation(s)
- Richard Hummel
- Department of Surgery, Flinders University, Room 3D213, Flinders Medical Centre, 5042 Bedford Park, South Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
453
|
Chi YH, Semmes OJ, Jeang KT. A proteomic study of TAR-RNA binding protein (TRBP)-associated factors. Cell Biosci 2011; 1:9. [PMID: 21711701 PMCID: PMC3125213 DOI: 10.1186/2045-3701-1-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 02/25/2011] [Indexed: 12/24/2022] Open
Abstract
Background The human TAR RNA-binding protein, TRBP, was first identified and cloned based on its high affinity binding to the small hairpin trans-activation responsive (TAR) RNA of HIV-1. TRBP has more recently been found to be a constituent of the RNA-induced silencing complex (RISC) serving as a Dicer co-factor in the processing of the ~70 nucleotide pre-microRNAs(miRNAs) to 21-25 nucleotide mature miRNAs. Findings Using co-immunoprecipitation and protein-identification by mass spectrometry, we characterized intracellular proteins that complex with TRBP. These interacting proteins include those that have been described to act in protein synthesis, RNA modifications and processing, DNA transcription, and cell proliferation. Conclusions Our findings provide a proteome of factors that may cooperate with TRBP in activities such as miRNA processing and in RNA interference by the RISC complex.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | |
Collapse
|
454
|
Kong D, Li Y, Wang Z, Sarkar FH. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins? Cancers (Basel) 2011; 3:716-29. [PMID: 21643534 PMCID: PMC3106306 DOI: 10.3390/cancers30100716] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) are cells within a tumor that possess the capacity to self-renew and maintain tumor-initiating capacity through differentiation into the heterogeneous lineages of cancer cells that comprise the whole tumor. These tumor-initiating cells could provide a resource for cells that cause tumor recurrence after therapy. Although the cell origin of CSCs remains to be fully elucidated, mounting evidence has demonstrated that Epithelial-to-Mesenchymal Transition (EMT), induced by different factors, is associated with tumor aggressiveness and metastasis and these cells share molecular characteristics with CSCs, and thus are often called cancer stem-like cells or tumor-initiating cells. The acquisition of an EMT phenotype is a critical process for switching early stage carcinomas into invasive malignancies, which is often associated with the loss of epithelial differentiation and gain of mesenchymal phenotype. Recent studies have demonstrated that EMT plays a critical role not only in tumor metastasis but also in tumor recurrence and that it is tightly linked with the biology of cancer stem-like cells or cancer-initiating cells. Here we will succinctly summarize the state-of-our-knowledge regarding the molecular similarities between cancer stem-like cells or CSCs and EMT-phenotypic cells that are associated with tumor aggressiveness focusing on solid tumors.
Collapse
Affiliation(s)
- Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA; E-Mails: (D.K.); (Y.L.); (Z.W.)
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA; E-Mails: (D.K.); (Y.L.); (Z.W.)
| | - Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA; E-Mails: (D.K.); (Y.L.); (Z.W.)
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA; E-Mails: (D.K.); (Y.L.); (Z.W.)
| |
Collapse
|
455
|
Abstract
New DNA sequencing technologies have provided novel insights into eukaryotic genomes, epigenomes, and the transcriptome, including the identification of new non-coding RNA (ncRNA) classes such as promoter-associated RNAs and long RNAs. Moreover, it is now clear that up to 90% of eukaryotic genomes are transcribed, generating an extraordinary range of RNAs with no coding capacity. Taken together, these new discoveries are modifying the status quo in genomic science by demonstrating that the eukaryotic gene pool is divided into two distinct categories of transcripts: protein-coding and non-coding. The function of the majority of ncRNAs produced by the transcriptome is largely unknown; however, it is probable that many are associated with epigenetic mechanisms. The purpose of this review is to describe the most recent discoveries in the ncRNA field that implicate these molecules as key players in the epigenome.
Collapse
Affiliation(s)
- Fabrício F Costa
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Northwestern University's Feinberg School of Medicine, 2300 Children's Plaza, Chicago, IL, USA.
| |
Collapse
|
456
|
Itzhar N, Dessen P, Toujani S, Auger N, Preudhomme C, Richon C, Lazar V, Saada V, Bennaceur A, Bourhis JH, de Botton S, Bernheim A. Chromosomal minimal critical regions in therapy-related leukemia appear different from those of de novo leukemia by high-resolution aCGH. PLoS One 2011; 6:e16623. [PMID: 21339820 PMCID: PMC3038855 DOI: 10.1371/journal.pone.0016623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 01/07/2011] [Indexed: 12/25/2022] Open
Abstract
Therapy-related acute leukemia (t-AML), is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML). Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA) at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case) in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case). In primary leukemia with a previously "normal" karyotype, 18% exhibited a previously undetected CNA, whereas in the (few) t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs) were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40 kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1 Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML.
Collapse
Affiliation(s)
- Nathalie Itzhar
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Molecular Pathology, Villejuif, France
| | - Philippe Dessen
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Institut Gustave Roussy, Functional Genomics Unit, Institut Gustave Roussy, Villejuif, France
| | - Saloua Toujani
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
| | - Nathalie Auger
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Molecular Pathology, Villejuif, France
| | - Claude Preudhomme
- Department of Hematology, Centre de Biologie-Pathologie, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Catherine Richon
- Institut Gustave Roussy, Functional Genomics Unit, Institut Gustave Roussy, Villejuif, France
| | - Vladimir Lazar
- Molecular Pathology, Villejuif, France
- Institut Gustave Roussy, Functional Genomics Unit, Institut Gustave Roussy, Villejuif, France
| | - Véronique Saada
- Molecular Pathology, Villejuif, France
- Department of Hematology, Institut Gustave Roussy, Villejuif, France
| | - Anelyse Bennaceur
- Molecular Pathology, Villejuif, France
- Department of Hematology, Institut Gustave Roussy, Villejuif, France
| | | | | | - Alain Bernheim
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Molecular Pathology, Villejuif, France
- * E-mail:
| |
Collapse
|
457
|
Mazeh H, Mizrahi I, Halle D, Ilyayev N, Stojadinovic A, Trink B, Mitrani-Rosenbaum S, Roistacher M, Ariel I, Eid A, Freund HR, Nissan A. Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples. Thyroid 2011; 21:111-8. [PMID: 21275764 DOI: 10.1089/thy.2010.0356] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Although thyroid nodules are common and diagnosed in over 5% of the adult population, only 5% harbor malignancy. Patients with clinically suspicious thyroid nodules need to undergo fine-needle aspiration biopsy (FNAB). The main limitation of FNAB remains indeterminate cytopathology. Only 20%-30% of the indeterminate nodules harbor malignancy, and therefore up to 80% of patients undergo unnecessary thyroidectomy. The aim of this study was to identify and validate a panel of microRNAs (miRNAs) that could serve as a platform for an FNAB-based diagnostic for thyroid neoplasms. METHODS The study population included 27 consecutive patients undergoing total thyroidectomy for FNAB-based papillary thyroid cancer (n = 20) and benign disorders (n = 7). Aspiration biopsy was performed from the index lesion and from the opposite lobe normal tissue in all study patients at the time of operation. RNA was extracted from all aspiration biopsy samples. Quantitative polymerase chain reaction on a panel of previously selected miRNAs was performed. Polymerase chain reaction results were compared with final histopathology. miRNA from tumor tissues was amplified using the highest value of each miRNA expression in normal tissue as a threshold for malignancy detection. RESULTS Diagnostic characteristics were most favorable for mir-221 in differentiating benign from malignant thyroid pathology. mir-221 was overexpressed in 19 patients (p < 0.0001) with a sensitive yield of 95%. Specificity, negative and positive predictive value, and accuracy of the miRNA panel were 100%, 96%, 100%, and 98%, respectively. CONCLUSIONS miRNA quantification for differential diagnosis of thyroid neoplasms within aspiration biopsy samples is feasible and may improve the accuracy of FNAB cytology.
Collapse
Affiliation(s)
- Haggi Mazeh
- Department of Surgery, Hadassah-Hebrew University Medical Center , Mount Scopus, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
458
|
Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R, Foreman NK. Survey of MicroRNA expression in pediatric brain tumors. Pediatr Blood Cancer 2011; 56:211-6. [PMID: 21157891 DOI: 10.1002/pbc.22723] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/28/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND A better understanding of pediatric brain tumor biology is needed to assist in the development of less toxic therapies and to provide better markers for disease stratification. MicroRNAs (miRNA) may play a significant role in brain tumor biology. The present study provides an initial survey of miRNA expression in pediatric central nervous system (CNS) malignancies including atypical teratoid/rhabdoid tumor, ependymoma, glioblastoma, medulloblastoma, and pilocytic astrocytoma. PROCEDURE MicroRNA expression in pediatric brain tumors and normal tissue controls was examined by microarray. Three aberrantly expressed miRNAs were further studied in a larger cohort by quantitative real-time PCR (qRT-PCR). RESULTS MicroRNA-129, miR-142-5p, and miR-25 were differentially expressed in every pediatric brain tumor type compared to normal tissue controls as measured by microarray. When further examined by qRT-PCR, these miRNAs demonstrated differential expression that significantly correlated with the microarray findings. Distinctive miRNA expression profiles were also observed in the different pediatric brain tumor types. CONCLUSIONS MicroRNAs are differentially expressed between pediatric CNS neoplasms and normal tissue suggesting that they may play a significant role in oncogenesis. A greater understanding of aberrant miRNA expression in pediatric brain tumors may aid in the development of novel therapies. The characterization of tumor-specific miRNA signatures may aid in the discovery of biomarkers with diagnostic or prognostic utility.
Collapse
Affiliation(s)
- Diane K Birks
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado at Denver, Aurora, Colorado 80045, USA.
| | | | | | | | | | | |
Collapse
|
459
|
Deng Y, Deng H, Bi F, Liu J, Bemis LT, Norris D, Wang XJ, Zhang Q. MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines. Int J Biol Sci 2011; 7:133-7. [PMID: 21278922 PMCID: PMC3030148 DOI: 10.7150/ijbs.7.133] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 01/25/2011] [Indexed: 02/05/2023] Open
Abstract
Carboxyl-terminal binding protein 1 (CtBP1) is a transcriptional co-repressor that represses expression of various tumor suppressor genes. In the present study, we identified miR-137 as a potential regulator of CtBP1 expression in melanoma cells. Expression of miR-137 in melanoma cell lines was found to inversely correlate with CtBP1 levels. Target Scan predicted a putative site for miR-137 within the CtBP1 3' untranslated region (3'UTR) at nt 710-716, which is highly conserved across species. To explore the mechanism of miR-137 targeting CtBP1, we performed an Argonaute 2 (Ago2)-pull down assay, and miR-137 was identified in complex with CtBP1 mRNA. miR-137 suppressed CtBP1 3' UTR luciferase-reporter activity, and this effect was lost with deletion of the putative 3' UTR target-site. Consistent with the results of the reporter assay, ectopic expression of miR-137 reduced expression levels of CtBP1. Furthermore, expression of miR-137 increased the immediate downstream effectors of CtBP1, such as E-cadherin and Bax. The human miR-137 gene is located at chromosome 1p22, which has previously been determined to be a susceptive region for melanoma. This study suggests miR-137 may act as a tumor suppressor by directly targeting CtBP1 to inhibit epithelial-mesenchymal transition (EMT) and inducing apoptosis of melanoma cells, thus illustrating a functional link between miR-137 and CtBP1 in melanoma development.
Collapse
Affiliation(s)
- Yu Deng
- 1. Laboratory of Signal Transduction & Molecular Targeted Therapy, State Key Laboratory of Biotherapy/ Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
- 4. Department of Dermatology, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Hui Deng
- 2. Department of Dermatology, The Sixth People's Hospital of Shanghai, Shanghai Jiaotong University, Yishan Road 600, Shanghai, 200211, China
- 3. Department of Pathology, University of Colorado, Denver, Aurora, CO 80045, USA
- 4. Department of Dermatology, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Feng Bi
- 1. Laboratory of Signal Transduction & Molecular Targeted Therapy, State Key Laboratory of Biotherapy/ Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Jing Liu
- 4. Department of Dermatology, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Lynn T. Bemis
- 5. Department of Medicine, University of Colorado, Denver, Aurora, CO 80045, USA
| | - David Norris
- 4. Department of Dermatology, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Xiao-Jing Wang
- 3. Department of Pathology, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Qinghong Zhang
- 3. Department of Pathology, University of Colorado, Denver, Aurora, CO 80045, USA
- 4. Department of Dermatology, University of Colorado, Denver, Aurora, CO 80045, USA
| |
Collapse
|
460
|
Au Yeung CL, Tsang TY, Yau PL, Kwok TT. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene 2011; 30:2401-10. [PMID: 21242962 DOI: 10.1038/onc.2010.613] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deregulation of microRNA (miRNA or miR) expression in human cervical cancer is associated frequently with human papillomavirus (HPV) integration. miR-23b is often downregulated in HPV-associated cervical cancer. Interestingly, urokinase-type plasminogen activator (uPA), the miR-23b target, is detected in cervical cancer, but not in normal cervical tissues. Thus, the importance of miR-23b and uPA in HPV-associated cervical cancer development is investigated. In this study, the high-risk subtype HPV-16 E6 oncoprotein was found to decrease the expression of miR-23b, increase the expression of uPA, and thus induce the migration of human cervical carcinoma SiHa and CaSki cells. uPA is the target gene for miR-23b as the miR repressed uPA expression and interacted with the 3'-untranslated region of uPA mRNA. The tumor suppressor p53 is known to be inactivated by HPV-16 E6. A consensus p53 binding site is detected in the promoter region of miR-23b, whereas p53 trans-activated and also interacted with the miR's promoter. Therefore, p53 is believed to mediate the HPV-16 E6 downregulation of miR-23b. From the above, miR-23b/uPA are confirmed to be involved in HPV-16 E6-associated cervical cancer development.
Collapse
Affiliation(s)
- C L Au Yeung
- School of Biomedical Sciences, Faculty of Medicine, Science Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
461
|
Abstract
In the last 20 years, it has become clear that developmental genes and their regulators, noncoding RNAs including microRNAs and long-noncoding RNAs, within signaling pathways play a critical role in the pathogenesis of cancer. Many of these pathways were first identified in genetic screens in Drosophila and other lower organisms. Mammalian orthologs were subsequently identified and genes within the pathways cloned and found to regulate cell growth. Genes and pathways expressed during embryonic development, including the Notch, Wnt/β-Catenin, TGF-β/BMP, Shh/Patched, and Hippo pathways are mutated, lost, or aberrantly regulated in a wide variety of human cancers, including skin, breast, blood, and brain cancers, including medulloblastoma. These biochemical pathways affect cell fate determination, axis formation, and patterning during development and regulate tissue homeostasis and regeneration in adults. Medulloblastoma, the most common malignant nervous system tumor in childhood, are thought to arise from disruptions in cerebellar development [reviewed by Marino, S. (2005)]. Defining the extracellular cues and intracellular signaling pathways that control cerebellar neurogenesis, especially granule cell progenitor (GCP) proliferation and differentiation has been useful for developing models to unravel the mechanisms underlying medulloblastoma formation and growth. In this chapter, we will review the development of the cerebellar cortex, highlighting signaling pathways of potential relevance to tumorigenesis.
Collapse
Affiliation(s)
- Martine F Roussel
- Department of Tumor Cell Biology and Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
462
|
Hummel R, Hussey DJ, Michael MZ, Haier J, Bruewer M, Senninger N, Watson DI. MiRNAs and their association with locoregional staging and survival following surgery for esophageal carcinoma. Ann Surg Oncol 2011; 18:253-260. [PMID: 20628822 DOI: 10.1245/s10434-010-1213-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND Prognostic and staging information for esophageal cancer impacts clinical decision making. miRNAs, a newly discovered class of biomarkers and their expression might add additional information relevant to this. In this study we evaluated the expression of selected miRNAs and their relationship to tumor stage and survival in patients with locally advanced tumors following esophagectomy. MATERIALS AND METHODS A total of 43 individuals undergoing esophagectomy (without neoadjuvant therapy) for locally advanced but not metastatic (pT2/3; pN0/1) disease (22 adenocarcinoma [EAC], 21 squamous cell carcinoma [SCC]) were included in this study. Perioperative clinical and survival data were collected and managed on a database. The expression of miR-21, miR-106a, miR-148a, miR-205 in formalin-fixed paraffin-embedded specimens was evaluated by TaqMan qPCR assays. Expression was compared with clinicopathological features of the cancers and outcome. RESULTS In EAC, miR-148a expression levels were inversely associated with cancer differentiation. miR-21 expression levels were higher in SCC if distant lymph node metastases were present. miR-148a levels were lower when EAC was more proximally located, and miR-21 levels were lower when SCC was more proximal. miR-106a and miR-148a were lower in patients with SCC who developed recurrent disease or had a tumor-related death. CONCLUSIONS In patients with locally advanced esophageal squamous cell carcinoma, but not adenocarcinoma, alterations in the expression of miR-21 correlate with tumor location and lymph node status. Furthermore, miR-106a and miR-148a expression correlates with disease recurrence and tumor-related mortality. miRNA markers might inform the initial assessment of these patients, and predict those at higher risk of postsurgical recurrence.
Collapse
Affiliation(s)
- Richard Hummel
- Department of Surgery, Flinders University, Bedford Park, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
463
|
Harring TR, Nguyen NTN, Goss JA, O'Mahony CA. Treatment of liver metastases in patients with neuroendocrine tumors: a comprehensive review. Int J Hepatol 2011; 2011:154541. [PMID: 22013537 PMCID: PMC3195553 DOI: 10.4061/2011/154541] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/10/2011] [Indexed: 12/17/2022] Open
Abstract
Patients diagnosed with Neuroendocrine Tumors (NET) often are also diagnosed with Neuroendocrine Liver Metastases (NLM) during the course of their disease. NLM can cause significant morbidity and mortality, oftentimes much more than compared to patients with NET. Treatment options have been limited in the past, focusing on surgical resections, for which only a minority of patients are candidates. However, developments of new treatment modalities have progressed rapidly and patients with NLM now have significantly more options, including surgical-directed therapies; liver-directed therapies; and nonsurgical, non-liver-directed therapies. This review provides information about the roles of hepatic resection, orthotopic liver resection, radiofrequency ablation, hepatic artery embolization and hepatic artery chemoembolization, hepatic artery radioembolization and selective internal radiation therapy, peptide receptor radionuclide therapy, systemic chemotherapy, biotherapies including somatostatin analogs and interferon-α, vascular endothelial growth factor and mTOR targets, and microRNA-regulated pathways. Given these new options, the clinician can tailor therapy specific to the patient diagnosed with NLM, thereby giving the patient the best possible chance of prolonged survival.
Collapse
Affiliation(s)
- Theresa R. Harring
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Suite No. 404D, Houston, TX 77030, USA
| | - N. Thao N. Nguyen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Suite No. 404D, Houston, TX 77030, USA
| | - John A. Goss
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Suite No. 404D, Houston, TX 77030, USA,Division of Abdominal Transplantation, The Liver Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, 1709 Dryden Street, Suite No. 1500, Houston, TX 77030, USA
| | - Christine A. O'Mahony
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Suite No. 404D, Houston, TX 77030, USA,Division of Abdominal Transplantation, The Liver Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, 1709 Dryden Street, Suite No. 1500, Houston, TX 77030, USA,*Christine A. O'Mahony:
| |
Collapse
|
464
|
|
465
|
Sandberg AA, Meloni-Ehrig AM. Cytogenetics and genetics of human cancer: methods and accomplishments. CANCER GENETICS AND CYTOGENETICS 2010; 203:102-126. [DOI: 10.1016/j.cancergencyto.2010.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 09/22/2010] [Accepted: 10/07/2010] [Indexed: 12/31/2022]
|
466
|
Cellular context in epigenetics: Quantitative multicolor imaging and automated per-cell analysis of miRNAs and their putative targets. Methods 2010; 52:271-80. [DOI: 10.1016/j.ymeth.2010.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 11/22/2022] Open
|
467
|
Chan KK, Liu Z, Xie Z, Chiu M, Wang H, Chen P, Dunkerson S, Chiu M, Liu S, Triantafillou G, Garzon R, Croce CM, Byrd JC, Muthusamy N, Marcucci G. A novel ultrasensitive hybridization-based ELISA method for 2-methoxyphosphorothiolate microRNAs and its in vitro and in vivo application. AAPS J 2010; 12:556-68. [PMID: 20625866 PMCID: PMC2976995 DOI: 10.1208/s12248-010-9214-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/09/2010] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that bind to target mRNAs and regulate their expression. Recent evidence has indicated the involvement of miRNAs in human malignancies. It has been suggested that aberrantly down-regulated or up-regulated miRNAs may be replaced with synthetic miRNAs or antagomiRNAs, respectively, and restore normal cell functions. As therapeutic development requires analytical support, we developed and validated an ultrasensitive and selective assay for quantification of synthetic 2'-methoxyphosphorothiolate-miRNA in mouse plasma and cell lysate for the first time. The method is based on a hybridization-ligation fluorescence enzyme-linked immunosorbent assay and has provided a linear dynamic range of 10-1,000,000 pM for three synthetic miRNAs both singly and in a mixture. The intra- and inter-day coefficients of variation were <20% and the accuracy values nearly 100%. Using this assay, we performed pharmacokinetic studies of three synthetic miRNAs in mice treated with a single i.v. bolus dose of 7.5 mg kg⁻¹. The 2-methoxyphosphorothiolate-miRNAs reached peak concentrations in the μM and nM ranges in plasma and bone marrow, respectively, and remained measurable at 24 h. These concentrations are in a range that shows biological activities. We conclude that this method provides a general and valuable tool for the pharmacologic study and clinical development of synthetic miRNAs.
Collapse
|
468
|
Xu L, Wang F, Xu XF, Mo WH, Xia YJ, Wan R, Wang XP, Guo CY. Down-regulation of miR-212 expression by DNA hypermethylation in human gastric cancer cells. Med Oncol 2010; 28 Suppl 1:S189-96. [PMID: 21053104 DOI: 10.1007/s12032-010-9691-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/16/2010] [Indexed: 02/07/2023]
Abstract
There has been few report discussing the expression and function of miR-212 in gastric cancer (GC). The aim of this pilot study was to investigate the expression of miR-212 in both gastric cancer tissues and gastric cancer cells and further explores the possible reasons for this change and the impact on the development of gastric cancer. qRT-PCR was used to detect the expression of miR-212 in primary GC tissues, adjacent normal tissues, gastric cancer cell lines BGC-823, SGC-7901, MKN-45, and normal gastric mucosa cell line GES. The expression of miR-212 was evaluated before and after treatment with methylation inhibitor-5-Aza-2'-deoxycitidine (5-Aza-dC), finally anti-miRNA and dual luciferase reporter assay were used to prove that MYC is a target gene of miR-212. The results showed that a significant reduction of miR-212 expression in GC tissues was observed compared to that in normal tissues (P = 0.002). At the same time, miR-212 expression level in normal gastric mucosa cell line GES was higher than that of in gastric cancer cell lines BGC-823, SGC-7901, and MKN-45 (P = 0.015, 0.008, 0.044, respectively). Computer sequence analysis showed the hypermethylation of CpG islands(CPI) in the promoter regions of miR-212 led to the lower expression of miR-212 in gastric cell strains (BGC-823 and SGC-7901). MiR-212 expression was significantly recovered after treatment with methylation inhibitor 5-Aza-dC (P = 0.016, 0.000, 0.015, respectively). Then, the results of AMOs transfection and dual luciferase reporter assay showed that Myc is a target of miR-212, which will be helpful to verify the function of miR-212 in carcinogenesis. The conclusion could be deduced from the study that decreased expression of miR-212 may be due to hypermethylation of CPI in gastric cancer cells, and miR-212 might act on the progression of gastric cancer through the potential target gene Myc.
Collapse
Affiliation(s)
- Ling Xu
- Department of Gastroenterology, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | | | | | | | | | | | | | | |
Collapse
|
469
|
Wang XC, Tian LL, Wu HL, Jiang XY, Du LQ, Zhang H, Wang YY, Wu HY, Li DG, She Y, Liu QF, Fan FY, Meng AM. Expression of miRNA-130a in nonsmall cell lung cancer. Am J Med Sci 2010; 340:385-8. [PMID: 20625274 DOI: 10.1097/maj.0b013e3181e892a0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs are short regulatory RNAs that negatively modulate gene expression at the posttranscriptional level and are deeply involved in the pathogenesis of several types of cancer. The miRNA-130a has been shown to play a role in antagonizing the inhibitory effects of GAX on endothelial cell proliferation, migration and tube formation, and antagonizing the inhibitory effects of HoxA5 on tube formation in vitro. Here the authors show, for the first time, that miRNA-130a expression is increased in nonsmall cell lung cancer (NSCLC) tissues. Statistical analysis showed that overexpression of miRNA-130a was strongly associated with lymph node metastasis, stage of tumor node metastasis classification and poor prognosis. Moreover, there was a significant difference in miRNA-130a expression levels between smoking and nonsmoking patients. Multivariate Cox regression analysis showed that miRNA-130a was an independent prognostic factor for patients with NSCLC. Together, these data suggest that miRNA-130a may comprise a potential novel prognostic marker for this disease.
Collapse
Affiliation(s)
- Xiao-Chun Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
470
|
Verduci L, Simili M, Rizzo M, Mercatanti A, Evangelista M, Mariani L, Rainaldi G, Pitto L. MicroRNA (miRNA)-mediated interaction between leukemia/lymphoma-related factor (LRF) and alternative splicing factor/splicing factor 2 (ASF/SF2) affects mouse embryonic fibroblast senescence and apoptosis. J Biol Chem 2010; 285:39551-63. [PMID: 20923760 DOI: 10.1074/jbc.m110.114736] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Leukemia/lymphoma-related factor (LRF) is a transcriptional repressor, which by recruiting histone deacetylases specifically represses p19/ARF expression, thus behaving as an oncogene. Conversely, in mouse embryonic fibroblasts (MEF), LRF inhibition causes aberrant p19ARF up-regulation resulting in proliferative defects and premature senescence. We have recently shown that LRF is controlled by microRNAs. Here we show that LRF acts on MEF proliferation and senescence/apoptosis by repressing miR-28 and miR-505, revealing a regulatory circuit where microRNAs (miRNAs) work both upstream and downstream of LRF. By analyzing miRNA expression profiles of MEF transfected with LRF-specific short interfering RNAs, we found that miR-28 and miR-505 are modulated by LRF. Both miRNAs are predicted to target alternative splicing factor/splicing factor 2 (ASF/SF2), a serine/arginine protein essential for cell viability. In vertebrates, loss or inactivation of ASF/SF2 may result in genomic instability and induce G(2) cell cycle arrest and apoptosis. We showed that miR-28 and miR-505 modulate ASF/SF2 by directly binding ASF/SF2 3'-UTR. Decrease in LRF causes a decrease in ASF/SF2, which depends on up-regulation of miR-28 and miR-505. Alteration of each of the members of the LRF/miR-28/miR-505/ASF/SF2 axis affects MEF proliferation and the number of senescent and apoptotic cells. Consistently, the axis is coordinately modulated as cell senescence increases with passages in MEF culture. In conclusion, we show that LRF-dependent miRNAs miR-28 and miR-505 control MEF proliferation and survival by targeting ASF/SF2 and suggest a central role of LRF-related miRNAs, in addition to the role of LRF-dependent p53 control, in cellular homeostasis.
Collapse
Affiliation(s)
- Lorena Verduci
- Laboratory of Gene and Molecular Therapy, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
471
|
Manne U, Shanmugam C, Bovell L, Katkoori VR, Bumpers HL. miRNAs as biomarkers for management of patients with colorectal cancer. Biomark Med 2010; 4:761-70. [PMID: 20945991 PMCID: PMC3078806 DOI: 10.2217/bmm.10.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
miRNAs serve as micromanagers, negatively regulating gene expression. Since altered miRNA expression is implicated in the pathobiology of various cancers, including colorectal cancers (CRCs), these molecules serve as potential therapeutic targets. Manipulation of miRNAs may offer an alternative therapy for chemo- and radio-resistant CRCs. For CRC patients, miRNA expression patterns can be used for diagnosis, and to predict prognosis and efficacy of therapy. This article describes the methodological approaches for miRNA measurement, their function in the pathobiology of CRCs and their potential clinical utility.
Collapse
Affiliation(s)
- Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-7331, USA.
| | | | | | | | | |
Collapse
|
472
|
Pezacki JP, Singaravelu R, Lyn RK. Host-virus interactions during hepatitis C virus infection: a complex and dynamic molecular biosystem. MOLECULAR BIOSYSTEMS 2010; 6:1131-42. [PMID: 20549003 DOI: 10.1039/b924668c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hepatitis C virus (HCV) is a global health issue with no vaccine available and limited clinical treatment options. Like other obligate parasites, HCV requires host cellular components of an infected individual to propagate. These host-virus interactions during HCV infection are complex and dynamic and involve the hijacking of host cell environments, enzymes and pathways. Understanding this unique molecular biosystem has the potential to yield new and exciting strategies for therapeutic intervention. Advances in genomics and proteomics have opened up new possibilities for the rapid measurement of global changes at the transcriptional and translational levels during infection. However, these techniques only yield snapshots of host-virus interactions during HCV infection. Other new methods that involve the imaging of biomolecular interactions during HCV infection are required to identify key interactions that may be transient and dynamic. Herein we highlight systems biology based strategies that have helped to identify key host-virus interactions during HCV replication and infection. Novel biophysical tools are also highlighted for identification and visualization of activities and interactions between HCV and its host hepatocyte. As some of these methods mature, we expect them to pave the way forward for further exploration of this complex biosystem and elucidation of mechanisms for HCV pathogenesis and carcinogenesis.
Collapse
Affiliation(s)
- John Paul Pezacki
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
473
|
Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, Chopp M, Zhang ZG. MicroRNA-21 protects neurons from ischemic death. FEBS J 2010; 277:4299-307. [PMID: 20840605 DOI: 10.1111/j.1742-4658.2010.07818.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MicroRNAs are small RNAs that attenuate protein expression by complementary binding to the 3'-UTR of a target mRNA. Currently, very little is known about microRNAs after cerebral ischemia. In particular, microRNA-21 (miR-21) is a strong antiapoptotic factor in some biological systems. We investigated the role of miR-21 after stroke in the rat. We employed in situ hybridization and laser capture microdissection in combination with real-time RT-PCR to investigate the expression of miR-21 after stroke. In situ hybridization revealed that miR-21 expression was upregulated in neurons of the ischemic boundary zone, and quantitative real-time RT-PCR analysis revealed that stroke increased mature miR-21 levels by approximately threefold in neurons isolated from the ischemic boundary zone by laser capture microdissection as compared with homologous contralateral neurons 2 days (n = 4; P < 0.05) and 7 days (n = 3; P < 0.05) after stroke. In vitro, overexpression of miR-21 in cultured cortical neurons substantially suppressed oxygen and glucose deprivation-induced apoptotic cell death, whereas attenuation of endogenous miR-21 by antisense inhibition exacerbated cell death after oxygen and glucose deprivation. Moreover, overexpression of miR-21 in neurons significantly reduced FASLG levels, and introduction of an miR-21 mimic into 293-HEK cells substantially reduced luciferase activity in a reporter system containing the 3'-UTR of Faslg. Our data indicate that overexpression of miR-21 protects against ischemic neuronal death, and that downregulation of FASLG, a tumor necrosis factor-α family member and an important cell death-inducing ligand whose gene is targeted by miR-21, probably mediates the neuroprotective effect. These novel findings suggest that miR-21 may be an attractive therapeutic molecule for treatment of stroke.
Collapse
Affiliation(s)
- Ben Buller
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
474
|
Nuovo GJ. In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative targets. Methods 2010; 52:307-15. [PMID: 20723602 DOI: 10.1016/j.ymeth.2010.08.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/30/2022] Open
Abstract
This manuscript details a protocol for the co-localization of a microRNA and its putative protein target in paraffin embedded formalin fixed tissues. The key variables for the first step, microRNA in situ hybridization, includes probe concentration (1-2 pmol/μl), locked nucleic acid (LNA) modified probes, protease digestion (pepsin 1.3mg/ml), and a low stringency wash. Key variables for the subsequent immunohistochemical step are the concentration of the primary antibody, proper pretreatment (none, proteinase K, or antigen retrieval), and use of a highly sensitive detection system. A computer based system can convert the colorimetric signals (blue chromogen (NBT/BCIP) for the microRNA, and either a red (fast red) or brown (DAB) chromogen for the protein) to distinct fluorescent-based colors, and then mix them to determine if a given cell has the microRNA and protein of interest. Co-expression of a microRNA and its putative target in tissue sections offers physiologic corroboration of solution-based methods that a given microRNA may be regulating a specific protein.
Collapse
Affiliation(s)
- Gerard J Nuovo
- The Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, OH, USA.
| |
Collapse
|
475
|
Scarola M, Schoeftner S, Schneider C, Benetti R. miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res 2010; 70:6925-33. [PMID: 20713524 DOI: 10.1158/0008-5472.can-10-0141] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations of retinoblastoma family (Rb) proteins drive tumorigenesis by overcoming barriers to cellular proliferation. Consequently, factors modulating Rb function are of great clinical import. Here, we show that miR-335 is differentially expressed in human cancer cells and that it tightly regulates the expression of Rb1 (pRb/p105) by specifically targeting a conserved sequence motif in its 3' untranslated region. We found that by altering Rb1 (pRb/p105) levels, miR-335 activates the p53 tumor suppressor pathway to limit cell proliferation and neoplastic cell transformation. DNA damage elicited an increase in miR-335 expression in a p53-dependent manner. miR-335 and p53 cooperated in a positive feedback loop to drive cell cycle arrest. Together, these results indicate that miR-335 helps control proliferation by balancing the activities of the Rb and p53 tumor suppressor pathways. Further, they establish that miR-335 activation plays an important role in the induction of p53-dependent cell cycle arrest after DNA damage.
Collapse
Affiliation(s)
- Michele Scarola
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Cancer Epigenetics Program, Trieste, Italy
| | | | | | | |
Collapse
|
476
|
Guan Y, Mizoguchi M, Yoshimoto K, Hata N, Shono T, Suzuki SO, Araki Y, Kuga D, Nakamizo A, Amano T, Ma X, Hayashi K, Sasaki T. MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res 2010; 16:4289-97. [PMID: 20601442 DOI: 10.1158/1078-0432.ccr-10-0207] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE MicroRNAs (miRNA) are short noncoding RNAs that can play critical roles in diverse biological processes. They are implicated in tumorigenesis and function both as tumor suppressors and as oncogenes. The clinical significance of miRNA expression profiles in malignant gliomas remains unclear. EXPERIMENTAL DESIGN In this study, we examined the expression levels of 365 mature human miRNAs in 12 malignant gliomas, including 8 glioblastomas and 4 anaplastic astrocytomas, using TaqMan real-time quantitative PCR arrays. A validation study was done to corroborate a subset of the results, including expression levels of miR-196a, -196b, -21, and -15b, by analyzing 92 malignant gliomas by conventional real-time PCR. We modeled the relationship between the expression levels of these miRNAs and the survival rate of 39 glioblastoma patients by Kaplan-Meier method and multivariate analysis. RESULTS Expression profiles in glioblastomas and anaplastic astrocytomas suggested that 16 miRNAs were candidate markers associated with the malignant progression of gliomas. Among them, miR-196a showed the most significant difference (P = 0.0038), with miR-196b also having a high significance (P = 0.0371). Both miRNAs showed increased expression levels in glioblastomas relative to both anaplastic astrocytomas and normal brains in the validation study. Furthermore, patients with high miR-196 expression levels showed significantly poorer survival by the Kaplan-Meier method (P = 0.0073). Multivariate analysis showed that miR-196 expression levels were an independent predictor of overall survival in all 39 glioblastoma patients (P = 0.021; hazard ratio, 2.81). CONCLUSIONS Our results suggest that miR-196 may play a role in the malignant progression of gliomas and may be a prognostic predictor in glioblastomas.
Collapse
Affiliation(s)
- Yanlei Guan
- Department of Neurosurgery and Neuropathology, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
477
|
Slaby O, Jancovicova J, Lakomy R, Svoboda M, Poprach A, Fabian P, Kren L, Michalek J, Vyzula R. Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:90. [PMID: 20609231 PMCID: PMC2907341 DOI: 10.1186/1756-9966-29-90] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/07/2010] [Indexed: 01/05/2023]
Abstract
BACKGROUND MicroRNAs are endogenously expressed regulatory noncoding RNAs. Previous studies have shown altered expression levels of several microRNAs in renal cell carcinoma. METHODS We examined the expression levels of selected microRNAs in 38 samples of conventional renal cell carcinoma (RCC) and 10 samples of non-tumoral renal parenchyma using TaqMan real-time PCR method. RESULTS The expression levels of miRNA-155 (p < 0.0001), miRNA-210 (p < 0.0001), miRNA-106a (p < 0.0001) and miRNA-106b (p < 0.0001) were significantly over-expressed in tumor tissue, whereas the expression of miRNA-141 (p < 0.0001) and miRNA-200c (p < 0.0001) were significantly decreased in RCC samples. There were no significant differences between expression levels of miRNA-182 and miRNA-200b in tumor samples and renal parenchyma. Our data suggest that expression levels of miRNA-106b are significantly lower in tumors of patients who developed metastasis (p = 0.030) and miR-106b is a potential predictive marker of early metastasis after nephrectomy in RCC patients (long-rank p = 0.032). CONCLUSIONS We have confirmed previous observations obtained by miRNA microarray analysis using standardized real-time PCR method. For the first time, we have identified a prognostic significance of miRNA-106b, which, after validation on a larger group of patients, maybe useful as a promising biomarker in patients with RCC.
Collapse
Affiliation(s)
- Ondrej Slaby
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
478
|
Wurz K, Garcia RL, Goff BA, Mitchell PS, Lee JH, Tewari M, Swisher EM. MiR-221 and MiR-222 alterations in sporadic ovarian carcinoma: Relationship to CDKN1B, CDKNIC and overall survival. Genes Chromosomes Cancer 2010; 49:577-84. [PMID: 20461750 PMCID: PMC2869465 DOI: 10.1002/gcc.20768] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs are often aberrantly expressed in human neoplasms and are postulated to play a role in neoplastic initiation and progression. miR-221 and miR-222 negatively regulate expression of CDKN1B (p27) and CDKN1C (p57), two cell cycle regulators expressed in ovarian surface epithelium and down-regulated in ovarian carcinomas. We characterized miR-221 and miR-222 expression in 49 sporadic high grade ovarian carcinomas and determined whether somatic mutation or epigenetic alterations explained the differences in expression of these miRNAs. We correlated these findings with protein expression of CDKN1B and CDKN1C as assessed by immunohistochemistry. Expression of miR-221 and miR-222 were closely correlated with each other (P = 0.0001). Interestingly, a lower ratio of miR-221 to miR-222 expression was significantly correlated with worse overall survival (P = 0.01) and remained a significant predictor of overall survival in multivariate analysis using the covariate adequacy of surgical cytoreduction (P = 0.03). Higher miR-222 and miR-221 expression were significantly associated with decreased CDKN1C expression (P = 0.009 and 0.01). In contrast, CDKN1B expression was not associated with miR-221 or miR-222 expression. Neither somatic mutations nor methylation of the studied region explained the alterations in miR-221 and miR-222 expression in most carcinomas.
Collapse
Affiliation(s)
- Kaitlyn Wurz
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Rochelle L. Garcia
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Barbara A. Goff
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA
| | | | - Jun Haeng Lee
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Muneesh Tewari
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Elizabeth M. Swisher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
479
|
Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 2010; 52:60-70. [PMID: 20578129 DOI: 10.1002/hep.23660] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED The hepatitis B virus (HBV) X protein has been implicated as a potential trigger of the epigenetic modifications of some genes during hepatocarcinogenesis, but the underlying mechanisms remain unknown. MicroRNAs (miRNAs), which are noncoding RNAs that regulate gene expression, are involved in diverse biological functions and in carcinogenesis. In this study, we investigated whether some miRNAs are aberrantly expressed and involved in the regulation of the abnormal DNA methylation status in HBV-related hepatocellular carcinoma (HCC). Our results showed that the expression of microRNA-152 (miR-152) was frequently down-regulated in HBV-related HCC tissues in comparison with adjacent noncancerous hepatic tissues and was inversely correlated to DNA methyltransferase 1 (DNMT1) messenger RNA (mRNA) expression in HBV-related HCCs. The forced expression of miR-152 in liver cell lines resulted in a marked reduction of the expression of DNMT1 at both the mRNA and protein levels by directly targeting the 3' untranslated regions of DNMT1. This in turn led to a decrease in global DNA methylation, whereas inhibition of miR-152 caused global DNA hypermethylation and increased the methylation levels of two tumor suppressor genes, glutathione S-transferase pi 1 (GSTP1) and E-cadherin 1 (CDH1). CONCLUSION Our findings suggest that miR-152 is frequently down-regulated and regulates DNMT1 in HBV-related HCC. These findings support a tumor-suppressive role of miR-152 in the epigenetic aberration of HBV-related HCC and the potential development of miRNA-based targeted approaches for the treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Medical Genetics, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
480
|
Tang X, Zhang Y, Tucker L, Ramratnam B. Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization. Nucleic Acids Res 2010; 38:6610-9. [PMID: 20554852 PMCID: PMC2965249 DOI: 10.1093/nar/gkq547] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The RNaseIII enzyme Drosha plays a pivotal role in microRNA (miRNA) biogenesis by cleaving primary miRNA transcripts to generate precursor miRNA in the nucleus. The RNA binding and enzymatic domains of Drosha have been characterized and are on its C-terminus. Its N-terminus harbors a nuclear localization signal. Using a series of truncated Drosha constructs, we narrowed down the segment responsible for nuclear translocation to a domain between aa 270 and aa 390. We further identified two phosphorylation sites at Serine300 (S300) and Serine302 (S302) by mass spectrometric analysis. Double mutations of S→A at S300 and S302 completely disrupted nuclear localization. Single mutation of S→A at S300 or S302, however, had no effect on nuclear localization indicating that phosphorylation at either site is sufficient to locate Drosha to the nucleus. Furthermore, mimicking phosphorylation status by mutating S→E at S300 and/or S→D at S302 restored nuclear localization. Our findings add a further layer of complexity to the molecular anatomy of Drosha as it relates to miRNA biogenesis.
Collapse
Affiliation(s)
- Xiaoli Tang
- Laboratory of Retrovirology, Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | |
Collapse
|
481
|
Doghman M, Wakil AEL, Cardinaud B, Thomas E, Wang J, Zhao W, Peralta-Del Valle MHC, Figueiredo BC, Zambetti GP, Lalli E. Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res 2010; 70:4666-75. [PMID: 20484036 PMCID: PMC2880211 DOI: 10.1158/0008-5472.can-09-3970] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) act at the posttranscriptional level to control gene expression in virtually every biological process, including oncogenesis. Here, we report the identification of a set of miRNAs that are differentially regulated in childhood adrenocortical tumors (ACT), including miR-99a and miR-100. Functional analysis of these miRNAs in ACT cell lines showed that they coordinately regulate expression of the insulin-like growth factor-mammalian target of rapamycin (mTOR)-raptor signaling pathway through binding sites in their 3'-untranslated regions. In these cells, the active Ser(2448)-phosphorylated form of mTOR is present only in mitotic cells in association with the mitotic spindle and midbody in the G(2)-M phases of the cell cycle. Pharmacologic inhibition of mTOR signaling by everolimus greatly reduces tumor cell growth in vitro and in vivo. Our results reveal a novel mechanism of regulation of mTOR signaling by miRNAs, and they lay the groundwork for clinical evaluation of drugs inhibiting the mTOR pathway for treatment of adrenocortical cancer.
Collapse
Affiliation(s)
- Mabrouka Doghman
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 6097
- Université de Nice - Sophia Antipolis, Valbonne, France
| | - Abeer EL Wakil
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 6097
- Université de Nice - Sophia Antipolis, Valbonne, France
| | - Bruno Cardinaud
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 6097
- Université de Nice - Sophia Antipolis, Valbonne, France
| | - Emilie Thomas
- Programme Carte d’Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Jinling Wang
- Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Wei Zhao
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis TN, USA
| | | | - Bonald C. Figueiredo
- Instituto de Pesquisa Pelé Pequeno Principe and Faculdades Pequeno Principe, Curitiba PR, Brazil
| | - Gerard P. Zambetti
- Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 6097
- Université de Nice - Sophia Antipolis, Valbonne, France
| |
Collapse
|
482
|
Abstract
A class of small, non-coding transcripts called microRNAs (miRNAs) that play a major role in post-transcriptional gene regulation has recently emerged and become the focus of intense research. MicroRNAs are abundant in the nervous system, where they have key roles in development and are likely to be important mediators of plasticity. A highly conserved pathway of miRNA biogenesis is closely linked to the transport and translatability of mRNAs in neurons. MicroRNAs have been shown to modulate programmed cell death during development. Although there are nearly 750 known human miRNA sequences, each of only approximately 20-25 nucleotides in length that bind to multiple mRNA targets, the accurate prediction of miRNA targets seems to lie just beyond our grasp. Nevertheless, the identification of such targets promises to provide new insights into many facets of neuronal function. In this review, we briefly describe miRNA biogenesis and the principle approaches for studying the function of miRNAs and potential application of miRNAs as biomarkers, diagnostic targets, and potential therapeutic tools of human diseases in general and neurological disorders in particular.
Collapse
|
483
|
Di Lisio L, Gómez-López G, Sánchez-Beato M, Gómez-Abad C, Rodríguez ME, Villuendas R, Ferreira BI, Carro A, Rico D, Mollejo M, Martínez MA, Menárguez J, Díaz-Alderete A, Gil J, Cigudosa JC, Pisano DG, Piris MA, Martínez N. Mantle cell lymphoma: transcriptional regulation by microRNAs. Leukemia 2010; 24:1335-42. [PMID: 20485376 DOI: 10.1038/leu.2010.91] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mantle cell lymphoma (MCL) pathogenesis is still partially unexplained. We investigate the importance of microRNA (miRNA) expression as an additional feature that influences MCL pathway deregulation and may be useful for predicting patient outcome. Twenty-three MCL samples, eight cell lines and appropriate controls were screened for their miRNAs and gene expression profiles and DNA copy-number changes. MCL patients exhibit a characteristic signature that includes 117 miRNA (false discovery rate <0.05). Combined analysis of miRNAs and the gene expression profile, paired with bioinformatics target prediction (miRBase and TargetScan), revealed a series of genes and pathways potentially targeted by a small number of miRNAs, including essential pathways for lymphoma survival such as CD40, mitogen-activated protein kinase and NF-kappaB. Functional validation in MCL cell lines demonstrated NF-kappaB subunit nuclear translocation to be regulated by the expression of miR-26a. The expression of 12 selected miRNAs was studied by quantitative PCR in an additional series of 54 MCL cases. Univariate analysis identified a single miRNA, miR-20b, whose lack of expression distinguished cases with a survival probability of 56% at 60 months. In summary, using a novel bioinformatics approach, this study identified miRNA changes that contribute to MCL pathogenesis and markers of potential utility in MCL diagnosis and clinical prognostication.
Collapse
Affiliation(s)
- L Di Lisio
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer 2010; 102:1244-53. [PMID: 20354523 PMCID: PMC2856011 DOI: 10.1038/sj.bjc.6605634] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Kallikrein-related peptidases (KLKs) are a family of serine proteases that have been shown to be dysregulated in several malignancies including ovarian cancer. The control of kallikrein genes and their physiological function in cancer is not well understood. We hypothesized that microRNAs (miRNAs) represent a novel mechanism for post-transcriptional control of KLK expression in cancer. METHODS We first analysed miRNA expression in ovarian cancer in silico. A total of 98 miRNAs were reported to have altered expression in ovarian cancer. Three of these miRNAs were predicted to target KLK10. We experimentally verified the predicted miR-KLK10 interaction using two independent techniques, a luciferase assay with a construct containing the KLK10 3' untranslated region (UTR), pMIR-KLK10, and measuring KLK10 protein levels after transfection with miRNA. RESULTS When we co-transfected cells with pMIR-KLK10 and either let-7f, miR-224, or mR-516a, we saw decreased luciferase signal, suggesting that these miRNAs can target KLK10. We then examined the effect of these three miRNAs on KLK10 protein expression and cell growth. Transfection of all miRNAs, let-7f, miR-224, and miR-516a led to a decrease in protein expression and cellular growth. This effect was shown to be dose dependent. The KLK10 protein levels were partially restored by co-transfecting let-7f and its inhibitor. In addition, there was a slight decrease in KLK10 mRNA expression after transfection with let-7f. CONCLUSION Our results confirm that KLKs can be targeted by more than one miRNA. Increased expression of certain miRNAs in ovarian cancer can lead to decreased KLK protein expression and subsequently have a negative effect on cell proliferation. This dose-dependent effect suggests that a 'tweaking' or 'fine-tuning' mechanism exists in which the expression of one KLK can be controlled by multiple miRNAs. These data together suggest that miRNA may be used as potential therapeutic options and further studies are required.
Collapse
|
485
|
Differential expression of microRNAs between eutopic and ectopic endometrium in ovarian endometriosis. J Biomed Biotechnol 2010; 2010:369549. [PMID: 20300586 PMCID: PMC2837904 DOI: 10.1155/2010/369549] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 08/10/2009] [Accepted: 12/19/2009] [Indexed: 12/19/2022] Open
Abstract
Endometriosis, defined as the presence of endometrial tissue outside the uterus, is a common gynecological disease with poorly understood pathogenesis. MicroRNAs are members of a class of small noncoding RNA molecules that have a critical role in posttranscriptional regulation of gene expression by repression of target mRNAs translation. We assessed differentially expressed microRNAs in ectopic endometrium compared with eutopic endometrium in 3 patients through microarray analysis. We identified 50 microRNAs differentially expressed and the differential expression of five microRNAs was validated by real-time RT-PCR in other 13 patients. We identified in silico their predicted targets, several of which match the genes that have been identified to be differentially expressed in ectopic versus eutopic endometrium in studies of gene expression. A functional analysis of the predicted targets indicates that several of these are involved in molecular pathways implicated in endometriosis, thus strengthening the hypothesis of the role of microRNAs in this pathology.
Collapse
|
486
|
Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M, Dragnev KH, Li H, Direnzo J, Bak M, Freemantle SJ, Kauppinen S, Dmitrovsky E. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010; 120:1298-309. [PMID: 20237410 DOI: 10.1172/jci39566] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 01/13/2010] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression. It has been suggested that obtaining miRNA expression profiles can improve classification, diagnostic, and prognostic information in oncology. Here, we sought to comprehensively identify the miRNAs that are overexpressed in lung cancer by conducting miRNA microarray expression profiling on normal lung versus adjacent lung cancers from transgenic mice. We found that miR-136, miR-376a, and miR-31 were each prominently overexpressed in murine lung cancers. Real-time RT-PCR and in situ hybridization (ISH) assays confirmed these miRNA expression profiles in paired normal-malignant lung tissues from mice and humans. Engineered knockdown of miR-31, but not other highlighted miRNAs, substantially repressed lung cancer cell growth and tumorigenicity in a dose-dependent manner. Using a bioinformatics approach, we identified miR-31 target mRNAs and independently confirmed them as direct targets in human and mouse lung cancer cell lines. These targets included the tumor-suppressive genes large tumor suppressor 2 (LATS2) and PP2A regulatory subunit B alpha isoform (PPP2R2A), and expression of each was augmented by miR-31 knockdown. Their engineered repression antagonized miR-31-mediated growth inhibition. Notably, miR-31 and these target mRNAs were inversely expressed in mouse and human lung cancers, underscoring their biologic relevance. The clinical relevance of miR-31 expression was further independently and comprehensively validated using an array containing normal and malignant human lung tissues. Together, these findings revealed that miR-31 acts as an oncogenic miRNA (oncomir) in lung cancer by targeting specific tumor suppressors for repression.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
487
|
Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M, Dragnev KH, Li H, Direnzo J, Bak M, Freemantle SJ, Kauppinen S, Dmitrovsky E. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010. [PMID: 20237410 DOI: 10.1172/jci39566.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression. It has been suggested that obtaining miRNA expression profiles can improve classification, diagnostic, and prognostic information in oncology. Here, we sought to comprehensively identify the miRNAs that are overexpressed in lung cancer by conducting miRNA microarray expression profiling on normal lung versus adjacent lung cancers from transgenic mice. We found that miR-136, miR-376a, and miR-31 were each prominently overexpressed in murine lung cancers. Real-time RT-PCR and in situ hybridization (ISH) assays confirmed these miRNA expression profiles in paired normal-malignant lung tissues from mice and humans. Engineered knockdown of miR-31, but not other highlighted miRNAs, substantially repressed lung cancer cell growth and tumorigenicity in a dose-dependent manner. Using a bioinformatics approach, we identified miR-31 target mRNAs and independently confirmed them as direct targets in human and mouse lung cancer cell lines. These targets included the tumor-suppressive genes large tumor suppressor 2 (LATS2) and PP2A regulatory subunit B alpha isoform (PPP2R2A), and expression of each was augmented by miR-31 knockdown. Their engineered repression antagonized miR-31-mediated growth inhibition. Notably, miR-31 and these target mRNAs were inversely expressed in mouse and human lung cancers, underscoring their biologic relevance. The clinical relevance of miR-31 expression was further independently and comprehensively validated using an array containing normal and malignant human lung tissues. Together, these findings revealed that miR-31 acts as an oncogenic miRNA (oncomir) in lung cancer by targeting specific tumor suppressors for repression.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
488
|
Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, Liu M, Zou Y, Weissman IL, Gu H. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. ACTA ACUST UNITED AC 2010; 207:475-89. [PMID: 20212066 PMCID: PMC2839143 DOI: 10.1084/jem.20090831] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The function of microRNAs (miRNAs) in hematopoietic stem cells (HSCs), committed progenitors, and leukemia stem cells (LSCs) is poorly understood. We show that miR-29a is highly expressed in HSC and down-regulated in hematopoietic progenitors. Ectopic expression of miR-29a in mouse HSC/progenitors results in acquisition of self-renewal capacity by myeloid progenitors, biased myeloid differentiation, and the development of a myeloproliferative disorder that progresses to acute myeloid leukemia (AML). miR-29a promotes progenitor proliferation by expediting G1 to S/G2 cell cycle transitions. miR-29a is overexpressed in human AML and, like human LSC, miR-29a-expressing myeloid progenitors serially transplant AML. Our data indicate that miR-29a regulates early hematopoiesis and suggest that miR-29a initiates AML by converting myeloid progenitors into self-renewing LSC.
Collapse
Affiliation(s)
- Yoon-Chi Han
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
489
|
Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 2010; 140:652-65. [PMID: 20211135 PMCID: PMC2924756 DOI: 10.1016/j.cell.2010.01.007] [Citation(s) in RCA: 391] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 09/25/2009] [Accepted: 01/05/2010] [Indexed: 12/23/2022]
Abstract
MicroRNAs and heterogeneous ribonucleoproteins (hnRNPs) are posttranscriptional gene regulators that bind mRNA in a sequence-specific manner. Here, we report that loss of miR-328 occurs in blast crisis chronic myelogenous leukemia (CML-BC) in a BCR/ABL dose- and kinase-dependent manner through the MAPK-hnRNP E2 pathway. Restoration of miR-328 expression rescues differentiation and impairs survival of leukemic blasts by simultaneously interacting with the translational regulator poly(rC)-binding protein hnRNP E2 and with the mRNA encoding the survival factor PIM1, respectively. The interaction with hnRNP E2 is independent of the microRNA's seed sequence and it leads to release of CEBPA mRNA from hnRNP E2-mediated translational inhibition. Altogether, these data reveal the dual ability of a microRNA to control cell fate both through base pairing with mRNA targets and through a decoy activity that interferes with the function of regulatory proteins.
Collapse
Affiliation(s)
- Anna M. Eiring
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Jason G. Harb
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Paolo Neviani
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher Garton
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua J. Oaks
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Riccardo Spizzo
- Department of Leukemia and Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNAs, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Shujun Liu
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sebastian Schwind
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ramasamy Santhanam
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher J. Hickey
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Heiko Becker
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jason C. Chandler
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Raul Andino
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA
| | - Jorge Cortes
- Department of Leukemia and Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNAs, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter Hokland
- Department of Hematology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Ravi Bhatia
- Department of Hematopoietic Stem Cell and Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Denis C. Roy
- Department of Hematology-Oncology, Maisonneuve-Rosemont Hospital and University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Stephen A. Liebhaber
- Department of Genetics and Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Michael A. Caligiuri
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Guido Marcucci
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ramiro Garzon
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Carlo M. Croce
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - George A. Calin
- Department of Leukemia and Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNAs, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Danilo Perrotti
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
490
|
Abstract
MicroRNAs (miRNAs) are involved in cell proliferation, differentiation, and apoptosis and can function as tumor suppressor genes or oncogenes. The role of miRNAs in neuroendocrine tumors such as ileal carcinoids is largely unknown. We examined the differential expression of 95 miRNAs by RT-PCR using the QuantiMir System in eight matching primary and metastatic carcinoid tumors from the ileum. All miRNAs chosen for the QuantiMir System array were based on their potential functions related to cancer biology, cell development, and apoptosis. The expression of miRNAs for the samples was normalized to miRNA-197, and the matching primary and metastatic tumors were compared. There was downregulation of miRNA-133a, -145, -146, -222, and -10b in all samples between the primary and matching metastatic tumors and upregulation of miRNA-183, -488, and -19a+b in six of eight metastatic carcinoids compared to the primary tumors. miRNA-133a was further analyzed by TaqMan real-time RT-PCR and northern hybridization using six additional matching primary and metastatic samples, which supported the PCR array findings. There were significant differences in miRNA-133a expression with downregulation in the metastasis compared to the primary in the eight original cases (P<0.009) and in the six additional cases used for validation (P<0.014). Laser capture microdissection and real-time RT-PCR analysis using normal ileum found miRNA-133a expression in normal enterochromaffin cells. In situ hybridization in normal ileum showed that some of the mucosal endocrine cells expressed miRNA-133a. Both primary and metastatic ileal carcinoid tumors expressed miRNA-133a by in situ hybridization. These results provide information about novel marker miRNAs that may be used as biomarkers and/or therapeutic targets in intestinal carcinoid tumors.
Collapse
|
491
|
Noorbakhsh F, Ramachandran R, Barsby N, Ellestad KK, LeBlanc A, Dickie P, Baker G, Hollenberg MD, Cohen EA, Power C. MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival. FASEB J 2010; 24:1799-812. [PMID: 20097875 DOI: 10.1096/fj.09-147819] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules, which are known to regulate gene expression in physiological and pathological conditions. miRNA profiling was performed using brain tissue from patients with HIV encephalitis (HIVE), a neuroinflammatory/degenerative disorder caused by HIV infection of the brain. Microarray analysis showed differential expression of multiple miRNAs in HIVE compared to control brains. Target prediction and gene ontology enrichment analysis disclosed targeting of several gene families/biological processes by differentially expressed miRNAs (DEMs), with cell death-related genes, including caspase-6, showing a bias toward down-regulated DEMs. Consistent with the miRNA data, HIVE brains exhibited higher levels of caspase-6 transcripts compared with control patients. Immunohistochemical analysis showed localization of the cleaved form of caspase-6 in astrocytes in HIVE brain sections. Exposure of cultured human primary astrocytes to HIV viral protein R (Vpr) induced p53 up-regulation, loss of mitochondrial membrane potential, and caspase-6 activation followed by cell injury. Transgenic mice, expressing Vpr in microglial cells, demonstrated astrocyte apoptosis in brain, which was associated with caspase-6 activation and neurobehavioral abnormalities. Overall, these data point to previously unrecognized alterations in miRNA profile in the brain during HIV infection, which contribute to cell death through dysregulation of cell death machinery.
Collapse
Affiliation(s)
- Farshid Noorbakhsh
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
492
|
Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HRC, Sarkar FH. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 2010; 27:1712-21. [PMID: 19544444 DOI: 10.1002/stem.101] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
MicroRNAs have been implicated in tumor progression. Recent studies have shown that the miR-200 family regulates epithelial-mesenchymal transition (EMT) by targeting zinc-finger E-box binding homeobox 1 (ZEB1) and ZEB2. Emerging evidence from our laboratory and others suggests that the processes of EMT can be triggered by various growth factors, such as transforming growth factor beta and platelet-derived growth factor-D (PDGF-D). Moreover, we recently reported that overexpression of PDGF-D in prostate cancer cells (PC3 PDGF-D cells) leads to the acquisition of the EMT phenotype, and this model offers an opportunity for investigating the molecular interplay between PDGF-D signaling and EMT. Here, we report, for the first time, significant downregulation of the miR-200 family in PC3 PDGF-D cells as well as in PC3 cells exposed to purified active PDGF-D protein, resulting in the upregulation of ZEB1, ZEB2, and Snail2 expression. Interestingly, re-expression of miR-200b in PC3 PDGF-D cells led to reversal of the EMT phenotype, which was associated with the downregulation of ZEB1, ZEB2, and Snail2 expression, and these results were consistent with greater expression levels of epithelial markers. Moreover, transfection of PC3 PDGF-D cells with miR-200b inhibited cell migration and invasion, with concomitant repression of cell adhesion to the culture surface and cell detachment. From these results, we conclude that PDGF-D-induced acquisition of the EMT phenotype in PC3 cells is, in part, a result of repression of miR-200 and that any novel strategy by which miR-200 could be upregulated would become a promising approach for the treatment of invasive prostate cancer.
Collapse
Affiliation(s)
- Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
493
|
Gao Y, He Y, Ding J, Wu K, Hu B, Liu Y, Wu Y, Guo B, Shen Y, Landi D, Landi S, Zhou Y, Liu H. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3' untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis 2010; 30:2064-9. [PMID: 19917630 DOI: 10.1093/carcin/bgp283] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy caused by environmental and genetic factors. MicroRNAs (miRNAs) are a class of short non-coding RNAs with posttranscriptional regulatory functions. They participate in diverse biological pathways and function as gene regulators. Genetic polymorphisms in 3' untranslated regions (3' UTRs) targeted by miRNAs alter the strength of miRNA binding, with consequences on regulation of target genes thereby affecting the individual's cancer risk. We have previously predicted polymorphisms falling in miRNA-binding regions of cancer genes. We selected an insertion/deletion (Indel) polymorphism (rs3783553) in the 3' UTR of interleukin (IL)-1alpha (IL1A) for a case-control study in a Chinese population. With samples from 403 HCC patients and 434 healthy control individuals, strong evidence of association was observed for the variant homozygote. This association was validated in a second independent case-control study with 1074 HCC patients and 1239 healthy control individuals (odds ratio = 0.62; 95% confidence interval = 0.49-0.78). We further show that the 'TTCA' insertion allele for rs3783553 disrupts a binding site for miR-122 and miR-378, thereby increasing transcription of IL-1alpha in vitro and in vivo. These findings suggest that functional polymorphism rs3783553 in IL1A could contribute to HCC susceptibility. Considering IL-1alpha affects not only various phases of the malignant process, such as carcinogenesis, tumor growth and invasiveness, but also patterns of interactions between malignant cells and the host's immune system, our results indicated that IL-1alpha may be a promising target for immunotherapy, early diagnosis and intervention of HCC.
Collapse
Affiliation(s)
- Yuzhen Gao
- Laboratory of Cellular and Molecular Tumor Immunology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Medical College, Soochow University, Suzhou 215123, Jiangsu, People's Repubic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
494
|
Li Q, Wang G, Shan JL, Yang ZX, Wang HZ, Feng J, Zhen JJ, Chen C, Zhang ZM, Xu W, Luo XZ, Wang D. MicroRNA-224 is upregulated in HepG2 cells and involved in cellular migration and invasion. J Gastroenterol Hepatol 2010; 25:164-71. [PMID: 19793168 DOI: 10.1111/j.1440-1746.2009.05971.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM MicroRNAs are a class of small non-coding RNAs that negatively regulate the expression of their target genes. The aim of the present study was to explore the effects of microRNA on biological behaviors of HepG2 cells and further analyze its characteristics. METHODS We detected different expression profiles of miRNAs in HepG2 and L02 cell lines by microRNA microarray. Northern blot, quantitative real-time polymerase chain reaction, methylthiazolyl tetrazolium, fluorescence-activated cell sorting, scratch wound, transwell migration and Matrigel invasion assays and western blot were carried out to determine whether or not microRNA-224 (miR-224) can influence the biological behaviors of HepG2 cells. RESULTS MiR-224 was significantly upregulated in HepG2 cells. Cell proliferation, migration and invasion, but not cell cycles, were altered after changing the expression of miR-224. Taking invasion and migration as a breakthrough, a close relationship between the expression of miR-224 and its proteins such as PAK4 and MMP9, which were involved in the invasion of tumor, was found. CONCLUSIONS Overexpression of miR-224 was involved in the malignant phenotype of HepG2 cells, and it may be an important factor in regulating the migration and invasion of HepG2 cells.
Collapse
Affiliation(s)
- Qiong Li
- Cancer Center, Daping Hospital & Institute of Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
495
|
Izzotti A, Calin GA, Steele VE, Cartiglia C, Longobardi M, Croce CM, De Flora S. Chemoprevention of cigarette smoke-induced alterations of MicroRNA expression in rat lungs. Cancer Prev Res (Phila) 2010; 3:62-72. [PMID: 20051373 PMCID: PMC4294455 DOI: 10.1158/1940-6207.capr-09-0202] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously showed that exposure to environmental cigarette smoke (ECS) for 28 days causes extensive downregulation of microRNA expression in the lungs of rats, resulting in the overexpression of multiple genes and proteins. In the present study, we evaluated by microarray the expression of 484 microRNAs in the lungs of either ECS-free or ECS-exposed rats treated with the orally administered chemopreventive agents N-acetylcysteine, oltipraz, indole-3-carbinol, 5,6-benzoflavone, and phenethyl isothiocyanate (as single agents or in combinations). This is the first study of microRNA modulation by chemopreventive agents in nonmalignant tissues. Scatterplot, hierarchical cluster, and principal component analyses of microarray and quantitative PCR data showed that none of the above chemopreventive regimens appreciably affected the baseline microRNA expression, indicating potential safety. On the other hand, all of them attenuated ECS-induced alterations but to a variable extent and with different patterns, indicating potential preventive efficacy. The main ECS-altered functions that were modulated by chemopreventive agents included cell proliferation, apoptosis, differentiation, Ras activation, P53 functions, NF-kappaB pathway, transforming growth factor-related stress response, and angiogenesis. Some microRNAs known to be polymorphic in humans were downregulated by ECS and were protected by chemopreventive agents. This study provides proof-of-concept and validation of technology that we are further refining to screen and prioritize potential agents for continued development and to help elucidate their biological effects and mechanisms. Therefore, microRNA analysis may provide a new tool for predicting at early carcinogenesis stages both the potential safety and efficacy of cancer chemopreventive agents.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - George A. Calin
- M. D. Anderson Cancer Center, University of Texas, Houston, Texas
| | | | | | | | - Carlo M. Croce
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
496
|
Song G, Zeng H, Li J, Xiao L, He Y, Tang Y, Li Y. miR-199a regulates the tumor suppressor mitogen-activated protein kinase kinase kinase 11 in gastric cancer. Biol Pharm Bull 2010; 33:1822-7. [PMID: 21048306 DOI: 10.1248/bpb.33.1822] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small noncoding microRNAs (miRNAs) have been shown to play an important role in tumor proliferation and metastasis. However, their function and mechanism in the proliferation and metastasis of gastric cancer has not yet been elucidated. Here, we investigated the relationship between miRNA-199a and gastric cancer proliferation and metastasis. Using real-time reverse-transcriptase (RT)-polymerase chain reaction, we found that miR-199a is highly expressed in gastric cancer compared to normal gastric tissues and in metastatic, compared to non-metastatic gastric cancer tissues. MiR-199a positively regulated gastric cancer cell proliferation, migration and invasion. Further studies showed that mitogen-activated protein kinase kinase kinase 11 was significantly down-regulated by miR-199a at the post-transcriptional level and, the level of miR-199a expression in gastric cancer significantly correlated with clinical progression. These findings suggested miR-199a promoted proliferation and metastasis of gastric cancer cells through a regulatory pathway in gastric cancer that has yet to be described. miR-199a may be useful as a new potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Guang Song
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | | | |
Collapse
|
497
|
Fabbri M, Calin GA. Epigenetics and miRNAs in Human Cancer. EPIGENETICS AND CANCER, PART A 2010; 70:87-99. [DOI: 10.1016/b978-0-12-380866-0.60004-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
498
|
Hummel R, Hussey DJ, Haier J. MicroRNAs: Predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 2010; 46:298-311. [DOI: 10.1016/j.ejca.2009.10.027] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/20/2009] [Accepted: 10/29/2009] [Indexed: 12/14/2022]
|
499
|
Fabian MR, Sundermeier TR, Sonenberg N. Understanding How miRNAs Post-Transcriptionally Regulate Gene Expression. MIRNA REGULATION OF THE TRANSLATIONAL MACHINERY 2010; 50:1-20. [DOI: 10.1007/978-3-642-03103-8_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
500
|
Garzon R, Heaphy CEA, Havelange V, Fabbri M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA, Andreeff M, Croce CM. MicroRNA 29b functions in acute myeloid leukemia. Blood 2009; 114:5331-5341. [PMID: 19850741 PMCID: PMC2796138 DOI: 10.1182/blood-2009-03-211938] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 09/28/2009] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are associated with cytogenetics and molecular subtypes of acute myelogeneous leukemia (AML), but their impact on AML pathogenesis is poorly understood. We have previously shown that miR-29b expression is deregulated in primary AML blasts. In this work, we investigated the functional role of miR-29b in leukemogenesis. Restoration of miR-29b in AML cell lines and primary samples induces apoptosis and dramatically reduces tumorigenicity in a xenograft leukemia model. Transcriptome analysis after ectopic transfection of synthetic miR-29b into leukemia cells indicates that miR-29b target apoptosis, cell cycle, and proliferation pathways. A significant enrichment for apoptosis genes, including MCL-1, was found among the mRNAs inversely correlated with miR-29b expression in 45 primary AML samples. Together, the data support a tumor suppressor role for miR-29 and provide a rationale for the use of synthetic miR-29b oligonucleotides as a novel strategy to improve treatment response in AML.
Collapse
Affiliation(s)
- Ramiro Garzon
- Division of Hematology and Oncology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|