451
|
Iwamoto H. Influence of ionic strength on the actomyosin reaction steps in contracting skeletal muscle fibers. Biophys J 2000; 78:3138-49. [PMID: 10827990 PMCID: PMC1300895 DOI: 10.1016/s0006-3495(00)76850-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Muscle contraction occurs as the result of actin-myosin interaction, which is mediated by the intermolecular forces exerted at the actin-myosin interface. To obtain information about the nature of these intermolecular forces, we tested the sensitivity of various contractile parameters of skinned skeletal muscle fibers to ionic strength (IS) at 3-5 degrees C; IS variation is a useful technique for distinguishing between ionic and nonionic (primarily hydrophobic) types of intermolecular forces. The most striking effect of elevated IS was the strong suppression of isometric tension. However, none of the measured parameters suggested a corresponding decrease in the number of force-generating myosin heads on actin. The rate of actin-myosin association seemed to be only modestly IS-sensitive. The following force-generating isomerization was apparently IS-insensitive. The dissociation of the force-generating actomyosin complex was decelerated by elevated IS, contrary to the expectation from the suppressed isometric tension. These results led us to conclude that an IS-sensitive step, responsible for the large suppression of tension, occurs after force-generating isomerization but before dissociation. The present study suggests that the actomyosin interaction is generally nonionic in nature, but there are at least two ionic processes, one at the beginning and the other close to the end of the actomyosin interaction.
Collapse
Affiliation(s)
- H Iwamoto
- Department of Physiology, School of Medicine, Teikyo University, Tokyo, Japan.
| |
Collapse
|
452
|
Nitao LK, Reisler E. Actin and temperature effects on the cross-linking of the SH1-SH2 helix in myosin subfragment 1. Biophys J 2000; 78:3072-80. [PMID: 10827984 PMCID: PMC1300889 DOI: 10.1016/s0006-3495(00)76844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Past biochemical work on myosin subfragment 1 (S1) has shown that the bent alpha-helix containing the reactive thiols SH1 (Cys(707)) and SH2 (Cys(697)) changes upon nucleotide and actin binding. In this study, we investigated the conformational dynamics of the SH1-SH2 helix in two actin-bound states of myosin and examined the effect of temperature on this helix, using five cross-linking reagents that are 5-15 A in length. Actin inhibited the cross-linking of SH1 to SH2 on both S1 and S1.MgADP for all of the reagents. Because the rate of SH2 modification was not altered by actin, the inhibition of cross-linking must result from a strong stabilization of the SH1-SH2 helix in the actin-bound states of S1. The dynamics of the helix is also influenced by temperature. At 25 degrees C, the rate constants for cross-linking in S1 alone are low, with values of approximately 0.010 min(-1) for all of the reagents. At 4 degrees C, the rate constants, except for the shortest reagent, range between 0.030 and 0.070 min(-1). The rate constants for SH2 modification in SH1-modified S1 show the opposite trend; they increase with the increases in temperature. The greater cross-linking at the lower temperature indicates destabilization of the SH1-SH2 helix at 4 degrees C. These results are discussed in terms of conformational dynamics of the SH1-SH2 helix.
Collapse
Affiliation(s)
- L K Nitao
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles 90095, USA
| | | |
Collapse
|
453
|
Shrager JB, Desjardins PR, Burkman JM, Konig SK, Stewart SK, Su L, Shah MC, Bricklin E, Tewari M, Hoffman R, Rickels MR, Jullian EH, Rubinstein NA, Stedman HH. Human skeletal myosin heavy chain genes are tightly linked in the order embryonic-IIa-IId/x-ILb-perinatal-extraocular. J Muscle Res Cell Motil 2000; 21:345-55. [PMID: 11032345 DOI: 10.1023/a:1005635030494] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myosin heavy chain (MyHC) is the major contractile protein of muscle. We report the first complete cosmid cloning and definitive physical map of the tandemly linked human skeletal MyHC genes at 17p13.1. The map provides new information on the order, size, and relative spacing of the genes. and it resolves uncertainties about the two fastest twitch isoforms. The physical order of the genes is demonstrated to contrast with the temporal order of their developmental expression. Furthermore, nucleotide sequence comparisons allow an approximation of the relative timing of five ancestral duplications that created distinct genes for the six isoforms. A firm foundation is provided for molecular analysis in patients with suspected primary skeletal myosinopathies and for detailed modelling of the hypervariable surface loops which dictate myosin's kinetic properties.
Collapse
Affiliation(s)
- J B Shrager
- Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
454
|
Canepari M, Rossi R, Pellegrino MA, Bottinelli R, Schiaffino S, Reggiani C. Functional diversity between orthologous myosins with minimal sequence diversity. J Muscle Res Cell Motil 2000; 21:375-82. [PMID: 11032348 DOI: 10.1023/a:1005640004495] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To define the structural differences that are responsible for the functional diversity between orthologous sarcomeric myosins, we compared the rat and human beta/slow myosins. Functional comparison showed that rat beta/slow myosin has higher ATPase activity and moves actin filaments at higher speed in in vitro motility assay than human beta/slow myosin. Sequence analysis shows that the loop regions at the junctions of the 25 and 50 kDa domains (loop 1) and the 50 and 20 kDa domains (loop 2), which have been implicated in determining functional diversity of myosin heavy chains, are essentially identical in the two orthologs. There are only 14 non-conservative substitutions in the two myosin heavy chains, three of which are located in the secondary actin-binding loop and flanking regions and others correspond to residues so far not assigned a functional role, including two residues in the proximal S2 domain. Interestingly, in some of these positions the rat beta/slow myosin heavy chain has the same residues found in human cardiac alpha myosin, a fast-type myosin, and fast skeletal myosins. These observations indicate that functional and structural analysis of myosin orthologs with limited sequence diversity can provide useful clues to identify amino acid residues involved in modulating myosin function.
Collapse
Affiliation(s)
- M Canepari
- Institute of Human Physiology, University of Pavia, Italy
| | | | | | | | | | | |
Collapse
|
455
|
Abstract
The myosin cross-bridge exists in two conformations, which differ in the orientation of a long lever arm. Since the lever arm undergoes a 60 degree rotation between the two conformations, which would lead to a displacement of the myosin filament of about 11 nm, the transition between these two states has been associated with the elementary 'power stroke' of muscle. Moreover, this rotation is coupled with changes in the active site (CLOSED to OPEN), which probably enable phosphate release. The transition CLOSED to OPEN appears to be brought about by actin binding. However, kinetics shows that the binding of myosin to actin is a two-step process which affects both ATP and ADP affinity and vice versa. The structural basis of these effects is only partially explained by the presently known conformers of myosin. Therefore, additional states of the myosin cross-bridge should exist. Indeed, cryoelectron microscopy has revealed other angles of the lever arm induced by ADP binding to a smooth muscle actin-myosin complex.
Collapse
Affiliation(s)
- K C Holmes
- Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany.
| | | |
Collapse
|
456
|
Abstract
In striated muscles, shortening comes about by the sliding movement of thick filaments, composed mostly of myosin, relative to thin filaments, composed mostly of actin. This is brought about by cyclic action of 'cross-bridges' composed of the heads of myosin molecules projecting from a thick filament, which attach to an adjacent thin filament, exert force for a limited time and detach, and then repeat this cycle further along the filament. The requisite energy is provided by the hydrolysis of a molecule of adenosine triphosphate to the diphosphate and inorganic phosphate, the steps of this reaction being coupled to mechanical events within the cross-bridge. The nature of these events is discussed. There is good evidence that one of them is a change in the angle of tilt of a 'lever arm' relative to the 'catalytic domain' of the myosin head which binds to the actin filament. It is suggested here that this event is superposed on a slower, temperature-sensitive change in the orientation of the catalytic domain on the actin filament. Many uncertainties remain.
Collapse
Affiliation(s)
- A F Huxley
- Physiological Laboratory, University of Cambridge, UK
| |
Collapse
|
457
|
Kinosita K, Yasuda R, Noji H, Adachi K. A rotary molecular motor that can work at near 100% efficiency. Philos Trans R Soc Lond B Biol Sci 2000; 355:473-89. [PMID: 10836501 PMCID: PMC1692765 DOI: 10.1098/rstb.2000.0589] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A single molecule of F1-ATPase is by itself a rotary motor in which a central gamma-subunit rotates against a surrounding cylinder made of alpha3beta3-subunits. Driven by the three betas that sequentially hydrolyse ATP, the motor rotates in discrete 120 degree steps, as demonstrated in video images of the movement of an actin filament bound, as a marker, to the central gamma-subunit. Over a broad range of load (hydrodynamic friction against the rotating actin filament) and speed, the F1 motor produces a constant torque of ca. 40 pN nm. The work done in a 120 degree step, or the work per ATP molecule, is thus ca. 80 pN nm. In cells, the free energy of ATP hydrolysis is ca. 90 pN nm per ATP molecule, suggesting that the F1 motor can work at near 100% efficiency. We confirmed in vitro that F1 indeed does ca. 80 pN nm of work under the condition where the free energy per ATP is 90 pN nm. The high efficiency may be related to the fully reversible nature of the F1 motor: the ATP synthase, of which F1 is a part, is considered to synthesize ATP from ADP and phosphate by reverse rotation of the F1 motor. Possible mechanisms of F1 rotation are discussed.
Collapse
Affiliation(s)
- K Kinosita
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | | | | | | |
Collapse
|
458
|
Duke T. Cooperativity of myosin molecules through strain-dependent chemistry. Philos Trans R Soc Lond B Biol Sci 2000; 355:529-38. [PMID: 10836506 PMCID: PMC1692757 DOI: 10.1098/rstb.2000.0594] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is mounting evidence that the myosin head domain contains a lever arm which amplifies small structural changes that occur at the nucleotide-binding site. The mechanical work associated with movement of the lever affects the rates at which the products of ATP hydrolysis are released. During muscle contraction, this strain-dependent chemistry leads to cooperativity of the myosin molecules within a thick filament. Two aspects of cooperative action are discussed, in the context of a simple stochastic model. (i) A modest motion of the lever arm on ADP release can serve to regulate the fraction of myosin bound to the thin filament, in order to recruit more heads at higher loads. (ii) If the lever swings through a large angle when phosphate is released, the chemical cycles of the myosin molecules can be synchronized at high loads. This leads to stepwise sliding of the filaments and suggests that the isometric condition is not a steady state.
Collapse
Affiliation(s)
- T Duke
- Institut Curie, Section de Recherche, Paris, France
| |
Collapse
|
459
|
Vale RD, Case R, Sablin E, Hart C, Fletterick R. Searching for kinesin's mechanical amplifier. Philos Trans R Soc Lond B Biol Sci 2000; 355:449-57. [PMID: 10836498 PMCID: PMC1692751 DOI: 10.1098/rstb.2000.0586] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Kinesin, a microtubule-based motor, and myosin, an actin-based motor, share a similar core structure, indicating that they arose from a common ancestor. However, kinesin lacks the long lever-arm domain that is believed to drive the myosin power stroke. Here, we present evidence that a much smaller region of ca. 10-40 amino acids serves as a mechanical element for kinesin motor proteins. These 'neck regions' are class conserved and have distinct structures in plus-end and minus-end-directed kinesin motors. Mutagenesis studies also indicate that the neck regions are involved in coupling ATP hydrolysis and energy into directional motion along the microtubule. We suggest that the kinesin necks drive motion by undergoing a conformational change in which they detach and re-dock onto the catalytic core during the ATPase cycle. Thus, kinesin and myosin have evolved unique mechanical elements that amplify small, nucleotide-dependent conformational changes that occur in their similar catalytic cores.
Collapse
Affiliation(s)
- R D Vale
- Howard Hughes Medical Institute, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA.
| | | | | | | | | |
Collapse
|
460
|
Offer G, Knight PJ, Burgess SA, Alamo L, Padrón R. A new model for the surface arrangement of myosin molecules in tarantula thick filaments. J Mol Biol 2000; 298:239-60. [PMID: 10764594 DOI: 10.1006/jmbi.2000.3664] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three-dimensional reconstructions of the negatively stained thick filaments of tarantula muscle with a resolution of 50 A have previously suggested that the helical tracks of myosin heads are zigzagged, short diagonal ridges being connected by nearly axial links. However, surface views of lower contour levels reveal an additional J-shaped feature approximately the size and shape of a myosin head. We have modelled the surface array of myosin heads on the filaments using as a building block a model of a two-headed regulated myosin molecule in which the regulatory light chains of the two heads together form a compact head-tail junction. Four parameters defining the radius, orientation and rotation of each myosin molecule were varied. In addition, the heads were allowed independently to bend in a plane perpendicular to the coiled-coil tail at three sites, and to tilt with respect to the tail and to twist at one of these sites. After low-pass filtering, models were aligned with the reconstruction, scored by cross-correlation and refined by simulated annealing. Comparison of the geometry of the reconstruction and the distance between domains in the myosin molecule narrowed the choice of models to two main classes. A good match to the reconstruction was obtained with a model in which each ridge is formed from the motor domain of a head pointing to the bare zone together with the head-tail junction of a neighbouring molecule. The heads pointing to the Z-disc intermittently occupy the J-position. Each motor domain interacts with the essential and regulatory light chains of the neighbouring heads. A near-radial spoke in the reconstruction connecting the backbone to one end of the ridge can be identified as the start of the coiled-coil tail.
Collapse
Affiliation(s)
- G Offer
- Division of Molecular and Cellular Biology, Department of Clinical Veterinary Science, University of Bristol, UK.
| | | | | | | | | |
Collapse
|
461
|
Abstract
Molecular motors perform essential functions in the cell and have the potential to provide insights into the basis of many important processes. A unique property of molecular motors is their ability to convert energy from ATP hydrolysis into work, enabling the motors to bind to and move along cytoskeletal filaments. The mechanism of energy conversion by molecular motors is not yet understood and may lead to the discovery of new biophysical principles. Mutant analysis could provide valuable information, but it is not obvious how to obtain mutants that are informative for study. The analysis presented here points out several strategies for obtaining mutants by selection from molecular or genetic screens, or by rational design. Mutants that are expected to provide important information about the motor mechanism include ATPase mutants, which interfere with the nucleotide hydrolysis cycle, and uncoupling mutants, which unlink basic motor activities and reveal their interdependence. Natural variants can also be exploited to provide unexpected information about motor function. This general approach to uncovering protein function by analysis of informative mutants is applicable not only to molecular motors, but to other proteins of interest.
Collapse
Affiliation(s)
- S A Endow
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
462
|
Abstract
The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction. Early studies suggested that these molecular motors work by very different mechanisms. Recently, however, it has become clear that kinesin and myosin share a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy. Many different types of mechanical amplifiers have evolved that operate in conjunction with the conserved core. This modular design has given rise to a remarkable diversity of kinesin and myosin motors whose motile properties are optimized for performing distinct biological functions.
Collapse
Affiliation(s)
- R D Vale
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | |
Collapse
|
463
|
van der Heide UA, Hopkins SC, Goldman YE. A maximum entropy analysis of protein orientations using fluorescence polarization data from multiple probes. Biophys J 2000; 78:2138-50. [PMID: 10733991 PMCID: PMC1300805 DOI: 10.1016/s0006-3495(00)76760-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Techniques have recently become available to label protein subunits with fluorescent probes at predetermined orientation relative to the protein coordinates. The known local orientation enables quantitative interpretation of fluorescence polarization experiments in terms of orientation and motions of the protein within a larger macromolecular assembly. Combining data obtained from probes placed at several distinct orientations relative to the protein structure reveals functionally relevant information about the axial and azimuthal orientation of the labeled protein segment relative to its surroundings. Here we present an analytical method to determine the protein orientational distribution from such data. The method produces the broadest distribution compatible with the data by maximizing its informational entropy. The key advantages of this approach are that no a priori assumptions are required about the shape of the distribution and that a unique, exact fit to the data is obtained. The relative orientations of the probes used for the experiments have great influence on information content of the maximum entropy distribution. Therefore, the choice of probe orientations is crucial. In particular, the probes must access independent aspects of the protein orientation, and two-fold rotational symmetries must be avoided. For a set of probes, a "figure of merit" is proposed, based on the independence among the probe orientations. With simulated fluorescence polarization data, we tested the capacity of maximum entropy analysis to recover specific protein orientational distributions and found that it is capable of recovering orientational distributions with one and two peaks. The similarity between the maximum entropy distribution and the test distribution improves gradually as the number of independent probe orientations increases. As a practical example, ME distributions were determined with experimental data from muscle fibers labeled with bifunctional rhodamine at known orientations with respect to the myosin regulatory light chain (RLC). These distributions show a complex relationship between the axial orientation of the RLC relative to the fiber axis and the azimuthal orientation of the RLC about its own axis. Maximum entropy analysis reveals limitations in available experimental data and supports the design of further probe angles to resolve details of the orientational distribution.
Collapse
Affiliation(s)
- U A van der Heide
- Pennsylvania Muscle Institute, D701 Richards Building, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6083, USA
| | | | | |
Collapse
|
464
|
Abstract
Myosins constitute a large superfamily of actin-dependent molecular motors. Phylogenetic analysis currently places myosins into 15 classes. The conventional myosins which form filaments in muscle and non-muscle cells form class II. There has been extensive characterization of these myosins and much is known about their function. With the exception of class I and class V myosins, little is known about the structure, enzymatic properties, intracellular localization and physiology of most unconventional myosin classes. This review will focus on myosins from class IV, VI, VII, VIII, X, XI, XII, XIII, XIV and XV. In addition, the function of myosin II in non-muscle cells will also be discussed.
Collapse
Affiliation(s)
- J R Sellers
- National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room 8N202, Bethesda, MD 20892, USA.
| |
Collapse
|
465
|
Reck-Peterson SL, Provance DW, Mooseker MS, Mercer JA. Class V myosins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:36-51. [PMID: 10722875 DOI: 10.1016/s0167-4889(00)00007-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- S L Reck-Peterson
- Cell Biology Department, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
466
|
MacLean JJ, Chrin LR, Berger CL. Dynamics at Lys-553 of the acto-myosin interface in the weakly and strongly bound states. Biophys J 2000; 78:1441-8. [PMID: 10692329 PMCID: PMC1300742 DOI: 10.1016/s0006-3495(00)76697-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lys-553 of skeletal muscle myosin subfragment 1 (S1) was specifically labeled with the fluorescent probe FHS (6-[fluorescein-5(and 6)-carboxamido]hexanoic acid succinimidyl ester) and fluorescence quenching experiments were carried out to determine the accessibility of this probe at Lys-553 in both the strongly and weakly actin-bound states of the MgATPase cycle. Solvent quenchers of varying charge [nitromethane, (2,2,6, 6-tetramethyl-1-piperinyloxy) (TEMPO), iodide (I(-)), and thallium (Tl(+))] were used to assess both the steric and electrostatic accessibilities of the FHS probe at Lys-553. In the strongly bound rigor (nucleotide-free) and MgADP states, actin offered no protection from solvent quenching of FHS by nitromethane, TEMPO, or thallium, but did decrease the Stern-Volmer constant by almost a factor of two when iodide was used as the quencher. The protection from iodide quenching was almost fully reversed with the addition of 150 mM KCl, suggesting this effect is ionic in nature rather than steric. Conversely, actin offered no protection from iodide quenching at low ionic strength during steady-state ATP hydrolysis, even with a significant fraction of the myosin heads bound to actin. Thus, the lower 50 kD subdomain of myosin containing Lys-553 appears to interact differently with actin in the weakly and strongly bound states.
Collapse
Affiliation(s)
- J J MacLean
- Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, Vermont 05405-0068, USA
| | | | | |
Collapse
|
467
|
Ishii Y, Kimura Y, Kitamura K, Tanaka H, Wazawa T, Yanagida T. Imaging and nano-manipulation of single actomyosin motors at work. Clin Exp Pharmacol Physiol 2000; 27:229-37. [PMID: 10744353 DOI: 10.1046/j.1440-1681.2000.03226.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Muscle contraction is achieved by the sliding movement of myosin and actin using the energy of ATPase. 2. Our research has focused on the question of how chemical energy is used to perform mechanical work. Recent developments of single molecule imaging and manipulation techniques have allowed us to study the chemical and mechanical events at a molecular level. 3. There are many lines of evidence that show that the energy liberated from ATPase is stored in the actomyosin molecules for later use. 4. The displacement produced by a single ATP molecule is made up of several steps, each of 5.3 nm. Sometimes the mechanical event is delayed after the ADP is released from myosin. 5. This storage of energy may be explained by a slow conformational transition between the metastable states of the proteins. This suggestion has been supported by results obtained using single-molecule fluorescence spectroscopy.
Collapse
Affiliation(s)
- Y Ishii
- Single Molecule Processes Project, International Cooperative Research Project, Japan Science and Technology Corporation, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
468
|
Polosukhina K, Eden D, Chinn M, Highsmith S. CaATP as a substrate to investigate the myosin lever arm hypothesis of force generation. Biophys J 2000; 78:1474-81. [PMID: 10692332 PMCID: PMC1300745 DOI: 10.1016/s0006-3495(00)76700-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In an effort to test the lever arm model of force generation, the effects of replacing magnesium with calcium as the ATP-chelated divalent cation were determined for several myosin and actomyosin reactions. The isometric force produced by glycerinated muscle fibers when CaATP is the substrate is 20% of the value obtained with MgATP. For myosin subfragment 1 (S1), the degree of lever arm rotation, determined using transient electric birefringence to measure rates of rotational Brownian motion in solution, is not significantly changed when calcium replaces magnesium in an S1-ADP-vanadate complex. Actin activates S1 CaATPase activity, although less than it does MgATPase activity. The increase in actin affinity when S1. CaADP. P(i) is converted to S1. CaADP is somewhat greater than it is for the magnesium case. The ionic strength dependence of actin binding indicates that the change in apparent electrostatic charge at the acto-S1 interface for the S1. CaADP. P(i) to S1. CaADP step is similar to the change when magnesium is bound. In general, CaATP is an inferior substrate compared to MgATP, but all the data are consistent with force production by a lever arm mechanism for both substrates. Possible reasons for the reduced magnitude of force when CaATP is the substrate are discussed.
Collapse
Affiliation(s)
- K Polosukhina
- Department of Biochemistry, University of the Pacific, School of Dentistry, San Francisco, California 94115-2399, USA
| | | | | | | |
Collapse
|
469
|
Patel H, Margossian SS, Chantler PD. Locking regulatory myosin in the off-state with trifluoperazine. J Biol Chem 2000; 275:4880-8. [PMID: 10671524 DOI: 10.1074/jbc.275.7.4880] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scallop striated adductor muscle myosin is a regulatory myosin, its activity being controlled directly through calcium binding. Here, we show that millimolar concentrations of trifluoperazine were effective at removal of all regulatory light chains from scallop myosin or myofibrils. More important, 200 microM trifluoperazine, a concentration 10-fold less than that required for light-chain removal, resulted in the reversible elimination of actin-activated and intrinsic ATPase activities. Unlike desensitization induced by metal ion chelation, which leads to an elevation of activity in the absence of calcium concurrent with regulatory light-chain removal, trifluoperazine caused a decline in actin-activated MgATPase activity both in the presence and absence of calcium. Procedures were equally effective with respect to scallop myosin, myofibrils, subfragment-1, or desensitized myofibrils. Increased alpha-helicity could be induced in the isolated essential light chain through addition of 100-200 microM trifluoperazine. We propose that micromolar concentrations of trifluoperazine disrupt regulation by binding to a single high-affinity site located in the C-terminal domain of the essential light chain, which locks scallop myosin in a conformation resembling the off-state. At millimolar trifluoperazine concentrations, additional binding sites on both light chains would be filled, leading to regulatory light-chain displacement.
Collapse
Affiliation(s)
- H Patel
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, United Kingdom
| | | | | |
Collapse
|
470
|
Murphy CT, Spudich JA. Variable surface loops and myosin activity: accessories to a motor. J Muscle Res Cell Motil 2000; 21:139-51. [PMID: 10961838 DOI: 10.1023/a:1005610007209] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The catalytic head of myosin is a globular structure that has historically been divided into three segments of 25, 50, and 20 kDa. The solvent-exposed, proteolytically-sensitive surface loops of myosin that join these three segments are highly variable in their sequences. While surface loops have not traditionally been thought to affect enzymatic activities, these loops lie near the ATP and actin-binding sites and have been implicated in the modulation of myosin's kinetic activities. In this work we review the wealth of data regarding the loops that has accumulated over the years and discuss the roles of the loops in contributing to the different activities displayed by different myosin isoforms.
Collapse
Affiliation(s)
- C T Murphy
- Department of Biochemistry, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|
471
|
Yanagida T, Kitamura K, Tanaka H, Hikikoshi Iwane A, Esaki S. Single molecule analysis of the actomyosin motor. Curr Opin Cell Biol 2000; 12:20-5. [PMID: 10679365 DOI: 10.1016/s0955-0674(99)00052-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progress in imaging techniques and nano-manipulation of single molecules has been remarkable. These techniques have allowed the accurate determination of myosin-head-induced displacements and of how the mechanical cycles of the actomyosin motor are coupled to ATP hydrolysis. This has been achieved by measuring mechanical and chemical events of actomyosin directly at the single molecule level. Recent studies have made detailed measurements of myosin step size and mechanochemical coupling. The results of these studies suggest a new model for the mechanism of motion underlying actomyosin motors, which differs from the currently accepted lever-arm swinging model.
Collapse
Affiliation(s)
- T Yanagida
- Single Molecule Process Project, Department of Physiology I, ICORP, JST, Osaka University Medical School, Mino, Suita, 565-0871, 562-0035, Japan.
| | | | | | | | | |
Collapse
|
472
|
Abstract
The crystal structures of smooth muscle and scallop striated muscle myosin have both been completed in the past 18 months. Structural studies of unconventional myosins, in particular the stunning discovery that myosin VI moves backwards on actin, are starting to have deep impact on the field and have induced new ways of thinking about actin-based motility. Sophisticated genetic, biochemical and biophysical studies were used to test and refine hypotheses of the molecular mechanism of motility that were developed in the past. Although all these studies confirmed some aspects of these hypotheses, they also raised many new unresolved questions. Much of the evidence points to the importance of the actin-myosin binding process and an associated disorder-to-order transition.
Collapse
Affiliation(s)
- N Volkmann
- The Burnham Institute, La Jolla, 92037, USA.
| | | |
Collapse
|
473
|
Maggs AM, Taylor-Harris P, Peckham M, Hughes SM. Evidence for differential post-translational modifications of slow myosin heavy chain during murine skeletal muscle development. J Muscle Res Cell Motil 2000; 21:101-13. [PMID: 10961835 DOI: 10.1023/a:1005639229497] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The contractile properties of muscle fibres are, in part, determined by the myosin heavy chain (MyHC) isoforms they express. Using monoclonal antibodies, we show that at least three forms of slow twitch MyHC accumulate sequentially during mouse fetal development and that slow MyHC maturation in slow fibres occurs before expression of the adult fast MyHCs in fast fibres. Expression of deletion derivatives of beta-cardiac MyHC cDNA shows that the slow MyHC epitopes that are detected in adult but not in young animals are located near the N-terminus. The same N-terminal region of various fast MyHC molecules contains a conserved epitope that can, on occasions, be observed when slow MyHC cDNA is expressed in non-muscle cells. The results raise the possibility that the N-terminal epitopes result from post-translational modification of the MyHC and that a sequence of slow and fast MyHC isoform post-translational modifications plays a significant role during development of murine muscle fibres.
Collapse
Affiliation(s)
- A M Maggs
- MRC Muscle and Cell Motility Unit and Developmental Biology Research Centre, The Randall Institute, King's College London, UK
| | | | | | | |
Collapse
|
474
|
Gulick AM, Bauer CB, Thoden JB, Pate E, Yount RG, Rayment I. X-ray structures of the Dictyostelium discoideum myosin motor domain with six non-nucleotide analogs. J Biol Chem 2000; 275:398-408. [PMID: 10617631 DOI: 10.1074/jbc.275.1.398] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structures of the truncated myosin head from Dictyostelium discoideum myosin II complexed with dinitrophenylaminoethyl-, dinitrophenylaminopropyl-, o-nitrophenylaminoethyl-, m-nitrophenylaminoethyl-, p-nitrophenylaminoethyl-, and o-nitrophenyl-N-methyl-aminoethyl-diphosphate.beryllium fluoride have been determined to better than 2.3-A resolution. The structure of the protein and nucleotide binding pocket in these complexes is very similar to that of S1dC.ADP.BeF(x) (Fisher, A. J., Smith, C. A., Thoden, J., Smith, R., Sutoh, K., Holden, H. M., and Rayment, I. (1995) Biochemistry 34, 8960-8972). The position of the triphosphate-like moiety is essentially identical in all complexes. Furthermore, the alkyl-amino group plays the same role as the ribose by linking the triphosphate to the adenine binding pocket; however, none of the phenyl groups lie in the same position as adenine in S1dC.MgADP.BeF(x), even though several of these nucleotide analogs are functionally equivalent to ATP. Rather the former location of adenine is occupied by water in the nanolog complexes, and the phenyl groups are organized in a manner that attempts to optimize their hydrogen bonding interactions with this constellation of solvent molecules. A comparison of the kinetic and structural properties of the nanologs relative to ATP suggests that the ability of a substrate to sustain tension and to generate movement correlates with a well defined interaction with the active site water structure observed in S1dC.MgADP.BeF(x).
Collapse
Affiliation(s)
- A M Gulick
- Institute for Enzyme Research, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
475
|
Wendt T, Taylor D, Messier T, Trybus KM, Taylor KA. Visualization of head-head interactions in the inhibited state of smooth muscle myosin. J Cell Biol 1999; 147:1385-90. [PMID: 10613897 PMCID: PMC2174251 DOI: 10.1083/jcb.147.7.1385] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The structural basis for the phosphoryla- tion-dependent regulation of smooth muscle myosin ATPase activity was investigated by forming two- dimensional (2-D) crystalline arrays of expressed unphosphorylated and thiophosphorylated smooth muscle heavy meromyosin (HMM) on positively charged lipid monolayers. A comparison of averaged 2-D projections of both forms at 2.3-nm resolution reveals distinct structural differences. In the active, thiophosphorylated form, the two heads of HMM interact intermolecularly with adjacent molecules. In the unphosphorylated or inhibited state, intramolecular interactions position the actin-binding interface of one head onto the converter domain of the second head, thus providing a mechanism whereby the activity of both heads could be inhibited.
Collapse
Affiliation(s)
- Thomas Wendt
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Dianne Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Terri Messier
- Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
476
|
Rice S, Lin AW, Safer D, Hart CL, Naber N, Carragher BO, Cain SM, Pechatnikova E, Wilson-Kubalek EM, Whittaker M, Pate E, Cooke R, Taylor EW, Milligan RA, Vale RD. A structural change in the kinesin motor protein that drives motility. Nature 1999; 402:778-84. [PMID: 10617199 DOI: 10.1038/45483] [Citation(s) in RCA: 585] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kinesin motors power many motile processes by converting ATP energy into unidirectional motion along microtubules. The force-generating and enzymatic properties of conventional kinesin have been extensively studied; however, the structural basis of movement is unknown. Here we have detected and visualized a large conformational change of an approximately 15-amino-acid region (the neck linker) in kinesin using electron paramagnetic resonance, fluorescence resonance energy transfer, pre-steady state kinetics and cryo-electron microscopy. This region becomes immobilized and extended towards the microtubule 'plus' end when kinesin binds microtubules and ATP, and reverts to a more mobile conformation when gamma-phosphate is released after nucleotide hydrolysis. This conformational change explains both the direction of kinesin motion and processive movement by the kinesin dimer.
Collapse
Affiliation(s)
- S Rice
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
477
|
Glaeser RM. Review: electron crystallography: present excitement, a nod to the past, anticipating the future. J Struct Biol 1999; 128:3-14. [PMID: 10600552 DOI: 10.1006/jsbi.1999.4172] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
From a modest beginning with negatively stained samples of the helical T4 bacteriophage tail, electron crystallography has emerged as a powerful tool in structural biology. High-resolution density maps, interpretable in terms of an atomic structure, can be obtained from specimens prepared as well-ordered, two-dimensional crystals, and the resolution achieved with helical specimens and icosahedral viruses is approaching the same goal. A hybrid approach to determining the molecular structure of complex biological assemblies is generating great interest, in which high-resolution structures that have been determined for individual protein components are fitted into a lower resolution envelope of the large complex. With this as background, how much more can be anticipated for the future? Considerable scope still remains to improve the quality of electron microscope images. Automation of data acquisition and data processing, together with the emergence of computational speeds of 10(12) floating point operations per second or higher, will make it possible to extend high-resolution structure determination into the realm of single-particle microscopy. As a result, computational alignment of single particles, i.e., the formation of "virtual crystals," can begin to replace biochemical crystallization. Since single-particle microscopy may remain limited to "large" structures of 200 to 300 kDa or more, however, smaller proteins will continue to be studied as helical assemblies or as two-dimensional crystals. The further development of electron crystallography is thus likely to turn increasingly to the use of single particles and small regions of ordered assemblies, emphasizing more and more the potential for faster, higher throughput.
Collapse
Affiliation(s)
- R M Glaeser
- Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
478
|
|
479
|
Vale RD. Millennial musings on molecular motors. Trends Genet 1999. [DOI: 10.1016/s0168-9525(99)01886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
480
|
|
481
|
Taylor KA, Schmitz H, Reedy MC, Goldman YE, Franzini-Armstrong C, Sasaki H, Tregear RT, Poole K, Lucaveche C, Edwards RJ, Chen LF, Winkler H, Reedy MK. Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell 1999; 99:421-31. [PMID: 10571184 DOI: 10.1016/s0092-8674(00)81528-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Motor actions of myosin were directly visualized by electron tomography of insect flight muscle quick-frozen during contraction. In 3D images, active cross-bridges are usually single myosin heads, bound preferentially to actin target zones sited midway between troponins. Active attached bridges (approximately 30% of all heads) depart markedly in axial and azimuthal angles from Rayment's rigor acto-S1 model, one-third requiring motor domain (MD) tilting on actin, and two-thirds keeping rigor contact with actin while the light chain domain (LCD) tilts axially from approximately 105 degrees to approximately 70 degrees. The results suggest the MD tilts and slews on actin from weak to strong binding, followed by swinging of the LCD through an approximately 35 degrees axial angle, giving an approximately 13 nm interaction distance and an approximately 4-6 nm working stroke.
Collapse
Affiliation(s)
- K A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, 32306-4380, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Conibear PB. Kinetic studies on the effects of ADP and ionic strength on the interaction between myosin subfragment-1 and actin: implications for load-sensitivity and regulation of the crossbridge cycle. J Muscle Res Cell Motil 1999; 20:727-42. [PMID: 10730576 DOI: 10.1023/a:1005696017544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The dynamics of the interaction of fast skeletal muscle myosin subfragment-1 with pyrene-labelled actin were examined using both stopped-flow and pressure relaxation methods. The data suggest a four-step model i.e.: A + M.(N)(K0)<-->A approximately M.(N)(K1)<-->A - M.(N)(K2)<-->A.M.(N)(K3)<-->A.M.(N)#. ADP weakens the acto-S1 affinity via a reduction in Ko, with no apparent effect on K1 and no effect on K2, whilst k(+2) and k(-2) are both markedly reduced. Increased ionic strength reduces both K0 and k(+2) with no major effect on k(+1). Step 3 represents an extension to previous models and is ADP-dependent. The present work is discussed in relation to earlier studies which led to somewhat different conclusions (Taylor EW (1991) J Biol Chem 266: 294-302; Geeves MA (1989) Biochemistry 28: 5864-5871). It is likely that the interaction proceeds via formation of a disordered complex stabilised by ionic interactions (corresponding to step 0), followed by a disordered-to-ordered transition involving additional hydrophobic contacts (step 1) after which further contacts of both types are made coupled to internal conformational changes (steps 2 and 3). Step 3 could have a role in extending the lifetime of force-generating crossbridges and limiting ATP turnover during contraction against a load, and may be equivalent to a structural change observed in recent cryo-EM studies on the smooth muscle system (Whittaker M, Wilsonkubalek EM, Smith JE, Faust L, Milligan RA and Sweeney HL (1995) Nature 378: 748-751). Cooperative interactions between the two myosin heads also appear to have a role in this putative latch mechanism.
Collapse
Affiliation(s)
- P B Conibear
- Department of Biochemistry, University of Leicester, UK.
| |
Collapse
|
483
|
Wang D, Luo Y, Cooke R, Grammer J, Pate E, Yount RG. Synthesis of a spin-labeled photoaffinity ATP analogue, and its use to specifically photolabel myosin cross-bridges in skeletal muscle fibers. J Muscle Res Cell Motil 1999; 20:743-53. [PMID: 10730577 DOI: 10.1023/a:1005554924153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A spin-labeled photoaffinity ATP analogue 3'(2')-O-[4-[4-oxo-(4-amido-2,2,6,6-tetramethyl-piperidino-1-oxyl)]-benz oyl]benzoyl adenosine 5'-triphosphate (SL-Bz2ATP) was synthesized and used to photolabel myosin in muscle fibers. Previous work has shown that 3'(2')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (Bz2ATP) photolabeled Ser-324 of the 50 kDa tryptic fragment of skeletal S1 heavy chain. In this work, [alpha-32P]SL-Bz2ATP was hydrolyzed and trapped as the diphosphate analogue with Co2+ and orthovanadate at the active site of myosin in rabbit psoas muscle fibers. After UV irradiation, the myosin heavy chain was the only protein band found to be significantly photolabeled as assayed by gel electrophoresis and radioactivity counting. The labeling was localized after brief trypsin digestion by SDS-PAGE to be on the 50 kDa tryptic fragment of the S1 heavy chain. Ca. 35% of the myosin in fibers was covalently photolabeled. The fibers photolabeled with SL-Bz2ATP had the same active tension and maximum shortening velocity as the control fibers. The resulting spin label on myosin was too mobile to report the orientation of the heads in fibers. Nonetheless, this is the first work to show the feasibility of utilizing active site binding and photoaffinity labeling to place covalent spectroscopic probes at the myosin active site in fibers with high specificity and yield without affecting mechanical function.
Collapse
Affiliation(s)
- D Wang
- Department of Biochemistry and Biophysics, Washington State University, Pullman 99164, USA
| | | | | | | | | | | |
Collapse
|
484
|
Brenner B, Kraft T, Yu LC, Chalovich JM. Thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle. Biophys J 1999; 77:2677-91. [PMID: 10545368 PMCID: PMC1300542 DOI: 10.1016/s0006-3495(99)77102-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A method is described for the exchange of native troponin of single rabbit psoas muscle fibers for externally applied troponin complexes without detectable impairment of functional properties of the skinned fibers. This approach is used to exchange native troponin for rabbit skeletal troponin with a fluorescent label (N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1, 3-diazole, IANBD) on Cys(133) of the troponin I subunit. IANBD-labeled troponin I has previously been used in solution studies as an indicator for the state of activation of reconstituted actin filaments (. Proc. Natl. Acad. Sci. USA. 77:7209-7213). In the skinned fibers, the fluorescence of this probe is unaffected when cross-bridges in their weak binding states attach to actin filaments but decreases either upon the addition of Ca(2+) or when cross-bridges in their strong binding states attach to actin. Maximum reduction is observed when Ca(2+) is raised to saturating concentrations. Additional attachment of cross-bridges in strong binding states gives no further reduction of fluorescence. Attachment of cross-bridges in strong binding states alone (low Ca(2+) concentration) gives only about half of the maximum reduction seen with the addition of calcium. This illustrates that fluorescence of IANBD-labeled troponin I can be used to evaluate thin filament activation, as previously introduced for solution studies. In addition, at nonsaturating Ca(2+) concentrations IANBD fluorescence can be used for straightforward classification of states of the myosin head as weak binding (nonactivating) and strong binding (activating), irrespective of ionic strength or other experimental conditions. Furthermore, the approach presented here not only can be used as a means of exchanging native skeletal troponin and its subunits for a variety of fluorescently labeled or mutant troponin subunits, but also allows the exchange of native skeletal troponin for cardiac troponin.
Collapse
Affiliation(s)
- B Brenner
- Department of Molecular and Cell Physiology, Medical School Hannover, D-30623 Hannover, Germany.
| | | | | | | |
Collapse
|
485
|
Xu S, Gu J, Rhodes T, Belknap B, Rosenbaum G, Offer G, White H, Yu LC. The M.ADP.Pi state is required for helical order in the thick filaments of skeletal muscle. Biophys J 1999; 77:2665-76. [PMID: 10545367 PMCID: PMC1300541 DOI: 10.1016/s0006-3495(99)77101-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The thick filaments of mammalian and avian skeletal muscle fibers are disordered at low temperature, but become increasingly ordered into an helical structure as the temperature is raised. Wray and colleagues (Schlichting, I., and J. Wray. 1986. J. Muscle Res. Cell Motil. 7:79; Wray, J., R. S. Goody, and K. Holmes. 1986. Adv. Exp. Med. Biol. 226:49-59) interpreted the transition as reflecting a coupling between nucleotide state and global conformation with M.ATP (disordered) being favored at 0 degrees C and M.ADP.P(i) (ordered) at 20 degrees C. However, hitherto this has been limited to a qualitative correlation and the biochemical state of the myosin heads required to obtain the helical array has not been unequivocally identified. In the present study we have critically tested whether the helical arrangement of the myosin heads requires the M.ADP.P(i) state. X-ray diffraction patterns were recorded from skinned rabbit psoas muscle fiber bundles stretched to non-overlap to avoid complications due to interaction with actin. The effect of temperature on the intensities of the myosin-based layer lines and on the phosphate burst of myosin hydrolyzing ATP in solution were examined under closely matched conditions. The results showed that the fraction of myosin mass in the helix closely followed that of the fraction of myosin in the M.ADP.P(i) state. Similar results were found by using a series of nucleoside triphosphates, including CTP and GTP. In addition, fibers treated by N-phenylmaleimide (Barnett, V. A., A. Ehrlich, and M. Schoenberg. 1992. Biophys. J. 61:358-367) so that the myosin was exclusively in the M.ATP state revealed no helical order. Diffraction patterns from muscle fibers in nucleotide-free and in ADP-containing solutions did not show helical structure. All these confirmed that in the presence of nucleotides, the M.NDP.P(i) state is required for helical order. We also found that the spacing of the third meridional reflection of the thick filament is linked to the helical order. The spacing in the ordered M.NDP.P(i) state is 143.4 A, but in the disordered state, it is 144. 2 A. This may be explained by the different interference functions for the myosin heads and the thick filament backbone.
Collapse
Affiliation(s)
- S Xu
- Laboratory of Physical Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
486
|
Abstract
Previous crystal structures of the myosin head have shown two different conformations, postulated to be the beginning and the end of the actomyosin power stroke. A new crystal structure reveals a dramatically different conformation; but how does this conformation fit into the force-generating cycle of actomyosin interactions?
Collapse
Affiliation(s)
- R Cooke
- Department of Biochemistry & Biophysics, Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA.
| |
Collapse
|
487
|
Hiratsuka T. ATP-induced opposite changes in the local environments around Cys(697) (SH2) and Cys(707) (SH1) of the myosin motor domain revealed by the prodan fluorescence. J Biol Chem 1999; 274:29156-63. [PMID: 10506171 DOI: 10.1074/jbc.274.41.29156] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To obtain a consistent view of the nucleotide-induced conformational changes around Cys(697) (SH2) and Cys(707) (SH1) in skeletal myosin subfragment-1 (S-1), the two thiols were labeled with the same environmentally sensitive fluorophore, 6-acyl-2-dimethylaminonaphthalene group, using 6-acryloyl-2-dimethylaminonaphthalene (acrylodan, AD) and 6-bromoacetyl-2-dimethylaminonaphthalene (BD), respectively. The resultant fluorescent derivatives, AD-S-1 and BD-S-1, have the same fluorophore at either SH2 or SH1, which was verified by inspections of changes in the ATPases and the localization of fluorescence after tryptic digestion and CNBr cleavage for the two derivatives. Especially, AD was found to be a very useful fluorescent reagent that readily reacts with only SH2 of S-1. Measurements of the nucleotide-induced changes in fluorescence emission spectra of AD-S-1 and BD-S-1 suggested that during ATP hydrolysis the environment around the fluorophore at SH2 is very distinct from that around the fluorophore at SH1, being defined as that the former has the hydrophobic and closed characteristics, whereas the latter has the hydrophilic and open ones. The KI quenching study of the fluorescence of the two S-1 derivatives confirmed these results. The most straightforward interpretation for the present results is that during ATP hydrolysis, the helix containing SH2 is buried in hydrophobic side chains and rather reinforced, whereas the adjacent helix containing SH1 moves away from its stabilizing tertiary structural environment.
Collapse
Affiliation(s)
- T Hiratsuka
- Department of Chemistry, Asahikawa Medical College, Asahikawa, Hokkaido 078-8510, Japan.
| |
Collapse
|
488
|
Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL. Myosin VI is an actin-based motor that moves backwards. Nature 1999; 401:505-8. [PMID: 10519557 DOI: 10.1038/46835] [Citation(s) in RCA: 500] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Myosins and kinesins are molecular motors that hydrolyse ATP to track along actin filaments and microtubules, respectively. Although the kinesin family includes motors that move towards either the plus or minus ends of microtubules, all characterized myosin motors move towards the barbed (+) end of actin filaments. Crystal structures of myosin II (refs 3-6) have shown that small movements within the myosin motor core are transmitted through the 'converter domain' to a 'lever arm' consisting of a light-chain-binding helix and associated light chains. The lever arm further amplifies the motions of the converter domain into large directed movements. Here we report that myosin VI, an unconventional myosin, moves towards the pointed (-) end of actin. We visualized the myosin VI construct bound to actin using cryo-electron microscopy and image analysis, and found that an ADP-mediated conformational change in the domain distal to the motor, a structure likely to be the effective lever arm, is in the opposite direction to that observed for other myosins. Thus, it appears that myosin VI achieves reverse-direction movement by rotating its lever arm in the opposite direction to conventional myosin lever arm movement.
Collapse
Affiliation(s)
- A L Wells
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6085, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
489
|
|
490
|
Abstract
Mutations of the unconventional myosins genes encoding myosin VI, myosin VIIA and myosin XV cause hearing loss and thus these motor proteins perform fundamental functions in the auditory system. A null mutation in myosin VI in the congenitally deaf Snell's waltzer mice (Myo6(sv)) results in fusion of stereocilia and subsequent progressive loss of hair cells, beginning soon after birth, thus reinforcing the vital role of cytoskeletal proteins in inner ear hair cells. To date, there are no human families segregating hereditary hearing loss that show linkage to MYO6 on chromosome 6q13. The discovery that the mouse shaker1 (Myo7(ash1)) locus encodes myosin VIIA led immediately to the identification of mutations in this gene in Usher syndrome type 1B; subsequently, mutations in this gene were also found associated with recessive and dominant nonsyndromic hearing loss (DFNB2 and DFNA11). Stereocilla of sh1 mice are severely disorganized, and eventually degenerate as well. Myosin VIIA has been implicated in membrane trafficking and/or endocytosis in the inner ear. Mutant alleles of a third unconventional myosin, myosin XV, are associated with nonsyndromic, recessive, congenital deafness DFNB3 on human chromosome 17p11.2 and deafness in shaker2 (Myo15(sh2)) mice. In outer and inner hair cells, myosin XV protein is detectable in the cell body and stereocilia. Hair cells are present in homozygous sh2 mutant mice, but the stereocilia are approximately 1/10 of the normal length. This review focuses on what we know about the molecular genetics and biochemistry of myosins VI, VIIA and XV as relates to hereditary hearing loss. Am. J. Med. Genet. (Semin. Med. Genet.) 89:147-157, 1999. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- T B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20854, USA.
| | | | | |
Collapse
|
491
|
Abstract
The folding pathway of the heavy meromyosin subfragment (HMM) of a skeletal muscle myosin has been investigated by in vitro synthesis of the myosin heavy and light chains in a coupled transcription and translation assay. Analysis of the nascent translation products for folding intermediates has identified a major intermediate that contains all three myosin subunits in a complex with the eukaryotic cytosolic chaperonin. Partially folded HMM is released from this complex in an ATP-dependent manner. However, biochemical and functional assays reveal incomplete folding of the myosin motor domain. Dimerization of myosin heavy chains and association of heavy and light chains are accomplished early in the folding pathway. To test for other factors necessary for the complete folding of myosin, a cytoplasmic extract was prepared from myotubes produced by a mouse myogenic cell line. This extract dramatically enhanced the folding of HMM, suggesting a role for muscle-specific factors in the folding pathway. We conclude that the molecular assembly of myosin is mediated by the eukaryotic cytosolic chaperonin with folding of the motor domain as the slow step in the pathway.
Collapse
Affiliation(s)
- R Srikakulam
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
492
|
Abstract
The conversion of energy into controlled motion plays an important role in both man-made devices and biological systems. The principles of operation of conventional motors are well established, but the molecular processes used by 'biological motors' such as muscle fibres, flagella and cilia to convert chemical energy into co-ordinated movement remain poorly understood. Although 'brownian ratchets' are known to permit thermally activated motion in one direction only, the concept of channelling random thermal energy into controlled motion has not yet been extended to the molecular level. Here we describe a molecule that uses chemical energy to activate and bias a thermally induced isomerization reaction, and thereby achieve unidirectional intramolecular rotary motion. The motion consists of a 120 degrees rotation around a single bond connecting a three-bladed subunit to the bulky remainder of the molecule, and unidirectional motion is achieved by reversibly introducing a tether between the two units to energetically favour one of the two possible rotation directions. Although our system does not achieve continuous and fast rotation, the design principles that we have used may prove relevant for a better understanding of biological and synthetic molecular motors producing unidirectional rotary motion.
Collapse
Affiliation(s)
- T R Kelly
- Department of Chemistry, E. F. Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | | | | |
Collapse
|
493
|
Abstract
We describe a new computational technique to predict conformationally switching elements in proteins from their amino acid sequences. The method, called ASP (Ambivalent Structure Predictor), analyzes results from a secondary structure prediction algorithm to identify regions of conformational ambivalence. ASP identifies ambivalent regions in 16 test protein sequences for which function involves substantial backbone rearrangements. In the test set, all sites previously described as conformational switches are correctly predicted to be structurally ambivalent regions. No such regions are predicted in three negative control protein sequences. ASP may be useful as a guide for experimental studies on protein function and motion in the absence of detailed three-dimensional structural data.
Collapse
Affiliation(s)
- M Young
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | | | |
Collapse
|
494
|
Abstract
The sequences of several members of the myosin family of molecular motors are evaluated using ASP (Ambivalent Structure Predictor), a new computational method. ASP predicts structurally ambivalent sequence elements by analyzing the output from a secondary structure prediction algorithm. These ambivalent sequence elements form secondary structures that are hypothesized to function as switches by undergoing conformational rearrangement. For chicken skeletal muscle myosin, 13 discrete structurally ambivalent sequence elements are identified. All 13 are located in the heavy chain motor domain. When these sequence elements are mapped into the myosin tertiary structure, they form two compact regions that connect the actin binding site to the adenosine 5'-triphosphate (ATP) site, and the ATP site to the fulcrum site for the force-producing bending of the motor domain. These regions, predicted by the new algorithm to undergo conformational rearrangements, include the published known and putative switches of the myosin motor domain, and they form plausible allosteric connections between the three main functional sites of myosin. The sequences of several other members of the myosin I and II families are also analyzed.
Collapse
Affiliation(s)
- K Kirshenbaum
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
495
|
Suda H, Sasaki YC, Oishi N, Hiraoka N, Sutoh K. Elasticity of mutant myosin subfragment-1 arranged on a functional silver surface. Biochem Biophys Res Commun 1999; 261:276-82. [PMID: 10425178 DOI: 10.1006/bbrc.1999.1007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elasticity of a two-dimensionally arranged myosin subfragment-1 (S1) was measured by using a surface forces apparatus. To prepare a two-dimensionally arranged S1-monolayer on a functionalized silver surface, we used genetically engineered Dictyostelium S1 molecules. A highly reactive cysteine residue was fused to the COOH-terminus using the recombinant DNA method. On the other hand, the maleimide groups was self-assembled onto a silver surface. Then the mutant S1 molecules were chemically bound to the functionalized silver surface at its COOH-terminus. This arrangement technique was necessary in order to create a stable S1-monolayer by chemical bond formation onto the silver surface. The occupied area of the single S1 on the silver surface was about 110 nm(2). In the interaction between the S1-monolayer and mica surfaces in aqueous solution, a long-range attractive force was observed. The elastic constants (stiffness and Young's modulus) of myosin S1 were evaluated from force-distance profiles in aqueous solution, using the Hertz theory. We found that the stiffness (or spring constant) and Young's modulus of S1 in the absence of nucleotide are 4.4 +/- 1.0 pN/nm and 0.71 +/- 0.16 GPa, respectively.
Collapse
Affiliation(s)
- H Suda
- Department of Biological Science and Technology, Tokai University, 317 Nishino, Numazu, Shizuoka, 410-0321, Japan.
| | | | | | | | | |
Collapse
|
496
|
Corrie JE, Brandmeier BD, Ferguson RE, Trentham DR, Kendrick-Jones J, Hopkins SC, van der Heide UA, Goldman YE, Sabido-David C, Dale RE, Criddle S, Irving M. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 1999; 400:425-30. [PMID: 10440371 DOI: 10.1038/22704] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new method is described for measuring motions of protein domains in their native environment on the physiological timescale. Pairs of cysteines are introduced into the domain at sites chosen from its static structure and are crosslinked by a bifunctional rhodamine. Domain orientation in a reconstituted macromolecular complex is determined by combining fluorescence polarization data from a small number of such labelled cysteine pairs. This approach bridges the gap between in vitro studies of protein structure and cellular studies of protein function and is used here to measure the tilt and twist of the myosin light-chain domain with respect to actin filaments in single muscle cells. The results reveal the structural basis for the lever-arm action of the light-chain domain of the myosin motor during force generation in muscle.
Collapse
Affiliation(s)
- J E Corrie
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
497
|
Furch M, Fujita-Becker S, Geeves MA, Holmes KC, Manstein DJ. Role of the salt-bridge between switch-1 and switch-2 of Dictyostelium myosin. J Mol Biol 1999; 290:797-809. [PMID: 10395830 DOI: 10.1006/jmbi.1999.2921] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motifs N2 and N3, also referred to as switch-1 and switch-2, form part of the active site of molecular motors such as myosins and kinesins. In the case of myosin, N3 is thought to act as a gamma-phosphate sensor and moves almost 6 A relative to N2 during the catalysed turnover of ATP, opening and closing the active site surrounding the gamma-phosphate. The closed form seems to be necessary for hydrolysis and is stabilised by the formation of a salt-bridge between an arginine residue in N2 and a glutamate residue in N3. We examined the role of this salt-bridge in Dictyostelium discoideum myosin. Myosin motor domains with mutations E459R or R238E, that block salt-bridge formation, show defects in nucleotide-binding, reduced rates of ATP hydrolysis and a tenfold reduction in actin affinity. Inversion of the salt-bridge in double-mutant M765-IS eliminates most of the defects observed for the single mutants. With the exception of a 2,500-fold higher KMvalue for ATP, the double-mutant displayed enzymatic and functional properties very similar to those of the wild-type protein. Our results reveal that, independent of its orientation, the salt-bridge is required to support efficient ATP hydrolysis, normal communication between different functional regions of the myosin head, and motor function.
Collapse
Affiliation(s)
- M Furch
- Max-Planck-Institut für Medizinische Forschung, Jahnstr. 29, Heidelberg, D-69120, Germany
| | | | | | | | | |
Collapse
|
498
|
Batra R, Manstein DJ. Functional characterisation of Dictyostelium myosin II with conserved tryptophanyl residue 501 mutated to tyrosine. Biol Chem 1999; 380:1017-23. [PMID: 10494855 DOI: 10.1515/bc.1999.126] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We created a Dictyostelium discoideum myosin II mutant in which the highly conserved residue Trp-501 was replaced by a tyrosine residue. The mutant myosin alone, when expressed in a Dictyostelium strain lacking the functional myosin II heavy chain gene, supported cytokinesis and multicellular development, processes which require a functional myosin in Dictyostelium. Additionally, we expressed the W501 Y mutant in the soluble myosin head fragment M761-2R (W501Y-2R) to characterise the kinetic properties of the mutant myosin motor domain. The affinity of the mutant myosin for actin was approximately 6-fold decreased, but other kinetic properties of the protein were changed less than 2-fold by the W501Y mutation. Based on spectroscopic studies and structural considerations, Trp-501, corresponding to Trp-510 in chicken fast skeletal muscle myosin, has been proposed to be the primary ATP-sensitive tryptophanyl residue. Our results confirm these conclusions. While the wild-type construct displayed a 10% fluorescence increase, addition of ATP to W501Y-2R was not followed by an increase in tryptophan fluorescence emission.
Collapse
Affiliation(s)
- R Batra
- Max-Planck-Institut für Medizinische Forschung, Heidelberg, Germany
| | | |
Collapse
|
499
|
Peyser YM, Muhlrad A. Actin and nucleotide induced conformational changes in the vicinity of Lys553 in myosin subfragment 1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:511-7. [PMID: 10406961 DOI: 10.1046/j.1432-1327.1999.00530.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bertrand et al. [Bertrand, R., Derancourt, J. & Kassab, R. (1995) Biochemistry 34, 9500-9507] reported that 6-[fluoresceine-5(and 6)-carboxamido] hexanoic acid succinimidyl ester (FHS) selectively modifies Lys553, which is part of the strong actin-binding site of myosin subfragment 1 (S1). We found that the reaction of FHS with Lys533 is accompanied by a decrease in the fluorescence intensity of the reagent. The rate of the FHS reaction increased with increasing pH implying that the unprotonated form of the epsilon-amino group of Lys553 reacts with FHS. Addition of 0.4 M KCl reduced the rate of reaction significantly, which indicates ionic strength-dependent changes in the structure of S1. Limited trypsinolysis of S1 before the FHS reaction also decreased the rate of the reaction showing that the structural integrity of S1 is needed for the reactivity of Lys553. ATP, ADP, ADP.BeF(x), ADP.AlF(4), ADP.V(i) and pyrophosphate significantly decreased the rate of Lys553 labelling, suggesting nucleotide-induced conformational changes in the environment of Lys553. The fluorescence emission spectrum of the Lys553-bound FH moiety and the quenching of its fluorescence by nitromethane was not influenced by nucleotides, implying that the chemical reactivity but not the accessibility of Lys553 was decreased by the nucleotide-induced conformational change. In the presence of ATP when the M(**)ADP.P(i) state of the ATPase cycle is predominantly populated, the reaction rate decreased more than in the case of the S1.ADP.AlF(4)(-) and S1.ADP.V(i) complexes, which are believed to mimic the M(**)ADP.P(i) state. This indicates that the conformation of the S1-ADP.AlF(4)(-) and S1.ADP.V(i) complexes in the vicinity of Lys553 does not resemble the structure of the M(**)ADP.P(i) state. The rate of Lys553 labelling decreased strongly in the presence of actin. The nitromethane quenching of the Lys553-bound FHS was not influenced by actin, which indicates that the reduced reaction rate is not due to steric hindrance caused by the bulky protein but by actin induced conformational changes in the vicinity of Lys553.
Collapse
Affiliation(s)
- Y M Peyser
- Department of Oral Biology, Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | | |
Collapse
|
500
|
Müller J, Marx A, Sack S, Song YH, Mandelkow E. The structure of the nucleotide-binding site of kinesin. Biol Chem 1999; 380:981-92. [PMID: 10494851 DOI: 10.1515/bc.1999.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Kinesin is a microtubule-based motor protein responsible for anterograde transport of vesicles and organelles in nerve axons and other cell types. The energy necessary for this transport is derived from the hydrolysis of ATP which is thought to induce conformational changes in the protein. We have solved the X-ray crystal structures of rat brain kinesin in three conditions intended to mimic different nucleotide states: (1) with ADP bound to the nucleotide-binding site, (2) with bound ADP in the presence of AIF(-)4, and (3) with ADP hydrolyzed to AMP by apyrase. In contrast to analogous cases observed in GTP-binding proteins or the muscle motor myosin, the structure of kinesin remained nearly unchanged. This highlights the stability of kinesin's ADP state in the absence of microtubules. Surprisingly, even after hydrolysis of ADP to AMP by apyrase a strong density peak remains at the position of the beta-phosphate which is compatible either with a phosphate or a sulfate from the solvent and appears to stabilize the nucleotide-binding pocket through several hydrogen bonds.
Collapse
Affiliation(s)
- J Müller
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|