451
|
Gustafson J, Eklund C, Wallström M, Zellin G, Magnusson B, Hasséus B. Langerin-expressing and CD83-expressing cells in oral lichen planus lesions. Acta Odontol Scand 2007; 65:156-61. [PMID: 17514517 DOI: 10.1080/00016350601137251] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Dendritic Langerhans cells (LCs) have been attributed a role in the pathogenesis of lichen planus as autoantigen-presenting cells initiating expansion of autoreactive T cells. Langerin and CD83, which are cell molecules expressed on LCs, are associated with antigen presentation. The present study examined expression of Langerin and CD83 molecules on LCs in patients with oral lichen planus (OLP). MATERIAL AND METHODS Biopsies were obtained from seven patients with OLP. Oral mucosa from seven healthy subjects served as controls. Monoclonal antibodies (mAbs) were used in standard immunohistochemical procedures to visualize CD1a-, Langerin-, and CD83-molecule-expressing cells. RESULTS CD1a+ and Langerin+ cells were found in significantly higher frequencies in OLP epithelium compared with healthy oral epithelium (p<0.01 and p<0.05, respectively); however, the frequency of CD83+ cells did not differ (p>0.05). The connective tissue in OLP lesions showed significantly higher frequencies of CD1a+, Langerin+, and CD83+ cells compared with healthy connective tissue (p<0.01, p<0.01, and p<0.05). CD1a+ and Langerin+ cells in OLP and healthy epithelium had a dendritic morphology. CONCLUSIONS The study shows increased numbers of CD1a- and Langerin-expressing LCs in OLP compared with healthy controls. In the connective tissue, CD83+ cells with dendritic morphology were localized to regions of lymphocyte clusters. The presence of CD83+ dendritic cells in areas of lymphocyte clusters in the connective tissue of OLP lesions indicates the possibility of ongoing autoantigen presentation.
Collapse
Affiliation(s)
- Jenny Gustafson
- Section of Oral Immunology/Clinic for Oral Medicine, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
452
|
Amatschek S, Kriehuber E, Bauer W, Reininger B, Meraner P, Wolpl A, Schweifer N, Haslinger C, Stingl G, Maurer D. Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment. Blood 2007; 109:4777-85. [PMID: 17289814 DOI: 10.1182/blood-2006-10-053280] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abstract
The discovery of marker proteins of human blood (BECs) and lymphatic endothelial cells (LECs) has allowed researchers to isolate these cells. So far, efforts to unravel their transcriptional and functional programs made use of cultured cells only. Hence, it is unknown to which extent previously identified LEC- and BEC-specific programs are representative of the in vivo situation. Here, we define the human BEC- and LEC-specific in vivo transcriptomes by comparative genomewide expression profiling of freshly isolated cutaneous EC subsets and of non-EC skin cells (fibroblasts, mast cells, dendritic cells, epithelial cells). Interestingly, the expression of most of the newly identified EC subset-discriminating genes depends strictly on the in vivo tissue environment as revealed by comparative analyses of freshly isolated and cultured EC subsets. The identified environment-dependent, EC subset-restricted gene expression regulates lineage fidelity, fluid exchange, and MHC class II–dependent antigen presentation. As an example for a BEC-restricted in vivo function, we show that non-activated BECs in situ, but not in vitro, assemble and display MHC class II protein complexes loaded with self-peptides. Thus, our data demonstrate the key importance of using precisely defined native ECs for the global identification of in vivo relevant cell functions.
Collapse
Affiliation(s)
- Stefan Amatschek
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
453
|
Uzan-Gafsou S, Bausinger H, Proamer F, Monier S, Lipsker D, Cazenave JP, Goud B, de la Salle H, Hanau D, Salamero J. Rab11A controls the biogenesis of Birbeck granules by regulating Langerin recycling and stability. Mol Biol Cell 2007; 18:3169-79. [PMID: 17538027 PMCID: PMC1949377 DOI: 10.1091/mbc.e06-09-0779] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The extent to which Rab GTPases, Rab-interacting proteins, and cargo molecules cooperate in the dynamic organization of membrane architecture remains to be clarified. Langerin, a recycling protein accumulating in the Rab11-positive compartments of Langerhans cells, induces the formation of Birbeck granules (BGs), which are membrane subdomains of the endosomal recycling network. We investigated the role of Rab11A and two members of the Rab11 family of interacting proteins, Rip11 and RCP, in Langerin traffic and the biogenesis of BGs. The overexpression of a dominant-negative Rab11A mutant or Rab11A depletion strongly influenced Langerin traffic and stability and the formation of BGs, whereas modulation of other Rab proteins involved in dynamic regulation of the endocytic-recycling pathway had no effect. Impairment of Rab11A function led to a missorting of Langerin to lysosomal compartments, but inhibition of Langerin degradation by chloroquine did not restore the formation of BGs. Loss of RCP, but not of Rip11, also had a modest, but reproducible effect on Langerin stability and BG biogenesis, pointing to a role for Rab11A-RCP complexes in these events. Our results show that Rab11A and Langerin are required for BG biogenesis, and they illustrate the role played by a Rab GTPase in the formation of a specialized subcompartment within the endocytic-recycling system.
Collapse
Affiliation(s)
- Stéphanie Uzan-Gafsou
- *Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Laboratoire “Mécanismes Moléculaires du Transport Intracellulaire,” Institut Curie, 75248 Paris Cedex 05, France
| | - Huguette Bausinger
- U 725 “Biologie des Cellules Dendritiques Humaines” and
- Université Louis Pasteur, F-67000 Strasbourg, France; and
- Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France
| | - Fabienne Proamer
- U 725 “Biologie des Cellules Dendritiques Humaines” and
- Université Louis Pasteur, F-67000 Strasbourg, France; and
- Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France
| | - Solange Monier
- *Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Laboratoire “Mécanismes Moléculaires du Transport Intracellulaire,” Institut Curie, 75248 Paris Cedex 05, France
| | - Dan Lipsker
- U 725 “Biologie des Cellules Dendritiques Humaines” and
- Université Louis Pasteur, F-67000 Strasbourg, France; and
- Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France
| | - Jean-Pierre Cazenave
- U 311, Institut National de la Santé et de la Recherche Médicale, F-67065 Strasbourg, France
- Université Louis Pasteur, F-67000 Strasbourg, France; and
- Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France
| | - Bruno Goud
- *Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Laboratoire “Mécanismes Moléculaires du Transport Intracellulaire,” Institut Curie, 75248 Paris Cedex 05, France
| | - Henri de la Salle
- U 725 “Biologie des Cellules Dendritiques Humaines” and
- Université Louis Pasteur, F-67000 Strasbourg, France; and
- Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France
| | - Daniel Hanau
- U 725 “Biologie des Cellules Dendritiques Humaines” and
- Université Louis Pasteur, F-67000 Strasbourg, France; and
- Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France
| | - Jean Salamero
- *Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique-Institut Curie, Laboratoire “Mécanismes Moléculaires du Transport Intracellulaire,” Institut Curie, 75248 Paris Cedex 05, France
| |
Collapse
|
454
|
Zimmerli SC, Hauser C. Langerhans cells and lymph node dendritic cells express the tight junction component claudin-1. J Invest Dermatol 2007; 127:2381-90. [PMID: 17508021 DOI: 10.1038/sj.jid.5700882] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Claudin-1 is a critical structural component of tight junctions that have an important role in adhesive properties, barrier function, and paracellular transport of epithelia and other nonhematopoietic tissues. We found claudin-1 in murine CD207+ Langerhans cells (LC) residing in epidermis. Claudin-1 was not detected in other skin dendritic cells (DC). LC expressed claudin-1 in steady state and inflamed skin. Claudin-1 was demonstrated further in lymph node LC under steady state and inflammatory conditions, including after direct tracking with tetramethylrhodamine-isothiocyanate (TRITC). All subsets of skin draining lymph node DC defined by CD205, CD11b, CD11c, and CD8, including a presumably blood-borne lymph node resident CD8+CD207+ LC population, were claudin-1+. TRITC tracking demonstrated claudin-1 in CD207- skin migrant DC in the lymph node, suggesting upregulation of this molecule during migration or once arrived in the lymph node. Claudin-1 expression in CD207+ cells was confirmed at the protein and mRNA levels. Transforming growth factor-beta, a factor critical for the induction of LC in vitro and in vivo, stimulated the accumulation of claudin-1 mRNA and protein when added to bone marrow cells cultured with GM-CSF and IL-4. Claudin-1 may thus have an important function in adhesion and/or migration of LC.
Collapse
Affiliation(s)
- Simone C Zimmerli
- Allergy Unit, Division of Immunology and Allergy, Department of Internal Medicine, Geneva University Hospitals and Medical School, Geneva, Switzerland.
| | | |
Collapse
|
455
|
|
456
|
Ju XS, Ruau D, Jäntti P, Seré K, Becker C, Wiercinska E, Bartz C, Erdmann B, Dooley S, Zenke M. Transforming growth factor β1 up-regulates interferon regulatory factor 8 during dendritic cell development. Eur J Immunol 2007; 37:1174-83. [PMID: 17429842 DOI: 10.1002/eji.200636504] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Langerhans cells (LC) represent the cutaneous contingent of dendritic cells (DC). Their development critically depends on transforming growth factor beta1 (TGF-beta1) as demonstrated by analysis of TGF-beta1(-/-) mice, which lack LC. Here we used a two-step culture system and transcriptional profiling by DNA microarrays to search for TGF-beta1 target genes in DC. The study identified interferon regulatory factor 8 (IRF-8) as a novel target gene of TGF-beta1 signaling in DC. TGF-beta1 effectively induced Smad2/3 phosphorylation and IRF-8 RNA and protein expression. Blocking the TGF-beta1/Smad pathway by ectopic expression of inhibitory Smad7 and by SB431542 inhibitor abolished TGF-beta1 induced up-regulation of IRF-8. Furthermore, TGF-beta1-dependent induction of IRF-8 occurred in the absence of protein biosynthesis, suggesting a direct action of TGF-beta1/Smad signaling on IRF-8 gene activity. TGF-beta1 also induced expression of the chemokine receptor CCR7 and enhanced DC migration towards CCR7 ligand ELC. DC of IRF-8(-/-) mice show reduced CCR7 expression and migratory activity, thereby implicating the TGF-beta1/Smad/IRF-8 signaling pathway in CCR7 regulation. Thus, this study identified a novel TGF-beta1/Smad/IRF-8 signaling pathway with an impact on DC phenotype and function.
Collapse
Affiliation(s)
- Xin-Sheng Ju
- Institute for Biomedical Engineering, Department of Cell Biology, Aachen University Hospital, Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
457
|
Abstract
Cutaneous dendritic cells (DC) include epidermal Langerhans cells (LC), interstitial/dermal dendritic cells (DDC), as well as plasmacytoid DC (pDC) that occur under pathological conditions. These immune cells have a spectrum of different functions with implications that extend far beyond the skin. They have the potential to internalize particulate agents and macromolecules, and display migratory properties that endow them with the unique capacity to journey between skin and draining lymph nodes where they encounter antigen-specific T lymphocytes. Herein, we will review the features of human and mouse cutaneous DC, emphasizing characteristics representative of their life-cycle stages that occur within the skin.
Collapse
Affiliation(s)
- Jenny Valladeau
- Université Claude Bernard Lyon I, Dermatologie-Pavillon R, EA 3732, Hopital Ed Herriot, Pav R, 69437 Lyon cedex, France.
| | | |
Collapse
|
458
|
Young JW, Merad M, Hart DNJ. Dendritic cells in transplantation and immune-based therapies. Biol Blood Marrow Transplant 2007; 13:23-32. [PMID: 17222766 DOI: 10.1016/j.bbmt.2006.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dendritic cells (DCs) are specialized, bone marrow-derived leukocytes critical to the onset of both innate and adaptive immunity. The divisions of labor among distinct human DC subtypes achieve the most effective balance between steady-state tolerance and the induction of innate and adaptive immunity against pathogens, tumors, and other insults. Maintenance of tolerance in the steady state is an active process involving resting or semimature DCs. Breakdowns in this homeostasis can result in autoimmunity. Perturbation of the steady state should first lead to the onset of innate immunity mediated by rapid responders in the form of plasmacytoid and monocyte-derived DC stimulators and natural killer (NK) and NK T-cell responders. These innate effectors then provide additional inflammatory cytokines, including interferon-gamma, which support the activation and maturation of resident and circulating populations of DCs. These are critical to the onset and expansion of adaptive immunity, including Th1, Th2, and cytotoxic T-lymphocyte responses. Rodent models are now revealing important data about distinct DC precursors, homeostasis of tissue-resident DCs, and DC turnover in response to inflammation and pathological conditions like graft-versus-host disease. The use of defined DC subtypes to stimulate both innate and adaptive immunity, either in combination or in a prime-boost vaccine sequence, may prove most useful clinically by harnessing both effector cell compartments.
Collapse
Affiliation(s)
- James W Young
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | |
Collapse
|
459
|
Simonetti O, Goteri G, Lucarini G, Rubini C, Stramazzotti D, Lo Muzio L, Biagini G, Offidani A. In melanoma changes of immature and mature dendritic cell expression correlate with tumor thickness:an immunohistochemical study. Int J Immunopathol Pharmacol 2007; 20:325-33. [PMID: 17624244 DOI: 10.1177/039463200702000212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cells with a dendritic morphology and/or expression of dendritic cell (DC) markers have been repeatedly described in several human tumors, but the distribution and density of melanoma-associated DCs have not yet been reported. The aim of the present study is to analyze the density and topographical distribution of melanoma-associated DCs and their relation with CD3(+), CD4(+) and CD8(+) T lymphocytes in forty cases of cutaneous human melanoma. In melanocytic tumours different pools of DCs were recognised in the epidermis and in the dermis, particularly in intimate relation with lymphocyte clusters inside the melanocytic proliferation, and more often at the edges of tumours. The number of Langerin-positive DCs showed an inverse correlation with tumour depth (correlation coefficient r= -0.59, P=0.0001) and was significantly lower in thick melanomas compared to thin and intermediate ones (P<0.0005). The density of CD83(+) DCs was significantly lower in thick melanomas compared to thin and intermediate ones (P<0.009). A significant correlation was found between the density of the two DCs subsets (r=0.57, p<0.0001). The number of CD3(+) lymphocytes was inversely correlated to the depth of infiltration (r=-0.596, P<0.0001): melanoma cases with II-III Clark level showed a higher T lymphocyte mean density compared to cases with IV-V Clark level (P<0.0001). T lymphocyte density was significantly lower in thick melanomas compared to thin and intermediate melanomas (P<0.0005). In conclusion, our study indicates a progressive loss of DCs and T lymphocytes in the neoplastic progression of melanomas; further identification of the molecular pathways involved in the functional impairment of these immunitary cells may lead to new immunotherapeutic approaches for melanoma patients that would improve the clinical outcome of the patients.
Collapse
Affiliation(s)
- O Simonetti
- Clinica Dermatologica, Dipartimento di Patologia Molecolare e Terapie Innovative, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
460
|
Woltman AM, de Fijter JW, Zuidwijk K, Vlug AG, Bajema IM, van der Kooij SW, van Ham V, van Kooten C. Quantification of dendritic cell subsets in human renal tissue under normal and pathological conditions. Kidney Int 2007; 71:1001-8. [PMID: 17361115 DOI: 10.1038/sj.ki.5002187] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) play critical roles in immune responses and can be distinguished in two major subsets, myeloid and plasmacytoid DCs. Although the presence of DC in all peripheral organs, including the kidney, has been well documented, no accurate estimates of DC subsets in human kidneys have been reported. This study shows a detailed analysis of DC subsets in cryosections of human renal tissue. The cortex of normal kidneys contains at least two different HLA-DR(+) myeloid DC subtypes characterized by BDCA-1(+)DC-SIGN(+) and BDCA-1(+)DC-SIGN(-). The staining for DC-SIGN completely overlapped with CD68 in the renal interstitium. Unexpectedly, BDCA-2(+)DC-SIGN(-) plasmacytoid DCs are also abundantly present. Both subsets are located in the tubulo-interstitium often with a high frequency around, but rarely observed within glomeruli. Quantification of BDCA-1(+), DC-SIGN(+), and BDCA-2(+) cells in normal human renal tissue (pretransplant biopsy living donors; n=21) revealed that BDCA-1 is about four times as frequently present as BDCA-2. A preliminary cross-sectional analysis of DC in diseased kidneys, including rejection and immunoglobulin A nephropathy, revealed that the number of DC as well as their anatomical distribution might change under pathophysiological conditions. In conclusion, we show that human kidneys contain a dense network of myeloid and plasmacytoid DCs and provide the tools for phenotyping and enumeration of these cells to better understand interindividual differences in immune responses.
Collapse
Affiliation(s)
- A M Woltman
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
461
|
de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MAWP, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TBH. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 2007; 13:367-71. [PMID: 17334373 DOI: 10.1038/nm1541] [Citation(s) in RCA: 459] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 12/21/2006] [Indexed: 11/08/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) is primarily transmitted sexually. Dendritic cells (DCs) in the subepithelium transmit HIV-1 to T cells through the C-type lectin DC-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin (DC-SIGN). However, the epithelial Langerhans cells (LCs) are the first DC subset to encounter HIV-1. It has generally been assumed that LCs mediate the transmission of HIV-1 to T cells through the C-type lectin Langerin, similarly to transmission by DC-SIGN on dendritic cells (DCs). Here we show that in stark contrast to DC-SIGN, Langerin prevents HIV-1 transmission by LCs. HIV-1 captured by Langerin was internalized into Birbeck granules and degraded. Langerin inhibited LC infection and this mechanism kept LCs refractory to HIV-1 transmission; inhibition of Langerin allowed LC infection and subsequent HIV-1 transmission. Notably, LCs also inhibited T-cell infection by viral clearance through Langerin. Thus Langerin is a natural barrier to HIV-1 infection, and strategies to combat infection must enhance, preserve or, at the very least, not interfere with Langerin expression and function.
Collapse
Affiliation(s)
- Lot de Witte
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van de Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Buzás EI, György B, Pásztói M, Jelinek I, Falus A, Gabius HJ. Carbohydrate recognition systems in autoimmunity. Autoimmunity 2007; 39:691-704. [PMID: 17178566 DOI: 10.1080/08916930601061470] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The immune system is a complex functional network of diverse cells and soluble molecules orchestrating innate and adaptive immunity. Biological information, to run these intricate interactions, is not only stored in protein sequences but also in the structure of the glycan part of the glycoconjugates. The spatially accessible carbohydrate structures that contribute to the cell's glycome are decoded by versatile recognition systems in order to maintain the immune homeostasis of an organism. Microbial carbohydrate structures are recognized by pathogen associated molecular pattern (PAMP) receptors of innate immunity including C-type lectins such as MBL, the tandem-repeat-type macrophage mannose receptor, DC-SIGN or dectin-1 of dendritic cells, certain TLRS or the TCR of NKT cells. Natural autoantibodies, a long known effector branch of this network-based operation, are effective to home in on non-self and self-glycosylation also. The recirculating pool of mammalian immune cells is recruited to inflammatory sites by a reaction pathway involving the self-carbohydrate-binding selectins as initial recognition step. Galectins, further key sensors reading the high-density sugar code, exert regulatory functions on activated T cells, among other activities. Autoimmune diseases are being associated with defined changes of glycosylation. This correlation deserves to be thoroughly studied on the levels of structural mimicry and dysregulation as well as effector molecules to devise innovative anti-inflammatory strategies. This review briefly summarizes data on sensor systems for carbohydrate epitopes and implications for autoimmunity.
Collapse
Affiliation(s)
- Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
463
|
Sabatté J, Maggini J, Nahmod K, Amaral MM, Martínez D, Salamone G, Ceballos A, Giordano M, Vermeulen M, Geffner J. Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine Growth Factor Rev 2007; 18:5-17. [PMID: 17321783 DOI: 10.1016/j.cytogfr.2007.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are the only antigen-presenting cell capable of activating naïve T lymphocytes, and hence they play a crucial role in the induction of adaptive immunity. Immature DCs sample and process antigens, and efficiently sense a large variety of signals from the surrounding environment. Upon activation, they become capable to activate naïve T cells and to direct the differentiation and polarization of effector T lymphocytes. It is becoming increasingly clear that different signals are able to determine distinct programs of DC differentiation and different forms of immunity and tolerance. In the past few years many advances have been made in addressing the action exerted by pathogen-associated molecular patterns (PAMPs), cytokines, chemokines, and other less characterized stress molecules on the activity of DCs. In this review we focus on the multiplicity of innate signals able to modulate the functional profile of DCs.
Collapse
Affiliation(s)
- Juan Sabatté
- Institute of Haematological Research, National Academy of Medicine and National Reference Centre for AIDS, Department of Microbiology, Buenos Aires University School of Medicine, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Veron P, Allo V, Rivière C, Bernard J, Douar AM, Masurier C. Major subsets of human dendritic cells are efficiently transduced by self-complementary adeno-associated virus vectors 1 and 2. J Virol 2007; 81:5385-94. [PMID: 17314166 PMCID: PMC1900227 DOI: 10.1128/jvi.02516-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells pivotal for inducing immunity or tolerance. Gene transfer into DC is an important strategy for developing immunotherapeutic approaches against infectious pathogens and cancers. One of the vectors previously described for the transduction of human monocytes or DC is the recombinant adeno-associated virus (rAAV), with a genome conventionally packaged as a single-stranded (ss) molecule. Nevertheless, its use is limited by the poor and variable transduction efficiency of DC. In this study, AAV type 1 (AAV1) and AAV2 vectors, which expressed the enhanced green fluorescent protein and were packaged as ss or self-complementary (sc) duplex strands, were used to transduce different DC subsets generated ex vivo and the immunophenotypes, states of differentiation, and functions of the subsets were carefully examined. We show here for the first time that a single exposure of monocytes (M(o)) or CD34(+) progenitors (CD34) to sc rAAV1 or sc rAAV2 leads to high transduction levels (5 to 59%) of differentiated M(o)-DC, M(o)-Langerhans cells (LC), CD34-LC, or CD34-plasmacytoid DC (pDC), with no impact on their phenotypes and functional maturation of these cells, compared to those of exposure to ss rAAV. Moreover, we show that all these DC subpopulations can also be efficiently transduced after commitment to their differentiation pathways. Furthermore, these DC subsets transduced with sc rAAV1 expressing a tumor antigen were potent activators of a CD8(+)-T-cell clone. Altogether, these results show the high potential of sc AAV1 and sc AAV2 vectors to transduce ex vivo conventional DC, LC, or pDC or to directly target them in vivo for the design of new DC-based immunotherapies.
Collapse
|
465
|
Kumkate S, Jenkins GR, Paveley RA, Hogg KG, Mountford AP. CD207+ Langerhans cells constitute a minor population of skin-derived antigen-presenting cells in the draining lymph node following exposure to Schistosoma mansoni. Int J Parasitol 2007; 37:209-20. [PMID: 17157855 PMCID: PMC1847335 DOI: 10.1016/j.ijpara.2006.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/30/2006] [Accepted: 10/20/2006] [Indexed: 11/25/2022]
Abstract
Infectious cercariae of Schistosoma mansoni gain entry to the mammalian host through the skin where they induce a transient inflammatory influx of mononuclear cells. Some of these cells have antigen-presenting cell function (MHCII+) and have been reported to migrate to the skin-draining lymph nodes (sdLN) where they have the potential to prime CD4+ cells of the acquired immune response. Here, in mice exposed to vaccinating radiation-attenuated schistosome larvae, which induce high levels of protective immunity to challenge infection, we describe the parasite-induced migration of Langerhans cells (LCs) from the epidermal site of immunisation to the sdLN using a specific monoclonal antibody that recognises langerin (CD207). CD207+ cells with dendritic morphology were abundant in the epidermis at all times and their migration into the dermis was detected soon after vaccination. All CD207+ LCs were MHCII+ but not all MHCII+ cells in the skin were CD207+. LCs migrated from the dermis in enhanced numbers after vaccination, as detected in dermal exudate populations recovered after in vitro culture of skin biopsies. Elevated numbers of CD207+ LCs were also detected in the sdLN from 24h to 4 days after vaccination. However, compared with other dermal-derived antigen-presenting cells that were CD207-MHCII+ or CD207-CD11c+, the relative numbers of CD207+ cells in the dermal exudate population and in the sdLN were very small. Furthermore, the migration of CD207+ cells after exposure to 'protective' radiation-attenuated, compared with 'non-protective' normal cercariae, was similar in terms of numbers and kinetics. Together, these studies suggest that CD207+ LCs are only a minor component of the antigen-presenting cell population that migrates from the epidermis and they are unlikely to be important in the priming of protective CD4+ cells in the sdLN.
Collapse
|
466
|
|
467
|
McCarthy NE, Jones HA, Marks NA, Shiner RJ, Ind PW, Al-Hassi HO, English NR, Murray CM, Lambert JR, Knight SC, Stagg AJ. Inhaled allergen-driven CD1c up-regulation and enhanced antigen uptake by activated human respiratory-tract dendritic cells in atopic asthma. Clin Exp Allergy 2007; 37:72-82. [PMID: 17210044 DOI: 10.1111/j.1365-2222.2006.02631.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Dendritic cells (DC) mediate inflammation in rodent models of allergic airway disease, but the role played by human respiratory-tract DC (hRTDC) in atopic asthma remains poorly defined. Recent data suggest that CD1 antigen presentation by hRTDC may contribute to asthma pathogenesis. OBJECTIVE To investigate the influence of hRTDC on the balance between atopy and allergic asthma in human subjects and to determine whether CD1 expression by hRTDC is modulated during asthmatic inflammation. METHODS Sputum cells were induced from steroid-naïve, allergen-challenged and allergen-naïve subjects (atopic asthmatics, atopic non-asthmatics and non-atopic controls). hRTDC were identified using monoclonal antibody labelling and analysis by flow cytometry. RESULTS hRTDC stained HLA-DR(+) (negative for markers of other cell lineages) were predominantly myeloid and comprised approximately 0.5% of viable sputum cells. Sputum cells were potent stimulators of allogeneic CD4(+) naïve T cells and enrichment/depletion experiments correlated stimulatory potency with DC numbers. Sputum contained cells that exhibited typical dendritic morphology when analysed by electron microscopy. Myeloid hRTDC were endocytically active, but uptake of FITC-dextran was enhanced in cells from asthmatics (P<0.001). Despite their increased endocytic capacity, asthmatic myeloid hRTDC appeared mature and expressed increased levels of maturation markers (P<0.05-P<0.001), CD1c, CD1d and langerin (P<0.05). CD1c expression by asthmatic myeloid hRTDC was enhanced upon in vivo allergen challenge (three to ninefold within 24 h; P<0.05). CD11c(-)CD123(high) hRTDC were only detected in asthmatic sputum and were increased in number following allergen challenge. CONCLUSION Despite limited cell numbers, it proved possible to analyse human RTDC in induced sputum, providing evidence that increased antigen uptake and enhanced CD1 presentation by activated hRTDC may contribute to allergic airway disease. CD1 presentation by hRTDC in atopic asthma may therefore constitute a novel target for future intervention strategies.
Collapse
Affiliation(s)
- N E McCarthy
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St Mark's Campus, Middlesex, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
468
|
Pöhlmann S, Tremblay MJ. Attachment of human immunodeficiency virus to cells and its inhibition. ENTRY INHIBITORS IN HIV THERAPY 2007. [PMCID: PMC7123856 DOI: 10.1007/978-3-7643-7783-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The entry of enveloped viruses involves virus adsorption followed by close apposition of the viral and plasma membranes. This multistep process is initiated by specific binding interactions between glycoproteins in the viral envelope and appropriate receptors on the cell surface. In the case of HIV-1, attachment of virions to the cell surface is attributed to a high affinity interaction between envelope spike glycoproteins (Env, composed of the surface protein gp120 and the transmembrane protein gp41) and a complex made of the primary CD4 receptor and a seven-transmembrane co-receptor (e.g., CXCR4 or CCR5) (reviewed in [1]). Then a chain of dynamic events take place that enable the viral nucleocapsid to penetrate within the target cell following the destabilization of membrane microenvironment and the formation of a fusion pore.
Collapse
|
469
|
Abstract
The developmental pathways that lead to the production of antigen-presenting dendritic cells (DCs) are beginning to be understood. These are the last of the pathways of haematopoiesis to be mapped. The existence of many specialized subtypes of DC has complicated this endeavour, as has the need to distinguish the DCs formed in steady state from those produced during an inflammatory response. Here we review studies that lead to the concept that different types of DC develop through different branches of haematopoietic pathways that involve different immediate precursor cells. Furthermore, these studies show that many individual tissues generate their own DCs locally, from a reservoir of immediate DC precursors, rather than depending on a continuous flux of DCs from the bone marrow.
Collapse
Affiliation(s)
- Ken Shortman
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
470
|
Zavala WD, Cavicchia JC. Deterioration of the Langerhans cell network of the human gingival epithelium with aging. Arch Oral Biol 2006; 51:1150-5. [PMID: 16919594 DOI: 10.1016/j.archoralbio.2006.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 06/01/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells responsible for initiating of the immune response. Langerhans cells (LCs) are a type of DC that is a permanent resident of the oral epithelium. LCs are organized conforming a network in such a way as to maximize their surface area for efficient apprehension of antigens. To detect age-related changes in the LCs network, fragments of gingival epithelium spontaneously accompanying dental removals were processed by immunohistochemistry. Monoclonal antibody CD1a followed by biotinized immunoglobulin-streptoavidin peroxidase were used to identify the LCs with the light microscope. LC density and LC types were analyzed according to their morphology and intraepithelial distribution. In the older age group (61-74 years) the density was significantly lower than in the younger age groups. Morphologically, LCs showed fewer dendritic-branching processes and had a rounded shape in the older age group. Present observations indicate that the LC network changes markedly with aging. These results suggest that immunological defense of the oral tissue might be compromised in old age.
Collapse
Affiliation(s)
- Walther David Zavala
- Instituto de Histología y Embriología y Facultad de Odontología, Universidad Nacional de Cuyo, Casilla de Correo 56, Mendoza, Argentina.
| | | |
Collapse
|
471
|
Bogunovic M, Ginhoux F, Wagers A, Loubeau M, Isola LM, Lubrano L, Najfeld V, Phelps RG, Grosskreutz C, Scigliano E, Frenette PS, Merad M. Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men. ACTA ACUST UNITED AC 2006; 203:2627-38. [PMID: 17116734 PMCID: PMC2118165 DOI: 10.1084/jem.20060667] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we explored dermal dendritic cell (DC) homeostasis in mice and humans both in the steady state and after hematopoietic cell transplantation. We discovered that dermal DCs proliferate in situ in mice and human quiescent dermis. In parabiotic mice with separate organs but shared blood circulation, the majority of dermal DCs failed to be replaced by circulating precursors for >6 mo. In lethally irradiated mice injected with donor congenic bone marrow (BM) cells, a subset of recipient DCs remained in the dermis and proliferated locally throughout life. Consistent with these findings, a large proportion of recipient dermal DCs remained in patients' skin after allogeneic hematopoietic cell transplantation, despite complete donor BM chimerism. Collectively, our results oppose the traditional view that DCs are nondividing terminally differentiated cells maintained by circulating precursors and support the new paradigm that tissue DCs have local proliferative properties that control their homeostasis in the steady state. Given the role of residual host tissue DCs in transplant immune reactions, these results suggest that dermal DC homeostasis may contribute to the development of cutaneous graft-versus-host disease in clinical transplantation.
Collapse
Affiliation(s)
- Milena Bogunovic
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
472
|
Vishwanath M, Nishibu A, Saeland S, Ward BR, Mizumoto N, Ploegh HL, Boes M, Takashima A. Development of Intravital Intermittent Confocal Imaging System for Studying Langerhans Cell Turnover. J Invest Dermatol 2006; 126:2452-7. [PMID: 16794586 DOI: 10.1038/sj.jid.5700448] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although several studies have suggested relatively slow turnover of Langerhans cells (LCs), their actual lifespan remains elusive. Here we report the development of a new intravital imaging system for studying LC efflux and influx. Epidermal LCs expressing enhanced green fluorescent protein (EGFP) were visualized in anesthetized I-Abeta-EGFP knock-in mice by confocal microscopy. By overlaying two sets of EGFP+ LC images recorded in the same microscopic fields at time 0 and 24 hours later, we identified LC subpopulations that had disappeared from or newly emerged in the epidermis during that period. Of >10,000 LCs analyzed in this manner, an overwhelming majority (97.8+/-0.2%) of LCs showed no significant changes in the x-y locations, whereas 1.3+/-0.1% of the LCs that were found at time 0 became undetectable 24 hours later, representing LC efflux. Conversely, 0.9+/-0.1% of the LCs that were found at time 24 hours were not detectable at time 0, representing LC influx. From these frequencies, we estimated the half-life of epidermal LCs to range from 53 to 78 days, providing new insights into the immunobiology of LCs. Our intermittent imaging approach may be regarded as a technical breakthrough enabling direct visual assessment of LC turnover in living animals.
Collapse
Affiliation(s)
- Mridula Vishwanath
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
473
|
Maciejewski-Lenoir D, Richman JG, Hakak Y, Gaidarov I, Behan DP, Connolly DT. Langerhans cells release prostaglandin D2 in response to nicotinic acid. J Invest Dermatol 2006; 126:2637-46. [PMID: 17008871 DOI: 10.1038/sj.jid.5700586] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nicotinic acid, used for atherosclerosis treatment, has an adverse effect of skin flushing. The flushing mechanism, thought to be caused by the release of prostaglandin D(2) (PGD(2)), is not well understood. We aimed to identify which cells mediate the flushing effect. Nicotinic acid receptor (GPR109A) gene expression was assessed in various tissues and cell lines. Cells expressing GPR109A mRNA were further assayed for PGD(2) release in response to nicotinic acid. Of all samples, only skin was able to release PGD(2) upon stimulation with nicotinic acid. The responsive cells were localized to the epidermis, and immunocytochemical studies revealed the presence of GPR109A on epidermal Langerhans cells. CD34+ cells isolated from human blood and differentiated into Langerhans cells (hLC-L) also showed GPR109A expression. IFNgamma treatment increased both mRNA and plasma membrane expression of GPR109A. IFNgamma-stimulated hLC-Ls released PGD(2) in response to nicotinic acid in a dose-dependant manner (effector concentration for half-maximum response=1.2 mM+/-0.7). Acifran, a structurally distinct GPR109A ligand, also increased PGD(2) release, whereas isonicotinic acid, a nicotinic acid analog with low affinity for GPR109A, had no effect. These results suggest that nicotinic acid mediates its flushing side effect by interacting with GPR109A on skin Langerhans cells, resulting in release of PGD(2).
Collapse
|
474
|
Tirlapur UK, Mulholland WJ, Bellhouse BJ, Kendall M, Cornhill JF, Cui Z. Femtosecond two-photon high-resolution 3D imaging, spatial-volume rendering and microspectral characterization of immunolocalized MHC-II and mLangerin/CD207 antigens in the mouse epidermis. Microsc Res Tech 2006; 69:767-75. [PMID: 16941665 DOI: 10.1002/jemt.20331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Langerhans cells (LCs) play a sentinel role by initiating both adaptive and innate immune responses to antigens pertinent to the skin. With the discovery of various LCs markers including antibodies to major histocompatibility complex class II (MHC-II) molecules and CD1a, intracellular presence of racket-shaped "Birbeck granules," and very recently Langerin/CD207, LCs can be readily distinguished from other subsets of dendritic cells. Femtosecond two-photon laser scanning microscopy (TPLSM) in recent years has emerged as an alternative to the single photon-excitation based confocal laser scanning microscope (CLSM), particularly for minimally-invasive deep-tissue 3D and 4D vital as well as nonvital biomedical imaging. We have recently combined high resolution two-photon immunofluorescence (using anti MHC-II and Langerin/CD207 antibodies) imaging with microspectroscopy and advanced image-processing/volume-rendering modalities. In this work, we demonstrate the use of this novel state-of-the-art combinational approach to characterize the steady state 3D organization and spectral features of the mouse epidermis, particularly to identify the spatial distribution of LCs. Our findings provide unequivocal direct evidence that, in the mouse epidermis, the MHC-II and mLangerin/CD207 antigens do indeed manifest a high degree of colocalization around the nucleus of the LCs, while in the distal dendritic processes, mLangerin/CD207 antigens are rather sparsely distributed as punctuate structures. This unique possibility to simultaneously visualize high resolution 3D-resolved spatial distributions of two different immuno-reactive antigens, namely MHC-II and mLangerin/CD207, along with the nuclei of LCs and the adjacent epidermal cells can find interesting applications. These could involve aspects associated with pragmatic analysis of the kinetics of LCs migration as a function of immuno-dermatological responses during (1) human Immunodeficiency virus disease progression, (2) vaccination and targeted gene therapy, (3) skin transplantation/plastic surgery, (4) ultraviolet and other radiation exposure, (5) tissue-engineering of 3D skin constructs, as well as in (6) cosmetic industry, to unravel the influence of cosmeceuticals.
Collapse
Affiliation(s)
- Uday K Tirlapur
- Department of Engineering Science, Oxford Institute of Biomedical Engineering, University of Oxford, Oxford OX1 3PJ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
475
|
Renn CN, Sanchez DJ, Ochoa MT, Legaspi AJ, Oh CK, Liu PT, Krutzik SR, Sieling PA, Cheng G, Modlin RL. TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. THE JOURNAL OF IMMUNOLOGY 2006; 177:298-305. [PMID: 16785525 DOI: 10.4049/jimmunol.177.1.298] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Langerhans cells (LC) are a unique subset of dendritic cells (DC), present in the epidermis and serving as the first line of defense against pathogens invading the skin. To investigate the role of human LCs in innate immune responses, we examined TLR expression and function of LC-like DCs derived from CD34+ progenitor cells and compared them to DCs derived from peripheral blood monocytes (monocyte-derived DC; Mo-DC). LC-like DCs and Mo-DCs expressed TLR1-10 mRNAs at comparable levels. Although many of the TLR-induced cytokine patterns were similar between the two cell types, stimulation with the TLR3 agonist poly(I:C) triggered significantly higher amounts of the IFN-inducible chemokines CXCL9 (monokine induced by IFN-gamma) and CXCL11 (IFN-gamma-inducible T cell alpha chemoattractant) in LC-like DCs as compared with Mo-DCs. Supernatants from TLR3-activated LC-like DCs reduced intracellular replication of vesicular stomatitis virus in a type I IFN-dependent manner. Finally, CXCL9 colocalized with LCs in skin biopsy specimens from viral infections. Together, our data suggest that LCs exhibit a direct antiviral activity that is dependent on type I IFN as part of the innate immune system.
Collapse
Affiliation(s)
- Claudia N Renn
- Division of Dermatology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
476
|
Carter RW, Thompson C, Reid DM, Wong SYC, Tough DF. Preferential Induction of CD4+ T Cell Responses through In Vivo Targeting of Antigen to Dendritic Cell-Associated C-Type Lectin-1. THE JOURNAL OF IMMUNOLOGY 2006; 177:2276-84. [PMID: 16887988 DOI: 10.4049/jimmunol.177.4.2276] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Targeting of Ags and therapeutics to dendritic cells (DCs) has immense potential for immunotherapy and vaccination. Because DCs are heterogeneous, optimal targeting strategies will require knowledge about functional specialization among DC subpopulations and identification of molecules for targeting appropriate DCs. We characterized the expression of a fungal recognition receptor, DC-associated C-type lectin-1 (Dectin-1), on mouse DC subpopulations and investigated the ability of an anti-Dectin-1 Ab to deliver Ag for the stimulation of immune responses. Dectin-1 was shown to be expressed on CD8alpha-CD4-CD11b+ DCs found in spleen and lymph nodes and dermal DCs present in skin and s.c. lymph nodes. Injection of Ag-anti-Dectin-1 conjugates induced CD4+ and CD8+ T cell and Ab responses at low doses where free Ag failed to elicit a response. Notably, qualitatively different immune responses were generated by targeting Ag to Dectin-1 vs CD205, a molecule expressed on CD8alpha+CD4-CD11b- DCs, dermal DCs, and Langerhans cells. Unlike anti-Dectin-1, anti-CD205 conjugates failed to elicit an Ab response. Moreover, when conjugates were injected i.v., anti-Dectin-1 stimulated a much stronger CD4+ T cell response and a much weaker CD8+ T cell response than anti-CD205. The results reveal Dectin-1 as a potential targeting molecule for immunization and have implications for the specialization of DC subpopulations.
Collapse
Affiliation(s)
- Robert W Carter
- Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire, United Kingdom
| | | | | | | | | |
Collapse
|
477
|
Buoni S, Zannolli R, de Santi M, Macucci F, Hayek J, Orsi A, Scarinci R, Buscalferri A, Cuccia A, Zappella M, Miracco C. Neurocutaneous syndrome with mental delay, autism, blockage in intracellular vescicular trafficking and melanosome defects. Eur J Neurol 2006; 13:842-51. [PMID: 16879294 DOI: 10.1111/j.1468-1331.2006.01305.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We evaluated a 11-year-old male patient with mental delay, autism and brownish and whitish skin spots. The former resembled those of neurofibromatosis, the latter those of tuberous sclerosis. The patient received a complete clinical work-up to exclude neurofibromatosis, tuberous sclerosis, or any other known neurocutaneous disease, with biochemistry, chromosome analysis and analysis of skin specimens. Being all the other tests not significant, two main ultrastructural defects were observed. The first was a blockage in intracellular vescicular trafficking with sparing of the mitochondria; the second an aberrant presence of melanosomes in vacuoles of several cell lines and abnormal transfer of these organelles to keratinocytes. This patient presented with a unique clinical picture distinct from neurofibromatosis or tuberous sclerosis or any other known neurocutaneous disease. The ultrastructural abnormalities suggested a defect in cell trafficking involving several cell lines and compartments.
Collapse
Affiliation(s)
- S Buoni
- Section of Pediatric Neurology, Department of Pediatrics, Policlinico Le Scotte, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
478
|
de Gruijl TD, Sombroek CC, Lougheed SM, Oosterhoff D, Buter J, van den Eertwegh AJM, Scheper RJ, Pinedo HM. A postmigrational switch among skin-derived dendritic cells to a macrophage-like phenotype is predetermined by the intracutaneous cytokine balance. THE JOURNAL OF IMMUNOLOGY 2006; 176:7232-42. [PMID: 16751366 DOI: 10.4049/jimmunol.176.12.7232] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Migration of dendritic cells (DC) to secondary lymphoid organs under proinflammatory conditions coincides with their maturation and acquisition of T cell stimulatory abilities. In contrast, impaired activation of DC, e.g., in tumor-conditioned environments, may hamper their activation and possibly their subsequent migration to lymph nodes, leading to either immunological tolerance or ignorance, respectively. In this study, the influence of cytokines in the peripheral skin microenvironment on the activation state of migrating cutaneous DC was assessed using an ex vivo human skin explant model. We observed a phenotypic shift from mature CD83(+) DC to immature CD14(+) macrophage-like cells within 7 days subsequent to migration from unconditioned skin. These macrophage-like cells displayed a poor T cell stimulatory ability and lacked expression of CCR7, thus precluding their migration to paracortical T cell areas in the lymph nodes. The balance of suppressive and stimulatory cytokines during the initiation of migration decided the postmigrational fate of DC with IL-10 accelerating and GM-CSF and IL-4 preventing the phenotypic switch, which proved irreversible once established. These observations indicate that, in immunosuppressed environments, a postmigrational DC-to-macrophage shift may hinder T cell activation, but also that it may be prevented by prior conditioning of the tissue microenvironment by GM-CSF and/or IL-4.
Collapse
Affiliation(s)
- Tanja D de Gruijl
- Department of Medical Oncology, Division of Immunotherapy, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
479
|
Tada Y, Riedl E, Lowenthal MS, Liotta LA, Briner DM, Crouch EC, Udey MC. Identification and Characterization of Endogenous Langerin Ligands in Murine Extracellular Matrix. J Invest Dermatol 2006; 126:1549-58. [PMID: 16557233 DOI: 10.1038/sj.jid.5700283] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Langerin is a C-type lectin that is expressed by Langerhans cells (LC) and related immune cells, and believed to play an important role in antigen recognition and uptake. To determine if Langerin has endogenous ligands, we generated S protein binding, bacterial recombinant, mouse soluble Langerin, and utilized it as a probe. Recombinant soluble Langerin did not bind to lymph node or spleen cells, or keratinocytes as assessed via flow cytometry. However, Langerin did bind to surfaces of primary skin fibroblasts and NIH3T3 cells. "Ligand blotting" of fibroblast membrane-enriched fractions with Langerin revealed reproducible binding to 140 and 240 kDa proteins resolved in reduced denaturing gels. Characterization of these proteins using mass spectrometry suggested types I and III procollagen and fibronectin as candidate ligands. Langerin bound to type I procollagen that was immunoprecipitated from fibroblast lysates, but did not bind to fibronectin that was immunoprecipitated from fibroblast-conditioned media or mouse plasma fibronectin. These results indicate that Langerin selectively interacts with at least one ligand in extracellular matrix (type I procollagen). Langerin may have an unanticipated role in cell-matrix interactions that modulate LC development, localization, or function.
Collapse
Affiliation(s)
- Yayoi Tada
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
480
|
Angel CE, George E, Brooks AES, Ostrovsky LL, Brown TLH, Dunbar PR. Cutting edge: CD1a+ antigen-presenting cells in human dermis respond rapidly to CCR7 ligands. THE JOURNAL OF IMMUNOLOGY 2006; 176:5730-4. [PMID: 16670277 DOI: 10.4049/jimmunol.176.10.5730] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent data from murine models have confirmed that Langerhans cells are not the only population of APCs in the skin involved in initiating immune responses. In healthy human skin, we identify CD1a(+) dermal APCs located close to the lymphatic vessels in the upper layers of the dermis that are unequivocally distinct from migrating Langerhans cells but exhibit both potent allostimulatory capacity and a chemotactic response to CCR7 ligands. In contrast, CD14(+) dermal APCs are distributed throughout the dermis and lack a chemotactic response to CCR7 ligands. CD1a(+) dermal APCs therefore represent an APC population distinct from Langerhans cells that are capable of migrating to lymph nodes and stimulating naive T cells. In humans, CD1a(+) dermal APCs may fulfill some of the roles previously ascribed to Langerhans cells.
Collapse
Affiliation(s)
- Catherine E Angel
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
481
|
Levitz SM, Specht CA. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res 2006; 6:513-24. [PMID: 16696647 DOI: 10.1111/j.1567-1364.2006.00071.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
T-cell-mediated immunity is necessary for effective host defenses against infections caused by Cryptococcus neoformans. Clinical and experimental studies have identified a heterogeneous family of mannoproteins as critical cryptococcal antigens responsible for stimulating T-cell responses. The archetypal mannoprotein has a signal sequence, a functional domain, a serine/threonine-rich region and a site for attachment of a glycosylphosphatidylinositol anchor. Extensive O-mannosylation, which occurs at the serine/threonine region, facilitates recognition by mannose receptors on antigen-presenting cells, particularly dendritic cells. This results in efficient antigen uptake, processing and presentation to T cells. Inhibition of mannose receptors or deglycosylation of mannoproteins profoundly inhibits T-cell responses, demonstrating the crucial contribution of mannosylation to immunogenicity.
Collapse
Affiliation(s)
- Stuart M Levitz
- Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
482
|
Ward EM, Stambach NS, Drickamer K, Taylor ME. Polymorphisms in Human Langerin Affect Stability and Sugar Binding Activity. J Biol Chem 2006; 281:15450-6. [PMID: 16567809 DOI: 10.1074/jbc.m511502200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Langerhans cells are specialized skin dendritic cells that take up and degrade antigens for presentation to the immune system. Langerin, a cell surface C-type lectin of Langerhans cells, can be internalized and accumulates in Birbeck granules, subdomains of the endosomal recycling compartment that are specific to Langerhans cells. Langerin binds and mediates uptake and degradation of glycoconjugates containing mannose and related sugars. Analysis of the human genome has identified three single nucleotide polymorphisms that result in amino acid changes in the carbohydrate-recognition domain of langerin. The effects of the amino acid changes on the activity of langerin were examined by expressing each of the polymorphic forms. Expression of full-length versions of the four common langerin haplotypes in fibroblasts revealed that all of these forms can mediate endocytosis of neoglycoprotein ligands. However, sugar binding assays and differential scanning calorimetry performed on fragments from the extracellular domain showed that two of the amino acid changes reduce the affinity of the carbohydrate-recognition domain for mannose and decrease the stability of the extracellular domain. In addition, analysis of sugar binding by langerin containing the rare W264R mutation, previously identified in an individual lacking Birbeck granules, shows that this mutation abolishes sugar binding activity. These findings suggest that certain langerin haplotypes may differ in their binding to pathogens and thus might be associated with susceptibility to infection.
Collapse
Affiliation(s)
- Eliot M Ward
- Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
483
|
Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 2006; 23:611-20. [PMID: 16356859 DOI: 10.1016/j.immuni.2005.10.008] [Citation(s) in RCA: 434] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/08/2005] [Accepted: 10/26/2005] [Indexed: 12/31/2022]
Abstract
Epidermal Langerhans cells (LCs), a distinct skin-resident dendritic cell population, acquire antigen in the skin and migrate to draining lymph nodes where they are thought to initiate adaptive immune responses. To examine the functional requirement of LCs in skin immunity, we generated BAC transgenic mice in which the regulatory elements from human Langerin were used to drive expression of diphtheria toxin. The resulting mice have a constitutive and durable absence of epidermal LCs but are otherwise intact. Unexpectedly, we found that contact hypersensitivity (CHS) was amplified rather than abrogated in the absence of LCs. Moreover, we showed that LCs act during the priming and not the effector phase. Thus, LCs not only were dispensable for CHS, but they served to regulate the response, a previously unappreciated function.
Collapse
Affiliation(s)
- Daniel H Kaplan
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | |
Collapse
|
484
|
Nishibu A, Ward BR, Jester JV, Ploegh HL, Boes M, Takashima A. Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J Invest Dermatol 2006; 126:787-96. [PMID: 16439974 DOI: 10.1038/sj.jid.5700107] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pathological stimuli provoke coordinated changes in gene expression, surface phenotype, and function of dendritic cells (DCs), thereby facilitating the induction of adaptive immune responses. This concept of DC maturation was established mainly by studying epidermal Langerhans cells (LCs), a prototypic immature DC subset at the environmental interface. Taking advantage of I-Abeta-enhanced green fluorescent protein (EGFP) knock-in mice in which LCs can be visualized in intact skin, we recorded the dynamic movement of EGFP+ LCs by time-lapse confocal microscopy. LCs exhibited a unique behavior, termed dendrite surveillance extension and retraction cycling habitude (dSEARCH), characterized by rhythmic extension and retraction of dendrites through intercellular spaces between keratinocytes. When monitored after skin organ culture or subcutaneous injection of tumor necrosis factor alpha, LCs showed amplified dSEARCH and amoeba-like lateral migration between keratinocytes. Intravital imaging experiments further revealed steady-state dSEARCH motion in 5-10% of LCs. Topical application of a reactive hapten, DNFB, augmented dSEARCH and triggered lateral migration of LC in vivo. These observations introduce a new concept that in situ maturation of LCs is further accompanied by coordinated reprogramming of motile activities.
Collapse
Affiliation(s)
- Akiko Nishibu
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
485
|
Abstract
Epidermal Langerhans cells, a constituent of the skin immune system, have a spectrum of different functions with implications that extend far beyond the skin. They have the potential to internalize particulate agents and macromolecules, and display migratory properties that endow them with the unique capacity to journey between skin and draining lymph nodes where they encounter antigen-specific T lymphocytes. In addition, LC are considered to play a pivotal role in infectious disease such as Aids, allergy, chronic inflammatory reactions, tumor rejections or transplantation. Herein, we will review the features of Langerhans cells, emphasizing characteristics representative of their life-cycle stages that occur within the skin.
Collapse
Affiliation(s)
- Jenny Valladeau
- Université Lyon I, EA 3732, Hôpital Edouard-Herriot, Pavillon R, 69437 Lyon Cedex 03, France.
| |
Collapse
|
486
|
Bennaceur K, Popa I, Portoukalian J, Berthier-Vergnes O, Péguet-Navarro J. Melanoma-derived gangliosides impair migratory and antigen-presenting function of human epidermal Langerhans cells and induce their apoptosis. Int Immunol 2006; 18:879-86. [PMID: 16675488 DOI: 10.1093/intimm/dxl024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gangliosides are ubiquitous, membrane-associated, glycosphingolipids, the composition and production of which is altered in many tumour cells. They have been shown to inhibit the in vitro generation and differentiation of dendritic cells (DCs) from progenitors, but their effect on human tissue-residing DCs is yet to be investigated. In the present study, we analysed the effect of GM3 and GD3 gangliosides purified from human melanoma tumours on the phenotypic and functional maturation of human epidermal Langerhans cells (LCs), the first immune barrier against the tumour cells. We showed that both gangliosides impaired spontaneous LC maturation induced by a short in vitro culture, as assessed by significant down-regulation of co-stimulation (CD40, CD54, CD80, CD86) and maturation markers (CD83, CCR7), which correlated to an impaired ability of the cells to mount allogeneic T cell proliferation. Furthermore, the ganglioside-treated cells displayed less ability to migrate towards CCL19/macrophage inflammatory protein 3 beta, the chemokine that specifically binds CCR7 and mediates LC migration to lymph nodes. Lastly, we showed that both GM3 and GD3 gangliosides enhance LC spontaneous apoptosis. Globally, these in vitro results might explain, at least in part, the altered number and distribution of LCs in melanoma-bearing patients. They underscore a new mechanism for gangliosides to impede the host immune response by inducing LC dysfunction in the tumour microenvironment.
Collapse
Affiliation(s)
- Karim Bennaceur
- EA 37-32, Clinique Dermatologique, Pavillon R, Hôpital E. Herriot, Université Claude Bernard Lyon 1, 69437 Lyon Cedex 03, France
| | | | | | | | | |
Collapse
|
487
|
Savchenko AS, Hasegawa G, Naito M. Development and maturation of thymic dendritic cells during human ontogeny. Cell Tissue Res 2006; 325:455-60. [PMID: 16670919 DOI: 10.1007/s00441-006-0202-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
Thymic dendritic cells (TDC) are dendritic cells situated mainly in the cortico-medullary zone and in the medullary region of the thymus. However, the phenotype of TDC during ontogeny is poorly documented. The aim of this study has been to investigate the development and maturation of TDC during human ontogeny. Immunohistochemical analyses and immunoelectron-microscopic investigation of 21 human thymus specimens have been performed to detect the subtypes of TDC by using various DC-related and DC-development-related markers. TDC express a Langerhans-cell-like phenotype during human ontogeny. Cells expressing thymic stromal lymphopoietin receptor have been observed in Hassal's corpuscles of the thymus. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is also expressed in thymic epithelial cells (TEC) localized in Hassal's corpuscles. During human ontogeny, GM-CSF is produced by TEC of Hassal's corpuscles and might play a key role in the differentiation of TDC having Langerhans-cell-like phenotypes.
Collapse
Affiliation(s)
- Alexander S Savchenko
- Department of Cellular Function, Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-dori 1-757, Niigata, 951-8510, Japan.
| | | | | |
Collapse
|
488
|
Mansour MK, Latz E, Levitz SM. Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:3053-61. [PMID: 16493064 DOI: 10.4049/jimmunol.176.5.3053] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell-mediated immune responses to glycoantigens have been largely uncharacterized. Protective T cell responses to the pathogenic yeast Cryptococcus neoformans are dependent on heavily mannosylated Ags termed mannoproteins. In the work presented, the innate immune response to mannoprotein was determined. Purified murine splenic dendritic cells (DC), B cells, and macrophages were used to stimulate mannoprotein-specific T cells. Only DC were capable of any measurable stimulation. Depletion of DC resulted in the abrogation of the T cell response. Human and murine DC rapidly captured fluorescent-labeled mannoprotein by a mannose receptor-mediated process. Using transfected cell lines, the type II C-type lectin receptor DC-specific ICAM-3-grabbing nonintegrin (CD209) was determined to have affinity for mannoprotein. Taken together with prior work demonstrating that mannoprotein was captured by the macrophage mannose receptor (CD206), these data suggest that multiple mannose receptors on DC recognize mannoprotein. Pulsing experiments demonstrated that DC captured sufficient mannoprotein over 2 h to account for 50% of total stimulation. Capture appeared dependent on mannose receptors, as competitive mannosylated inhibitors and calcium chelators each interfered with T cell stimulation. By confocal microscopy, intracellular mannoprotein trafficked to an endo-lysosomal compartment in DC, and at later time points extended into tubules in a similar fashion to the degradation marker DQ-OVA. Mannoprotein colocalized intracellularly with CD206 and CD209. These data suggest that DC provide the crucial link between innate and adaptive immune responses to C. neoformans via a process that is dependent upon the efficient uptake of mannoprotein by mannose receptors.
Collapse
Affiliation(s)
- Michael K Mansour
- Department of Microbiology and Immunology Training Program, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
489
|
Larsson K, Lindstedt M, Borrebaeck CAK. Functional and transcriptional profiling of MUTZ-3, a myeloid cell line acting as a model for dendritic cells. Immunology 2006; 117:156-66. [PMID: 16423051 PMCID: PMC1782214 DOI: 10.1111/j.1365-2567.2005.02274.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The incidence of allergy is steadily increasing, but the molecular mechanisms involved in the allergic immune response are still not fully understood. In particular, further investigations focusing on dendritic cells, which are central in orchestrating the immune response, are needed. The objective of this study was to investigate the ability of myeloid leukaemia-derived cell lines, such as KG-1, THP-1 and MUTZ-3, to serve as in vitro models for dendritic cells. The ability of these cell lines to mature into functional dendritic cells, expressing costimulatory molecules, was assessed by functional and transcriptional profiling and compared with that of monocyte-derived dendritic cells, which are now used as a standard source of dendritic cells. High-density microarray analysis was utilized to study the transcriptional activity and kinetics of activation of the differentiated MUTZ-3 cell line, in response to a cocktail of inflammatory cytokines. The data obtained clearly demonstrate that MUTZ-3 cells have the ability to induce antigen-independent proliferation in CD4(+) CD45RA(+) T cells, whereas KG-1 and THP-1 only induced a marginal response. Furthermore, MUTZ-3 displayed the phenotypic and transcriptional profiles of immature dendritic cells, after differentiation with granulocyte-macrophage colony-stimulating factor and interleukin-4. Upon activation with inflammatory cytokines, MUTZ-3 matured phenotypically and exhibited a gene induction similar to that of monocyte-derived dendritic cells. This delineation of the cellular and transcriptional activity of MUTZ-3, in response to maturational stimuli, demonstrates the significance of this cell line as a model for functional studies of inflammatory responses.
Collapse
|
490
|
Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, van Rooijen N, Caux C, Aït-Yahia S, Vicari A, Kaiserlian D, Dubois B. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 2006; 24:191-201. [PMID: 16473831 DOI: 10.1016/j.immuni.2006.01.005] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 12/09/2005] [Accepted: 01/12/2006] [Indexed: 11/29/2022]
Abstract
The nature of dendritic cell(s) (DC[s]) that conditions efficient in vivo priming of CD8+ CTL after immunization via epithelial tissues remains largely unknown. Here, we show that myeloid DCs rapidly recruited by adjuvants into the buccal mucosa or skin are essential for CD8+ T cell crosspriming. Recruitment of circulating DC precursors, including Gr1+ monocytes, precedes the sequential accumulation of CD11c+ MHC class II+ DCs in dermis and epithelium via a CCR6/CCL20-dependent mechanism. Remarkably, a defect in CCR6, local neutralization of CCL20, or depletion of monocytes prevents in vivo priming of CD8+ CTL against an innocuous protein antigen administered with adjuvant. In addition, transfer of CCR6-sufficient Gr1+ monocytes restores CD8+ T cell priming in CCR6( degrees / degrees ) mice via a direct Ag presentation mechanism. Thus, newly recruited DCs likely derived from circulating monocytes are responsible for efficient crosspriming of CD8+ CTL after mucosal or skin immunization.
Collapse
Affiliation(s)
- Marie Le Borgne
- INSERM U404 "Immunité et Vaccination", IFR128 BioSciences Lyon-Gerland, F-69365 Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
491
|
Sung SSJ, Fu SM, Rose CE, Gaskin F, Ju ST, Beaty SR. A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. THE JOURNAL OF IMMUNOLOGY 2006; 176:2161-72. [PMID: 16455972 DOI: 10.4049/jimmunol.176.4.2161] [Citation(s) in RCA: 399] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dendritic cells (DC) mediate airway Ag presentation and play key roles in asthma and infections. Although DC subsets are known to perform different functions, their occurrence in mouse lungs has not been clearly defined. In this study, three major lung DC populations have been found. Two of them are the myeloid and plasmacytoid DC (PDC) well-characterized in other lymphoid organs. The third and largest DC population is the integrin alpha(E) (CD103) beta(7)-positive and I-A(high)CD11c(high)-DC population. This population was found to reside in the lung mucosa and the vascular wall, express a wide variety of adhesion and costimulation molecules, endocytose avidly, present Ag efficiently, and produce IL-12. Integrin alpha(E)beta(7)(+) DC (alphaE-DC) were distinct from intraepithelial lymphocytes and distinguishable from CD11b(high) myeloid and mPDCA-1(+)B220(+)Gr-1(+) PDC populations in surface marker phenotype, cellular functions, and tissue localization. Importantly, this epithelial DC population expressed high levels of the Langerhans cell marker Langerin and the tight junction proteins Claudin-1, Claudin-7, and ZO-2. In mice with induced airway hyperresponsiveness and eosinophilia, alphaE-DC numbers were increased in lungs, and their costimulation and adhesion molecules were up-regulated. These studies show that alphaE-DC is a major and distinct lung DC population and a prime candidate APC with the requisite surface proteins for migrating across the airway epithelia for Ag and pathogen capture, transport, and presentation. They exhibit an activated phenotype in allergen-induced lung inflammation and may play significant roles in asthma pathogenesis.
Collapse
Affiliation(s)
- Sun-Sang J Sung
- Department of Internal Medicine, University of Virginia School of Medicine, Charlotteville, 22908, USA
| | | | | | | | | | | |
Collapse
|
492
|
Triantis V, Trancikova DE, Looman MWG, Hartgers FC, Janssen RAJ, Adema GJ. Identification and characterization of DC-SCRIPT, a novel dendritic cell-expressed member of the zinc finger family of transcriptional regulators. THE JOURNAL OF IMMUNOLOGY 2006; 176:1081-9. [PMID: 16393996 DOI: 10.4049/jimmunol.176.2.1081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) compose a heterogeneous population of cells that hold a leading role in initiating and directing immune responses. Although their function in recognizing, capturing, and presenting Ags is well defined, the molecular mechanisms that control their differentiation and immune functions are still largely unknown. In this study, we report the isolation and characterization of DC-SCRIPT, a novel protein encoded by an 8-kb mRNA that is preferentially expressed in DC. DC-SCRIPT is expressed in multiple DC subsets in vivo, including myeloid DC, plasmacytoid DC, and Langerhans cells. At the protein level, DC-SCRIPT consists of a proline-rich region, 11 C2H2-type zinc fingers, and an acidic region. Localization studies reveal that DC-SCRIPT resides in the nucleus and that nuclear localization is critically dependent on the zinc fingers. The protein displays no transcriptional activation properties according to assorted transactivation assays, but interacts with the corepressor C-terminal binding protein 1. Taken together, our results show that we have isolated a novel DC marker that could be involved in transcriptional repression. In contrast to other DC molecules, DC-SCRIPT identifies all DC subsets tested to date.
Collapse
Affiliation(s)
- Vassilis Triantis
- Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
493
|
Barbaroux JB, Kwan WH, Allam JP, Novak N, Bieber T, Fridman WH, Groves R, Mueller CG. Tumor necrosis factor-alpha- and IL-4-independent development of Langerhans cell-like dendritic cells from M-CSF-conditioned precursors. J Invest Dermatol 2006; 126:114-20. [PMID: 16417226 DOI: 10.1038/sj.jid.5700023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GM-CSF and transforming growth factor beta (TGFbeta ) are required for the generation of Langerhans cells (LC), members of the dendritic cell (DC) family. Tumor necrosis factor alpha (TNFalpha) and IL-4 can enhance LC differentiation from human monocytes or CD34(+) progenitors. Here, we show that M-CSF-cultured DC precursors derived from CD34(+) progenitors resemble dermal CD14(+) cells and readily convert to LC-like DC in GM-CSF/TGFbeta. The cells express Langerin, CD1a, and CCR6, migrate in response to CCR6 ligand CCL20, and contain Birbeck granules. TNFalpha and IL-4, added separately or together, have an inhibitory effect on LC differentiation. Cells differentiated in the presence of IL-4 and TNFalpha express low levels of CCR7. This suggests that M-CSF-conditioned DC precursors retain the capacity to efficiently undergo a differentiation program, giving rise to LC-like DC solely through the effect of GM-CSF and TGFbeta.
Collapse
Affiliation(s)
- Jean-Baptiste Barbaroux
- INSERM U255, IFR58, Centre de Recherches Biomédicales des Cordeliers, Université Pierre et Marie Curie (Paris 6) et René Descartes (Paris 5), Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
494
|
Kissenpfennig A, Malissen B. Langerhans cells--revisiting the paradigm using genetically engineered mice. Trends Immunol 2006; 27:132-9. [PMID: 16458606 DOI: 10.1016/j.it.2006.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/02/2005] [Accepted: 01/17/2006] [Indexed: 12/31/2022]
Abstract
Langerhans cells (LCs) are prominent dendritic cells (DCs) in epithelia, but their role in immunity and tolerance is poorly defined. 'Knockin' mice expressing enhanced green fluorescent protein (EGFP) under the control of the langerin (CD207) gene were recently developed in order to discriminate epidermal LCs from other DC subsets and at the same time to track their dynamics under steady-state or inflammatory conditions in vivo. Additional knockin mice expressing a diphtheria toxin receptor fused to EGFP were used to conditionally ablate LCs and assess their role in triggering hapten-specific T cell effectors through skin immunization. We review the insights that have been provided by these various knockin mice and discuss gaps in our knowledge of LCs that need to be filled.
Collapse
Affiliation(s)
- Adrien Kissenpfennig
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Université de la Méditerrannée, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille Cedex 09, France
| | | |
Collapse
|
495
|
Abstract
The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.
Collapse
Affiliation(s)
- Alex N Zelensky
- Computational Proteomics and Therapy Design Group, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
496
|
Douillard P, Stoitzner P, Tripp CH, Clair-Moninot V, Aït-Yahia S, McLellan AD, Eggert A, Romani N, Saeland S. Mouse lymphoid tissue contains distinct subsets of langerin/CD207 dendritic cells, only one of which represents epidermal-derived Langerhans cells. J Invest Dermatol 2006; 125:983-94. [PMID: 16297200 DOI: 10.1111/j.0022-202x.2005.23951.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Langerin/CD207 is a C-type lectin associated with formation of Birbeck granules (BG) in Langerhans cells (LC). Here, we describe a monoclonal antibody (mAb 205C1) recognizing the extracellular domain of mouse langerin. Cell-surface langerin was detected in all epidermal LC, which presented a uniform phenotype. Two subpopulations of langerin+ cells were identified in peripheral lymph nodes (LN). One population (subset 1) was CD11c(low/+)/CD8alpha(-/low)/CD11b+/CD40+/CD86+. The other population (subset 2) was CD11c(high)/CD8alpha+/CD11b(low), and lacked CD40 and CD86. Only subset 1 was fluorescein 5-isothiocyanate (FITC+) following painting onto epidermis, and the appearance of such FITC+ cells in draining LN was inhibited by pertussis toxin. Mesenteric LN, spleen, and thymus contained only a single population of langerin+ DC, corresponding to peripheral LN subset 2. Unexpectedly, BG were absent from spleen CD8alpha+ DC despite expression of langerin, and these organelles were not induced by mAb 205C1. Collectively, we demonstrate that two langerin+ DC populations (subsets 1 and 2) co-exist in mouse lymphoid tissue. Subset 1 unequivocally identifies epidermal LC-derived DC. The distribution of subset 2 indicates a non-LC origin of these langerin+ cells. These findings should facilitate our understanding of the role played by langerin in lymphoid organ DC subsets.
Collapse
Affiliation(s)
- Patrice Douillard
- Laboratory for Immunological Research, Schering Plough, Dardilly, France
| | | | | | | | | | | | | | | | | |
Collapse
|
497
|
Lau L, Krafchik B, Trebo MM, Weitzman S. Cutaneous Langerhans cell histiocytosis in children under one year. Pediatr Blood Cancer 2006; 46:66-71. [PMID: 16261594 DOI: 10.1002/pbc.20479] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND To evaluate the clinical course and outcome of infants with Langerhans cell histiocytosis (LCH) involving skin and to estimate the incidence of progression to multi-system (M-S) disease in those with isolated skin involvement. METHODS A retrospective review was conducted on 22 LCH patients who were younger than 12 months at the onset of their skin eruption. RESULTS Twelve patients had isolated skin involvement at diagnosis and 10 were evaluable for progression. Four of the 10 (40%) evaluable patients progressed to multi-system (M-S) disease. Of the 10 patients with M-S disease at diagnosis, 5 had a history of a preceding skin eruption 2 to 13 months prior to diagnosis. Eleven of the 14 (79%) patients with M-S disease had risk organ involvement. The mortality rate of M-S disease was 50%. CONCLUSIONS It is important for primary caregivers to recognize that isolated cutaneous LCH in infants is not always a benign disorder. The diagnosis of self-healing cutaneous LCH should only be made in retrospect. Careful, albeit non-invasive, follow-up is recommended to monitor for disease progression and development of long-term complications.
Collapse
Affiliation(s)
- Loretta Lau
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
498
|
Bechan GI, Egeler RM, Arceci RJ. Biology of Langerhans cells and Langerhans cell histiocytosis. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:1-43. [PMID: 17147996 DOI: 10.1016/s0074-7696(06)54001-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Langerhans cells (LC) are epidermal dendritic cells (DC). They play an important role in the initiation of immune responses through antigen uptake, processing, and presentation to T cells. Langerhans cell histiocytosis (LCH) is a rare disease in which accumulation of cells with LC characteristics (LCH cells) occur. LCH lesions are further characterized by the presence of other cell types, such as T cells, multinucleated giant cells (MGC), macrophages (MPhi), eosinophils, stromal cells, and natural killer cells (NK cells). Much has been learned about the pathophysiology of LCH by studying properties of these different cells and their interaction with each other through cytokines/chemokines. In this review we discuss the properties and interactions of the different cells involved in LCH pathophysiology with the hope of better understanding this enigmatic disorder.
Collapse
Affiliation(s)
- G I Bechan
- Department of Pediatric Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
499
|
Veron P, Boutin S, Bernard J, Danos O, Davoust J, Masurier C. Efficient transduction of monocyte- and CD34+- derived Langerhans cells with lentiviral vectors in the absence of phenotypic and functional maturation. J Gene Med 2006; 8:951-61. [PMID: 16741998 DOI: 10.1002/jgm.923] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gene delivery in dendritic cells (DC) has raised considerable interest to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific fashion. Among immature DC, Langerhans cells (LC) are attractive candidates for antigen delivery using lentiviral vectors (LV). METHODS LC derived from monocytes (Mo-LC), or derived from CD34+ cells (CD34-LC) in the presence of cytokine cocktail, were transduced with LV expressing enhanced green fluorescent protein (E-GFP) under the control of the ubiquitous phosphoglycerate kinase (PGK) promoter at a multiplicity of infection of 18, at days 0 to 3 for Mo-LC, or at days 0 to 12 for CD34-LC. We assessed gene transfer levels from the percentage of E-GFP+ cells in the final cultures, and examined the morphology, immunophenotype, state of differentiation and function of transduced LC. RESULTS Day 0 transduction of monocytes or CD34+ progenitors before cytokine pre-activation and LC differentiation resulted in stable gene expression in 7.8% of Mo-LC and 24% of CD34-LC. Monocyte-derived DC (Mo-DC) differentiated in serum-free medium were also efficiently transduced up to 13.2%. Interestingly, Mo-LC cells committed towards LC phenotype were permissive for transduction up to day 3. Transduction levels of CD34-LC peaked at day 6 to 44% and decreased thereafter. LV transduction did not perturb viability, phenotype and function of E-GFP-expressing LC. CONCLUSIONS LC generated ex vivo can serve as vaccine vehicles in humans through efficient transduction by LV. These LC will be helpful to assess in vitro the immunogenicity of gene therapy vectors, from the characterization of their phenotypic and functional maturation.
Collapse
Affiliation(s)
- P Veron
- Laboratoire d'Immunologie, GENETHON, CNRS UMR 8115, 91002 Evry Cedex, France
| | | | | | | | | | | |
Collapse
|
500
|
Abstract
As obligate intracellular parasites, viruses must bind to, and enter, permissive host cells in order to gain access to the cellular machinery that is required for their replication. The very large number of mammalian viruses identified to date is reflected in the fact that almost every human and animal cell type is a target for infection by one, or commonly more than one, species of virus. As viruses have adapted to target certain cell types for their propagation, there is exquisite specificity in cellular tropism. This specificity is frequently, but not always, mediated by the first step in the viral replication cycle: attachment of viral surface proteins to receptors expressed on susceptible cells. Viral receptors may be protein, carbohydrate, and/or lipid. Many viruses can use more than one attachment receptor, and indeed may sequentially engage multiple receptors to infect a cell. Thus, it is useful to differentiate between attachment receptors, that simply allow viruses a foothold at the limiting membrane of a cell, and entry receptors that mediate delivery the viral genome into the cytoplasm. For some viruses the attachment factors that promote binding to permissive cells are very well defined, but the sequence of events that triggers viral entry is only now beginning to be understood. For other viruses, despite many efforts, the receptors remain elusive. In this chapter we will confine our review to viruses that infect mammals, with particular focus on human pathogens. We do not intend that this will be an exhaustive overview of viral attachment receptors; instead we will take a number of examples of well-characterized virus-receptor interactions, discuss supporting evidence, and highlight any controversies and uncertainties in the field. We will then conclude with a reflection on general principles of viral attachment, consider some exceptions to these principles, and make some suggestion for future research.
Collapse
|