451
|
Costentin C, Robert M, Savéant JM. Concerted proton-electron transfers in the oxidation of phenols. Phys Chem Chem Phys 2010; 12:11179-90. [PMID: 20625575 DOI: 10.1039/c0cp00063a] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of phenols is an emblematic example where the mechanisms of proton-coupled electron transfers could be investigated in depth thanks to non-destructive electrochemical techniques such as cyclic voltammetry. A concerted proton-electron transfer could then be shown to be the prevailing pathway in the oxidation of amino-phenols mimicking the tyrosine-histidine couple in Photosystem II. The theoretical model developed on this occasion leads to the introduction of two main parameters characterizing reorganization of heavy atoms in the reactant and in the solvent on the one hand and proton tunneling on the other. When water used as the solvent is at the same time the proton acceptor, the concerted pathway also predominates. It is characterized by a remarkably large standard rate constant both in electrochemistry and in the oxidation by homogenous reactants. Another aspect of the importance of H-bonding in concerted proton-electron transfer is provided by H-bond relays that efficiently mediate the electron transfer-triggered transport of protons between two sites over large distances thanks to the displacement of two protons concerted with electron transfer. Intermediary protonation of the relay is avoided by fine tuning of its H-bond acceptor and donor properties.
Collapse
Affiliation(s)
- Cyrille Costentin
- Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université-CNRS No 7591, Université Paris Diderot, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
452
|
Gammon DB, Gowrishankar B, Duraffour S, Andrei G, Upton C, Evans DH. Vaccinia virus-encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis. PLoS Pathog 2010; 6:e1000984. [PMID: 20628573 PMCID: PMC2900304 DOI: 10.1371/journal.ppat.1000984] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/03/2010] [Indexed: 11/19/2022] Open
Abstract
Ribonucleotide reductases (RRs) are evolutionarily-conserved enzymes that catalyze the rate-limiting step during dNTP synthesis in mammals. RR consists of both large (R1) and small (R2) subunits, which are both required for catalysis by the R12R22 heterotetrameric complex. Poxviruses also encode RR proteins, but while the Orthopoxviruses infecting humans [e.g. vaccinia (VACV), variola, cowpox, and monkeypox viruses] encode both R1 and R2 subunits, the vast majority of Chordopoxviruses encode only R2 subunits. Using plaque morphology, growth curve, and mouse model studies, we investigated the requirement of VACV R1 (I4) and R2 (F4) subunits for replication and pathogenesis using a panel of mutant viruses in which one or more viral RR genes had been inactivated. Surprisingly, VACV F4, but not I4, was required for efficient replication in culture and virulence in mice. The growth defects of VACV strains lacking F4 could be complemented by genes encoding other Chordopoxvirus R2 subunits, suggesting conservation of function between poxvirus R2 proteins. Expression of F4 proteins encoding a point mutation predicted to inactivate RR activity but still allow for interaction with R1 subunits, caused a dominant negative phenotype in growth experiments in the presence or absence of I4. Co-immunoprecipitation studies showed that F4 (as well as other Chordopoxvirus R2 subunits) form hybrid complexes with cellular R1 subunits. Mutant F4 proteins that are unable to interact with host R1 subunits failed to rescue the replication defect of strains lacking F4, suggesting that F4-host R1 complex formation is critical for VACV replication. Our results suggest that poxvirus R2 subunits form functional complexes with host R1 subunits to provide sufficient dNTPs for viral replication. Our results also suggest that R2-deficient poxviruses may be selective oncolytic agents and our bioinformatic analyses provide insights into how poxvirus nucleotide metabolism proteins may have influenced the base composition of these pathogens. Efficient genome replication is central to the virulence of all DNA viruses, including poxviruses. To ensure replication efficiency, many of the more virulent poxviruses encode their own nucleotide metabolism machinery, including ribonucleotide reductase (RR) enzymes, which act to provide ample DNA precursors for replication. RR enzymes require both large (R1) and small (R2) subunit proteins for activity. Curiously, some poxviruses only encode R2 subunits. Other poxviruses, such as the smallpox vaccine strain, vaccinia virus (VACV), encode both R1 and R2 subunits. We report here that the R2, but not the R1, subunit of VACV RR is required for efficient replication and virulence. We also provide evidence that several poxvirus R2 proteins form novel complexes with host R1 subunits and this interaction is required for efficient VACV replication in primate cells. Our study explains why some poxviruses only encode R2 subunits and identifies a role for these proteins in poxvirus pathogenesis. Furthermore, we provide evidence that mutant poxviruses unable to generate R2 proteins may become entirely dependent upon host RR activity. This may restrict their replication to cells that over-express RR proteins such as cancer cells, making them potential therapeutics for human malignancies.
Collapse
Affiliation(s)
- Don B. Gammon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Branawan Gowrishankar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Duraffour
- Laboratory of Virology and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - David H. Evans
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
453
|
Jiang W, Xie J, Varano PT, Krebs C, Bollinger JM. Two distinct mechanisms of inactivation of the class Ic ribonucleotide reductase from Chlamydia trachomatis by hydroxyurea: implications for the protein gating of intersubunit electron transfer. Biochemistry 2010; 49:5340-9. [PMID: 20462199 PMCID: PMC2930177 DOI: 10.1021/bi100037b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalysis by a class I ribonucleotide reductase (RNR) begins when a cysteine (C) residue in the alpha(2) subunit is oxidized to a thiyl radical (C(*)) by a cofactor approximately 35 A away in the beta(2) subunit. In a class Ia or Ib RNR, a stable tyrosyl radical (Y(*)) is the C oxidant, whereas a Mn(IV)/Fe(III) cluster serves this function in the class Ic enzyme from Chlamydia trachomatis (Ct). It is thought that, in either case, a chain of Y residues spanning the two subunits mediates C oxidation by forming transient "pathway" Y(*)s in a multistep electron transfer (ET) process that is "gated" by the protein so that it occurs only in the ready holoenzyme complex. The drug hydroxyurea (HU) inactivates both Ia/b and Ic beta(2) subunits by reducing their C oxidants. Reduction of the stable cofactor Y(*) (Y122(*)) in Escherichia coli class Ia beta(2) is faster in the presence of alpha(2) and a substrate (CDP), leading to speculation that HU might intercept a transient ET pathway Y(*) under these turnover conditions. Here we show that this mechanism is one of two that are operant in HU inactivation of the Ct enzyme. HU reacts with the Mn(IV)/Fe(III) cofactor to give two distinct products: the previously described homogeneous Mn(III)/Fe(III)-beta(2) complex, which forms only under turnover conditions (in the presence of alpha(2) and the substrate), and a distinct, diamagnetic Mn/Fe cluster, which forms approximately 900-fold less rapidly as a second phase in the reaction under turnover conditions and as the sole outcome in the reaction of Mn(IV)/Fe(III)-beta(2) only. Formation of Mn(III)/Fe(III)-beta(2) also requires (i) either Y338, the subunit-interfacial ET pathway residue of beta(2), or Y222, the surface residue that relays the "extra electron" to the Mn(IV)/Fe(IV) intermediate during activation of beta(2) but is not part of the catalytic ET pathway, and (ii) W51, the cofactor-proximal residue required for efficient ET between either Y222 or Y338 and the cofactor. The combined requirements for the catalytic subunit, the substrate, and, most importantly, a functional surface-to-cofactor electron relay system imply that HU effects the Mn(IV)/Fe(III) --> Mn(III)/Fe(III) reduction by intercepting a Y(*) that forms when the ready holoenzyme complex is assembled, the ET gate is opened, and the Mn(IV) oxidizes either Y222 or Y338.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jiajia Xie
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Paul T. Varano
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
454
|
Yokoyama K, Uhlin U, Stubbe J. Site-specific incorporation of 3-nitrotyrosine as a probe of pKa perturbation of redox-active tyrosines in ribonucleotide reductase. J Am Chem Soc 2010; 132:8385-97. [PMID: 20518462 PMCID: PMC2905227 DOI: 10.1021/ja101097p] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
E. coli ribonucleotide reductase catalyzes the reduction of nucleoside 5'-diphosphates into 2'-deoxynucleotides and is composed of two subunits: alpha2 and beta2. During turnover, a stable tyrosyl radical (Y*) at Y(122)-beta2 reversibly oxidizes C(439) in the active site of alpha2. This radical propagation step is proposed to occur over 35 A, to use specific redox-active tyrosines (Y(122) and Y(356) in beta2, Y(731) and Y(730) in alpha2), and to involve proton-coupled electron transfer (PCET). 3-Nitrotyrosine (NO(2)Y, pK(a) 7.1) has been incorporated in place of Y(122), Y(731), and Y(730) to probe how the protein environment perturbs each pK(a) in the presence of the second subunit, substrate (S), and allosteric effector (E). The activity of each mutant is <4 x 10(-3) that of the wild-type (wt) subunit. The [NO(2)Y(730)]-alpha2 and [NO(2)Y(731)]-alpha2 each exhibit a pK(a) of 7.8-8.0 with E and E/beta2. The pK(a) of [NO(2)Y(730)]-alpha2 is elevated to 8.2-8.3 in the S/E/beta2 complex, whereas no further perturbation is observed for [NO(2)Y(731)]-alpha2. Mutations in pathway residues adjacent to the NO(2)Y that disrupt H-bonding minimally perturb its pK(a). The pK(a) of NO(2)Y(122)-beta2 alone or with alpha2/S/E is >9.6. X-ray crystal structures have been obtained for all [NO(2)Y]-alpha2 mutants (2.1-3.1 A resolution), which show minimal structural perturbation compared to wt-alpha2. Together with the pK(a) of the previously reported NO(2)Y(356)-beta2 (7.5 in the alpha2/S/E complex; Yee, C. et al. Biochemistry 2003, 42, 14541-14552), these studies provide a picture of the protein environment of the ground state at each Y in the PCET pathway, and are the starting point for understanding differences in PCET mechanisms at each residue in the pathway.
Collapse
Affiliation(s)
| | | | - JoAnne Stubbe
- To whom correspondence should be addressed. Tel: (617) 253-1814. Fax: (617) 324-0505.
| |
Collapse
|
455
|
Yan S, Kang S, Hayashi T, Mukamel S, Lee JY. Computational studies on electron and proton transfer in phenol-imidazole-base triads. J Comput Chem 2010; 31:393-402. [PMID: 19479733 DOI: 10.1002/jcc.21339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The electron and proton transfer in phenol-imidazole-base systems (base = NH(2)(-) or OH(-)) were investigated by density-functional theory calculations. In particular, the role of bridge imidazole on the electron and proton transfer was discussed in comparison with the phenol-base systems (base = imidazole, H(2)O, NH(3), OH(-), and NH(2)(-)). In the gas phase phenol-imidazole-base system, the hydrogen bonding between the phenol and the imidazole is classified as short strong hydrogen bonding, whereas that between the imidazole and the base is a conventional hydrogen bonding. The n value in sp(n) hybridization of the oxygen and carbon atoms of the phenolic CO sigma bond was found to be closely related to the CO bond length. From the potential energy surfaces without and with zero point energy correction, it can be concluded that the separated electron and proton transfer mechanism is suitable for the gas-phase phenol-imidazole-base triads, in which the low-barrier hydrogen bond is found and the delocalized phenolic proton can move freely in the single-well potential. For the gas-phase oxidized systems and all of the triads in water solvent, the homogeneous proton-coupled electron transfer mechanism prevails.
Collapse
Affiliation(s)
- Shihai Yan
- Department of Chemistry, SungKyunKwan University, Suwon 440-746, Korea
| | | | | | | | | |
Collapse
|
456
|
Dunn RV, Munro AW, Turner NJ, Rigby SEJ, Scrutton NS. Tyrosyl radical formation and propagation in flavin dependent monoamine oxidases. Chembiochem 2010; 11:1228-31. [PMID: 20480485 DOI: 10.1002/cbic.201000184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Indexed: 11/06/2022]
Affiliation(s)
- Rachel V Dunn
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, M1 7DN Manchester, UK
| | | | | | | | | |
Collapse
|
457
|
Abstract
The thermodynamic stability of carbon-centered radicals may be defined in quantitative terms using the hydrogen transfer reaction shown in . The stability values obtained in this way for substituted systems may be understood as the stabilizing or destabilizing influence of substituents on the neighboring radical center. This approach can be easily adapted to oxygen- or sulfur-centered radicals as expressed in eqn (b). [Formula: see text] The stability values obtained in this way do not only serve as a quantitative basis for the discussion of substituent effects, but also allow for quantitative estimates of reaction energies for hydrogen transfer reactions. These occur as key steps in a multitude of synthetically useful radical-chain processes in apolar solution, in enzyme-mediated non-chain processes in biological systems, and in the oxidative degradation of a variety of biomolecules. The review will highlight the usefulness of radical stability values for the rationalization of successful (and not so successful) synthetic radical reactions as well as the potential design of new radical reactions.
Collapse
Affiliation(s)
- Johnny Hioe
- Department of Chemistry, LMU München, Butenandtstrasse 5-13, D-81377 München, Germany
| | | |
Collapse
|
458
|
Shafaat HS, Leigh BS, Tauber MJ, Kim JE. Spectroscopic Comparison of Photogenerated Tryptophan Radicals in Azurin: Effects of Local Environment and Structure. J Am Chem Soc 2010; 132:9030-9. [DOI: 10.1021/ja101322g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hannah S. Shafaat
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Brian S. Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Judy E. Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
459
|
Eda Y, Itoh K, Ito YN, Fujitsuka M, Majima T, Kawato T. Synthesis and properties of fullerene (C70) complexes of 2,6-bis(porphyrin)-substituted pyrazine derivatives bound to a Pd(II) ion. Supramol Chem 2010. [DOI: 10.1080/10610278.2010.487566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yusaku Eda
- a Department of Chemistry, Faculty of Sciences , Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Kennosuke Itoh
- a Department of Chemistry, Faculty of Sciences , Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yoshio N. Ito
- a Department of Chemistry, Faculty of Sciences , Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Mamoru Fujitsuka
- b The Institute of Scientific and Industrial Research (SANKEN), Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tetsuro Majima
- b The Institute of Scientific and Industrial Research (SANKEN), Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Toshio Kawato
- a Department of Chemistry, Faculty of Sciences , Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| |
Collapse
|
460
|
Zhou B, Su L, Yuan YC, Un F, Wang N, Patel M, Xi B, Hu S, Yen Y. Structural basis on the dityrosyl-diiron radical cluster and the functional differences of human ribonucleotide reductase small subunits hp53R2 and hRRM2. Mol Cancer Ther 2010; 9:1669-79. [PMID: 20484015 PMCID: PMC3050530 DOI: 10.1158/1535-7163.mct-10-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ribonucleotide reductase (RNR) is an enzyme for the de novo conversion of ribonucleotides to deoxyribonucleotides. The two human RNR small subunits hRRM2 and hp53R2 share 83% sequence homology but show distinct expression patterns and function. Structural analyses of the oxidized form of hRRM2 and hp53R2 indicate that both proteins contain a conserved Gln127-hp53R2/Gln165-hRRM2 close to the dinuclear iron center and the essential tyrosine residue Tyr124-hp53R2/Tyr162-hRRM2 forms hydrogen bonds with the tyrosine and iron ligands, implying a critical role for the glutamine residue in assembling the dityrosyl-diiron radical cofactor. The present work also showed that Tyr221 in hRRM2, which is replaced by Phe183 in hp53R2, forms a hydrogen bond with Tyr162 to extend the hydrogen bond network from Gln165-hRRM2. Mutagenesis and spectroscopic experiments suggested that the tyrosine-to-phenylalanine switch at Phe183-hp53R2/Tyr221-hRRM2 could lead to differences in radical generation or enzymatic activity for hp53R2 and hRRM2. This study correlates the distinct catalytic mechanisms of the small subunits hp53R2 and hRRM2 with a hydrogen-bonding network and provides novel directions for designing and developing subunit-specific therapeutic agents for human RNR enzymes.
Collapse
Affiliation(s)
- Bingsen Zhou
- Department of Molecular Pharmacology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010 U.S.A
| | - Leila Su
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010 U.S.A
| | - Yate-Ching Yuan
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010 U.S.A
| | - Frank Un
- Department of Molecular Pharmacology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010 U.S.A
| | - Norby Wang
- Department of Molecular Pharmacology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010 U.S.A
| | - Madhukar Patel
- Department of Molecular Pharmacology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010 U.S.A
| | - Bixin Xi
- Department of Molecular Pharmacology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010 U.S.A
| | - Shuya Hu
- Department of Molecular Pharmacology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010 U.S.A
| | - Yun Yen
- Department of Molecular Pharmacology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010 U.S.A
| |
Collapse
|
461
|
Moore GF, Hambourger M, Kodis G, Michl W, Gust D, Moore TA, Moore AL. Effects of protonation state on a tyrosine-histidine bioinspired redox mediator. J Phys Chem B 2010; 114:14450-7. [PMID: 20476732 DOI: 10.1021/jp101592m] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conversion of tyrosine to the corresponding tyrosyl radical in photosystem II (PSII) is an example of proton-coupled electron transfer. Although the tyrosine moiety (Tyr(Z)) is known to function as a redox mediator between the photo-oxidized primary donor (P680(•+)) and the Mn-containing oxygen-evolving complex, the protonation states involved in the course of the reaction remain an active area of investigation. Herein, we report on the optical, structural, and electrochemical properties of tyrosine-histidine constructs, which model the function of their naturally occurring counterparts in PSII. Electrochemical studies show that the phenoxyl/phenol couple of the model is chemically reversible and thermodynamically capable of water oxidation. Studies under acidic and basic conditions provide clear evidence that an ionizable proton controls the electrochemical potential of the tyrosine-histidine mimic and that an exogenous base or acid can be used to generate a low-potential or high-potential mediator, respectively. The phenoxyl/phenoxide couple associated with the low-potential mediator is thermodynamically incapable of water oxidation, whereas the relay associated with the high-potential mediator is thermodynamically incapable of reducing an attached photoexcited porphyrin. These studies provide insight regarding the mechanistic role of the tyrosine-histidine complex in water oxidation and strategies for making use of hydrogen bonds to affect the coupling between proton and electron transfer in artificial photosynthetic systems.
Collapse
Affiliation(s)
- Gary F Moore
- Center for Bioenergy and Photosynthesis and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | | | | | | | | | |
Collapse
|
462
|
Gray HB, Winkler JR. Electron flow through metalloproteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1563-72. [PMID: 20460102 DOI: 10.1016/j.bbabio.2010.05.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/21/2010] [Accepted: 05/03/2010] [Indexed: 01/23/2023]
Abstract
Electron transfers in photosynthesis and respiration commonly occur between metal-containing cofactors that are separated by large molecular distances. Understanding the underlying physics and chemistry of these biological electron transfer processes is the goal of much of the work in our laboratories. Employing laser flash-quench triggering methods, we have shown that 20A, coupling-limited Fe(II) to Ru(III) and Cu(I) to Ru(III) electron tunneling in Ru-modified cytochromes and blue copper proteins can occur on the microsecond timescale both in solutions and crystals; and, further, that analysis of these rates suggests that distant donor-acceptor electronic couplings are mediated by a combination of sigma and hydrogen bonds in folded polypeptide structures. Redox equivalents can be transferred even longer distances by multistep tunneling, often called hopping, through intervening amino acid side chains. In recent work, we have found that 20A hole hopping through an intervening tryptophan is several hundred-fold faster than single-step electron tunneling in a Re-modified blue copper protein.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
463
|
Costentin C, Robert M, Savéant JM, Tard C. Inserting a Hydrogen-Bond Relay between Proton Exchanging Sites in Proton-Coupled Electron Transfers. Angew Chem Int Ed Engl 2010; 49:3803-6. [DOI: 10.1002/anie.200907192] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
464
|
Costentin C, Robert M, Savéant JM, Tard C. Inserting a Hydrogen-Bond Relay between Proton Exchanging Sites in Proton-Coupled Electron Transfers. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200907192] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
465
|
Kozlowski PM, Kamachi T, Kumar M, Nakayama T, Yoshizawa K. Theoretical Analysis of the Diradical Nature of Adenosylcobalamin Cofactor−Tyrosine Complex in B12-Dependent Mutases: Inspiring PCET-Driven Enzymatic Catalysis. J Phys Chem B 2010; 114:5928-39. [DOI: 10.1021/jp100573b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Kamachi
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Manoj Kumar
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomonori Nakayama
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
466
|
Synthesis and antitumor activity of novel 2',3'-diethanethio-2',3',5'-trideoxy-5'-triazolonucleoside analogues. Eur J Med Chem 2010; 45:3219-22. [PMID: 20409617 DOI: 10.1016/j.ejmech.2010.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 11/22/2022]
Abstract
A series of novel 2',3'-diethanethio-2',3',5'-trideoxy-5'-triazoloribonucleosides was synthesized in excellent yields and their antitumor activity was evaluated. These nucleoside analogues with aromatic substituted triazole rings showed significantly improved activity towards a broad range of tumor cell lines and those without arene substitutes were inactive.
Collapse
|
467
|
Affiliation(s)
- Joseph C. Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
468
|
Sajenko I, Pilepić V, Jakobušić Brala C, Uršić S. Solvent Dependence of the Kinetic Isotope Effect in the Reaction of Ascorbate with the 2,2,6,6-Tetramethylpiperidine-1-oxyl Radical: Tunnelling in a Small Molecule Reaction. J Phys Chem A 2010; 114:3423-30. [DOI: 10.1021/jp911086n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ivana Sajenko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1. Zagreb, Croatia
| | - Viktor Pilepić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1. Zagreb, Croatia
| | | | - Stanko Uršić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1. Zagreb, Croatia
| |
Collapse
|
469
|
Intrinsic reactivity and driving force dependence in concerted proton-electron transfers to water illustrated by phenol oxidation. Proc Natl Acad Sci U S A 2010; 107:3367-72. [PMID: 20139306 DOI: 10.1073/pnas.0914693107] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three experimental techniques, laser flash photolysis, redox catalysis, and stopped-flow, were used to investigate the variation of the oxidation rate constant of phenol in neat water with the driving force offered by a series of electron acceptors. Taking into account a result previously obtained with a low-driving force electron acceptor thus allowed scanning more than half an electron-volt driving force range. Variation of the rate constant with pH showed the transition between a direct phenol oxidation reaction at low pH, where the rate constant does not vary with pH, and a stepwise reaction involving the prior deprotonation of phenol by OH(-), characterized by a unity-slope variation. Analyses of the direct oxidation kinetics, based on its variation with the driving force and on the determination of H/D isotope effects, ruled out a stepwise mechanism in which electron transfer is followed by the deprotonation of the initial cation radical at the benefit of a pathway in which proton and electron are transferred concertedly. Derivation of the characteristics of counterdiffusion in termolecular reactions allowed showing that the concerted process is under activation control. It is characterized by a remarkably small reorganization energy, in line with the electrochemical counterpart of the reaction, underpinning the very peculiar behavior of water as proton acceptor when it is used as the solvent.
Collapse
|
470
|
Genereux JC, Boal AK, Barton JK. DNA-mediated charge transport in redox sensing and signaling. J Am Chem Soc 2010; 132:891-905. [PMID: 20047321 PMCID: PMC2902267 DOI: 10.1021/ja907669c] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transport of charge through the DNA base-pair stack offers a route to carry out redox chemistry at a distance. Here we describe characteristics of this chemistry that have been elucidated and how this chemistry may be utilized within the cell. The shallow distance dependence associated with these redox reactions permits DNA-mediated signaling over long molecular distances in the genome and facilitates the activation of redox-sensitive transcription factors globally in response to oxidative stress. The long-range funneling of oxidative damage to sites of low oxidation potential in the genome also may provide a means of protection within the cell. Furthermore, the sensitivity of DNA charge transport to perturbations in base-pair stacking, as may arise with base lesions and mismatches, may be used as a route to scan the genome for damage as a first step in DNA repair. Thus, the ability of double-helical DNA in mediating redox chemistry at a distance provides a natural mechanism for redox sensing and signaling in the genome.
Collapse
Affiliation(s)
- Joseph C. Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Amie K. Boal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| |
Collapse
|
471
|
Minnihan EC, Seyedsayamdost MR, Stubbe J. Use of 3-aminotyrosine to examine the pathway dependence of radical propagation in Escherichia coli ribonucleotide reductase. Biochemistry 2010; 48:12125-32. [PMID: 19916558 DOI: 10.1021/bi901439w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli ribonucleotide reductase (RNR), an alpha2beta2 complex, catalyzes the conversion of nucleoside 5'-diphosphate substrates (S) to 2'-deoxynucleoside 5'-diphosphates. alpha2 houses the active site for nucleotide reduction and the binding sites for allosteric effectors (E). beta2 contains the essential diferric tyrosyl radical (Y(122)(*)) cofactor which, in the presence of S and E, oxidizes C(439) in alpha to a thiyl radical, C(439)(*), to initiate nucleotide reduction. This oxidation occurs over 35 A and is proposed to involve a specific pathway: Y(122)(*) --> W(48) --> Y(356) in beta2 to Y(731) --> Y(730) --> C(439) in alpha2. 3-Aminotyrosine (NH(2)Y) has been site-specifically incorporated at residues 730 and 731, and formation of the aminotyrosyl radical (NH(2)Y(*)) has been examined by stopped-flow (SF) UV-vis and EPR spectroscopies. To examine the pathway dependence of radical propagation, the double mutant complexes Y(356)F-beta2:Y(731)NH(2)Y-alpha2, Y(356)F-beta2:Y(730)NH(2)Y-alpha2, and wt-beta2:Y(731)F/Y(730)NH(2)Y-alpha2, in which the nonoxidizable F acts as a pathway block, were studied by SF and EPR spectroscopies. In all cases, no NH(2)Y(*) was detected. To study off-pathway oxidation, Y(413), located 5 A from Y(730) and Y(731) but not implicated in long-range oxidation, was examined. Evidence for NH(2)Y(413)(*) was sought in three complexes: wt-beta2:Y(413)NH(2)Y-alpha2 (a), wt-beta2:Y(731)F/Y(413)NH(2)Y-alpha2 (b), and Y(356)F-beta2:Y(413)NH(2)Y-alpha2 (c). With (a), NH(2)Y(*) was formed with a rate constant that was 25-30% and an amplitude that was 25% of that observed for its formation at residues 731 and 730. With (b), the rate constant for NH(2)Y(*) formation was 0.2-0.3% of that observed at 731 and 730, and with (c), no NH(2)Y(*) was observed. These studies suggest the evolution of an optimized pathway of conserved Ys in the oxidation of C(439).
Collapse
Affiliation(s)
- Ellen C Minnihan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
472
|
Fukuzumi S, Kotani H, Suenobu T, Hong S, Lee YM, Nam W. Contrasting Effects of Axial Ligands on Electron-Transfer Versus Proton-Coupled Electron-Transfer Reactions of Nonheme Oxoiron(IV) Complexes. Chemistry 2010; 16:354-61. [DOI: 10.1002/chem.200901163] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
473
|
Krapf S, Koslowski T, Steinbrecher T. The thermodynamics of charge transfer in DNA photolyase: using thermodynamic integration calculations to analyse the kinetics of electron transfer reactions. Phys Chem Chem Phys 2010; 12:9516-25. [DOI: 10.1039/c000876a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
474
|
|
475
|
Synthesis and antitumor activity of novel 2′,3′-dideoxy-2′,3′-diethanethionucleosides bearing 1,2,3-triazole residues. Bioorg Med Chem Lett 2010; 20:240-3. [DOI: 10.1016/j.bmcl.2009.10.127] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/30/2009] [Accepted: 10/28/2009] [Indexed: 11/19/2022]
|
476
|
Tinberg CE, Lippard SJ. Revisiting the mechanism of dioxygen activation in soluble methane monooxygenase from M. capsulatus (Bath): evidence for a multi-step, proton-dependent reaction pathway. Biochemistry 2009; 48:12145-58. [PMID: 19921958 PMCID: PMC2797563 DOI: 10.1021/bi901672n] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stopped-flow kinetic investigations of soluble methane monooxygenase (sMMO) from M. capsulatus (Bath) have clarified discrepancies that exist in the literature regarding several aspects of catalysis by this enzyme. The development of thorough kinetic analytical techniques has led to the discovery of two novel oxygenated iron species that accumulate in addition to the well-established intermediates H(peroxo) and Q. The first intermediate, P*, is a precursor to H(peroxo) and was identified when the reaction of reduced MMOH and MMOB with O(2) was carried out in the presence of >or=540 microM methane to suppress the dominating absorbance signal due to Q. The optical properties of P* are similar to those of H(peroxo), with epsilon(420) = 3500 M(-1) cm(-1) and epsilon(720) = 1250 M(-1) cm(-1). These values are suggestive of a peroxo-to-iron(III) charge-transfer transition and resemble those of peroxodiiron(III) intermediates characterized in other carboxylate-bridged diiron proteins and synthetic model complexes. The second identified intermediate, Q*, forms on the pathway of Q decay when reactions are performed in the absence of hydrocarbon substrate. Q* does not react with methane, forms independently of buffer composition, and displays a unique shoulder at 455 nm in its optical spectrum. Studies conducted at different pH values reveal that rate constants corresponding to P* decay/H(peroxo) formation and H(peroxo) decay/Q formation are both significantly retarded at high pH and indicate that both events require proton transfer. The processes exhibit normal kinetic solvent isotope effects (KSIEs) of 2.0 and 1.8, respectively, when the reactions are performed in D(2)O. Mechanisms are proposed to account for the observations of these novel intermediates and the proton dependencies of P* to H(peroxo) and H(peroxo) to Q conversion.
Collapse
Affiliation(s)
| | - Stephen J. Lippard
- To whom correspondence should be addressed.
. Telephone: (617) 253-1892. Fax: (617)
258-8150
| |
Collapse
|
477
|
Nara SJ, Valgimigli L, Pedulli GF, Pratt DA. Tyrosine Analogues for Probing Proton-Coupled Electron Transfer Processes in Peptides and Proteins. J Am Chem Soc 2009; 132:863-72. [DOI: 10.1021/ja907921w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susheel J. Nara
- Department of Chemistry, Queen’s University, 90 Bader Lane, Ontario K7L 3N6, Canada, and Dipartimento di Chimica Organica “A. Mangini” Via San Giacomo 11, Università di Bologna, 40126, Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry, Queen’s University, 90 Bader Lane, Ontario K7L 3N6, Canada, and Dipartimento di Chimica Organica “A. Mangini” Via San Giacomo 11, Università di Bologna, 40126, Bologna, Italy
| | - Gian Franco Pedulli
- Department of Chemistry, Queen’s University, 90 Bader Lane, Ontario K7L 3N6, Canada, and Dipartimento di Chimica Organica “A. Mangini” Via San Giacomo 11, Università di Bologna, 40126, Bologna, Italy
| | - Derek A. Pratt
- Department of Chemistry, Queen’s University, 90 Bader Lane, Ontario K7L 3N6, Canada, and Dipartimento di Chimica Organica “A. Mangini” Via San Giacomo 11, Università di Bologna, 40126, Bologna, Italy
| |
Collapse
|
478
|
Miyazaki S, Kojima T, Mayer JM, Fukuzumi S. Proton-coupled electron transfer of ruthenium(III)-pterin complexes: a mechanistic insight. J Am Chem Soc 2009; 131:11615-24. [PMID: 19722655 DOI: 10.1021/ja904386r] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ruthenium(II) complexes having pterins of redox-active heteroaromatic coenzymes as ligands were demonstrated to perform multistep proton transfer (PT), electron transfer (ET), and proton-coupled electron transfer (PCET) processes. Thermodynamic parameters including pK(a) and bond dissociation energy (BDE) of multistep PCET processes in acetonitrile (MeCN) were determined for ruthenium-pterin complexes, [Ru(II)(Hdmp)(TPA)](ClO(4))(2) (1), [Ru(II)(Hdmdmp)(TPA)](ClO(4))(2) (2), [Ru(II)(dmp(-))(TPA)]ClO(4) (3), and [Ru(II)(dmdmp(-))(TPA)]ClO(4) (4) (Hdmp = 6,7-dimethylpterin, Hdmdmp = N,N-dimethyl-6,7-dimethylpterin, TPA = tris(2-pyridylmethyl)amine), all of which had been isolated and characterized before. The BDE difference between 1 and one-electron oxidized species, [Ru(III)(dmp(-))(TPA)](2+), was determined to be 89 kcal mol(-1), which was large enough to achieve hydrogen atom transfer (HAT) from phenol derivatives. In the HAT reactions from phenol derivatives to [Ru(III)(dmp(-))(TPA)](2+), the second-order rate constants (k) were determined to exhibit a linear relationship with BDE values of phenol derivatives with a slope (-0.4), suggesting that this HAT is simultaneous proton and electron transfer. As for HAT reaction from 2,4,6-tri-tert-buthylphenol (TBP; BDE = 79.15 kcal mol(-1)) to [Ru(III)(dmp(-))(TPA)](2+), the activation parameters were determined to be DeltaH(double dagger) = 1.6 +/- 0.2 kcal mol(-1) and DeltaS(double dagger) = -36 +/- 2 cal K(-1) mol(-1). This small activation enthalpy suggests a hydrogen-bonded adduct formation prior to HAT. Actually, in the reaction of 4-nitrophenol with [Ru(III)(dmp(-))(TPA)](2+), the second-order rate constants exhibited saturation behavior at higher concentrations of the substrate, and low-temperature ESI-MS allowed us to detect the hydrogen-bonding adduct. This also lends credence to an associative mechanism of the HAT involving intermolecular hydrogen bonding between the deprotonated dmp ligand and the phenolic O-H to facilitate the reaction. In particular, a two-point hydrogen bonding between the complex and the substrate involving the 2-amino group of the deprotonated pterin ligand effectively facilitates the HAT reaction from the substrate to the Ru(III)-pterin complex.
Collapse
Affiliation(s)
- Soushi Miyazaki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
479
|
Chen X, Xing D, Zhang L, Cukier RI, Bu Y. Effect of metal ions on radical type and proton-coupled electron transfer channel: σ-Radical vs π-radical and σ-channel vs π-channel in the imide units. J Comput Chem 2009; 30:2694-705. [DOI: 10.1002/jcc.21284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
480
|
Minnihan EC, Yokoyama K, Stubbe J. Unnatural amino acids: better than the real things? F1000 BIOLOGY REPORTS 2009; 1:88. [PMID: 20948602 PMCID: PMC2948271 DOI: 10.3410/b1-88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Considerable effort has been dedicated to the development of technology for the site-specific incorporation of unnatural amino acids into proteins, with nonsense codon suppression and expressed protein ligation emerging as two of the most promising methods. Recent research advances in which these methods have been applied to study protein function and mechanism are briefly highlighted, and the potential of the methods for efficient, widespread future use in vitro and in vivo is critically evaluated.
Collapse
Affiliation(s)
- Ellen C Minnihan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | | | | |
Collapse
|
481
|
Abstract
Electron transfers in photosynthesis and respiration commonly occur between metal-containing cofactors that are separated by large molecular distances. Employing laser flash-quench triggering methods, we have shown that 20-Å, coupling-limited Fe(II) to Ru(III) and Cu(I) to Ru(III) electron tunneling in Ru-modified cytochromes and blue copper proteins can occur on the microsecond timescale both in solutions and crystals. Redox equivalents can be transferred even longer distances by multistep tunneling, often called hopping, through intervening amino acid side chains. Our work has established that 20-Å hole hopping through an intervening tryptophan is two orders of magnitude faster than single-step electron tunneling in a Re-modified blue copper protein.
Collapse
Affiliation(s)
- Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
482
|
Johannissen LO, Irebo T, Sjödin M, Johansson O, Hammarström L. The Kinetic Effect of Internal Hydrogen Bonds on Proton-Coupled Electron Transfer from Phenols: A Theoretical Analysis with Modeling of Experimental Data. J Phys Chem B 2009; 113:16214-25. [DOI: 10.1021/jp9048633] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linus O. Johannissen
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Tania Irebo
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Martin Sjödin
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Olof Johansson
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Leif Hammarström
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| |
Collapse
|
483
|
Chen X, Zhang L, Zhang L, Wang J, Liu H, Bu Y. Proton-Regulated Electron Transfers from Tyrosine to Tryptophan in Proteins: Through-Bond Mechanism versus Long-Range Hopping Mechanism. J Phys Chem B 2009; 113:16681-8. [DOI: 10.1021/jp9077689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiaohua Chen
- Center for Modeling & Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
| | - Laibin Zhang
- Center for Modeling & Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
| | - Liang Zhang
- Center for Modeling & Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
| | - Jun Wang
- Center for Modeling & Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
| | - Haiying Liu
- Center for Modeling & Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
| | - Yuxiang Bu
- Center for Modeling & Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
484
|
The manganese/iron-carboxylate proteins: what is what, where are they, and what can the sequences tell us? J Biol Inorg Chem 2009; 15:339-49. [DOI: 10.1007/s00775-009-0606-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
485
|
Seyedsayamdost MR, Stubbe J. Replacement of Y730 and Y731 in the alpha2 subunit of Escherichia coli ribonucleotide reductase with 3-aminotyrosine using an evolved suppressor tRNA/tRNA-synthetase pair. Methods Enzymol 2009; 462:45-76. [PMID: 19632469 DOI: 10.1016/s0076-6879(09)62003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Since the discovery of the essential tyrosyl radical (Y*) in E. coli ribonucleotide reductase (RNR), a number of enzymes involved in primary metabolism have been found that use transient or stable tyrosyl (Y) or tryptophanyl (W) radicals in catalysis. These enzymes engage in a myriad of charge transfer reactions that occur with exquisite control and specificity. The unavailability of natural amino acids that can perturb the reduction potential and/or protonation states of redox-active Y or W residues has limited the usefulness of site-directed mutagenesis methods to probe the attendant mechanism of charge transport at these residues. However, recent technologies designed to site-specifically incorporate unnatural amino acids into proteins have now made viable the study of these mechanisms. The class Ia RNR from E. coli serves as a paradigm for enzymes that use amino acid radicals in catalysis. It catalyzes the conversion of nucleotides to deoxynucleotides and utilizes both stable and transient protein radicals. This reaction requires radical transfer from a stable tyrosyl radical (Y(122)*) in the beta subunit to an active-site cysteine (C(439)) in the alpha subunit, where nucleotide reduction occurs. The distance between the sites is proposed to be >35 A. A pathway between these sites has been proposed in which transient aromatic amino acid radicals mediate radical transport. To examine the pathway for radical propagation as well as requirements for coupled electron and proton transfers, a suppressor tRNA/aminoacyl-tRNA synthetase (RS) pair has been evolved that allows for site-specific incorporation of 3-aminotyrosine (NH(2)Y). NH(2)Y was chosen because it is structurally similar to Y with a similar phenolic pK(a). However, at pH 7, it is more easily oxidized than Y by 190 mV (approximately 4.4 kcal/mol), thus allowing it to act as a radical trap. Here we present the detailed procedures involved in evolving an NH(2)Y-specific RS, assessing its efficiency in NH(2)Y insertion, generating RNR mutants with NH(2)Y at selected sites, and determining the spectroscopic properties of NH(2)Y* and the kinetics of its formation.
Collapse
|
486
|
Seyedsayamdost MR, Argirević T, Minnihan EC, Stubbe J, Bennati M. Structural examination of the transient 3-aminotyrosyl radical on the PCET pathway of E. coli ribonucleotide reductase by multifrequency EPR spectroscopy. J Am Chem Soc 2009; 131:15729-38. [PMID: 19821570 PMCID: PMC4703294 DOI: 10.1021/ja903879w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Indexed: 11/28/2022]
Abstract
E. coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, a process that requires long-range radical transfer over 35 A from a tyrosyl radical (Y(122)*) within the beta2 subunit to a cysteine residue (C(439)) within the alpha2 subunit. The radical transfer step is proposed to occur by proton-coupled electron transfer via a specific pathway consisting of Y(122) --> W(48) --> Y(356) in beta2, across the subunit interface to Y(731) --> Y(730) --> C(439) in alpha2. Using the suppressor tRNA/aminoacyl-tRNA synthetase (RS) methodology, 3-aminotyrosine has been incorporated into position 730 in alpha2. Incubation of this mutant with beta2, substrate, and allosteric effector resulted in loss of the Y(122)* and formation of a new radical, previously proposed to be a 3-aminotyrosyl radical (NH(2)Y*). In the current study [(15)N]- and [(14)N]-NH(2)Y(730)* have been generated in H(2)O and D(2)O and characterized by continuous wave 9 GHz EPR and pulsed EPR spectroscopies at 9, 94, and 180 GHz. The data give insight into the electronic and molecular structure of NH(2)Y(730)*. The g tensor (g(x) = 2.0052, g(y) = 2.0042, g(z) = 2.0022), the orientation of the beta-protons, the hybridization of the amine nitrogen, and the orientation of the amino protons relative to the plane of the aromatic ring were determined. The hyperfine coupling constants and geometry of the NH(2) moiety are consistent with an intramolecular hydrogen bond within NH(2)Y(730)*. This analysis is an essential first step in using the detailed structure of NH(2)Y(730)* to formulate a model for a PCET mechanism within alpha2 and for use of NH(2)Y in other systems where transient Y*s participate in catalysis.
Collapse
Affiliation(s)
- Mohammad R Seyedsayamdost
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | | | |
Collapse
|
487
|
Abstract
Personalized energy (PE) is a transformative idea that provides a new modality for the planet's energy future. By providing solar energy to the individual, an energy supply becomes secure and available to people of both legacy and nonlegacy worlds and minimally contributes to an increase in the anthropogenic level of carbon dioxide. Because PE will be possible only if solar energy is available 24 h a day, 7 days a week, the key enabler for solar PE is an inexpensive storage mechanism. HY (Y = halide or OH(-)) splitting is a fuel-forming reaction of sufficient energy density for large-scale solar storage, but the reaction relies on chemical transformations that are not understood at the most basic science level. Critical among these are multielectron transfers that are proton-coupled and involve the activation of bonds in energy-poor substrates. The chemistry of these three italicized areas is developed, and from this platform, discovery paths leading to new hydrohalic acid- and water-splitting catalysts are delineated. The latter water-splitting catalyst captures many of the functional elements of photosynthesis. In doing so, a highly manufacturable and inexpensive method for solar PE storage has been discovered.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA.
| |
Collapse
|
488
|
Venkataraman C, Soudackov AV, Hammes-Schiffer S. Photoinduced homogeneous proton-coupled electron transfer: Model study of isotope effects on reaction dynamics. J Chem Phys 2009; 131:154502. [DOI: 10.1063/1.3249964] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
489
|
Kumar A, Sevilla MD. Sugar radical formation by a proton coupled hole transfer in 2'-deoxyguanosine radical cation (2'-dG*+): a theoretical treatment. J Phys Chem B 2009; 113:13374-80. [PMID: 19754084 PMCID: PMC2765868 DOI: 10.1021/jp9058593] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous experimental and theoretical work has established that electronic excitation of a guanine cation radical in nucleosides or in DNA itself leads to sugar radical formation by deprotonation from the dexoxyribose sugar. In this work, we investigate a ground electronic state pathway for such sugar radical formation in a hydrated one electron oxidized 2'-deoxyguanosine (dG(*+) + 7H(2)O), using density functional theory (DFT) with the B3LYP functional and the 6-31G* basis set. We follow the stretching of the C(5')-H bond in dG(*+) to gain an understanding of the energy requirements to transfer the hole from the base to sugar ring and then to deprotonate to proton acceptor sites in solution and on the guanine ring. The geometries of reactant (dG(*+) + 7H(2)O), transition state (TS) for deprotonation of the C(5') site, and product (dG((*)C(5'), N(7)-H(+)) + 7H(2)O) were fully optimized. The zero point energy (ZPE) corrected activation energy (TS) for the proton transfer (PT) from C(5') is calculated to be 9.0 kcal/mol and is achieved by stretching the C(5')-H bond by 0.13 A from its equilibrium bond distance (1.099 A). Remarkably, this small bond stretch is sufficient to transfer the "hole" (positive charge and spin) from guanine to the C(5') site on the deoxyribose group. Beyond the TS, the proton (H(+)) spontaneously adds to water to form a hydronium ion (H(3)O(+)) as an intermediate. The proton subsequently transfers to the N(7) site of the guanine (product). The 9 kcal/mol barrier suggests slow thermal conversion of the cation radical to the sugar radical but also suggests that localized vibrational excitations would be sufficient to induce rapid sugar radical formation in DNA base cation radicals.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309
| | | |
Collapse
|
490
|
Brenner S, Heyes DJ, Hay S, Hough MA, Eady RR, Hasnain SS, Scrutton NS. Demonstration of proton-coupled electron transfer in the copper-containing nitrite reductases. J Biol Chem 2009; 284:25973-83. [PMID: 19586913 PMCID: PMC2757998 DOI: 10.1074/jbc.m109.012245] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/05/2009] [Indexed: 11/06/2022] Open
Abstract
The reduction of nitrite (NO2-) into nitric oxide (NO), catalyzed by nitrite reductase, is an important reaction in the denitrification pathway. In this study, the catalytic mechanism of the copper-containing nitrite reductase from Alcaligenes xylosoxidans (AxNiR) has been studied using single and multiple turnover experiments at pH 7.0 and is shown to involve two protons. A novel steady-state assay was developed, in which deoxyhemoglobin was employed as an NO scavenger. A moderate solvent kinetic isotope effect (SKIE) of 1.3 +/- 0.1 indicated the involvement of one protonation to the rate-limiting catalytic step. Laser photoexcitation experiments have been used to obtain single turnover data in H2O and D2O, which report on steps kinetically linked to inter-copper electron transfer (ET). In the absence of nitrite, a normal SKIE of approximately 1.33 +/- 0.05 was obtained, suggesting a protonation event that is kinetically linked to ET in substrate-free AxNiR. A nitrite titration gave a normal hyperbolic behavior for the deuterated sample. However, in H2O an unusual decrease in rate was observed at low nitrite concentrations followed by a subsequent acceleration in rate at nitrite concentrations of >10 mM. As a consequence, the observed ET process was faster in D2O than in H2O above 0.1 mM nitrite, resulting in an inverted SKIE, which featured a significant dependence on the substrate concentration with a minimum value of approximately 0.61 +/- 0.02 between 3 and 10 mM. Our work provides the first experimental demonstration of proton-coupled electron transfer in both the resting and substrate-bound AxNiR, and two protons were found to be involved in turnover.
Collapse
Affiliation(s)
- Sibylle Brenner
- From the Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN and
| | - Derren J. Heyes
- From the Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN and
| | - Sam Hay
- From the Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN and
| | - Michael A. Hough
- the Molecular Biophysics Group, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Robert R. Eady
- the Molecular Biophysics Group, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - S. Samar Hasnain
- the Molecular Biophysics Group, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nigel S. Scrutton
- From the Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN and
| |
Collapse
|
491
|
Mandal PC, Bhattacharyya J, Das S, Mukhopadhyay S, Kirschenbaum LJ. Mechanistic studies on the oxidation of pyruvic acid by an oxo-bridged diiron(III,III) complex in aqueous acidic media. Polyhedron 2009. [DOI: 10.1016/j.poly.2009.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
492
|
Wu A, Mader EA, Datta A, Hrovat DA, Borden WT, Mayer JM. Nitroxyl radical plus hydroxylamine pseudo self-exchange reactions: tunneling in hydrogen atom transfer. J Am Chem Soc 2009; 131:11985-97. [PMID: 19618933 PMCID: PMC2775461 DOI: 10.1021/ja904400d] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bimolecular rate constants have been measured for reactions that involve hydrogen atom transfer (HAT) from hydroxylamines to nitroxyl radicals, using the stable radicals TEMPO(*) (2,2,6,6-tetramethylpiperidine-1-oxyl radical), 4-oxo-TEMPO(*) (2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl radical), di-tert-butylnitroxyl ((t)Bu(2)NO(*)), and the hydroxylamines TEMPO-H, 4-oxo-TEMPO-H, 4-MeO-TEMPO-H (2,2,6,6-tetramethyl-N-hydroxy-4-methoxy-piperidine), and (t)Bu(2)NOH. The reactions have been monitored by UV-vis stopped-flow methods, using the different optical spectra of the nitroxyl radicals. The HAT reactions all have |DeltaG (o)| < or = 1.4 kcal mol(-1) and therefore are close to self-exchange reactions. The reaction of 4-oxo-TEMPO(*) + TEMPO-H --> 4-oxo-TEMPO-H + TEMPO(*) occurs with k(2H,MeCN) = 10 +/- 1 M(-1) s(-1) in MeCN at 298 K (K(2H,MeCN) = 4.5 +/- 1.8). Surprisingly, the rate constant for the analogous deuterium atom transfer reaction is much slower: k(2D,MeCN) = 0.44 +/- 0.05 M(-1) s(-1) with k(2H,MeCN)/k(2D,MeCN) = 23 +/- 3 at 298 K. The same large kinetic isotope effect (KIE) is found in CH(2)Cl(2), 23 +/- 4, suggesting that the large KIE is not caused by solvent dynamics or hydrogen bonding to solvent. The related reaction of 4-oxo-TEMPO(*) with 4-MeO-TEMPO-H(D) also has a large KIE, k(3H)/k(3D) = 21 +/- 3 in MeCN. For these three reactions, the E(aD) - E(aH) values, between 0.3 +/- 0.6 and 1.3 +/- 0.6 kcal mol(-1), and the log(A(H)/A(D)) values, between 0.5 +/- 0.7 and 1.1 +/- 0.6, indicate that hydrogen tunneling plays an important role. The related reaction of (t)Bu(2)NO(*) + TEMPO-H(D) in MeCN has a large KIE, 16 +/- 3 in MeCN, and very unusual isotopic activation parameters, E(aD) - E(aH) = -2.6 +/- 0.4 and log(A(H)/A(D)) = 3.1 +/- 0.6. Computational studies, using POLYRATE, also indicate substantial tunneling in the (CH(3))(2)NO(*) + (CH(3))(2)NOH model reaction for the experimental self-exchange processes. Additional calculations on TEMPO((*)/H), (t)Bu(2)NO((*)/H), and Ph(2)NO((*)/H) self-exchange reactions reveal why the phenyl groups make the last of these reactions several orders of magnitude faster than the first two. By inference, the calculations also suggest why tunneling appears to be more important in the self-exchange reactions of dialkylhydroxylamines than of arylhydroxylamines.
Collapse
Affiliation(s)
- Adam Wu
- Department of Chemistry, Campus Box 351700, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | | | | | |
Collapse
|
493
|
Chen J, Bender SL, Keough JM, Barry BA. Tryptophan as a probe of photosystem I electron transfer reactions: a UV resonance Raman study. J Phys Chem B 2009; 113:11367-70. [PMID: 19639977 PMCID: PMC2846372 DOI: 10.1021/jp906491r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photosystem I (PSI) is one of the two membrane-associated reaction centers involved in oxygenic photosynthesis. In photosynthesis, solar energy is converted to chemical energy in the form of a transmembrane charge separation. PSI oxidizes cytochrome c(6) or plastocyanin and reduces ferredoxin. In cyanobacterial PSI, there are 10 tryptophan residues with indole side chains located less than 10 A from the electron transfer cofactors. In this study, we apply pump-probe difference UV resonance Raman (UVRR) spectroscopy to acquire the spectrum of aromatic amino acids in cyanobacterial PSI. This UVRR technique allows the use of the tryptophan vibrational spectrum as a reporter for structural changes, which are linked to PSI electron transfer reactions. Our results show that photo-oxidation of the chlorophyll a/a' heterodimer, P(700), causes shifts in the vibrational frequencies of two or more tryptophan residues. Similar perturbations of tryptophan are observed when P(700) is chemically oxidized. The observed spectral frequencies suggest that the perturbed tryptophan side chains are only weakly or not hydrogen bonded and are located in an environment in which there is steric repulsion. The direction of the spectral shifts is consistent with an oxidation-induced increase in dielectric constant or a change in hydrogen bonding. To explain our results, the perturbation of tryptophan residues must be linked to a PSI conformational change, which is, in turn, driven by P(700) oxidation.
Collapse
Affiliation(s)
- Jun Chen
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | - James M. Keough
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Bridgette A. Barry
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
494
|
Han WG, Noodleman L. DFT calculations of comparative energetics and ENDOR/Mössbauer properties for two protonation states of the iron dimer cluster of ribonucleotide reductase intermediate X. Dalton Trans 2009:6045-57. [PMID: 19623405 PMCID: PMC2746754 DOI: 10.1039/b903847g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two models (I and II) for the active site structure of class-I ribonucleotide reductase (RNR) intermediate X in subunit R2 have been studied in this paper, using broken-symmetry density functional theory (DFT) incorporated with the conductor like screening (COSMO) solvation model and with the finite-difference Poisson-Boltzmann self-consistent reaction field (PB-SCRF) calculations. Only one of the bridging groups between the two iron centers is different between model-I and model-II. Model-I contains two mu-oxo bridges, while model-II has one bridging oxo and one bridging hydroxo. These are large active site models including up to the fourth coordination shell H-bonding residues. Mössbauer and ENDOR hyperfine property calculations show that model-I is more likely to represent the active site structure of RNR-X. However, energetically our pK(a) calculations at first highly favored the bridging oxo and hydroxo (in model-II) structure of the diiron center rather than having the di-oxo bridge (in model-I). Since the Arg236 and the nearby Lys42, which are very close to the diiron center, are on the protein surface of RNR-R2, it is highly feasible that one or two anion groups in solution would interact with the positively charged side chains of Arg236 and Lys42. The anion group(s) can be a reductant, phosphate, sulfate, nitrate, and other negatively charged groups existing in biological environments or in the buffer of the experiment. Since sulfate ions certainly exist in the buffer of the ENDOR experiment, we have examined the effect of the sulfate (SO(4)(2-), surrounded by explicit water molecules) H-bonding to the side chain of Arg236. We find that when sulfate interacts with Arg236, the carboxylate group of Asp237 tends to be protonated, and once Asp237 is protonated, the Fe(iii)Fe(iv) center in X favors the di-oxo bridge (model-I). This would explain that the ENDOR observed RNR-X active site structure is likely to be represented by model-I rather than model-II.
Collapse
Affiliation(s)
- Wen-Ge Han
- Department of Molecular Biology TPC15 The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, California 92037
| | - Louis Noodleman
- Department of Molecular Biology TPC15 The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, California 92037
| |
Collapse
|
495
|
Manner VW, Mayer JM. Concerted proton-electron transfer in a ruthenium terpyridyl-benzoate system with a large separation between the redox and basic sites. J Am Chem Soc 2009; 131:9874-5. [PMID: 19569636 PMCID: PMC2765064 DOI: 10.1021/ja902942g] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To understand how the separation between the electron and proton-accepting sites affects proton-coupled electron transfer (PCET) reactivity, we have prepared ruthenium complexes with 4'-(4-carboxyphenyl)terpyridine ligands, and studied reactivity with hydrogen atom donors (H-X). Ru(II)(pydic)(tpy-PhCOOH) (Ru(II)PhCOOH), was synthesized in one pot from [(p-cymene)RuCl(2)](2), sodium 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine ([Na(+)]tpy-PhCOO(-)), and disodium pyridine-2,6-dicarboxylate (Na(2)pydic). Ru(II)PhCOOH plus (n)Bu(4)NOH in DMF yields the deprotonated Ru(II) complex, (n)Bu(4)N[Ru(II)(pydic)(tpy-PhCOO)] (Ru(II)PhCOO(-)). The Ru(III) complex (Ru(III)PhCOO) has been isolated by one-electron oxidation of Ru(II)PhCOO(-) with triarylaminium radical cations (NAr(3)(*+)). The bond dissociation free energy (BDFE) of the O-H bond in Ru(II)PhCOOH is calculated from pK(a) and E(1/2) measurements as 87 kcal mol(-1), making Ru(III)PhCOO a strong hydrogen atom acceptor. There are 10 bonds and ca. 11.2 A separating the metal from the carboxylate basic site in Ru(III)PhCOO. Even with this separation, Ru(III)PhCOO oxidizes the hydrogen atom donor TEMPOH (BDFE = 66.5 kcal mol(-1), DeltaG(o)(rxn) = -21 kcal mol(-1)) by removal of an electron and a proton to form Ru(II)PhCOOH and TEMPO radical in a concerted proton-electron transfer (CPET) process. The second order rate constant for this reaction is (1.1 +/- 0.1) x 10(5) M(-1) s(-1) with k(H)/k(D) = 2.1 +/- 0.2, similar to the observed kinetics in an analogous system without the phenyl spacer, Ru(III)(pydic)(tpy-COO(-)) (Ru(III)COO). In contrast, hydrogen transfer from 2,6-di-tert-butyl-p-methoxyphenol [(t)Bu(2)(OMe)ArOH] to Ru(III)PhCOO is several orders of magnitude slower than the analogous reaction with Ru(III)COO.
Collapse
Affiliation(s)
- Virginia W. Manner
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
| | - James M. Mayer
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
| |
Collapse
|
496
|
Reece SY, Nocera DG. Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems. Annu Rev Biochem 2009; 78:673-99. [PMID: 19344235 DOI: 10.1146/annurev.biochem.78.080207.092132] [Citation(s) in RCA: 380] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in biology. PCET may occur with the unidirectional or bidirectional transfer of a proton and electron and may proceed synchronously or asynchronously. To illustrate the role of PCET in biology, this review presents complementary biological and model systems that explore PCET in electron transfer (ET) through hydrogen bonds [azurin as compared to donor-acceptor (D-A) hydrogen-bonded networks], the activation of C-H bonds [alcohol dehydrogenase and soybean lipoxygenase (SLO) as compared to Fe(III) metal complexes], and the generation and transport of amino acid radicals [photosystem II (PSII) and ribonucleotide reductase (RNR) as compared to tyrosine-modified photoactive Re(I) and Ru(II) complexes]. In providing these comparisons, the fundamental principles of PCET in biology are illustrated in a tangible way.
Collapse
Affiliation(s)
- Steven Y Reece
- Department of Chemistry, Massachusetts Institutes of Technology, Cambridge, MA 02139-4307, USA
| | | |
Collapse
|
497
|
Giese B, Wang M, Gao J, Stoltz M, Müller P, Graber M. Electron relay race in peptides. J Org Chem 2009; 74:3621-5. [PMID: 19344128 DOI: 10.1021/jo900375f] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A peptide assay was developed that allows the measurement of electron-transfer (ET) efficiencies in peptides. It turns out that two-step ET processes are faster than single-step reactions. This requires relay amino acids with appropriate redox potentials. Not only aromatic but also sulfur-containing aliphatic amino acids can act as stepping stones for the charge. With tryptophan, histidine, and cysteine the reaction is a more complex proton-coupled ET.
Collapse
Affiliation(s)
- Bernd Giese
- Universität Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
498
|
Taylor MS, Ivanic SA, Wood GPF, Easton CJ, Bacskay GB, Radom L. Hydrogen Abstraction by Chlorine Atom from Small Organic Molecules Containing Amino Acid Functionalities: An Assessment of Theoretical Procedures. J Phys Chem A 2009; 113:11817-32. [DOI: 10.1021/jp9029437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mark S. Taylor
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Sandra A. Ivanic
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Geoffrey P. F. Wood
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Christopher J. Easton
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - George B. Bacskay
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Leo Radom
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
499
|
Wang M, Gao J, Müller P, Giese B. Electron transfer in peptides with cysteine and methionine as relay amino acids. Angew Chem Int Ed Engl 2009; 48:4232-4. [PMID: 19425029 DOI: 10.1002/anie.200900827] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caught on the hop: In multistep electron transfer (ET) reactions through peptides, aliphatic amino acids can also act as relay stations. With cysteine, the reaction occurs as a proton-coupled electron transfer (PCET) with water used as a mediator for the proton transfer (see picture).
Collapse
Affiliation(s)
- Min Wang
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
500
|
Reece SY, Lutterman DA, Seyedsayamdost MR, Stubbe J, Nocera DG. Re(bpy)(CO)3CN as a probe of conformational flexibility in a photochemical ribonucleotide reductase. Biochemistry 2009; 48:5832-8. [PMID: 19402704 PMCID: PMC3340421 DOI: 10.1021/bi9005804] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical ribonucleotide reductases (photoRNRs) have been developed to study the proton-coupled electron transfer (PCET) mechanism of radical transport in Escherichia coli class I ribonucleotide reductase (RNR). The transport of the effective radical occurs along several conserved aromatic residues across two subunits: beta2((*)Y122 --> W48 --> Y356) --> alpha2(Y731 --> Y730 --> C439). The current model for RNR activity suggests that radical transport is strongly controlled by conformational gating. The C-terminal tail peptide (Y-betaC19) of beta2 is the binding determinant of beta2 to alpha2 and contains the redox active Y356 residue. A photoRNR has been generated synthetically by appending a Re(bpy)(CO)(3)CN ([Re]) photo-oxidant next to Y356 of the 20-mer peptide. Emission from the [Re] center dramatically increases upon peptide binding, serving as a probe for conformational dynamics and the protonation state of Y356. The diffusion coefficient of [Re]-Y-betaC19 has been measured (k(d1) = 6.1 x 10(-7) cm(-1) s(-1)), along with the dissociation rate constant for the [Re]-Y-betaC19-alpha2 complex (7000 s(-1) > k(off) > 400 s(-1)). Results from detailed time-resolved emission and absorption spectroscopy reveal biexponential kinetics, suggesting a large degree of conformational flexibility in the [Re]-Y-betaC19-alpha2 complex that engenders partitioning of the N-terminus of the peptide into both bound and solvent-exposed fractions.
Collapse
Affiliation(s)
- Steven Y Reece
- Department of Chemistry, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | | | |
Collapse
|