451
|
Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2002; 2:9-29. [PMID: 11701505 DOI: 10.1146/annurev.bioeng.2.1.9] [Citation(s) in RCA: 640] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydrogels are cross-linked hydrophilic polymers that can imbibe water or biological fluids. Their biomedical and pharmaceutical applications include a very wide range of systems and processes that utilize several molecular design characteristics. This review discusses the molecular structure, dynamic behavior, and structural modifications of hydrogels as well as the various applications of these biohydrogels. Recent advances in the preparation of three-dimensional structures with exact chain conformations, as well as tethering of functional groups, allow for the preparation of promising new hydrogels. Meanwhile, intelligent biohydrogels with pH- or temperature-sensitivity continue to be important materials in medical applications.
Collapse
Affiliation(s)
- N A Peppas
- Program on Therapeutic and Diagnostic Devices, Biomaterials and Drug Delivery Laboratories, School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-1283, USA.
| | | | | | | | | |
Collapse
|
452
|
Garin N, Escher G. The development of inhibitory synaptic specializations in the mouse deep cerebellar nuclei. Neuroscience 2002; 105:431-41. [PMID: 11672609 DOI: 10.1016/s0306-4522(01)00127-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using confocal laser scanning microscopy and immunohistochemistry, this study shows the complete morphological development of GABAergic synaptic contacts between Purkinje cells and neurons of the deep cerebellar nuclei of the mouse. Firstly, presynaptic varicosities visualized with antibodies against synaptophysin, synapsin or glutamic acid decarboxylase, were detected when the postsynaptic GABA(A) receptors were not yet aggregated in the membrane but had a diffuse cytoplasmic distribution, which indicated a lead in maturation of presynaptic terminals over target cells. Secondly, receptor aggregates developed suddenly after an initial week of diffuse expression and these clusters matured into more numerous and larger synaptic aggregates. During this postsynaptic maturation, the presynaptic varicosities develop into numerous and well-defined spots. As soon as both pre- and postsynaptic clusters were detectable, these sites are always colocalized. We therefore consider the aggregation of postsynaptic receptor during development as a landmark of synapse formation. Our observations are consistent with a developmental model in which the presynaptic neuron differentiates its axon before the target neuron expresses the mature form of its receptors on the membrane. The presynaptic neuron can therefore instruct the target neuron about the distribution and aggregation of the postsynaptic receptors at the synapse.
Collapse
Affiliation(s)
- N Garin
- Institut de biologie cellulaire et de morphologie, Bugnon 9, 1005, Lausanne, Switzerland.
| | | |
Collapse
|
453
|
Abstract
Coyle et al. (2002), in this issue of Neuron, reveal the crystal structure for the GABA(A) receptor binding protein, GABARAP. They show GABARAP can switch from a monomer to an extended linear polymer form that may function to assemble microtubules during the intracellular trafficking or postsynaptic clustering of GABA(A) receptors.
Collapse
|
454
|
Coyle JE, Qamar S, Rajashankar KR, Nikolov DB. Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron 2002; 33:63-74. [PMID: 11779480 DOI: 10.1016/s0896-6273(01)00558-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
GABARAP recognizes and binds the gamma2 subunit of the GABA(A) receptor, interacts with microtubules and the N-ethyl maleimide sensitive factor, and is proposed to function in GABA(A) receptor trafficking and postsynaptic localization. We have determined the crystal structure of human GABARAP at 1.6 A resolution. The structure comprises an N-terminal helical subdomain and a ubiquitin-like C-terminal domain. Structure-based mutational analysis demonstrates that the N-terminal subdomain is responsible for tubulin binding while the C-terminal domain contains the binding site for the GABA(A). A second GABARAP crystal form was determined at 1.9 A resolution and documents that GABARAP can self-associate in a head-to-tail manner. The structural details of this oligomerization reveal how GABARAP can both promote tubulin polymerization and facilitate GABA(A) receptor clustering.
Collapse
Affiliation(s)
- Joseph E Coyle
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
455
|
van Zundert B, Alvarez FJ, Yevenes GE, Cárcamo JG, Vera JC, Aguayo LG. Glycine receptors involved in synaptic transmission are selectively regulated by the cytoskeleton in mouse spinal neurons. J Neurophysiol 2002; 87:640-4. [PMID: 11784780 DOI: 10.1152/jn.00455.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using whole cell patch-clamp recordings, we examined the effect of colchicine, a microtubule disrupter, on the properties of glycine receptors (GlyRs) in cultured spinal cord neurons. Confocal microscopy revealed that colchicine treatment effectively altered microtubule bundles and neuronal morphology. Application of colchicine via the culture media or the patch-pipette, however, did not affect the whole cell current rundown (73 +/- 6% of control after 1 h), the sensitivity of the GlyR to glycine (EC(50) = 29 +/- 1 microM), or strychnine inhibition (47 +/- 5% of control after 100 nM strychnine). On the other hand, colchicine dialyzed for 25 min via the patch pipette selectively reduced the quantal amplitude of spontaneous glycinergic miniature inhibitory postsynaptic currents (mIPSCs) to 68 +/- 5% of control. This effect was specific for GlyRs since synaptic events mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and GABA(A) receptors were unchanged. In conclusion, this study indicates that microtubules can regulate the function of GlyRs involved in inhibitory synaptic transmission.
Collapse
|
456
|
Abstract
Environmentally sensitive hydrogels have enormous potential in various applications. Some environmental variables, such as low pH and elevated temperatures, are found in the body. For this reason, either pH-sensitive and/or temperature-sensitive hydrogels can be used for site-specific controlled drug delivery. Hydrogels that are responsive to specific molecules, such as glucose or antigens, can be used as biosensors as well as drug delivery systems. Light-sensitive, pressure-responsive and electro-sensitive hydrogels also have the potential to be used in drug delivery and bioseparation. While the concepts of these environment-sensitive hydrogels are sound, the practical applications require significant improvements in the hydrogel properties. The most significant weakness of all these external stimuli-sensitive hydrogels is that their response time is too slow. Thus, fast-acting hydrogels are necessary, and the easiest way of achieving that goal is to make thinner and smaller hydrogels. This usually makes the hydrogel systems too fragile and they do not have mechanical strength necessary in many applications. Environmentally sensitive hydrogels for drug delivery applications also require biocompatibility. Synthesis of new polymers and crosslinkers with more biocompatibility and better biodegradability would be essential for successful applications. Development of environmentally sensitive hydrogels with such properties is a formidable challenge. If the achievements of the past can be extrapolated into the future, however, it is highly likely that responsive hydrogels with a wide array of desirable properties can be made.
Collapse
Affiliation(s)
- Y Qiu
- Departments of Pharmaceutics and Biomedical Engineering, Purdue University, West Lafayette, IN 47907-1336, USA
| | | |
Collapse
|
457
|
Naik RR, Kirkpatrick SM, Stone MO. The thermostability of an alpha-helical coiled-coil protein and its potential use in sensor applications. Biosens Bioelectron 2001; 16:1051-7. [PMID: 11679288 DOI: 10.1016/s0956-5663(01)00226-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coiled-coil proteins are assemblies of two to four alpha-helices that pack together in a parallel or anti-parallel fashion. Coiled-coil structures can confer a variety of functional capabilities, which include enabling proteins, such as myosin, to function in the contractile apparatus of muscle and non-muscle cells. The TlpA protein encoded by the virulence plasmid of Salmonella is an alpha-helical protein that forms an elongated coiled-coil homodimer. A number of studies have clearly established the role of TlpA as a temperature-sensing gene regulator, however the potential use of a TlpA in a thermo-sensor application outside of the organism has not been exploited. In this paper, we demonstrate that TlpA has several characteristics that are common with alpha-helical coiled-coils and its thermal folding and unfolding is reversible and rapid. TlpA is extremely sensitive to changes in temperature. We have also compared the heat-stability of TlpA with other structurally similar proteins. Using a folding reporter, in which TlpA is expressed as a C-terminal fusion with green fluorescent protein (GFP), we were able to use fluorescence as an indicator of folding and unfolding of the fusion protein. Our results on the rapid conformational changes inherent in TlpA support the previous findings and we present here preliminary data on the use of a GFP-TlpA fusion protein as temperature sensor.
Collapse
Affiliation(s)
- R R Naik
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433-7702, USA
| | | | | |
Collapse
|
458
|
Ali NJ, Olsen RW. Chronic benzodiazepine treatment of cells expressing recombinant GABA(A) receptors uncouples allosteric binding: studies on possible mechanisms. J Neurochem 2001; 79:1100-8. [PMID: 11739624 DOI: 10.1046/j.1471-4159.2001.00664.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional and behavioral tolerance to chronic benzodiazepine (BZ) exposure has been associated with an uncoupling of the BZ and GABA binding sites. As in rats exposed to BZ for periods of a week or longer, recombinant GABA(A) receptors (GABARs) expressed in Sf9 cells lose the normally observed allosteric enhancement of [3H]flunitrazepam binding by GABA agonists, which is measured in homogenized membranes after a few hours exposure to pharmacological doses of agonist BZ. Treatment of Sf9 cells expressing recombinant GABAR with various drugs that inhibit protein kinase A (PKA), but not protein kinase C (PKC), resulted in an uncoupling of the BZ and GABA binding sites; whereas promotion of phosphorylation by PKA, but not PKC, favored coupling and recoupling. However, mutation of the only PKA phosphorylation site expressed from among the subunits proved that direct phosphorylation of the GABAR was not involved in either coupling after chronic BZ exposure or reversal of uncoupling after exposure to the competitive BZ antagonist, flumazenil. Osmotic-shock of cell membrane homogenates to lyse intracellular compartments reversed uncoupling, and uncoupling can be replicated in untreated cells by performing membrane binding assays in an acidic environment, suggesting that GABARs become internalized into an acidic intracellular environment where normal BZ binding occurs, but that potentiation by GABA is hindered. The internalization of receptors was shown by immunofluorescence after chronic exposure to either BZ or the PKA inhibitor H-89.
Collapse
Affiliation(s)
- N J Ali
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California 90095-1735, USA
| | | |
Collapse
|
459
|
Abstract
Water is essential for life, and thus the removal of water from a cell is a severe, often lethal stress. This is not a remarkable observation but it is one that is often taken for granted. Desiccation-tolerant cells implement structural, physiological and molecular mechanisms to survive severe water deficit. These mechanisms, and the components and pathways which facilitate them, are poorly understood. Here, recent developments are considered to illustrate the importance of desiccation, longevity and cell stasis in basic microbiology, and the relevance of the topic to the metabolic engineering of sensitive cells, including those of humans.
Collapse
Affiliation(s)
- M Potts
- Virginia Tech Center for Genomics, W. Campus Drive, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
460
|
Lin YC, Spencer AN. Calcium currents from jellyfish striated muscle cells: preservation of phenotype, characterisation of currents and channel localisation. J Exp Biol 2001; 204:3717-26. [PMID: 11719535 DOI: 10.1242/jeb.204.21.3717] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
When striated muscle cells of the jellyfish Polyorchis penicillatus were dissociated at 30°C they retained their in vivo morphology and the integrity of ionic currents. This contrasted with cells dissociated at room temperature that rarely expressed any inward currents. Whole-cell, patch-clamp recordings from dissociated muscle cells revealed that the inward component of the total ionic current consisted of only one calcium current. This calcium current activated at –70 mV, peaked at –30 mV, and inactivated within 5 ms. In comparison with barium and strontium ions, calcium ions were the preferred current carriers. Calcium channels can be blocked by dihydropyridines and nickel ions at micromolar levels. Several properties of this current are reminiscent of T-type calcium currents. Localisation of this channel using the fluorescent channel blocker fDHP and the fluorescent dye RH414 indicated that myofibres had a higher density of these channels than the somata.
Collapse
Affiliation(s)
- Y C Lin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
461
|
Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J Neurosci 2001. [PMID: 11588160 DOI: 10.1523/jneurosci.21-20-07871.2001] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spinal dorsal horn is the first level of the CNS in which nociceptive input from sensory afferents is integrated and transmitted. Although inhibitory control in this region has a crucial impact on pain transmission, the respective contribution of GABA and glycine to this inhibition remains elusive. We have previously documented co-release of GABA and glycine at the same inhibitory synapse in spinal laminas I-II of adult rats [older than postnatal day 30 (P30)]. However, despite this co-release, individual miniature inhibitory postsynaptic currents (mIPSCs) were mediated by either glycine receptors (GlyR) or GABA(A) receptors (GABA(A)R), yet never by the two together. In contrast, recent studies of ventral horn immature inhibitory synapses (</=P21) reported individual mIPSCs that were mediated by both GABA(A)Rs and GlyRs. This raises the question of whether mixed mIPSCs are present in immature lamina I-II neurons yet are lost through a maturation-dependent synaptic specialization. To test this, we recorded mIPSCs using patch-clamp techniques in lamina I-II neurons in spinal slices taken at different stages of development. We found that, in neurons younger than P23, both GlyR-only and GABA(A)R-only mIPSCs could be recorded, in addition to mixed GABA(A)R-GlyR mIPSCs. With maturation however, both lamina I-II neurons gradually discontinued exhibiting mixed mIPSCs, although with differing patterns of specialization. Yet, at all developmental stages, benzodiazepine administration could unmask mixed mIPSCs. Together, these findings indicate that, although GABA and glycine are continually co-released throughout development, junctional codetection ceases by adulthood. This indicates an age-dependent postsynaptic tuning of inhibitory synapses that occurs in a region-specific manner.
Collapse
|
462
|
Nelson ME, Wang F, Kuryatov A, Choi CH, Gerzanich V, Lindstrom J. Functional properties of human nicotinic AChRs expressed by IMR-32 neuroblastoma cells resemble those of alpha3beta4 AChRs expressed in permanently transfected HEK cells. J Gen Physiol 2001; 118:563-82. [PMID: 11696612 PMCID: PMC2233843 DOI: 10.1085/jgp.118.5.563] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized the functional and molecular properties of nicotinic acetylcholine receptors (AChRs) expressed by IMR-32, a human neuroblastoma cell line, and compared them to human alpha3 AChRs expressed in stably transfected human embryonic kidney (HEK) cells. IMR-32 cells, like neurons of autonomic ganglia, have been shown to express alpha3, alpha5, alpha7, beta2, and beta4 AChR subunits. From these subunits, several types of alpha3 AChRs as well as homomeric alpha7 AChRs could be formed. However, as we show, the properties of functional AChRs in these cells overwhelmingly reflect alpha3beta4 AChRs. alpha7 AChR function was not detected, yet we estimate that there are 70% as many surface alpha7 AChRs in IMR-32 when compared with alpha3 AChRs. Agonist potencies (EC(50) values) followed the rank order of 1,1-dimethyl-4-phenylpiperazinium (DMPP; 16+/-1 microM) > nicotine (Nic; 48 +/- 7 microM) > or = cytisine (Cyt; 57 +/- 3 microM) = acetylcholine (ACh; 59 +/- 6 microM). All agonists exhibited efficacies of at least 80% relative to ACh. The currents showed strong inward rectification and desensitized at a rate of 3 s(-1) (300 microM ACh; -60 mV). Assays that used mAbs confirmed the predominance of alpha3- and beta4-containing AChRs in IMR-32 cells. Although 18% of total alpha3 AChRs contained beta2 subunits, no beta2 subunit was detected on the cell surface. Chronic Nic incubation increased the amount of total, but not surface alpha3beta2 AChRs in IMR-32 cells. Nic incubation and reduced culture temperature increased total and surface AChRs in alpha3beta2 transfected HEK cells. Characterization of various alpha3 AChRs expressed in HEK cell lines revealed that the functional properties of the alpha3beta4 cell line best matched those found for IMR-32 cells. The rank order of agonist potencies (EC(50) values) for this line was DMPP (14 +/- 1 microM) = Cyt (18 +/- 1 microM) > Nic (56 +/- 15 microM > ACh (79 +/- 8 microM). The efficacies of both Cyt and DMPP were approximately 80% when compared with ACh and the desensitization rate was 2 s(-1). These data show that even with the potential to express several human nicotinic AChR subtypes, the functional properties of AChRs expressed by IMR-32 are completely attributable to alpha3beta4 AChRs.
Collapse
Affiliation(s)
- Mark E. Nelson
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - Fan Wang
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - Alexander Kuryatov
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - Catherine H. Choi
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - Volodymyr Gerzanich
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104
| |
Collapse
|
463
|
Munafó DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001; 114:3619-29. [PMID: 11707514 DOI: 10.1242/jcs.114.20.3619] [Citation(s) in RCA: 405] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autophagy is a normal degradative pathway that involves the sequestration of cytoplasmic portions and intracellular organelles in a membrane vacuole called the autophagosome. These vesicles fuse with lysosomes and the sequestered material is degraded. Owing to the complexity of the autophagic pathway and to its inaccessibility to external probes, little is known about the molecular mechanisms that regulate autophagy in higher eukaryotic cells. We used the autofluorescent drug monodansylcadaverine (MDC), a specific autophagolysosome marker to analyze at the molecular level the machinery involved in the autophagic process. We have developed a morphological and biochemical assay to study authophagy in living cells based on the incorporation of MDC. With this assay we observed that the accumulation of MDC was specifically induced by amino acid deprivation and was inhibited by 3-methlyadenine, a classical inhibitor of the autophagic pathway. Additionally, wortmannin, an inhibitor of PI3-kinases that blocks autophagy at an early stage, inhibited the accumulation of MDC in autophagic vacuoles. We also found that treatment of the cells with N-ethylmaleimide (NEM), an agent known to inhibit several vesicular transport events, completely blocked the incorporation of MDC, suggesting that an NEM-sensitive protein is required for the formation of autophagic vacuoles. Conversely, vinblastine, a microtubule depolymerizing agent that induces the accumulation of autophagic vacuoles by preventing their degradation, increased the accumulation of MDC and altered the distribution and size of the autophagic vacuoles. Our results indicate that in the presence of vinblastine very large MDC-vacuoles accumulated mainly under starvation conditions, indicating that the expansion of autophagosomes is upregulated by amino acid deprivation. Furthermore, these MDC-vacuoles were labeled with LC3, one of the mammalian homologues of the yeast protein Apg8/Aut7 that plays an important role in autophagosome formation.
Collapse
Affiliation(s)
- D B Munafó
- Laboratorio de Biología Celular y Molecular-Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, 5500, Argentina
| | | |
Collapse
|
464
|
Peran M, Hicks BW, Peterson NL, Hooper H, Salas R. Lateral mobility and anchoring of recombinant GABAA receptors depend on subunit composition. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:89-100. [PMID: 11746674 DOI: 10.1002/cm.1043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The clustering of type A gamma-aminobutyric acid receptors (GABA(A)R) at discrete and functionally significant domains on the nerve cell surface is an important determinant in the integration of synaptic inputs. To discern the role that the subunits of the GABA(A)R play in determining the receptor's cell surface topography and mobility, the alpha1, beta1, beta3, and gamma2s subunits were transfected into COS7, HEK293, and PC12 cells and the distribution and cell surface mobility of these recombinant receptors were examined. Our results show that alpha1 subunits are retained in the endoplasmic reticulum while beta1 and beta3 subunits are sorted to the plasma membrane where they form clusters. Co-expression and co-assembly of alpha1 and beta3 subunits result in the rescue of intracellular alpha1 subunits, which are transported as alphabeta subunit complexes to the cell surface where they formed clusters. Fluorescence photobleach recovery and single particle tracking of recombinant receptors show that, despite clustering, beta3 subunit homooligomers are mobile within a cell surface domain. Inclusion of alpha1 in beta3 or beta3gamma2s complexes, however, dramatically reduces the receptor's lateral mobility in COS 7 and PC12 cells and anchors GABA(A)Rs on the cell surface, suggesting the formation of a direct link to a component of the cytoskeleton. The mobility of recombinant receptors that include the alpha1 subunit mirrors the mobility of GABA(A)Rs on cell bodies and dendrites of cortical and spinal cord neurons. The results suggest that incorporation of alpha1 subunits give rise to a population of GABA(A)Rs that are immobilized on the cell surface.
Collapse
Affiliation(s)
- M Peran
- Departamento de Bioquimica, Facultad de Medicina, Universidad de Malaga, Malaga, Spain
| | | | | | | | | |
Collapse
|
465
|
|
466
|
|
467
|
Bedford FK, Kittler JT, Muller E, Thomas P, Uren JM, Merlo D, Wisden W, Triller A, Smart TG, Moss SJ. GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat Neurosci 2001; 4:908-16. [PMID: 11528422 DOI: 10.1038/nn0901-908] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controlling the number of functional gamma-aminobutyric acid A (GABA(A)) receptors in neuronal membranes is a crucial factor for the efficacy of inhibitory neurotransmission. Here we describe the direct interaction of GABA(A) receptors with the ubiquitin-like protein Plic-1. Furthermore, Plic-1 is enriched at inhibitory synapses and is associated with subsynaptic membranes. Functionally, Plic-1 facilitates GABA(A) receptor cell surface expression without affecting the rate of receptor internalization. Plic-1 also enhances the stability of intracellular GABA(A) receptor subunits, increasing the number of receptors available for insertion into the plasma membrane. Our study identifies a previously unknown role for Plic-1, a modulation of GABA(A) receptor cell surface number, which suggests that Plic-1 facilitates accumulation of these receptors in dendritic membranes.
Collapse
Affiliation(s)
- F K Bedford
- Medical Research Council Laboratory of Molecular Cell Biology and Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
468
|
Abstract
Cell-to-cell communication in the mammalian nervous system does not solely involve direct synaptic transmission. There is considerable evidence for a type of communication between neurons through chemical means that lies somewhere between the rapid synaptic information transfer and the relatively non-specific neuroendocrine secretion. Here I review some of the experimental evidence accumulated for the GABA system indicating that GABA(A) receptor-gated Cl-channels localized at synapses differ significantly from those found extrasynaptically. These two types of GABA(A) receptor are involved in generating distinctly different conductances. Thus, the development and search for pharmacological agents specifically aimed at selectively altering synaptic and extrasynaptic GABA(A) conductances is within reach, and is expected to provide novel insights into the regulation of neuronal excitability.
Collapse
Affiliation(s)
- I Mody
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-1769, USA.
| |
Collapse
|
469
|
Ho WH, Wang SM, Yin HS. Regulation of the subcellular distribution and gene expression of GABA(A) receptor by microtubules and microfilaments in cultured brain neurons. J Cell Biochem 2001; 83:291-303. [PMID: 11573246 DOI: 10.1002/jcb.1232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanisms underlying the intracellular transport of gamma-aminobutyric acid(A) receptor (GABA(A)R) were examined in the cultured neurons derived from chicken embryo brains. In situ trypsinization of the cultures and (3)H-flunitrazepam (FNZ) binding assay were employed to determine the cell surface and intracellular distribution of the receptor. A 3-h treatment of the cells with 1 microM of colchicine, a microtubule depolymerizer, reversibly raised the proportion of intracellular GABA(A)R density by about 36% and decreased that of the cell surface receptors by 18% from respective control values, whereas the 3-h incubation with 2 microM of cytochalasin D, a microfilament disrupter, did not cause significant changes. These treatments failed to alter the total number of the (3)H-FNZ binding sites of the neurons and the affinity of the ligand. Moreover, the exposure to colchicine seemed to produce a stronger cytoplasmic immunostaining of the GABA(A)R alpha subunits in many neurons without affecting the total cellular level of the proteins, in accordance with the increased fraction of intracellular (3)H-FNZ binding. However, in the neurons exposed to cytochalasin D, there was an increase of around 28% in the total content of alpha(1)+51kDa proteins. In addition, the colchicine or cytochalasin D treatment inhibited approximately 21 or 18% of the rate of general protein synthesis in the culture. Notably, in situ hybridization assay showed that the GABA(A)R alpha(1) or alpha(2) mRNA was present in 92 +/- 2% or 94 +/- 2% of the cytochalasin D-treated neurons, both of which were higher than 71 +/- 2-74 +/- 3% of the control and colchicine-treated cells. The data suggest that by regulating the intracellular transport, the microtubular system participates in the maintenance of normal subcellular distribution of GABA(A)R in the neurons. By contrast, the organization of microfilaments may play a role in modulating the gene expression of GABA(A)R subunits.
Collapse
Affiliation(s)
- W H Ho
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
470
|
Abstract
Modulation of the strength of synapses is thought to be one of the mechanisms that underlies learning and memory and is also likely to be important in processes of neuropathology and drug tolerance. This review focuses on the emerging role of postsynaptic neurotransmitter receptor trafficking as an essential mechanism underlying the dynamic regulation of synaptic strength.
Collapse
Affiliation(s)
- J T Kittler
- Medical Research Council Laboratory of Molecular Cell Biology and UCL Department of Pharmacology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
471
|
Kittler JT, Rostaing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ. The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol Cell Neurosci 2001; 18:13-25. [PMID: 11461150 DOI: 10.1006/mcne.2001.1005] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA(A) receptors the major sites of fast synaptic inhibition in the brain are composed predominately of alpha, beta, and gamma2 subunits. The receptor gamma2 subunit interacts with a 17-kDa microtubule associated protein GABARAP, but the significance of this interaction remains unknown. Here we demonstrate that GABARAP, which immunoprecipitates with GABA(A) receptors, is not found at significant levels within inhibitory synapses, but is enriched within the Golgi apparatus and postsynaptic cisternae. We also demonstrate that GABARAP binds directly to N-ethylmaleimide-sensitive factor (NSF), a protein critical for intracellular membrane trafficking events. NSF and GABARAP complexes could be detected in neurons and these two proteins also colocalize within intracellular membrane compartments. Together our observations suggest that GABARAP may play a role in intracellular GABA(A) receptor transport but not synaptic anchoring, via its ability to interact with NSF. GABARAP may therefore have an important role in the production of GABAergic synapses.
Collapse
Affiliation(s)
- J T Kittler
- Medical Research Council Laboratory of Molecular Cell Biology, University College London (UCL), London, WC1E 6BT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
472
|
Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S. Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 2001; 74:408-13. [PMID: 11414770 DOI: 10.1006/geno.2001.6555] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type A receptors of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, contain alpha, beta, delta, gamma, and rho subunits. The gamma subunit has four subtypes: gamma1, gamma2, gamma3, andgamma4. GABA(A) receptor-associated protein (GABARAP) was previously demonstrated to act as a linker protein between microtubules and the gamma2 subunit of GABA(A) receptors. However, no other linker proteins have been identified as mediating the linkage of microtubules and the remaining subunits of GABA(A) receptors. In this study we identified three human paralogues (GABARAPL1, GABARAPL2, and GABARAPL3) and two mouse orthologues (Gabarapl1 and Gabarapl2) of human GABARAP, all of which encoded 117 amino acids, as does Gabarapl. The expression patterns of GABARAPL1, GABARAPL2, and GABARAP in 16 adult tissues showed that they were expressed ubiquitously. The expression levels of GABARAPL1 as a 2.3-kb transcript were very high in brain, heart, peripheral blood leukocytes, liver, kidney, placenta, and skeletal muscle, very low in thymus and small intestine, and moderate in other tissues tested. The unique 1.35-kb transcript of GABARAPL2 was expressed at high levels in heart, brain, testis, prostate, ovary, spleen, and skeletal muscle, at very low levels in lung, thymus, and small intestine, and moderately in other tissues tested. For GABARAP, a 1.3-kb transcript was abundantly expressed in all tested tissues with small variation. The expression patterns of Gabarapl1 and Gabarapl2 were similar to those of their counterparts in human. In addition, GABARAPL1 was localized to human chromosome 12p12.3 and GABARAPL2 to 16q22.3-q24.1 by RH mapping, while GABARAP and GABARAPL3 were found to be localized at chromosomes 17p13.2 and 15q25.1, respectively, by searching the related databases. Sequence comparison of the cDNAs and their corresponding genomic sequences shows that GABARAP, GABARAPL1, and GABARAPL2 are composed of four exons each, while GABARAPL3 is distributed only at one exon.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Apoptosis Regulatory Proteins
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 16/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Gene Expression
- Humans
- Male
- Mice
- Microtubule-Associated Proteins/genetics
- Molecular Sequence Data
- Protein Isoforms/genetics
- RNA/genetics
- RNA/metabolism
- Radiation Hybrid Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- Y Xin
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
473
|
Vernier-Magnin S, Muller S, Sallot M, Radom J, Musard JF, Adami P, Dulieu P, Rémy-Martin JP, Jouvenot M, Fraichard A. A Novel Early Estrogen-Regulated Gene gec1 Encodes a Protein Related to GABARAP. Biochem Biophys Res Commun 2001; 284:118-25. [PMID: 11374880 DOI: 10.1006/bbrc.2001.4908] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated, in guinea-pig endometrial cells, an estrogen-induced 1.8 kb RNA called gec1. Screening of a guinea-pig genomic library led to identification of gec1 gene consisting of 4 exons and 3 introns. Exon 1 contains the 5'UTR and the ATG initiation codon. A guinea-pig gec1 cDNA was obtained by 5'-RACE. The 351 bp coding sequence shares 76.8% identity with that of the human GABARAP 924 bp cDNA while UTRs of the two cDNAs differ. A gec1 probe from the 3'UTR revealed a 1.9 kb mRNA in human tissues and a human GEC1 cDNA was isolated from placenta. Its coding sequence shares 93 and 79% identity with that of guinea-pig gec1 and human GABARAP, respectively. The human and guinea-pig GEC1 proteins have 100% identity. GEC1 and GABARAP proteins have 87% identity and N terminus featuring a tubulin binding motif. Thus, estrogen-regulated gec1 is a new gene which could encode a microtubule-associated protein.
Collapse
Affiliation(s)
- S Vernier-Magnin
- Institut d'Etude et de Transfert de Gènes, Bâtiment INSERM, Besançon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
474
|
Petrie J, Sapp DW, Tyndale RF, Park MK, Fanselow M, Olsen RW. Altered GABAA Receptor Subunit and Splice Variant Expression in Rats Treated With Chronic Intermittent Ethanol. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02285.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
475
|
Kneussel M, Brandstätter JH, Gasnier B, Feng G, Sanes JR, Betz H. Gephyrin-independent clustering of postsynaptic GABA(A) receptor subtypes. Mol Cell Neurosci 2001; 17:973-82. [PMID: 11414787 DOI: 10.1006/mcne.2001.0983] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gephyrin has been shown to be essential for the synaptic localization of the inhibitory glycine receptor and major GABA(A) receptor (GABA(A)R) subtypes. However, in retina certain GABA(A)R subunits are found at synaptic sites in the absence of gephyrin. Here, we quantitatively analyzed GABA(A)R alpha1, alpha2, alpha3, alpha5, beta2/3, and gamma2 subunit immunoreactivities in spinal cord sections derived from wild-type and gephyrin-deficient (geph -/-) mice. The punctate staining of GABA(A)R alpha1 and alpha5 subunits was unaltered in geph -/- mice, whereas the numbers of alpha2-, alpha3-, beta2/3-, and gamma2-subunit-immunoreactive synaptic sites were significantly or even strikingly reduced in the mutant animals. Immunostaining with an antibody specific for the vesicular inhibitory amino acid transporter revealed that the number of inhibitory presynaptic terminals is unaltered upon gephyrin deficiency. These data show that in addition to gephyrin other clustering proteins must exist that mediate the synaptic localization of selected GABA(A)R subtypes.
Collapse
Affiliation(s)
- M Kneussel
- Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt/Main, D-60528, Germany
| | | | | | | | | | | |
Collapse
|
476
|
Tang A, Wang C, Stewart RJ, Kopecek J. The coiled coils in the design of protein-based constructs: hybrid hydrogels and epitope displays. J Control Release 2001; 72:57-70. [PMID: 11389985 DOI: 10.1016/s0168-3659(01)00262-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recombinant DNA technology provides a powerful tool for producing protein-based biomaterials. Genetically engineered coiled coils have been used as a structural module for the construction of a variety of bio-based systems useful in drug delivery studies. Two of such approaches developed in the authors' laboratory were described here. One approach was to assemble hybrid hydrogels from coiled coil protein domains and synthetic polymers. Preliminary results showed that temperature-sensitive volume transition of the hybrid hydrogels could be triggered by the thermal unfolding of the engineered coiled coil protein domains. The other approach, discussed in detail, was to construct an epitope display model system based on a coiled coil stem loop peptide self-assembled on a solid substrate. This model construct displayed a constrained nonapeptide sequence, which was found to mediate specific binding with immunocompetent cells bearing complementary surface receptors. These novel approaches will likely find important applications in the rational design of more effective drug delivery systems.
Collapse
Affiliation(s)
- A Tang
- Department of Pharmaceutics and Pharmaceutical Chemistry, 30 S 2000 E Rm. 301, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
477
|
de Jong SJ, van Eerdenbrugh B, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE. Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. J Control Release 2001; 71:261-75. [PMID: 11295219 DOI: 10.1016/s0168-3659(01)00228-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels, physically crosslinked through stereocomplex formation, were obtained by mixing aqueous solutions of dextran with L-lactic acid grafts and dextran with D-lactic acid grafts. Protein-loaded hydrogels were simply prepared by dissolving the protein in these dextran solutions prior to mixing. It was shown that under physiological conditions the gels are fully degradable. When the gels were exposed to an aqueous buffer solution, they first showed a swelling phase in which their weight increased 2-3 times due to absorption of water, followed by a dissolution phase. The degradation time depended on the composition of the hydrogel, i.e., the number of lactate grafts, the length and polydispersity of the grafts and the initial water content, and varied from 1 to 7 days. Most likely, the degradation of the stereocomplex hydrogel started with hydrolysis of the carbonate ester, which links the lactate graft to dextran. The gels showed a release of the entrapped model proteins (IgG and lysozyme) over 6 days and the kinetics depended on the gel characteristics, such as the polydispersity of the lactate grafts and the initial water content. Lysozyme was mainly released by Fickian diffusion, indicating that its hydrodynamic diameter is smaller than the hydrogel mesh size. On the other hand the release of IgG was governed by diffusion as well as swelling/degradation of the hydrogel. Importantly, the proteins were quantitatively released from the gels and with full preservation of the enzymatic activity of lysozyme, emphasizing the protein-friendly preparation method of the protein-loaded stereocomplex hydrogel.
Collapse
Affiliation(s)
- S J de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
478
|
Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 2001. [PMID: 11160430 DOI: 10.1523/jneurosci.21-02-00504.2001] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium-permeable neurotransmitter receptors are concentrated into structurally and biochemically isolated cellular compartments to localize calcium-mediated events during neurotransmission. The cytoplasmic membrane contains lipid microdomains called lipid rafts, which can gather into microscopically visible clusters, and thus the association of a particular protein with lipid rafts can result in its redistribution on the cell surface. The present study asks whether lipid rafts participate in the formation and maintenance of the calcium-permeable alpha7-subunit nicotinic acetylcholine receptor (alpha7nAChR) clusters found in somatic spines of ciliary neurons. Lipid rafts and alpha7nAChR become progressively colocalized within somatic spines during synaptogenesis. To determine whether these rafts are required for the maintenance of alpha7nAChR aggregates, cholesterol was extracted from dissociated ciliary neurons by treatment with methyl-beta-cyclodextrin. This treatment caused the dispersion of lipid rafts and the redistribution of alpha7nAChR into small clusters over the cell surface, suggesting that the integrity of lipid rafts is required to maintain the receptor clustering. However, lipid raft dispersion also caused the depolymerization of the F-actin cytoskeleton, which can also tether the receptor at specific sites. To assess whether interaction between rafts and alpha7nAChR is independent of F-actin filaments, the lipid raft patches were stabilized with a combination of the cholera toxin B subunit (CTX), which specifically binds to the raft component ganglioside GM1, and an antibody against CTX. The stabilized rafts were then treated with latrunculin-A to depolymerize F-actin. Under these conditions, large patches of CTX persisted and were colocalized with alpha7nAChR, indicating that the aggregates of receptors can be maintained independently of the underlying F-actin cytoskeleton. Moreover, it was found that the alpha7nAChR is resistant to detergent extraction at 4 degrees C and floats with the caveolin-containing lipid-rich fraction during density gradient centrifugation, properties that are consistent with a direct association between the receptor and the membrane microdomains.
Collapse
|
479
|
Abstract
Control of nerve-cell excitability is crucial for normal brain function. Two main groups of inhibitory neurotransmitter receptors--GABA(A) and glycine receptors--fulfil a significant part of this role. To mediate fast synaptic inhibition effectively, these receptors need to be localized and affixed opposite nerve terminals that release the appropriate neurotransmitter at multiple sites on postsynaptic neurons. But for this to occur, neurons require intracellular anchoring molecules, as well as mechanisms that ensure the efficient turnover and transport of mature, functional inhibitory synaptic receptor proteins. This review describes the dynamic regulation of synaptic GABA(A) and glycine receptors and discusses recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- S J Moss
- MRC Laboratory of Molecular Cell Biology and Department of Pharmacology, University College, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
480
|
Tretter V, Hauer B, Nusser Z, Mihalek RM, Höger H, Homanics GE, Somogyi P, Sieghart W. Targeted disruption of the GABA(A) receptor delta subunit gene leads to an up-regulation of gamma 2 subunit-containing receptors in cerebellar granule cells. J Biol Chem 2001; 276:10532-8. [PMID: 11136737 DOI: 10.1074/jbc.m011054200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA(A) receptors are chloride channels composed of five subunits. Cerebellar granule cells express abundantly six subunits belonging to four subunit classes. These are assembled into a number of distinct receptors, but the regulation of their relative proportions is yet unknown. Here, we studied the composition of cerebellar GABA(A) receptors after targeted disruption of the delta subunit gene. In membranes and extracts of delta-/- cerebellum, [(3)H]muscimol binding was not significantly changed, whereas [(3)H]Ro15-4513 binding was increased by 52% due to an increase in diazepam-insensitive binding. Immunocytochemical and Western blot analysis revealed no change in alpha(6) subunits but an increased expression of gamma(2) subunits in delta-/- cerebellum. Immunoaffinity chromatography of cerebellar extracts indicated there was an increased coassembly of alpha(6) and gamma(2) subunits and that 24% of all receptors in delta-/- cerebellum did not contain a gamma subunit. Because 97% of delta subunits are coassembled with alpha(6) subunits in the cerebellum of wild-type mice, these results indicated that, in delta-/- mice, alpha(6)betagamma(2) and alphabeta receptors replaced delta subunit-containing receptors. The availability of the delta subunit, thus, influences the level of expression or the extent of assembly of the gamma(2) subunit, although these two subunits do not occur in the same receptor.
Collapse
Affiliation(s)
- V Tretter
- University Clinic for Psychiatry, Section of Biochemical Psychiatry and Brain Research Institute of the University of Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
481
|
Coulter DA. Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:237-52. [PMID: 11130901 DOI: 10.1016/s0074-7742(01)45013-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Although epilepsy is fundamentally a circuit phenomenon, the most basic manifestation of the hyperexcitability characteristic of epilepsy must be evident at the level of a single neuron. Furthermore, in the future, manipulations of surviving neurons within the epileptic focus will constitute one of the best therapeutic targets for intervention to cure this devastating disease. Therefore, the more that can be learned about epileptogenic alterations in this population of surviving focal neurons, the more potential avenues for therapeutic intervention will emerge. This chapter has summarized one aspect of postsynaptic neuronal function that undergoes dramatic alterations in the epileptic brain: the properties of inhibitory neurotransmitter (i.e., GABA) receptors in surviving focal neurons. GABARs in these neurons undergo significant alterations in their function and pharmacology, which appear to be mediated, at least in part, by alterations in the transcriptional production of GABAR subunits. These GABAR alterations fulfill many of the requirements for an epileptogenic mechanism: they are consistent with the hyperexcitability characteristic of epilepsy; the changes develop prior to the onset of recurrent spontaneous seizures; and the elevated zinc sensitivity of epileptic GABARs combined with epilepsy-associated mossy fiber sprouting (a zinc "delivery mechanism") can account for the existence of a prolonged latent period. Although GABAR alterations in DGCs of the epileptic hippocampus may be consistent with hyperexcitability and therefore contribute to epileptogenesis, many other processes undoubtedly also contribute, including (but not limited to) neuronal loss, circuit rearrangements, alterations in other membrane proteins, and birth of new neurons. Assuming any single change is both necessary and sufficient to fully account for epilepsy is undoubtedly an oversimplification. The initial precipitating events associated with the subsequent development of epilepsy are often traumatic events and associated with changes in many processes in widespread areas of the brain. Some of these processes may contribute to excitability changes, some may resist the development of epilepsy, and some may be unrelated to epileptogenesis. Characterizing the critical processes initiated during epileptogenesis remains an important and challenging research endeavor for the foreseeable future.
Collapse
Affiliation(s)
- D A Coulter
- Division of Neurology, Department of Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
482
|
Abstract
Recent analyses of the genes required for autophagy--intracellular bulk protein degradation--in yeast have revealed two ubiquitin-like systems, both of which are involved in the membrane dynamics of the process. Molecular dissection of these systems is now revealing some surprises.
Collapse
Affiliation(s)
- Y Ohsumi
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8585, Japan.
| |
Collapse
|
483
|
Abstract
GABA(C) receptors contain rho subunits and mediate feedback inhibition from retinal amacrine cells to bipolar cells. We previously identified the cytoskeletal protein MAP1B as a rho1 subunit anchoring protein. Here, we analyze the structural basis and functional significance of the MAP1B-rho1 interaction. Twelve amino acids at the C terminus of the large intracellular loop of rho1 (and also rho2) are sufficient for interaction with MAP1B. Disruption of the MAP1B-rho interaction in bipolar cells in retinal slices decreased the EC(50) of their GABA(C) receptors, doubling the receptors' current at low GABA concentrations without affecting their maximum current at high concentrations. Thus, anchoring to the cytoskeleton lowers the sensitivity of GABA(C) receptors and provides a likely site for functional modulation of GABA(C) receptor-mediated inhibition.
Collapse
|
484
|
|
485
|
Tanida I, Tanida-Miyake E, Ueno T, Kominami E. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 2001; 276:1701-6. [PMID: 11096062 DOI: 10.1074/jbc.c000752200] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autophagy is a process that involves the bulk degradation of cytoplasmic components by the lysosomal/vacuolar system. In the yeast, Saccharomyces cerevisiae, an autophagosome is formed in the cytosol. The outer membrane of the autophagosome is fused with the vacuole, releasing the inner membrane structure, an autophagic body, into the vacuole. The autophagic body is subsequently degraded by vacuolar hydrolases. Taking advantage of yeast genetics, apg (autophagy-defective) mutants were isolated that are defective in terms of formation of autophagic bodies under nutrient starvation conditions. One of the APG gene products, Apg12p, is covalently attached to Apg5p via the C-terminal Gly of Apg12p as in the case of ubiquitylation, and this conjugation is essential for autophagy. Apg7p is a novel E1 enzyme essential for the Apg12p-conjugation system. In mammalian cells, the human Apg12p homolog (hApg12p) also conjugates with the human Apg5p homolog. In this study, the unique characteristics of hApg7p are shown. A two-hybrid experiment indicated that hApg12p interacts with hApg7p. Site-directed mutagenesis revealed that Cys(572) of hApg7p is an authentic active site cysteine residue essential for the formation of the hApg7p.hApg12p intermediate. Overexpression of hApg7p enhances the formation of the hApg5p.hApg12p conjugate, indicating that hApg7p is an E1-like enzyme essential for the hApg12p conjugation system. Cross-linking experiments and glycerol-gradient centrifugation analysis showed that the mammalian Apg7p homolog forms a homodimer as in yeast Apg7p. Each of three human Apg8p counterparts, i.e. the Golgi-associated ATPase enhancer of 16 kDa, GABA(A) receptor-associated protein, and microtubule-associated protein light chain 3, coimmunoprecipitates with hApg7p and conjugates with mutant hApg7p(C572S) to form a stable intermediate via an ester bond. These results indicate that hApg7p is an authentic protein-activating enzyme for hApg12p and the three Apg8p homologs.
Collapse
Affiliation(s)
- I Tanida
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | | | | |
Collapse
|
486
|
Jensen KD, Kopečková P, Bridge JHB, Kopeček J. The cytoplasmic escape and nuclear accumulation of endocytosed and microinjected HPMA copolymers and a basic kinetic study in Hep G2 cells. AAPS PHARMSCI 2001; 3:E32. [PMID: 12049495 PMCID: PMC2751221 DOI: 10.1208/ps030432] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2001] [Accepted: 11/28/2001] [Indexed: 01/30/2023]
Abstract
The development of macromolecules as drugs and drug carriers requires knowledge of their fate in cells. To this end, we studied the internalization and subcellular Fate of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers in Hep G2 (human hepatocellular carcinoma) cells. Semiquantitative fluorometry confirmed that galactose was an effective ligand for receptor-mediated endocytosis for Hep G2 cells. The rate of internalization of a galactose-targeted copolymer was almost 2 orders of magnitude larger than that of the nontargeted copolymer. Confocal fluorescent microscopy of both fixed and live cells revealed that the polymer entered the cells by endocytosis. After longer incubation times (typically >8 hours), polymer escaped from small vesicles and distributed throughout the cytoplasm and nuclei of the cells. Polymer that entered the cytoplasm tended to accumulate in the nucleus. Microinjection of the HPMA copolymers into cells' cytoplasm and nuclei indicated that the polymers partitioned to the nucleus. The data from fixed cells was confirmed by microscopy of live, viable cells. To examine the effect of the fluorescent dye on the intracellular fate, polymers with fluorescein, Oregon Green 488, Lissamine rhodamine B, and doxorubicin were tested; no significant differences were observed.
Collapse
Affiliation(s)
- Keith D. Jensen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S2000 E RM 301, 84112 Salt Lake City, UT USA
| | - Pavla Kopečková
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S2000 E RM 301, 84112 Salt Lake City, UT USA
- Department of Bioengineering, University of Utah, Salt Lake City, USA
| | - John H. B. Bridge
- Nora Eccles Harrison Cardiovascular Research and Training Institute, School of Medicine, University of Utah, Salt Lake City, UT USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S2000 E RM 301, 84112 Salt Lake City, UT USA
- Department of Bioengineering, University of Utah, Salt Lake City, USA
| |
Collapse
|
487
|
Saha S, Sieghart W, Fritschy JM, McWilliam PN, Batten TF. Gamma-aminobutyric acid receptor (GABA(A)) subunits in rat nucleus tractus solitarii (NTS) revealed by polymerase chain reaction (PCR) and immunohistochemistry. Mol Cell Neurosci 2001; 17:241-57. [PMID: 11161482 DOI: 10.1006/mcne.2000.0919] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of mRNAs encoding seven GABA(A) receptor subunits (alpha1, alpha2, alpha3, alpha5, beta2, beta3, gamma2) in the nucleus tractus solitarii (NTS) of rat medulla oblongata was examined by reverse transcription-polymerase chain reaction (RT-PCR). All subunit mRNAs, except alpha5, were clearly detected. Band densities produced by alpha1, alpha3, beta3, and gamma2 subunits were greater than those corresponding to beta2 and alpha2 transcripts. The localization of these subunits in tissue sections through NTS was examined by immunohistochemistry. The differential patterns of immunoreactivity in neuronal somata and dendrites of NTS neurons were generally in agreement with the PCR results, confirming that mRNA expression is correlated with receptor protein synthesis. At ultrastructural level, alpha1, alpha3, beta2/3, and gamma2 subunits were localized in both cytoplasmic and subsynaptic sites, the latter often apposed to GABA immunoreactive synapses. These results suggest that ionotropic receptors comprising the alpha1, alpha3, beta2/3, and gamma2 may mediate inhibitory GABA responses in the NTS.
Collapse
Affiliation(s)
- S Saha
- Institute for Cardiovascular Research, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
488
|
Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y, Koga H, Muramatsu M. Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:1-12. [PMID: 11146101 DOI: 10.1016/s0169-328x(00)00218-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We identified two mammalian ULK1 (Unc-51-like kinase involved in neurite extension) binding proteins by yeast two-hybrid screening. Both proteins showed high structural similarity to microtubule-associated protein (MAP) light chain 3 (LC3). One is identical to the Golgi-associated ATPase Enhancer of 16 kDa (GATE-16), an essential factor for intra-Golgi transport [39]. The other is identical to the gamma 2-subunit of GABA-A receptor associated protein (GABARAP) which has a possible role in receptor transport [46]. Using the yeast two-hybrid system and the in vitro GST pull-down assay, we found that the N-terminal proline/serine rich (PS) domain of ULK1 (amino acid 287-416) is required for ULK1-GATE-16 and ULK1-GABARAP protein interactions. However, the kinase activity of ULK1 affected neither ULK1-GATE-16 nor ULK1-GABARAP interaction. Immunohistochemical analysis using ULK1 and GABARAP antibodies showed that the ULK1 and the GABARAP proteins co-localized to many kind of neurons such as pyramidal cells of the hippocampus, mitral cells of the olfactory bulb, and Purkinje cells of the cerebellum. In HeLa cells, endogenous ULK1 and tagged GABARAP showed punctate structures in the cytosol, and were colocalized. These results suggest that the interaction of ULK1 and GABARAP is important to vesicle transport and axonal elongation in mammalian neurons.
Collapse
Affiliation(s)
- N Okazaki
- Helix Research Institute, 1532-3 Yana, Kisarazu-city, Chiba 292-0812, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
489
|
Abstract
The vacuole of the yeast Saccharomyces cerevisiae plays an important role in pH- and ion-homeostasis, and is used as a storage compartment for ions. Another important function of the vacuole, especially during nutrient limitation, is the bulk degradation of proteins and even whole organelles. To carry these proteins into the vacuolar lumen, sophisticated transport pathways have evolved. In this review, starvation-induced autophagy and its relationship to the specific cytoplasm to vacuole targeting (cvt-) pathway of proaminopeptidase I is discussed. A further topic is the specific vacuolar uptake and degradation of peroxisomes in Pichia pastoris cells via micro- and macroautophagy.
Collapse
Affiliation(s)
- M Thumm
- University of Stuttgart, Institute of Biochemistry, Pfaffenwaldring 55, 70569 Stuttgart.
| |
Collapse
|
490
|
Meier W, Nardin C, Winterhalter M. Rekonstitution von Kanalproteinen in (polymerisierten) ABA-Triblockcopolymer-Membranen. Angew Chem Int Ed Engl 2000. [DOI: 10.1002/1521-3757(20001215)112:24<4747::aid-ange4747>3.0.co;2-h] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
491
|
Brandon NJ, Delmas P, Kittler JT, McDonald BJ, Sieghart W, Brown DA, Smart TG, Moss SJ. GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J Biol Chem 2000; 275:38856-62. [PMID: 10978327 DOI: 10.1074/jbc.m004910200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA(A) receptors are critical mediators of fast synaptic inhibition in the brain, and the predominant receptor subtype in the central nervous system is believed to be a pentamer composed of alpha, beta, and gamma subunits. Previous studies on recombinant receptors have shown that protein kinase C (PKC) and PKA directly phosphorylate intracellular serine residues within the receptor beta subunit and modulate receptor function. However, the relevance of this regulation for neuronal receptors remains poorly characterized. To address this critical issue, we have studied phosphorylation and functional modulation of GABA(A) receptors in cultured cortical neurons. Here we show that the neuronal beta3 subunit is basally phosphorylated on serine residues by a PKC-dependent pathway. PKC inhibitors abolish basal phosphorylation, increasing receptor activity, whereas activators of PKC enhance beta3 phosphorylation with a concomitant decrease in receptor activity. PKA activators were shown to increase the phosphorylation of the beta3 subunit only in the presence of PKC inhibitors. We also show that the main sites of phosphorylation within the neuronal beta3 subunit are likely to include Ser-408 and Ser-409, residues that are important for the functional modulation of beta3-containing recombinant receptors. Furthermore, PKC activation did not change the total number of GABA(A) receptors in the plasma membrane, suggesting that the effects of PKC activation are on the gating or conductance of the channel. Together, these results illustrate that cell-signaling pathways that activate PKC may have profound effects on the efficacy of synaptic inhibition by directly modulating GABA(A) receptor function.
Collapse
Affiliation(s)
- N J Brandon
- Medical Research Council Laboratory of Molecular Cell Biology and Department of Pharmacology and the Department of Pharmacology and Wellcome Laboratory of Molecular Pharmacology University College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
492
|
Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408:488-92. [PMID: 11100732 DOI: 10.1038/35044114] [Citation(s) in RCA: 1595] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a dynamic membrane phenomenon for bulk protein degradation in the lysosome/vacuole. Apg8/Aut7 is an essential factor for autophagy in yeast. We previously found that the carboxy-terminal arginine of nascent Apg8 is removed by Apg4/Aut2 protease, leaving a glycine residue at the C terminus. Apg8 is then converted to a form (Apg8-X) that is tightly bound to the membrane. Here we report a new mode of protein lipidation. Apg8 is covalently conjugated to phosphatidylethanolamine through an amide bond between the C-terminal glycine and the amino group of phosphatidylethanolamine. This lipidation is mediated by a ubiquitination-like system. Apg8 is a ubiquitin-like protein that is activated by an E1 protein, Apg7 (refs 7, 8), and is transferred subsequently to the E2 enzymes Apg3/Aut1 (ref. 9). Apg7 activates two different ubiquitin-like proteins, Apg12 (ref. 10) and Apg8, and assigns them to specific E2 enzymes, Apg10 (ref. 11) and Apg3, respectively. These reactions are necessary for the formation of Apg8-phosphatidylethanolamine. This lipidation has an essential role in membrane dynamics during autophagy.
Collapse
Affiliation(s)
- Y Ichimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
493
|
Dumoulin A, Lévi S, Riveau B, Gasnier B, Triller A. Formation of mixed glycine and GABAergic synapses in cultured spinal cord neurons. Eur J Neurosci 2000; 12:3883-92. [PMID: 11069583 DOI: 10.1046/j.1460-9568.2000.00271.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the spinal cord, GABA and glycine mediate inhibition at separate or mixed synapses containing glycine and/or GABA(A) receptors (GlyR and GABA(A)R, respectively). We have analysed here the sequence of events leading to inhibitory synapse formation during synaptogenesis of embryonic spinal cord neurons between 1 and 11 days in vitro (DIV). We used immunocytochemical methods to detect simultaneously an antigen specific to inhibitory terminals, the vesicular inhibitory amino acid transporter (VIAAT), and one of the following postsynaptic elements: GlyR, GABA(A)R or gephyrin, the anchoring protein of GlyR, which is also associated with GABA(A)R. Quantitative analysis revealed that until 5 DIV most gephyrin clusters were not adjacent to VIAAT-positive profiles, but became associated with them at later stages. In contrast, GlyR and GABAAR clustered predominantly in front of VIAAT-containing terminals at all stages. However, about 10% of receptor aggregates were detected at nonsynaptic loci. The two receptors colocalized in 66.2+/-2.5% of the inhibitory postsynaptic domains after 11 DIV, while 30.3+/-2.6% and 3.4+/-0.8% of them contained only GlyR and GABA(A)R, respectively. Interestingly, at 3 DIV GABA(A)R clustered at a postsynaptic location prior to gephyrin and GlyR; GABA(A)R could thus be the initiating element in the construction of mixed glycine and GABAergic synapses. The late colocalization of gephyrin with GABA(A)R, and the demonstration by other groups that, in the absence of gephyrin, postsynaptic GABA(A)R is not detected, suggest that gephyrin is involved in the stabilization of GABA(A)R rather than in its initial accumulation at synaptic sites.
Collapse
Affiliation(s)
- A Dumoulin
- Laboratoire de Biologie Cellulaire de la Synapse--Inserm U 497, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
494
|
Abstract
Postsynaptic clustering of the glycine receptor requires the cytoplasmic protein gephyrin, which interacts with the receptor beta subunit. Several variants of gephyrin are generated by alternative splicing and differ by the presence of short amino acid sequences (cassettes) in the N-terminal half of the molecule. In this work, seven isoforms of gephyrin were cloned from adult rat spinal cord, some of then containing new cassettes. The relationships between gephyrin structure and recognition of glycine receptor beta subunit were analyzed. This was carried out by GST-pulldown assays using the beta subunit cytoplasmic loop and cotransfection experiments of GFP-tagged gephyrins with an alpha1 subunit bearing the gephyrin-binding site of the beta subunit. Data demonstrated that not all gephyrin molecules can bind to the beta subunit. Identified cassettes modulate this interaction. It is thus concluded that the function of gephyrin in synapse formation can rely on a structure acquired through cassette combinations.
Collapse
Affiliation(s)
- J Meier
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, I.N.S.E.R.M. U497, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | |
Collapse
|
495
|
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19:5720-8. [PMID: 11060023 PMCID: PMC305793 DOI: 10.1093/emboj/19.21.5720] [Citation(s) in RCA: 5522] [Impact Index Per Article: 220.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Little is known about the protein constituents of autophagosome membranes in mammalian cells. Here we demonstrate that the rat microtubule-associated protein 1 light chain 3 (LC3), a homologue of Apg8p essential for autophagy in yeast, is associated to the autophagosome membranes after processing. Two forms of LC3, called LC3-I and -II, were produced post-translationally in various cells. LC3-I is cytosolic, whereas LC3-II is membrane bound. The autophagic vacuole fraction prepared from starved rat liver was enriched with LC3-II. Immunoelectron microscopy on LC3 revealed specific labelling of autophagosome membranes in addition to the cytoplasmic labelling. LC3-II was present both inside and outside of autophagosomes. Mutational analyses suggest that LC3-I is formed by the removal of the C-terminal 22 amino acids from newly synthesized LC3, followed by the conversion of a fraction of LC3-I into LC3-II. The amount of LC3-II is correlated with the extent of autophagosome formation. LC3-II is the first mammalian protein identified that specifically associates with autophagosome membranes.
Collapse
Affiliation(s)
- Y Kabeya
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, PRESTO, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
496
|
Regulation of somatodendritic GABAA receptor channels in rat hippocampal neurons: evidence for a role of the small GTPase Rac1. J Neurosci 2000. [PMID: 10995817 DOI: 10.1523/jneurosci.20-18-06743.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of the cytoskeleton in the activity of GABA(A) receptors was investigated in cultured hippocampal neurons. Receptor currents were measured with the whole-cell patch-clamp technique during repetitive stimulation with 1 microm muscimol. After destruction of the microtubular system with nocodazol, muscimol-induced currents showed a rundown by 78%. A similar rundown was observed when actin fibers were destroyed with latrunculin B or C2 toxin of Clostridium botulinum. Because the small GTPases of the Rho family RhoA, Rac1, and Cdc42 are known to control the organization of actin fibers, we investigated their possible involvement. Inactivation of the GTPases with clostridial toxins, as well as intracellular application of recombinant Rho GTPases, indicated that active Rac1 was necessary for full GABA(A) receptor activity. Immunocytochemical labeling of the receptors showed that the disappearance of receptor clusters in the somatic membrane as induced by muscimol stimulation was enhanced by Rac1 inactivation. It is suggested that Rac1 participates in the regulation of GABA(A) receptor clustering and/or recycling.
Collapse
|
497
|
Abstract
Protein MAP1B was recently reported to link GABA(C) receptors to the cytoskeleton at neuronal synapses. This interaction was demonstrated in the mammalian retina, where GABA(C) receptors were thought to be exclusively expressed in bipolar cells. Our previous studies on cultured photoreceptors suggested however the presence of GABA(C) receptors in cones. To further investigate GABA(C) receptor expression in cones, we measured GABA responses in mammalian photoreceptors in situ, and we examined the distribution of the receptor and that of protein MAP1B in the mammalian outer retina. Photoreceptors were recorded from flat-mounted retinas of retinal degeneration mice at an age when the retina becomes cone-dominated after rod cell death. GABA(A) and GABA(C)-gated currents were produced only in cones but not rods. Recording freshly dissociated retinal cells from wild-type C57 mice confirmed the presence of GABA(A) and GABA(C) receptors in cones. Immunohistochemical labeling of mouse and rat retinal sections localized GABA(C) receptors to cone terminals that were identified by peanut agglutinin lectin staining. As expected from previous studies on bipolar cells, the punctate immunostaining was not restricted to cone terminals in the outer plexiform layer. MAP1B immunolabeling was obtained in rat and pig retinas and was similarly found in cone terminals identified by the peanut agglutinin lectin staining. These results provide physiological and histological evidence that cones receive a GABA feedback in the mammalian retina and are consistent with the notion that protein MAP1B links GABA(C) receptors to the cytoskeleton at postsynaptic sites.
Collapse
|
498
|
Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000; 151:263-76. [PMID: 11038174 PMCID: PMC2192639 DOI: 10.1083/jcb.151.2.263] [Citation(s) in RCA: 766] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which plays an important role in the formation of such vesicles, tends to bind to membranes in spite of its hydrophilic nature. We show here that the nature of the association of Apg8 with membranes changes depending on a series of modifications of the protein itself. First, the carboxy-terminal Arg residue of newly synthesized Apg8 is removed by Apg4/Aut2, a novel cysteine protease, and a Gly residue becomes the carboxy-terminal residue of the protein that is now designated Apg8FG. Subsequently, Apg8FG forms a conjugate with an unidentified molecule "X" and thereby binds tightly to membranes. This modification requires the carboxy-terminal Gly residue of Apg8FG and Apg7, a ubiquitin E1-like enzyme. Finally, the adduct Apg8FG-X is reversed to soluble or loosely membrane-bound Apg8FG by cleavage by Apg4. The mode of action of Apg4, which cleaves both newly synthesized Apg8 and modified Apg8FG, resembles that of deubiquitinating enzymes. A reaction similar to ubiquitination is probably involved in the second modification. The reversible modification of Apg8 appears to be coupled to the membrane dynamics of autophagy and the Cvt pathway.
Collapse
Affiliation(s)
- T Kirisako
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Affiliation(s)
- M B Kennedy
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
500
|
Chen L, Wang H, Vicini S, Olsen RW. The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci U S A 2000; 97:11557-62. [PMID: 10984509 PMCID: PMC17239 DOI: 10.1073/pnas.190133497] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A microtubule-associated protein, gamma-aminobutyric acid type A (GABA(A)) receptor-associated protein (GABARAP), was previously identified as binding to the intracellular domain of GABA(A) receptors by using the yeast two-hybrid screen. In the present work, immunofluorescent staining and green fluorescent protein-tagged receptor subunits showed that GABARAP is associated with and promotes the clustering of GABA(A) receptors in QT-6 quail fibroblasts. The tubulin-binding motif of GABARAP and the gamma2 subunit of the receptor are required. Disruption of microtubules prevents the clustering in a time-dependent manner. When green fluorescent protein-tagged alpha1 or gamma2 subunit coexpressed with beta2, gamma2L, and GABARAP was used, recordings from visually identified cells revealed that clustered GABA(A) receptor had an EC(50) of about 20 microM, vs. 5.7 microM for the diffuse receptor. Clustered receptors deactivated faster and desensitized slower than the diffuse receptors, because of decrease in the apparent affinity of GABA binding. Different properties for clustered receptors relative to unclustered receptors in heterologous cells suggest that homologous differences between extrasynaptic and synaptic clustered receptors in neurons may be due to the organization of the postsynaptic machinery.
Collapse
Affiliation(s)
- L Chen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|