451
|
Sun Y, Lee CC, Huang HW. Adhesion and merging of lipid bilayers: a method for measuring the free energy of adhesion and hemifusion. Biophys J 2011; 100:987-95. [PMID: 21320443 DOI: 10.1016/j.bpj.2011.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022] Open
Abstract
Lipid bilayers can be induced to adhere to each other by molecular mediators, and, depending on the lipid composition, such adhesion can lead to merging of the contacting monolayers in a process known as hemifusion. Such bilayer-bilayer reactions have never been systematically studied. In the course of our studies of membrane-active molecules, we encountered such reactions. We believe that they need to be understood whenever bilayer-bilayer interactions take place, such as during membrane fusion. For illustration, we discuss three examples: spontaneous adhesion between phospholipid bilayers induced by low pH, polymer-induced osmotic depletion attraction between lipid bilayers, and anionic lipid bilayers cross-bridged by multicationic peptides. Our purpose here is to describe a general method for studying such interactions. We used giant unilamellar vesicles, each of which was aspirated in a micropipette so that we could monitor the tension of the membrane and the membrane area changes during the bilayer-bilayer interaction. We devised a general method for measuring the free energy of adhesion or hemifusion. The results show that the energies of adhesion or hemifusion of lipid bilayers could vary over 2 orders of magnitude from -1 to -50 × 10(-5) J/m(2) in these examples alone. Our method can be used to measure the energy of transition in each step of lipid transformation during membrane fusion. This is relevant for current research on membrane fusion, which focuses on how fusion proteins induce lipid transformations.
Collapse
Affiliation(s)
- Yen Sun
- Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| | | | | |
Collapse
|
452
|
Ge M, Freed JH. Two conserved residues are important for inducing highly ordered membrane domains by the transmembrane domain of influenza hemagglutinin. Biophys J 2011; 100:90-7. [PMID: 21190660 PMCID: PMC3010018 DOI: 10.1016/j.bpj.2010.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/25/2010] [Accepted: 11/08/2010] [Indexed: 11/25/2022] Open
Abstract
The interaction with lipids of a synthetic peptide corresponding to the transmembrane domain of influenza hemagglutinin was investigated by means of electron spin resonance. A detailed analysis of the electron spin resonance spectra from spin-labeled phospholipids revealed that the major effect of the peptide on the dynamic membrane structure is to induce highly ordered membrane domains that are associated with electrostatic interactions between the peptide and negatively charged lipids. Two highly conserved residues in the peptide were identified as being important for the membrane ordering effect. Aggregation of large unilamellar vesicles induced by the peptide was also found to be correlated with the membrane ordering effect of the peptide, indicating that an increase in membrane ordering, i.e., membrane dehydration, is important for vesicle aggregation. The possibility that hydrophobic interaction between the highly ordered membrane domains plays a role in vesicle aggregation and viral fusion is discussed.
Collapse
|
453
|
Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell 2011; 144:590-600. [PMID: 21335240 DOI: 10.1016/j.cell.2011.01.015] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/18/2010] [Accepted: 01/10/2011] [Indexed: 12/18/2022]
Abstract
Bacteria are known to communicate primarily via secreted extracellular factors. Here we identify a previously uncharacterized type of bacterial communication mediated by nanotubes that bridge neighboring cells. Using Bacillus subtilis as a model organism, we visualized transfer of cytoplasmic fluorescent molecules between adjacent cells. Additionally, by coculturing strains harboring different antibiotic resistance genes, we demonstrated that molecular exchange enables cells to transiently acquire nonhereditary resistance. Furthermore, nonconjugative plasmids could be transferred from one cell to another, thereby conferring hereditary features to recipient cells. Electron microscopy revealed the existence of variously sized tubular extensions bridging neighboring cells, serving as a route for exchange of intracellular molecules. These nanotubes also formed in an interspecies manner, between B. subtilis and Staphylococcus aureus, and even between B. subtilis and the evolutionary distant bacterium Escherichia coli. We propose that nanotubes represent a major form of bacterial communication in nature, providing a network for exchange of cellular molecules within and between species.
Collapse
Affiliation(s)
- Gyanendra P Dubey
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
454
|
Avinoam O, Fridman K, Valansi C, Abutbul I, Zeev-Ben-Mordehai T, Maurer UE, Sapir A, Danino D, Grünewald K, White JM, Podbilewicz B. Conserved eukaryotic fusogens can fuse viral envelopes to cells. Science 2011; 332:589-92. [PMID: 21436398 DOI: 10.1126/science.1202333] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Caenorhabditis elegans proteins AFF-1 and EFF-1 [C. elegans fusion family (CeFF) proteins] are essential for developmental cell-to-cell fusion and can merge insect cells. To study the structure and function of AFF-1, we constructed vesicular stomatitis virus (VSV) displaying AFF-1 on the viral envelope, substituting the native fusogen VSV glycoprotein. Electron microscopy and tomography revealed that AFF-1 formed distinct supercomplexes resembling pentameric and hexameric "flowers" on pseudoviruses. Viruses carrying AFF-1 infected mammalian cells only when CeFFs were on the target cell surface. Furthermore, we identified fusion family (FF) proteins within and beyond nematodes, and divergent members from the human parasitic nematode Trichinella spiralis and the chordate Branchiostoma floridae could also fuse mammalian cells. Thus, FF proteins are part of an ancient family of cellular fusogens that can promote fusion when expressed on a viral particle.
Collapse
Affiliation(s)
- Ori Avinoam
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Neumann B, Nguyen KCQ, Hall DH, Ben-Yakar A, Hilliard MA. Axonal regeneration proceeds through specific axonal fusion in transected C. elegans neurons. Dev Dyn 2011; 240:1365-72. [PMID: 21416556 DOI: 10.1002/dvdy.22606] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
Functional neuronal recovery following injury arises when severed axons reconnect with their targets. In Caenorhabditis elegans following laser-induced axotomy, the axon still attached to the cell body is able to regrow and reconnect with its separated distal fragment. Here we show that reconnection of separated axon fragments during regeneration of C. elegans mechanosensory neurons occurs through a mechanism of axonal fusion, which prevents Wallerian degeneration of the distal fragment. Through electron microscopy analysis and imaging with the photoconvertible fluorescent protein Kaede, we show that the fusion process re-establishes membrane continuity and repristinates anterograde and retrograde cytoplasmic diffusion. We also provide evidence that axonal fusion occurs with a remarkable level of accuracy, with the proximal re-growing axon recognizing its own separated distal fragment. Thus, efficient axonal regeneration can occur by selective reconnection and fusion of separated axonal fragments beyond an injury site, with restoration of the damaged neuronal tract.
Collapse
Affiliation(s)
- Brent Neumann
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
456
|
Delevoye C, Giordano F, van Niel G, Raposo G. [Biogenesis of melanosomes - the chessboard of pigmentation]. Med Sci (Paris) 2011; 27:153-62. [PMID: 21382323 DOI: 10.1051/medsci/2011272153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Melanosomes are lysosome-related organelles in retinal pigment epithelial cells and epidermal melanocytes in which melanin pigments are synthesized and stored. Melanosomes are generated by multistep processes in which an immature unpigmented organelle forms and then subsequently matures. Such maturation requires inter-organellar transport of protein cargos required for pigment synthesis but also recruitment of effector proteins necessary for the correct transport of melanosomes to the cell periphery. Several studies have started to unravel the main pathways and mechanisms exploited by melanosomal proteins involved in melanosome structure and melanin synthesis. A major unexpected finding seen early in melanosome biogenesis showed the similarities between the fibrillar sheets of premelanosomes and amyloid fibrils. Late steps of melanosome formation are dependent on pathways regulated by proteins encoded by genes mutated in genetic diseases such as the Hermansky-Pudlak Syndrom (HPS) and different types of albinism. Altogether the findings from the past recent years have started to unravel how specialized cells integrate unique and ubiquitous molecular mechanisms in subverting the endosomal system to generate cell-type specific structures and their associated functions. Further dissection of the melanosomal system will likely shed light not only on the biogenesis of lysosome-related organelles but also on general aspects of vesicular transport in the endosomal system.
Collapse
Affiliation(s)
- Cédric Delevoye
- Institut Curie, Centre de recherche, CNRS UMR144, 26, rue d'Ulm, 75248 Paris, France.
| | | | | | | |
Collapse
|
457
|
Anton F, Fres JM, Schauss A, Pinson B, Praefcke GJK, Langer T, Escobar-Henriques M. Ugo1 and Mdm30 act sequentially during Fzo1-mediated mitochondrial outer membrane fusion. J Cell Sci 2011; 124:1126-35. [PMID: 21385840 DOI: 10.1242/jcs.073080] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dynamin-related GTPase proteins (DRPs) are main players in membrane remodelling. Conserved DRPs called mitofusins (Mfn1/Mfn2/Fzo1) mediate the fusion of mitochondrial outer membranes (OM). OM fusion depends on self-assembly and GTPase activity of mitofusins as well as on two other proteins, Ugo1 and Mdm30. Here, we define distinct steps of the OM fusion cycle using in vitro and in vivo approaches. We demonstrate that yeast Fzo1 assembles into homo-dimers, depending on Ugo1 and on GTP binding to Fzo1. Fzo1 homo-dimers further associate upon formation of mitochondrial contacts, allowing membrane tethering. Subsequent GTP hydrolysis is required for Fzo1 ubiquitylation by the F-box protein Mdm30. Finally, Mdm30-dependent degradation of Fzo1 completes Fzo1 function in OM fusion. Our results thus unravel functions of Ugo1 and Mdm30 at distinct steps during OM fusion and suggest that protein clearance confers a non-cycling mechanism to mitofusins, which is distinct from other cellular membrane fusion events.
Collapse
Affiliation(s)
- Fabian Anton
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
458
|
Wan C, Kiessling V, Cafiso DS, Tamm LK. Partitioning of synaptotagmin I C2 domains between liquid-ordered and liquid-disordered inner leaflet lipid phases. Biochemistry 2011; 50:2478-85. [PMID: 21322640 DOI: 10.1021/bi101864k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synaptotagmin I is the calcium sensor in synchronous neurotransmitter release caused by fusion of synaptic vesicles with the presynaptic membrane in neurons. Synaptotagmin I interacts with acidic phospholipids, but also with soluble N-ethylmaleimide-sensitive factor attachment receptors (SNAREs), at various stages in presynaptic membrane fusion. Because SNAREs can be organized into small cholesterol-dependent clusters in membranes, it is important to determine whether the C2 domains of synaptotagmin target membrane domains with different cholesterol contents. To address this question, we used a previously developed asymmetric two-phase lipid bilayer system to investigate the membrane binding and lipid phase targeting of soluble C2A and C2AB domains of synaptotagmin. We found that both domains target more disordered cholesterol-poor domains better than highly ordered cholesterol-rich domains. The selectivity is greatest (∼3-fold) for C2A binding to disordered domains that are formed in the presence of 5 mol % PIP(2) and 15 mol % PS. It is smallest (∼1.4-fold) for C2AB binding to disordered domains that are formed in the presence of 40 mol % PS. In the course of these experiments, we also found that C2A domains in the presence of Ca(2+) and C2AB domains in the absence of Ca(2+) are quite reliable reporters of the acidic lipid distribution between ordered and disordered lipid phases. Accordingly, PS prefers the liquid-disordered phase over the liquid-ordered phase by ∼2-fold, but PIP(2) has an up to 3-fold preference for the liquid-disordered phase.
Collapse
Affiliation(s)
- Chen Wan
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, Snyder Building, P.O. Box 800886, Charlottesville, Virginia 22908, United States
| | | | | | | |
Collapse
|
459
|
Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O'Shea KM, Riley DD, Lugus JJ, Colucci WS, Lederer WJ, Stanley WC, Walsh K. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol 2011; 31:1309-28. [PMID: 21245373 PMCID: PMC3067905 DOI: 10.1128/mcb.00911-10] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/10/2010] [Accepted: 12/17/2010] [Indexed: 11/20/2022] Open
Abstract
Mitofusin-2 (Mfn-2) is a dynamin-like protein that is involved in the rearrangement of the outer mitochondrial membrane. Research using various experimental systems has shown that Mfn-2 is a mediator of mitochondrial fusion, an evolutionarily conserved process responsible for the surveillance of mitochondrial homeostasis. Here, we find that cardiac myocyte mitochondria lacking Mfn-2 are pleiomorphic and have the propensity to become enlarged. Consistent with an underlying mild mitochondrial dysfunction, Mfn-2-deficient mice display modest cardiac hypertrophy accompanied by slight functional deterioration. The absence of Mfn-2 is associated with a marked delay in mitochondrial permeability transition downstream of Ca(2+) stimulation or due to local generation of reactive oxygen species (ROS). Consequently, Mfn-2-deficient adult cardiomyocytes are protected from a number of cell death-inducing stimuli and Mfn-2 knockout hearts display better recovery following reperfusion injury. We conclude that in cardiac myocytes, Mfn-2 controls mitochondrial morphogenesis and serves to predispose cells to mitochondrial permeability transition and to trigger cell death.
Collapse
Affiliation(s)
- Kyriakos N. Papanicolaou
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Ramzi J. Khairallah
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Gladys A. Ngoh
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Aristide Chikando
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Ivan Luptak
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Karen M. O'Shea
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Dushon D. Riley
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Jesse J. Lugus
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Wilson S. Colucci
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - W. Jonathan Lederer
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - William C. Stanley
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Kenneth Walsh
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| |
Collapse
|
460
|
Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc Natl Acad Sci U S A 2011; 108:3976-81. [PMID: 21368113 DOI: 10.1073/pnas.1101643108] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The generation of the tubular network of the endoplasmic reticulum (ER) requires homotypic membrane fusion that is mediated by the dynamin-like, membrane-bound GTPase atlastin (ATL). Here, we have determined crystal structures of the cytosolic segment of human ATL1, which give insight into the mechanism of membrane fusion. The structures reveal a GTPase domain and athree-helix bundle, connected by a linker region. One structure corresponds to a prefusion state, in which ATL molecules in apposing membranes interact through their GTPase domains to form a dimer with the nucleotides bound at the interface. The other structure corresponds to a postfusion state generated after GTP hydrolysis and phosphate release. Compared with the prefusion structure, the three-helix bundles of the two ATL molecules undergo a major conformational change relative to the GTPase domains, which could pull the membranes together. The proposed fusion mechanism is supported by biochemical experiments and fusion assays with wild-type and mutant full-length Drosophila ATL. These experiments also show that membrane fusion is facilitated by the C-terminal cytosolic tails following the two transmembrane segments. Finally, our results show that mutations in ATL1 causing hereditary spastic paraplegia compromise homotypic ER fusion.
Collapse
|
461
|
Arduíno DM, Esteves AR, Cardoso SM. Mitochondrial fusion/fission, transport and autophagy in Parkinson's disease: when mitochondria get nasty. PARKINSONS DISEASE 2011; 2011:767230. [PMID: 21403911 PMCID: PMC3043324 DOI: 10.4061/2011/767230] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/26/2010] [Accepted: 01/05/2011] [Indexed: 11/20/2022]
Abstract
Understanding the molecular basis of Parkinson's disease (PD) has proven to be a major challenge in the field of neurodegenerative diseases. Although several hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of PD, a growing body of evidence has highlighted the role of mitochondrial dysfunction and the disruption of the mechanisms of mitochondrial dynamics in PD and other parkinsonian disorders. In this paper, we comment on the recent advances in how changes in the mitochondrial function and mitochondrial dynamics (fusion/fission, transport, and clearance) contribute to neurodegeneration, specifically focusing on PD. We also evaluate the current controversies in those issues and discuss the role of fusion/fission dynamics in the mitochondrial lifecycle and maintenance. We propose that cellular demise and neurodegeneration in PD are due to the interplay between mitochondrial dysfunction, mitochondrial trafficking disruption, and impaired autophagic clearance.
Collapse
Affiliation(s)
- Daniela M Arduíno
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | | | | |
Collapse
|
462
|
The unique transmembrane hairpin of flavivirus fusion protein E is essential for membrane fusion. J Virol 2011; 85:4377-85. [PMID: 21325407 DOI: 10.1128/jvi.02458-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The fusion of enveloped viruses with cellular membranes is mediated by proteins that are anchored in the lipid bilayer of the virus and capable of triggered conformational changes necessary for driving fusion. The flavivirus envelope protein E is the only known viral fusion protein with a double membrane anchor, consisting of two antiparallel transmembrane helices (TM1 and TM2). TM1 functions as a stop-transfer sequence and TM2 as an internal signal sequence for the first nonstructural protein during polyprotein processing. The possible role of this peculiar C-terminal helical hairpin in membrane fusion has not been investigated so far. We addressed this question by studying TM mutants of tick-borne encephalitis virus (TBEV) recombinant subviral particles (RSPs), an established model system for flavivirus membrane fusion. The engineered mutations included the deletion of TM2, the replacement of both TM domains (TMDs) by those of the related Japanese encephalitis virus (JEV), and the use of chimeric TBEV-JEV membrane anchors. Using these mutant RSPs, we provide evidence that TM2 is not just a remnant of polyprotein processing but, together with TM1, plays an active role in fusion. None of the TM mutations, including the deletion of TM2, affected early steps of the fusion process, but TM interactions apparently contribute to the stability of the postfusion E trimer and the completion of the merger of the membranes. Our data provide evidence for both intratrimer and intertrimer interactions mediated by the TMDs of E and thus extend the existing models of flavivirus membrane fusion.
Collapse
|
463
|
Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nat Rev Neurosci 2011; 12:127-38. [DOI: 10.1038/nrn2948] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
464
|
Melser S, Molino D, Batailler B, Peypelut M, Laloi M, Wattelet-Boyer V, Bellec Y, Faure JD, Moreau P. Links between lipid homeostasis, organelle morphodynamics and protein trafficking in eukaryotic and plant secretory pathways. PLANT CELL REPORTS 2011; 30:177-193. [PMID: 21120657 DOI: 10.1007/s00299-010-0954-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/15/2010] [Indexed: 05/30/2023]
Abstract
The role of lipids as molecular actors of protein transport and organelle morphology in plant cells has progressed over the last years through pharmacological and genetic investigations. The manuscript is reviewing the roles of various lipid families in membrane dynamics and trafficking in eukaryotic cells, and summarizes some of the related physicochemical properties of the lipids involved. The article also focuses on the specific requirements of the sphingolipid glucosylceramide (GlcCer) in Golgi morphology and protein transport through the plant secretory pathway. The use of a specific inhibitor of plant glucosylceramide synthase and selected Arabidopsis thaliana RNAi lines stably expressing several markers of the plant secretory pathway, establishes specific steps sensitive to GlcCer biosynthesis. Collectively, data of the literature demonstrate the existence of links between protein trafficking, organelle morphology, and lipid metabolism/homeostasis in eukaryotic cells including plant cells.
Collapse
Affiliation(s)
- Su Melser
- Laboratoire de Biogenèse Membranaire, UMR 5200 Université Bordeaux 2-CNRS, Université Bordeaux 2, case 92, 146 rue Léo-Saignat, 33076 Bordeaux, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
465
|
Yang X, Kaeser-Woo YJ, Pang ZP, Xu W, Südhof TC. Complexin clamps asynchronous release by blocking a secondary Ca(2+) sensor via its accessory α helix. Neuron 2011; 68:907-20. [PMID: 21145004 PMCID: PMC3050570 DOI: 10.1016/j.neuron.2010.11.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 11/25/2022]
Abstract
Complexin activates and clamps neurotransmitter release; impairing complexin function decreases synchronous, but increases spontaneous and asynchronous synaptic vesicle exocytosis. Here, we show that complexin-different from the Ca(2+) sensor synaptotagmin-1-activates synchronous exocytosis by promoting synaptic vesicle priming, but clamps spontaneous and asynchronous exocytosis-similar to synaptotagmin-1-by blocking a secondary Ca(2+) sensor. Activation and clamping functions of complexin depend on distinct, autonomously acting sequences, namely its N-terminal region and accessory α helix, respectively. Mutations designed to test whether the accessory α helix of complexin clamps exocytosis by inserting into SNARE-complexes support this hypothesis, suggesting that the accessory α helix blocks completion of trans-SNARE-complex assembly until Ca(2+) binding to synaptotagmin relieves this block. Moreover, a juxtamembranous mutation in the SNARE-protein synaptobrevin-2, which presumably impairs force transfer from nascent trans-SNARE complexes onto fusing membranes, also unclamps spontaneous fusion by disinhibiting a secondary Ca(2+) sensor. Thus, complexin performs mechanistically distinct activation and clamping functions that operate in conjunction with synaptotagmin-1 by controlling trans-SNARE-complex assembly.
Collapse
Affiliation(s)
- Xiaofei Yang
- Department of Molecular and Cellular Physiology, Stanford University, 1050 Arastradero Road, Palo Alto, CA 94304-5543, USA
| | | | | | | | | |
Collapse
|
466
|
Huppertz B, Gauster M. Trophoblast fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:81-95. [PMID: 21432015 DOI: 10.1007/978-94-007-0763-4_6] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The villous trophoblast of the human placenta is the epithelial cover of the fetal chorionic villi floating in maternal blood. This epithelial cover is organized in two distinct layers, the multinucleated syncytiotrophoblast directly facing maternal blood and a second layer of mononucleated cytotrophoblasts. During pregnancy single cytotrophoblasts continuously fuse with the overlying syncytiotrophoblast to preserve this end-differentiated layer until delivery. Syncytial fusion continuously supplies the syncytiotrophoblast with compounds of fusing cytotrophoblasts such as proteins, nucleic acids and lipids as well as organelles. At the same time the input of cytotrophoblastic components is counterbalanced by a continuous release of apoptotic material from the syncytiotrophoblast into maternal blood. Fusion is an essential step in maintaining the syncytiotrophoblast. Trophoblast fusion was shown to be dependant on and regulated by multiple factors such as fusion proteins, proteases and cytoskeletal proteins as well as cytokines, hormones and transcription factors. In this chapter we focus on factors that may be involved in the fusion process of trophoblast directly or that may prepare the cytotrophoblast to fuse.
Collapse
Affiliation(s)
- Berthold Huppertz
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, 8010, Graz, Austria.
| | | |
Collapse
|
467
|
Affiliation(s)
- Sascha Martens
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
468
|
New Insights into the Mechanisms and Roles of Cell–Cell Fusion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:149-209. [DOI: 10.1016/b978-0-12-386039-2.00005-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
469
|
Boutilier J, Duncan R. The reovirus fusion-associated small transmembrane (FAST) proteins: virus-encoded cellular fusogens. CURRENT TOPICS IN MEMBRANES 2011; 68:107-40. [PMID: 21771497 DOI: 10.1016/b978-0-12-385891-7.00005-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Julie Boutilier
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
470
|
Abstract
Mitochondria are dynamic organelles that constantly fuse and divide. These processes (collectively termed mitochondrial dynamics) are important for mitochondrial inheritance and for the maintenance of mitochondrial functions. The core components of the evolutionarily conserved fusion and fission machineries have now been identified, and mechanistic studies have revealed the first secrets of the complex processes that govern fusion and fission of a double membrane-bound organelle. Mitochondrial dynamics was recently recognized as an important constituent of cellular quality control. Defects have detrimental consequences on bioenergetic supply and contribute to the pathogenesis of neurodegenerative diseases. These findings open exciting new directions to explore mitochondrial biology.
Collapse
|
471
|
Kozlov MM, McMahon HT, Chernomordik LV. Protein-driven membrane stresses in fusion and fission. Trends Biochem Sci 2010; 35:699-706. [PMID: 20638285 PMCID: PMC3556487 DOI: 10.1016/j.tibs.2010.06.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 11/22/2022]
Abstract
Cellular membranes undergo continuous remodeling. Exocytosis and endocytosis, mitochondrial fusion and fission, entry of enveloped viruses into host cells and release of the newly assembled virions, cell-to-cell fusion and cell division, and budding and fusion of transport carriers all proceed via topologically similar, but oppositely ordered, membrane rearrangements. The biophysical similarities and differences between membrane fusion and fission become more evident if we disregard the accompanying biological processes and consider only remodeling of the lipid bilayer. The forces that determine the bilayer propensity to undergo fusion or fission come from proteins and in most cases from membrane-bound proteins. In this review, we consider the mechanistic principles underlying the fusion and fission reactions and discuss the current hypotheses on how specific proteins act in the two types of membrane remodeling.
Collapse
Affiliation(s)
- Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel.
| | | | | |
Collapse
|
472
|
Trost M, Bridon G, Desjardins M, Thibault P. Subcellular phosphoproteomics. MASS SPECTROMETRY REVIEWS 2010; 29:962-90. [PMID: 20931658 DOI: 10.1002/mas.20297] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Protein phosphorylation represents one of the most extensively studied post-translational modifications, primarily due to the emergence of sensitive methods enabling the detection of this modification both in vitro and in vivo. The availability of enrichment methods combined with sensitive mass spectrometry instrumentation has played a crucial role in uncovering the dynamic changes and the large expanding repertoire of this reversible modification. The structural changes imparted by the phosphorylation of specific residues afford exquisite mechanisms for the regulation of protein functions by modulating new binding sites on scaffold proteins or by abrogating protein-protein interactions. However, the dynamic interplay of protein phosphorylation is not occurring randomly within the cell but is rather finely orchestrated by specific kinases and phosphatases that are unevenly distributed across subcellular compartments. This spatial separation not only regulates protein phosphorylation but can also control the activity of other enzymes and the transfer of other post-translational modifications. While numerous large-scale phosphoproteomics studies highlighted the extent and diversity of phosphoproteins present in total cell lysates, the further understanding of their regulation and biological activities require a spatio-temporal resolution only achievable through subcellular fractionation. This review presents a first account of the emerging field of subcellular phosphoproteomics where cell fractionation approaches are combined with sensitive mass spectrometry methods to facilitate the identification of low abundance proteins and to unravel the intricate regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Matthias Trost
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
473
|
Ji H, Coleman J, Yang R, Melia TJ, Rothman JE, Tareste D. Protein determinants of SNARE-mediated lipid mixing. Biophys J 2010; 99:553-60. [PMID: 20643074 DOI: 10.1016/j.bpj.2010.04.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/19/2010] [Accepted: 04/26/2010] [Indexed: 01/14/2023] Open
Abstract
Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE)-mediated lipid mixing can be efficiently recapitulated in vitro by the incorporation of purified vesicle membrane (-v) SNARE and target membrane (t-) SNARE proteins into separate liposome populations. Despite the strong correlation between the observed activities in this system and the known SNARE physiology, some recent works have suggested that SNARE-mediated lipid mixing may be limited to circumstances where membrane defects arise from artifactual reconstitution conditions (such as nonphysiological high-protein concentrations or unrealistically small liposome populations). Here, we show that the previously published strategies used to reconstitute SNAREs into liposomes do not significantly affect either the physical parameters of the proteoliposomes or the ability of SNAREs to drive lipid mixing in vitro. The surface density of SNARE proteins turns out to be the most critical parameter, which controls both the rate and the extent of SNARE-mediated liposome fusion. In addition, the specific activity of the t-SNARE complex is significantly influenced by expression and reconstitution protocols, such that we only observe optimal lipid mixing when the t-SNARE proteins are coexpressed before purification.
Collapse
Affiliation(s)
- Hong Ji
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
474
|
Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet 2010; 6:e1001155. [PMID: 20976245 PMCID: PMC2954822 DOI: 10.1371/journal.pgen.1001155] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 09/10/2010] [Indexed: 12/02/2022] Open
Abstract
Cellular sophistication is not exclusive to multicellular organisms, and unicellular eukaryotes can resemble differentiated animal cells in their complex network of membrane-bound structures. These comparisons can be illuminated by genome-wide surveys of key gene families. We report a systematic analysis of Rabs in a complex unicellular Ciliate, including gene prediction and phylogenetic clustering, expression profiling based on public data, and Green Fluorescent Protein (GFP) tagging. Rabs are monomeric GTPases that regulate membrane traffic. Because Rabs act as compartment-specific determinants, the number of Rabs in an organism reflects intracellular complexity. The Tetrahymena Rab family is similar in size to that in humans and includes both expansions in conserved Rab clades as well as many divergent Rabs. Importantly, more than 90% of Rabs are expressed concurrently in growing cells, while only a small subset appears specialized for other conditions. By localizing most Rabs in living cells, we could assign the majority to specific compartments. These results validated most phylogenetic assignments, but also indicated that some sequence-conserved Rabs were co-opted for novel functions. Our survey uncovered a rare example of a nuclear Rab and substantiated the existence of a previously unrecognized core Rab clade in eukaryotes. Strikingly, several functionally conserved pathways or structures were found to be associated entirely with divergent Rabs. These pathways may have permitted rapid evolution of the associated Rabs or may have arisen independently in diverse lineages and then converged. Thus, characterizing entire gene families can provide insight into the evolutionary flexibility of fundamental cellular pathways. Single-celled organisms appear simple compared to multicellular organisms, but this may not be true at the level of the individual cell. In fact, microscopic observations suggest that protists can possess networks of organelles just as elaborate as those in animal cells. Consistent with this idea, recent analysis has identified large families of genes in protists that are predicted to act as determinants for complex membrane networks. To test these predictions and to probe relationships between cellular structures across a wide swath of evolution, we focused on one gene family in the single-celled organism Tetrahymena. These genes control the traffic between organelles, with each gene controlling a single step in this traffic. We asked three questions about each of 56 genes in the family. First, what is the gene related to in humans? Second, under what conditions is the gene being used in Tetrahymena? Third, what is the role of each gene? The results provide insights into both the dynamics and evolution of membrane traffic, including the finding that some pathways appearing both structurally and functionally similar in protists and animals are likely to have arisen independently in the two lineages.
Collapse
|
475
|
Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. PLoS One 2010; 5:e12811. [PMID: 20877640 PMCID: PMC2943900 DOI: 10.1371/journal.pone.0012811] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/24/2010] [Indexed: 12/31/2022] Open
Abstract
Triglycerides have a limited solubility, around 3%, in phosphatidylcholine lipid bilayers. Using millisecond-scale course grained molecular dynamics simulations, we show that the model lipid bilayer can accommodate a higher concentration of triolein (TO) than earlier anticipated, by sequestering triolein molecules to the bilayer center in the form of a disordered, isotropic, mobile neutral lipid aggregate, at least 17 nm in diameter, which forms spontaneously, and remains stable on at least the microsecond time scale. The results give credence to the hotly debated existence of mobile neutral lipid aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model, and possibly living membranes. The blisters will result in anomalous membrane probe partitioning, which should be accounted for in the interpretation of probe-related measurements.
Collapse
|
476
|
Steinberg F, Gerber SD, Rieckmann T, Trueb B. Rapid fusion and syncytium formation of heterologous cells upon expression of the FGFRL1 receptor. J Biol Chem 2010; 285:37704-15. [PMID: 20851884 DOI: 10.1074/jbc.m110.140517] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fusion of mammalian cells into syncytia is a developmental process that is tightly restricted to a limited subset of cells. Besides gamete and placental trophoblast fusion, only macrophages and myogenic stem cells fuse into multinucleated syncytia. In contrast to viral cell fusion, which is mediated by fusogenic glycoproteins that actively merge membranes, mammalian cell fusion is poorly understood at the molecular level. A variety of mammalian transmembrane proteins, among them many of the immunoglobulin superfamily, have been implicated in cell-cell fusion, but none has been shown to actively fuse cells in vitro. Here we report that the FGFRL1 receptor, which is up-regulated during the differentiation of myoblasts into myotubes, fuses cultured cells into large, multinucleated syncytia. We used luciferase and GFP-based reporter assays to confirm cytoplasmic mixing and to identify the fusion inducing domain of FGFRL1. These assays revealed that Ig-like domain III and the transmembrane domain are both necessary and sufficient to rapidly fuse CHO cells into multinucleated syncytia comprising several hundred nuclei. Moreover, FGFRL1 also fused HEK293 and HeLa cells with untransfected CHO cells. Our data show that FGFRL1 is the first mammalian protein that is capable of inducing syncytium formation of heterologous cells in vitro.
Collapse
Affiliation(s)
- Florian Steinberg
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | | | | | | |
Collapse
|
477
|
Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010; 329:1663-7. [PMID: 20798282 PMCID: PMC3235365 DOI: 10.1126/science.1195227] [Citation(s) in RCA: 1342] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Presynaptic nerve terminals release neurotransmitters repeatedly, often at high frequency, and in relative isolation from neuronal cell bodies. Repeated release requires cycles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-complex assembly and disassembly, with continuous generation of reactive SNARE-protein intermediates. Although many forms of neurodegeneration initiate presynaptically, only few pathogenic mechanisms are known, and the functions of presynaptic proteins linked to neurodegeneration, such as α-synuclein, remain unclear. Here, we show that maintenance of continuous presynaptic SNARE-complex assembly required a nonclassical chaperone activity mediated by synucleins. Specifically, α-synuclein directly bound to the SNARE-protein synaptobrevin-2/vesicle-associated membrane protein 2 (VAMP2) and promoted SNARE-complex assembly. Moreover, triple-knockout mice lacking synucleins developed age-dependent neurological impairments, exhibited decreased SNARE-complex assembly, and died prematurely. Thus, synucleins may function to sustain normal SNARE-complex assembly in a presynaptic terminal during aging.
Collapse
Affiliation(s)
- Jacqueline Burré
- Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, 1050 Arastradero Road, Palo Alto, CA 94304-5543, USA
| | | | | | | | | | | |
Collapse
|
478
|
Oren-Suissa M, Podbilewicz B. Evolution of programmed cell fusion: common mechanisms and distinct functions. Dev Dyn 2010; 239:1515-28. [PMID: 20419783 DOI: 10.1002/dvdy.22284] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic cells have evolved diverged mechanisms to merge cells. Here, we discuss three types of cell fusion: (1) Non-self-fusion, cells with different genetic contents fuse to start a new organism and fusion between enveloped viruses and host cells; (2) Self-fusion, genetically identical cells fuse to form a multinucleated cell; and (3) Auto-fusion, a single cell fuses with itself by bringing specialized cell membrane domains into contact and transforming itself into a ring-shaped cell. This is a new type of selfish fusion discovered in C. elegans. We divide cell fusion into three stages: (1) Specification of the cell-fusion fate; (2) Cell attraction, attachment, and recognition; (3) Execution of plasma membrane fusion, cytoplasmic mixing and cytoskeletal rearrangements. We analyze cell fusion in diverse biological systems in development and disease emphasizing the mechanistic contributions of C. elegans to the understanding of programmed cell fusion, a genetically encoded pathway to merge specific cells.
Collapse
Affiliation(s)
- Meital Oren-Suissa
- Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
479
|
Lorenz B, Keller R, Sunnick E, Geil B, Janshoff A. Colloidal probe microscopy of membrane–membrane interactions: From ligand–receptor recognition to fusion events. Biophys Chem 2010; 150:54-63. [DOI: 10.1016/j.bpc.2010.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/05/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
|
480
|
Pachlopnik Schmid J, Schmid JP, Côte M, Ménager MM, Burgess A, Nehme N, Ménasché G, Fischer A, de Saint Basile G. Inherited defects in lymphocyte cytotoxic activity. Immunol Rev 2010; 235:10-23. [PMID: 20536552 DOI: 10.1111/j.0105-2896.2010.00890.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The granule-dependent cytotoxic activity of lymphocytes plays a critical role in the defense against virally infected cells and tumor cells. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytic syndrome (HLH) that occurs in mice and humans with genetically determined impaired lymphocyte cytotoxic function. HLH manifests as the occurrence of uncontrolled activation of T lymphocytes and macrophages infiltrating multiple organs. In this review, we focus on recent advances in the characterization of effectors regulating the release of cytotoxic granules, and on the role of this cytotoxic pathway in lymphocyte homeostasis and immune surveillance. Analysis of the mechanisms leading to the occurrence of hemophagocytic syndrome designates gamma-interferon as an attractive therapeutic target to downregulate uncontrolled macrophage activation, which sustains clinical and biological features of HLH.
Collapse
Affiliation(s)
- Jana Pachlopnik Schmid
- Institut National de la Santé et de la Recherche Médicale (INSERM), U768, 75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
481
|
de Saint Basile G, Ménasché G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol 2010; 10:568-79. [PMID: 20634814 DOI: 10.1038/nri2803] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytotoxic T cells and natural killer cells are crucial for immune surveillance against virus-infected cells and tumour cells. Molecular studies of individuals with inherited defects that impair lymphocyte cytotoxic function have also highlighted the importance of cytotoxicity in the regulation and termination of immune responses. As discussed in this Review, characterization of these defects has contributed to our understanding of the key steps that are required for the maturation of cytotoxic granules and the secretion of their contents at the immunological synapse during target cell killing. This has revealed a marked similarity between cytotoxic granule exocytosis at the immunological synapse and synaptic vesicle exocytosis at the neurological synapse. We explore the possibility that comparison of these two kinetically and spatially regulated secretory pathways will provide clues to uncover additional effectors that regulate the cytotoxic function of lymphocytes.
Collapse
Affiliation(s)
- Geneviève de Saint Basile
- Institut National de la Santé et de la Recherche Médicale (INSERM), U768, Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75015 Paris, France.
| | | | | |
Collapse
|
482
|
Ušaj M, Trontelj K, Miklavčič D, Kandušer M. Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells. J Membr Biol 2010; 236:107-16. [DOI: 10.1007/s00232-010-9272-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/11/2010] [Indexed: 12/19/2022]
|
483
|
Wiederhold K, Kloepper TH, Walter AM, Stein A, Kienle N, Sørensen JB, Fasshauer D. A coiled coil trigger site is essential for rapid binding of synaptobrevin to the SNARE acceptor complex. J Biol Chem 2010; 285:21549-59. [PMID: 20406821 PMCID: PMC2898431 DOI: 10.1074/jbc.m110.105148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/23/2010] [Indexed: 11/06/2022] Open
Abstract
Exocytosis from synaptic vesicles is driven by stepwise formation of a tight alpha-helical complex between the fusing membranes. The complex is composed of the three SNAREs: synaptobrevin 2, SNAP-25, and syntaxin 1a. An important step in complex formation is fast binding of vesicular synaptobrevin to the preformed syntaxin 1.SNAP-25 dimer. Exactly how this step relates to neurotransmitter release is not well understood. Here, we combined different approaches to gain insights into this reaction. Using computational methods, we identified a stretch in synaptobrevin 2 that may function as a coiled coil "trigger site." This site is also present in many synaptobrevin homologs functioning in other trafficking steps. Point mutations in this stretch inhibited binding to the syntaxin 1.SNAP-25 dimer and slowed fusion of liposomes. Moreover, the point mutations severely inhibited secretion from chromaffin cells. Altogether, this demonstrates that the trigger site in synaptobrevin is crucial for productive SNARE zippering.
Collapse
Affiliation(s)
| | | | - Alexander M. Walter
- the Research Group Molecular Mechanism of Exocytosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | - Jakob B. Sørensen
- the Research Group Molecular Mechanism of Exocytosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- the Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark, and
| | - Dirk Fasshauer
- From the Research Group Structural Biochemistry
- the Department of Cellular Biology and Morphology, University of Lausanne, Lausanne CH-1005, Switzerland
| |
Collapse
|
484
|
Tsai PS, Garcia-Gil N, van Haeften T, Gadella BM. How pig sperm prepares to fertilize: stable acrosome docking to the plasma membrane. PLoS One 2010; 5:e11204. [PMID: 20585455 PMCID: PMC2887851 DOI: 10.1371/journal.pone.0011204] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 05/26/2010] [Indexed: 11/19/2022] Open
Abstract
Background Mammalian sperms are activated in the oviduct. This process, which involves extensive sperm surface remodelling, is required for fertilization and can be mimicked under in vitro fertilization conditions (IVF). Methodology/Principal Findings Here we demonstrate that such treatments caused stable docking and priming of the acrosome membrane to the apical sperm head surface without the emergence of exocytotic membrane fusion. The interacting membranes could be isolated as bilamellar membrane structures after cell disruption. These membrane structures as well as whole capacitated sperm contained stable ternary trans-SNARE complexes that were composed of VAMP 3 and syntaxin 1B from the plasma membrane and SNAP 23 from the acrosomal membrane. This trans-SNARE complex was not observed in control sperm. Conclusions/Significance We propose that this capacitation driven membrane docking and stability thereof is a preparative step prior to the multipoint membrane fusions characteristic for the acrosome reaction induced by sperm-zona binding. Thus, sperm can be considered a valuable model for studying exocytosis.
Collapse
Affiliation(s)
- Pei-Shiue Tsai
- Department of Biochemistry and Cell Biology, Graduate School of Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Farm Animal Health, Graduate School of Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Núria Garcia-Gil
- Department of Biochemistry and Cell Biology, Graduate School of Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Theo van Haeften
- Department of Biochemistry and Cell Biology, Graduate School of Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart M. Gadella
- Department of Biochemistry and Cell Biology, Graduate School of Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Farm Animal Health, Graduate School of Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
485
|
Bhatia VK, Hatzakis NS, Stamou D. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol 2010; 21:381-90. [DOI: 10.1016/j.semcdb.2009.12.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 11/27/2022]
|
486
|
Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond) 2010; 7:47. [PMID: 20515451 PMCID: PMC2890697 DOI: 10.1186/1743-7075-7-47] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/01/2010] [Indexed: 11/28/2022] Open
Abstract
Steroid hormones regulate diverse physiological functions such as reproduction, blood salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function and various metabolic processes. They are synthesized from cholesterol mainly in the adrenal gland and gonads in response to tissue-specific tropic hormones. These steroidogenic tissues are unique in that they require cholesterol not only for membrane biogenesis, maintenance of membrane fluidity and cell signaling, but also as the starting material for the biosynthesis of steroid hormones. It is not surprising, then, that cells of steroidogenic tissues have evolved with multiple pathways to assure the constant supply of cholesterol needed to maintain optimum steroid synthesis. The cholesterol utilized for steroidogenesis is derived from a combination of sources: 1) de novo synthesis in the endoplasmic reticulum (ER); 2) the mobilization of cholesteryl esters (CEs) stored in lipid droplets through cholesteryl ester hydrolase; 3) plasma lipoprotein-derived CEs obtained by either LDL receptor-mediated endocytic and/or SR-BI-mediated selective uptake; and 4) in some cultured cell systems from plasma membrane-associated free cholesterol. Here, we focus on recent insights into the molecules and cellular processes that mediate the uptake of plasma lipoprotein-derived cholesterol, events connected with the intracellular cholesterol processing and the role of crucial proteins that mediate cholesterol transport to mitochondria for its utilization for steroid hormone production. In particular, we discuss the structure and function of SR-BI, the importance of the selective cholesterol transport pathway in providing cholesterol substrate for steroid biosynthesis and the role of two key proteins, StAR and PBR/TSO in facilitating cholesterol delivery to inner mitochondrial membrane sites, where P450scc (CYP11A) is localized and where the conversion of cholesterol to pregnenolone (the common steroid precursor) takes place.
Collapse
|
487
|
Graham TR, Kozlov MM. Interplay of proteins and lipids in generating membrane curvature. Curr Opin Cell Biol 2010; 22:430-6. [PMID: 20605711 DOI: 10.1016/j.ceb.2010.05.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/09/2010] [Accepted: 05/03/2010] [Indexed: 01/14/2023]
Abstract
The majority of intracellular membranes have strongly bent shapes with radii of curvature ranging from 20 to 50 nm. Many different proteins provide the substantial energy needed to generate and sustain this curvature. One of the most effective mechanisms of curvature creation is based on asymmetry of membrane monolayers. Proteins generate this asymmetry by flipping phospholipid across the membrane, modifying lipid molecules, or embedding their hydrophobic domains into the membrane matrix. We review the physical principles of these mechanisms of membrane bending and highlight the action of specific proteins driving vesicle-mediated transport. A model of clathrin-mediated vesicle budding from the trans-Golgi network is described to illustrate the interplay and mutual reinforcement of different mechanisms for generating membrane curvature.
Collapse
Affiliation(s)
- Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
488
|
Yang L, Zhao L, Gan Z, He Z, Xu J, Gao X, Wang X, Han W, Chen L, Xu T, Li W, Liu Y. Deficiency in RNA editing enzyme ADAR2 impairs regulated exocytosis. FASEB J 2010; 24:3720-32. [PMID: 20501795 DOI: 10.1096/fj.09-152363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian RNA editing catalyzed by adenosine deaminases acting on RNA (ADARs) ADAR1 and ADAR2 plays pivotal roles in the brain through functional modifications of neurotransmitter receptors and ion channels. We have demonstrated previously that RNA editing by ADAR2 is regulated metabolically in pancreatic β cells. To investigate the cellular functions of ADAR2 in professional secretory cells, we studied the effects of ADAR2 knockdown on regulated exocytosis. Selective knockdown of ADAR2 expression markedly impaired glucose-stimulated insulin secretion in the rat insulinoma INS-1 cells and primary pancreatic islets and significantly diminished KCl-stimulated secretion of exogenous human growth hormone or endogenous chromogranin B protein in the rat adrenal pheochromocytoma PC12 cells. Notably, restored overexpression of catalytically active but not editing-deficient mutant ADAR2 could rescue the impairment in stimulated secretion from ADAR2 knockdown cells. Moreover, ADAR2 suppression significantly attenuated Ca(2+)-evoked membrane capacitance increases and appreciably reduced the number of membrane-docked insulin granules in INS-1 cells. Interestingly, the secretory defects resulting from ADAR2 deficiency were coupled to decreased expression of Munc18-1 and synaptotagmin-7, two key molecules in the regulation of vesicle exocytosis. Thus, these findings reveal an important aspect of ADAR2 actions in regulated exocytosis, implicating RNA editing in the control of cellular secretory machinery.
Collapse
Affiliation(s)
- Liu Yang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
489
|
Stress-induced non-vesicular release of prothymosin-α initiated by an interaction with S100A13, and its blockade by caspase-3 cleavage. Cell Death Differ 2010; 17:1760-72. [PMID: 20467443 DOI: 10.1038/cdd.2010.52] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nuclear protein prothymosin-α (ProTα), which lacks a signal peptide sequence, is released from neurons and astrocytes on ischemic stress and exerts a unique form of neuroprotection through an anti-necrotic mechanism. Ischemic stress-induced ProTα release is initiated by a nuclear release, followed by extracellular release in a non-vesicular manner, in C6 glioma cells. These processes are caused by ATP loss and elevated Ca²(+), respectively. S100A13, a Ca²(+)-binding protein, was identified to be a major protein co-released with ProTα in an immunoprecipitation assay. The Ca²(+)-dependent interaction between ProTα and S100A13 was found to require the C-terminal peptide sequences of both proteins. In C6 glioma cells expressing a Δ88-98 mutant of S100A13, serum deprivation caused the release of S100A13 mutant, but not of ProTα. When cells were administered apoptogenic compounds, ProTα was cleaved by caspase-3 to generate a C-terminal peptide-deficient fragment, which lacks the nuclear localization signal (NLS). However, there was no extracellular release of ProTα. All these results suggest that necrosis-inducing stress induces an extacellular release of ProTα in a non-vesicular manner, whereas apoptosis-inducing stress does not, owing to the loss of its interaction with S100A13, a cargo molecule for extracellular release.
Collapse
|
490
|
Kennedy MJ, Davison IG, Robinson CG, Ehlers MD. Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell 2010; 141:524-35. [PMID: 20434989 DOI: 10.1016/j.cell.2010.02.042] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 12/10/2009] [Accepted: 02/22/2010] [Indexed: 11/16/2022]
Abstract
Changes in postsynaptic membrane composition underlie many forms of learning-related synaptic plasticity in the brain. At excitatory glutamatergic synapses, fusion of intracellular vesicles at or near the postsynaptic plasma membrane is critical for dendritic spine morphology, retrograde synaptic signaling, and long-term synaptic plasticity. Whereas the molecular machinery for exocytosis in presynaptic terminals has been defined in detail, little is known about the location, kinetics, regulation, or molecules involved in postsynaptic exocytosis. Here, we show that an exocytic domain adjacent to the postsynaptic density (PSD) enables fusion of large, AMPA receptor-containing recycling compartments during elevated synaptic activity. Exocytosis occurs at microdomains enriched in the plasma membrane t-SNARE syntaxin 4 (Stx4), and disruption of Stx4 impairs both spine exocytosis and long-term potentiation (LTP) at hippocampal synapses. Thus, Stx4 defines an exocytic zone that directs membrane fusion for postsynaptic plasticity, revealing a novel specialization for local membrane traffic in dendritic spines.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
491
|
Oren-Suissa M, Hall DH, Treinin M, Shemer G, Podbilewicz B. The fusogen EFF-1 controls sculpting of mechanosensory dendrites. Science 2010; 328:1285-8. [PMID: 20448153 DOI: 10.1126/science.1189095] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms controlling the formation and maintenance of neuronal trees are poorly understood. We examined the dynamic development of two arborized mechanoreceptor neurons (PVDs) required for reception of strong mechanical stimuli in Caenorhabditis elegans. The PVDs elaborated dendritic trees comprising structural units we call "menorahs." We studied how the number, structure, and function of menorahs were maintained. EFF-1, an essential protein mediating cell fusion, acted autonomously in the PVDs to trim developing menorahs. eff-1 mutants displayed hyperbranched, disorganized menorahs. Overexpression of EFF-1 in the PVD reduced branching. Neuronal pruning appeared to involve EFF-1-dependent branch retraction and neurite-neurite autofusion. Thus, EFF-1 activities may act as a quality control mechanism during the sculpting of dendritic trees.
Collapse
Affiliation(s)
- Meital Oren-Suissa
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
492
|
Inoue N, Kasahara T, Ikawa M, Okabe M. Identification and disruption of sperm-specific angiotensin converting enzyme-3 (ACE3) in mouse. PLoS One 2010; 5:e10301. [PMID: 20421979 PMCID: PMC2858660 DOI: 10.1371/journal.pone.0010301] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/31/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND IZUMO1 is the only sperm protein which is proven to be essential for sperm-egg fusion. However, the IZUMO1 is a structurally simple protein with single Ig domain and seems not to include either a "fusogenic peptide" or a fusion machinery domain. This led us to assume the existence of an IZUMO1-interacting protein(s) which makes a functional fusion machine interacting with IZUMO1. METHODOLOGY/PRINCIPAL FINDINGS We produced a transgenic mouse line which expresses His-tagged IZUMO1 in the Izumo1(-/-) genetic background. After solubilization of sperm membranes, we purified His-tagged IZUMO1 using anti-His affinity chromatography and found a protein that interacts with IZUMO1. After being separated on SDS-PAGE gel, the IZUMO1-interacting protein was subjected to LC-MS/MS analysis and from the partial fragments, we identified the protein as ACE3. We raised the antibody against ACE3 and found that ACE3 is localized on the acrosomal cap area as in the case of IZUMO1. However, ACE3 disappeared from sperm after acrosome reaction while IZUMO1 remained on sperm. In order to investigate the role of ACE3 in vivo, we generated Ace3-deficient mice by homologous recombination and examined the fertilizing ability of the males. Unexpectedly, the male mice showed no defect in fertilizing ability in in vivo or in an in vitro fertilization system. CONCLUSIONS/SIGNIFICANCE We identified an IZUMO1-interacting protein in sperm, which we identified as testis specific ACE homologue ACE3. We produced an Ace3 disrupted mouse line, and found the localization of IZUMO1 spread in a little wider area on sperm, but the elimination of ACE3 did not result in a loss of sperm fertilizing ability, differing from the case of ACE disruption.
Collapse
Affiliation(s)
- Naokazu Inoue
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuya Kasahara
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
493
|
Abstract
Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three-dimensional architecture of influenza virus-liposome complexes at pH 5.5 was investigated by electron cryo-tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane-centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of 'leaky' fusion to the observed prefusion structures is discussed.
Collapse
Affiliation(s)
- Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA.
| |
Collapse
|
494
|
Barry C, Key T, Haddad R, Duncan R. Features of a spatially constrained cystine loop in the p10 FAST protein ectodomain define a new class of viral fusion peptides. J Biol Chem 2010; 285:16424-33. [PMID: 20363742 DOI: 10.1074/jbc.m110.118232] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral membrane fusion proteins. With ectodomains of only approximately 20-40 residues, it is unclear how such diminutive fusion proteins can mediate cell-cell fusion and syncytium formation. Contained within the 40-residue ectodomain of the p10 FAST protein resides an 11-residue sequence of moderately apolar residues, termed the hydrophobic patch (HP). Previous studies indicate the p10 HP shares operational features with the fusion peptide motifs found within the enveloped virus membrane fusion proteins. Using biotinylation assays, we now report that two highly conserved cysteine residues flanking the p10 HP form an essential intramolecular disulfide bond to create a cystine loop. Mutagenic analyses revealed that both formation of the cystine loop and p10 membrane fusion activity are highly sensitive to changes in the size and spatial arrangement of amino acids within the loop. The p10 cystine loop may therefore function as a cystine noose, where fusion peptide activity is dependent on structural constraints within the noose that force solvent exposure of key hydrophobic residues. Moreover, inhibitors of cell surface thioreductase activity indicate that disruption of the disulfide bridge is important for p10-mediated membrane fusion. This is the first example of a viral fusion peptide composed of a small, spatially constrained cystine loop whose function is dependent on altered loop formation, and it suggests the p10 cystine loop represents a new class of viral fusion peptides.
Collapse
Affiliation(s)
- Christopher Barry
- Department of Microbiology and Immunology, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
495
|
Abstract
Recent evidence suggests that the Ca(2+)-sensors synaptotagmin-1 and Doc2b deform synaptic membranes during synaptic vesicle exocytosis. We discuss how local curvature generated by these and other proteins may stimulate membrane fusion and discuss the potential implications of these findings for other cellular fusion events.
Collapse
Affiliation(s)
- Harvey T McMahon
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB0 2QH, UK.
| | | | | |
Collapse
|
496
|
Groffen AJ, Martens S, Arazola RD, Cornelisse LN, Lozovaya N, de Jong APH, Goriounova NA, Habets RLP, Takai Y, Borst JG, Brose N, McMahon HT, Verhage M. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 2010; 327:1614-8. [PMID: 20150444 PMCID: PMC2846320 DOI: 10.1126/science.1183765] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synaptic vesicle fusion in brain synapses occurs in phases that are either tightly coupled to action potentials (synchronous), immediately following action potentials (asynchronous), or as stochastic events in the absence of action potentials (spontaneous). Synaptotagmin-1, -2, and -9 are vesicle-associated Ca2+ sensors for synchronous release. Here we found that double C2 domain (Doc2) proteins act as Ca2+ sensors to trigger spontaneous release. Although Doc2 proteins are cytosolic, they function analogously to synaptotagmin-1 but with a higher Ca2+ sensitivity. Doc2 proteins bound to N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complexes in competition with synaptotagmin-1. Thus, different classes of multiple C2 domain-containing molecules trigger synchronous versus spontaneous fusion, which suggests a general mechanism for synaptic vesicle fusion triggered by the combined actions of SNAREs and multiple C2 domain-containing proteins.
Collapse
Affiliation(s)
- Alexander J. Groffen
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
| | - Sascha Martens
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | - Rocío Díez Arazola
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
| | - L. Niels Cornelisse
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
| | - Natalia Lozovaya
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, CNCR, VU University, Amsterdam, The Netherlands
| | - Arthur P. H. de Jong
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
| | - Natalia A. Goriounova
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, CNCR, VU University, Amsterdam, The Netherlands
| | - Ron L. P. Habets
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Yoshimi Takai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Japan
| | - J. Gerard Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Nils Brose
- Max-Planck-Institut für Experimentelle Medizin, Abteilung Molekulare Neurobiologie, Göttingen, Germany
| | | | - Matthijs Verhage
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
497
|
Abstract
Fertilization comprises a series of precisely orchestrated steps that culminate in the fusion of male and female gametes. The most intimate steps during fertilization encompass gamete recognition, adhesion and fusion. In animals, some binding-effector proteins and enzymes have been identified that act on the cell surfaces of the gametes to regulate gamete compatibility and fertilization success. In contrast, exploring plant gamete interaction during double fertilization, a characteristic trait of flowering plants, has been hampered for a long time because of the protected location of the female gametes and technical limitations. Over the last couple of years, however, the use of advanced methodologies, new imaging tools and new mutants has provided deeper insights into double fertilization, at both the cellular and the molecular level, especially for the model plant Arabidopsis thaliana. Most likely, one consequence of inventing double fertilization may be the co-evolution of special molecular mechanisms to govern each successful sperm delivery and efficient gamete recognition and fusion. In vivo imaging of double fertilization and the recent discovery of numerous female-gametophyte-specific expressed genes encoding small secreted proteins, some of whom were found to be essential for the fertilization process, support this hypothesis. Nevertheless, recent findings indicate that at least the membrane-merger step in plant gamete interaction may rely on an ancient and widely used gamete fusion system.
Collapse
|
498
|
Abstract
Neurotransmitter release is mediated by the fusion of synaptic vesicles with the presynaptic plasma membrane. Fusion is triggered by a rise in the intracellular calcium concentration and is dependent on the neuronal SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) complex. A plethora of molecules such as members of the MUNC13, MUNC18, complexin and synaptotagmin families act along with the SNARE complex to enable calcium-regulated synaptic vesicle exocytosis. The synaptotagmins are localized to synaptic vesicles by an N-terminal transmembrane domain and contain two cytoplasmic C2 domains. Members of the synaptotagmin family are thought to translate the rise in intracellular calcium concentration into synaptic vesicle fusion. The C2 domains of synaptotagmin-1 bind membranes in a calcium-dependent manner and in response induce a high degree of membrane curvature, which is required for its ability to trigger membrane fusion in vitro and in vivo. Furthermore, members of the soluble DOC2 (double-C2 domain) protein family have similar properties. Taken together, these results suggest that C2 domain proteins such as the synaptotagmins and DOC2s promote membrane fusion by the induction of membrane curvature in the vicinity of the SNARE complex. Given the widespread expression of C2 domain proteins in secretory cells, it is proposed that promotion of SNARE-dependent membrane fusion by the induction of membrane curvature is a widespread phenomenon.
Collapse
|
499
|
Parashuraman S, Madan R, Mukhopadhyay A. NSF independent fusion of Salmonella-containing late phagosomes with early endosomes. FEBS Lett 2010; 584:1251-6. [PMID: 20176016 DOI: 10.1016/j.febslet.2010.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/04/2010] [Accepted: 02/16/2010] [Indexed: 11/27/2022]
Abstract
Initial characterizations of live-Salmonella-containing early (LSEP) and late phagosomes (LSLP) in macrophages show that both phagosomes retain Rab5 and EEA1. In addition, LSEP specifically contain transferrin receptor whereas LSLP possess relatively more rabaptin-5. In contrast to LSLP, late-Salmonella-containing vacuoles in epithelial cells show significantly reduced levels of Rab5 and EEA1. Subsequent results demonstrate that both phagosomes efficiently fuse with early endosomes (EE). In contrast to LSEP, fusion between LSLP and EE is insensitive to ATPgammaS treatment. Furthermore, LSLP fuses with EE in absence of NEM-sensitive fusion factor (NSF) as well as in the presence of NSF:D1EQ mutant demonstrating that LSLP fusion with EE is NSF independent.
Collapse
|
500
|
Fernández-Busnadiego R, Zuber B, Maurer UE, Cyrklaff M, Baumeister W, Lucic V. Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. ACTA ACUST UNITED AC 2010; 188:145-56. [PMID: 20065095 PMCID: PMC2812849 DOI: 10.1083/jcb.200908082] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The filamentous structures that tether exocytic vesicles to the plasma membrane in the active zone are rearranged in response to synaptic stimulation. The presynaptic terminal contains a complex network of filaments whose precise organization and functions are not yet understood. The cryoelectron tomography experiments reported in this study indicate that these structures play a prominent role in synaptic vesicle release. Docked synaptic vesicles did not make membrane to membrane contact with the active zone but were instead linked to it by tethers of different length. Our observations are consistent with an exocytosis model in which vesicles are first anchored by long (>5 nm) tethers that give way to multiple short tethers once vesicles enter the readily releasable pool. The formation of short tethers was inhibited by tetanus toxin, indicating that it depends on soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor complex assembly. Vesicles were extensively interlinked via a set of connectors that underwent profound rearrangements upon synaptic stimulation and okadaic acid treatment, suggesting a role of these connectors in synaptic vesicle mobilization and neurotransmitter release.
Collapse
Affiliation(s)
- Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|