454
|
Loy RE, Orynbayev M, Xu L, Andronache Z, Apostol S, Zvaritch E, MacLennan DH, Meissner G, Melzer W, Dirksen RT. Muscle weakness in Ryr1I4895T/WT knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum. ACTA ACUST UNITED AC 2010; 137:43-57. [PMID: 21149547 PMCID: PMC3010056 DOI: 10.1085/jgp.201010523] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The type 1 isoform of the ryanodine receptor (RYR1) is the Ca(2+) release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation-contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1(I4898T) mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca(2+) content, and RYR1 Ca(2+) release channel function using adult heterozygous Ryr1(I4895T/+) knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca(2+) content, both electrically evoked and 4-chloro-m-cresol-induced Ca(2+) release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4-6-mo-old IT/+ mice. The sensitivity of the SR Ca(2+) release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca(2+) permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca(2+) release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca(2+) ion permeation.
Collapse
Affiliation(s)
- Ryan E Loy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Black YD, Xiao D, Pellegrino D, Kachroo A, Brownell AL, Schwarzschild MA. Protective effect of metabotropic glutamate mGluR5 receptor elimination in a 6-hydroxydopamine model of Parkinson's disease. Neurosci Lett 2010; 486:161-5. [PMID: 20854878 DOI: 10.1016/j.neulet.2010.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 09/12/2010] [Accepted: 09/14/2010] [Indexed: 11/26/2022]
Abstract
Pharmacologic or genetic blockade of metabotropic glutamate mGlu5 receptors (mGluR5) has been shown to attenuate parkinsonian motor deficits and protect nigrostriatal neurons from damage in the acute MPTP model of Parkinson's disease (PD), suggesting that therapeutically targeting the mGluR5 receptor may offer a novel approach to improving motor symptoms and/or slowing neurodegeneration in PD. This study further explored the neuroprotective potential of targeting mGluR5 receptors. We examined the behavioral and neurochemical effects of receptor elimination on toxicity induced by intra-striatal application of 6-hydroxydopamine (6-OHDA), thought to represent a comparatively progressive model of PD. mGluR5 knockout (KO) mice and wild-type (WT) littermates received unilateral 6-OHDA infusions. Reflecting the imbalance expected following unilateral infusion, WT but not KO mice demonstrated predominantly ipsilateral forepaw use and robust ipsilateral amphetamine-induced rotation. Further, performance on the vertical pole descent task was profoundly impaired in WT mice, while KO mice completed the task significantly faster. Consistent with the behavioral observations, neurochemical analyses of striatal dopamine depletion showed significantly diminished severity in KO mice with only 64% of striatal dopamine lost, compared to 92% in WT mice. The absence of brain mGluR5 receptors in living KO mice was verified using positron emission tomography (PET). Our findings substantiate the key role of mGluR5 receptors in animal models of PD, strengthening the rationale for the development of mGluR5 antagonists for their neuroprotective, as well as symptomatic, benefit.
Collapse
Affiliation(s)
- Yolanda D Black
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
456
|
Wang X, Han W, Du X, Zhu C, Carlsson Y, Mallard C, Jacotot E, Hagberg H. Neuroprotective Effect of Bax-Inhibiting Peptide on Neonatal Brain Injury. Stroke 2010; 41:2050-5. [DOI: 10.1161/strokeaha.110.589051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoyang Wang
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Wei Han
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Xiaonan Du
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Changlian Zhu
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Ylva Carlsson
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Carina Mallard
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Etienne Jacotot
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Henrik Hagberg
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| |
Collapse
|
457
|
Xie W, Li X, Li C, Zhu W, Jankovic J, Le W. Proteasome inhibition modeling nigral neuron degeneration in Parkinson's disease. J Neurochem 2010; 115:188-99. [PMID: 20649845 DOI: 10.1111/j.1471-4159.2010.06914.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Impairment of the ubiquitin proteasome system (UPS) has been proposed to play an important role in the pathogenesis of Parkinson's disease (PD). Mice with UPS impairment in the nigra have been used for investigating mechanisms underlying neurodegeneration and for testing pre-clinical drugs to treat PD. However, the pathological, biochemical and behavioral features of UPS impairment animal model of PD have not been fully evaluated. For this purpose, we developed a UPS impairment model of nigral dopamine (DA) neuron degeneration by microinjection with proteasome inhibitors lactacystin, PSI or MG-132 into the medial forebrain bundle (iMFB) of C57BL/6 mice and then systematically examined the animal's locomotor activities, and various pathological and biochemical markers of PD. We found that lactacystin iMFB induced a sustained DA neuron degeneration, which can be reproduced by PSI iMFB and MG-132 iMFB. In the animal model, DA neuron degenerated preferentially in the substantia nigra, accompanied by profound inhibition of proteasomal activity, activation of caspase 3, elevated insoluble ubiquitin conjugates and α-synuclein positive inclusion-like granules, activated glia, and decreased motor activities. Thus, this model recapitulates many neuropathological and behavioral features of PD, rendering it likely suitable for studying the mechanisms of nigral DA neuron degeneration and for testing the potential anti-PD medications.
Collapse
Affiliation(s)
- Wenjie Xie
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
458
|
Madete JK, Klein A, Fuller A, Trueman RC, Rosser AE, Dunnett SB, Holt CA. Challenges Facing Quantification of Rat Locomotion along Beams of Varying Widths. Proc Inst Mech Eng H 2010; 224:1257-65. [DOI: 10.1243/09544119jeim779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Optoelectronic motion capture systems have been widely used to investigate temporal gait parameters in humans and animals in order to understand function and behavioural attributes of different pathologies, e.g. Parkinson's disease (PD). The aim of the present paper was to investigate the practicality of utilising this system to investigate the effects of a unilateral 6-hydroxydopamine (6-OHDA) lesion on rat locomotion while walking on beams of varying widths (graduated, narrow, and wide). Temporal gait parameters of ten male Lister Hooded rats (five controls and five hemiparkinsonian) were observed using passive markers placed in locations that were representative of their four limbs and their body axis. The results demonstrate that marker-based motion capture can provide an effective and simple approach to quantifying temporal gait parameters for rat models of PD. They also reveal how the width of the path affects the locomotion in both experimental cohorts. Such measurements can be compared with human motion analysis to explore correlations between the animal model and human behaviour, which is an important step for translational medicine.
Collapse
Affiliation(s)
- J K Madete
- School of Engineering, Cardiff University, Cardiff, UK
| | - A Klein
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - A Fuller
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - R C Trueman
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - A E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
| | - S B Dunnett
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - C A Holt
- School of Engineering, Cardiff University, Cardiff, UK
| |
Collapse
|
461
|
Mavlyutov TA, Epstein ML, Andersen KA, Ziskind-Conhaim L, Ruoho AE. The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neuroscience 2010; 167:247-55. [PMID: 20167253 PMCID: PMC2862368 DOI: 10.1016/j.neuroscience.2010.02.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/05/2010] [Accepted: 02/10/2010] [Indexed: 12/26/2022]
Abstract
The sigma-1 receptor regulates various ion channel activity and possesses protein chaperone function. Using an antibody against the full sequence of the sigma-1 receptor we detected immunostaining in wild type but not in knockout mice. The receptor was found primarily in motoneurons localized to the brainstem and spinal cord. At the subcellular level the receptor is restricted to large cholinergic postsynaptic densities on the soma of motoneurons and is colocalized with the Kv2.1 potassium channel and the muscarinic type 2 cholinergic receptor. Ultrastructural analysis of the neurons indicates that the immunostained receptor is located close but separate from the plasma membrane, possibly in subsurface cisternae formed from the endoplasmic reticulum (ER), which are a prominent feature of cholinergic postsynaptic densities. Behavioral testing on a rotorod revealed that Sigma-1 receptor knockout mice remained on the rotorod for significantly less time (a shorter latency period) compared to the wild type mice. Together these data indicate that the sigma-1 receptor may play a role in the regulation of motor behavior.
Collapse
Affiliation(s)
- Timur A. Mavlyutov
- Department of Pharmacology, University of Wisconsin, School of Medicine and Public Health, 1300 University Ave, Madison, WI 53706, USA
| | - Miles L. Epstein
- Department of Anatomy, University of Wisconsin, School of Medicine and Public Health, 1300 University Ave, Madison, WI 53706, USA
| | - Kristen A. Andersen
- Department of Pharmacology, University of Wisconsin, School of Medicine and Public Health, 1300 University Ave, Madison, WI 53706, USA
| | - Lea Ziskind-Conhaim
- Department of Physiology, University of Wisconsin, School of Medicine and Public Health, 1300 University Ave, Madison, WI 53706, USA
| | - Arnold E. Ruoho
- Department of Pharmacology, University of Wisconsin, School of Medicine and Public Health, 1300 University Ave, Madison, WI 53706, USA
| |
Collapse
|
462
|
Taylor TN, Greene JG, Miller GW. Behavioral phenotyping of mouse models of Parkinson's disease. Behav Brain Res 2010; 211:1-10. [PMID: 20211655 DOI: 10.1016/j.bbr.2010.03.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/01/2010] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative movement disorder afflicting millions of people in the United States. The advent of transgenic technologies has contributed to the development of several new mouse models, many of which recapitulate some aspects of the disease; however, no model has been demonstrated to faithfully reproduce the full constellation of symptoms seen in human PD. This may be due in part to the narrow focus on the dopamine-mediated motor deficits. As current research continues to unmask PD as a multi-system disorder, animal models should similarly evolve to include the non-motor features of the disease. This requires that typically cited behavioral test batteries be expanded. The major non-motor symptoms observed in PD patients include hyposmia, sleep disturbances, gastrointestinal dysfunction, autonomic dysfunction, anxiety, depression, and cognitive decline. Mouse behavioral tests exist for all of these symptoms and while some models have begun to be reassessed for the prevalence of this broader behavioral phenotype, the majority has not. Moreover, all behavioral paradigms should be tested for their responsiveness to L-DOPA so these data can be compared to patient response and help elucidate which symptoms are likely not dopamine-mediated. Here, we suggest an extensive, yet feasible, battery of behavioral tests for mouse models of PD aimed to better assess both non-motor and motor deficits associated with the disease.
Collapse
Affiliation(s)
- Tonya N Taylor
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, United States
| | | | | |
Collapse
|