451
|
Hermance M, Dos Santos RIM, Heinze D, Hausser N, Bouyer DH, Thangamani S. Detection of Rickettsia amblyommii in ticks collected from Missouri, USA. Emerg Microbes Infect 2014; 3:e34. [PMID: 26038740 PMCID: PMC4051364 DOI: 10.1038/emi.2014.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Meghan Hermance
- Department of Pathology , University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Dar Heinze
- Department of Pathology , University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicole Hausser
- Department of Pathology , University of Texas Medical Branch, Galveston, TX 77555, USA ; Insectary Services Division, Galveston National Laboratory, University of Texas Medical Branch , Galveston, TX 77555, USA
| | - Donald H Bouyer
- Department of Pathology , University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Saravanan Thangamani
- Department of Pathology , University of Texas Medical Branch, Galveston, TX 77555, USA ; Insectary Services Division, Galveston National Laboratory, University of Texas Medical Branch , Galveston, TX 77555, USA
| |
Collapse
|
452
|
Lani R, Moghaddam E, Haghani A, Chang LY, AbuBakar S, Zandi K. Tick-borne viruses: a review from the perspective of therapeutic approaches. Ticks Tick Borne Dis 2014; 5:457-65. [PMID: 24907187 DOI: 10.1016/j.ttbdis.2014.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/07/2014] [Accepted: 04/01/2014] [Indexed: 12/30/2022]
Abstract
Several important human diseases worldwide are caused by tick-borne viruses. These diseases have become important public health concerns in recent years. The tick-borne viruses that cause diseases in humans mainly belong to 3 families: Bunyaviridae, Flaviviridae, and Reoviridae. In this review, we focus on therapeutic approaches for several of the more important tick-borne viruses from these 3 families. These viruses are Crimean-Congo hemorrhagic fever virus (CCHF) and the newly discovered tick-borne phleboviruses, known as thrombocytopenia syndromevirus (SFTSV), Heartland virus and Bhanja virus from the family Bunyaviridae, tick-borne encephalitis virus (TBEV), Powassan virus (POWV), Louping-ill virus (LIV), Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV), and Alkhurma hemorrhagic fever virus (AHFV) from the Flaviviridae family. To date, there is no effective antiviral drug available against most of these tick-borne viruses. Although there is common usage of antiviral drugs such as ribavirin for CCHF treatment in some countries, there are concerns that ribavirin may not be as effective as once thought against CCHF. Herein, we discuss also the availability of vaccines for the control of these viral infections. The lack of treatment and prevention approaches for these viruses is highlighted, and we hope that this review may increase public health awareness with regard to the threat posed by this group of viruses.
Collapse
Affiliation(s)
- Rafidah Lani
- Tropical Infectious Disease Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ehsan Moghaddam
- Tropical Infectious Disease Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Amin Haghani
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, University Putra Malaysia, Malaysia
| | - Li-Yen Chang
- Tropical Infectious Disease Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Disease Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Tropical Infectious Disease Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
453
|
Ding YP, Liang MF, Ye JB, Liu QH, Xiong CH, Long B, Lin WB, Cui N, Zou ZQ, Song YL, Zhang QF, Zhang S, Liu YZ, Song G, Ren YY, Li SH, Wang Y, Hou FQ, Yu H, Ding P, Ye F, Li DX, Wang GQ. Prognostic value of clinical and immunological markers in acute phase of SFTS virus infection. Clin Microbiol Infect 2014; 20:O870-8. [PMID: 24684627 DOI: 10.1111/1469-0691.12636] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 12/23/2022]
Abstract
SFTS virus (SFTSV) is a novel bunyavirus that causes severe fever with thrombocytopenia syndrome (SFTS), an emerging infectious disease that occurred in China in recent years, with an average case fatality rate of 10-12%. Intervention in the early clinical stage is the most effective measure to reduce the mortality rate of disease. To elucidate the natural course of and immune mechanisms associated with the pathogenesis of SFTSV, 59 laboratory-confirmed SFTS patients in the acute phase, who were hospitalized between October 2010 and September 2011, were enrolled in this study, and the patients sera were dynamically collected and tested for SFTSV viral RNA load, 34 cytokines or chemokines and other related laboratory parameters. All clinical diagnostic factors in the acute phase of SFTS were evaluated and assessed. The study showed that the severity of the disease in 11 (18.6%) patients was associated with abdominal pain (p 0.007; OR = 21.95; 95% CI, 2.32-208.11) and gingival bleeding (p 0.001; OR=122.11; 95% CI, 6.41-2328). The IP-10, TNF-α, IL-6, IL-10, granzyme B and HSP70 levels were higher over the 7-8 days in severe cases, accompanied by altered AST, CK and LDH levels. HSP70 (p 0.012; OR=8.29; 95% CI, 1.58-43.40) was independently correlated with the severity of the early acute phase of SFTSV infection. The severity of SFTS can be predicted based on the presence of symptoms such as abdominal pain and gingival bleeding and on the level of HSP70 in the acute phase of the disease.
Collapse
Affiliation(s)
- Y-P Ding
- Department of Infectious Diseases, The Center for Liver Diseases, Peking University First Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
454
|
Liu K, Cui N, Fang LQ, Wang BJ, Lu QB, Peng W, Li H, Wang LY, Liang S, Wang HY, Zhang YY, Zhuang L, Yang H, Gray GC, de Vlas SJ, Liu W, Cao WC. Epidemiologic features and environmental risk factors of severe fever with thrombocytopenia syndrome, Xinyang, China. PLoS Negl Trop Dis 2014; 8:e2820. [PMID: 24810269 PMCID: PMC4014392 DOI: 10.1371/journal.pntd.0002820] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/11/2014] [Indexed: 11/18/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease discovered in rural areas of Central China in 2009, caused by a novel bunyavirus, SFTS virus (SFTSV). The disease usually presents as fever, thrombocytopenia, and leukocytopenia, with case-fatality rates ranging from 2.5% to 30%. Haemaphysalis longicornis was suspected to be the most likely vector of SFTSV. By the end of 2012, the disease had expanded to 13 provinces of China. SFTS patients have been reported in Japan and South Korea, and a disease similar to SFTS has been reported in the United States. Methodology/Principal Findings We characterized the epidemiologic features of 504 confirmed SFTS cases in Xinyang Region, the most severely SFTS-afflicted region in China from 2011 to 2012, and assessed the environmental risk factors. All cases occurred during March to November, with the epidemic peaking from May to July. The patients' ages ranged from 7 to 87 years (median 61 years), and the annual incidence increased with age (χ2 test for trend, P<0.001). The female-to-male ratio of cases was 1.58, and 97.0% of the cases were farmers who resided in the southern and western parts of the region. The Poisson regression analysis revealed that the spatial variations of SFTS incidence were significantly associated with the shrub, forest, and rain-fed cropland areas. Conclusions The distribution of SFTS showed highly significant temporal and spatial heterogeneity in Xinyang Region, with the majority of SFTS cases being elderly farmers who resided in the southern and western parts of the region, mostly acquiring infection between May and July when H. longicornis is highly active. The shrub, rain-fed, and rain-fed cropland areas were associated with high risk for this disease. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease discovered in rural areas of Central China in 2009, caused by a novel bunyavirus, SFTS virus (SFTSV). The disease usually presents as fever, thrombocytopenia, and leukocytopenia, with case-fatality rates ranging from 2.5% to 30%. By the end of 2012, the disease had expanded to 13 provinces of China. SFTS patients have been reported in Japan and South Korea, and a disease similar to SFTS has been reported in the United States. Here we characterized the epidemiologic features of 504 confirmed SFTS cases in Xinyang, the most severely SFTS-affected region in China from 2011 to 2012, and identified the environmental risk factors. We found the distribution of SFTS cases showed highly significant temporal and spatial heterogeneity, with the majority of SFTS cases being elderly farmers who resided in the southern and western parts of the region, mostly acquiring infection between May and July when H. longicornis is highly active. The shrub, forest, and rain-fed cropland areas were strongly associated with high risk for SFTS.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Ning Cui
- The 154 Hospital, People's Liberation Army, Xinyang, People's Republic of China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Bing-Jun Wang
- The 154 Hospital, People's Liberation Army, Xinyang, People's Republic of China
| | - Qing-Bin Lu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Wei Peng
- The Shangcheng People's Hospital, Shangcheng, People's Republic of China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Li-Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- Anhui Medical University, Hefei, People's Republic of China
| | - Song Liang
- Environmental and Global Health, College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Hong-Yu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- Anhui Medical University, Hefei, People's Republic of China
| | - Yao-Yun Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- Anhui Medical University, Hefei, People's Republic of China
| | - Lu Zhuang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Hong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Gregory C. Gray
- Environmental and Global Health, College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Sake J. de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- * E-mail: (WL); (WCC)
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- * E-mail: (WL); (WCC)
| |
Collapse
|
455
|
Comprehensive multiplex one-step real-time TaqMan qRT-PCR assays for detection and quantification of hemorrhagic fever viruses. PLoS One 2014; 9:e95635. [PMID: 24752452 PMCID: PMC3994070 DOI: 10.1371/journal.pone.0095635] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/28/2014] [Indexed: 01/26/2023] Open
Abstract
Background Viral hemorrhagic fevers (VHFs) are a group of animal and human illnesses that are mostly caused by several distinct families of viruses including bunyaviruses, flaviviruses, filoviruses and arenaviruses. Although specific signs and symptoms vary by the type of VHF, initial signs and symptoms are very similar. Therefore rapid immunologic and molecular tools for differential diagnosis of hemorrhagic fever viruses (HFVs) are important for effective case management and control of the spread of VHFs. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay is one of the reliable and desirable methods for specific detection and quantification of virus load. Multiplex PCR assay has the potential to produce considerable savings in time and resources in the laboratory detection. Results Primers/probe sets were designed based on appropriate specific genes for each of 28 HFVs which nearly covered all the HFVs, and identified with good specificity and sensitivity using monoplex assays. Seven groups of multiplex one-step real-time qRT-PCR assays in a universal experimental system were then developed by combining all primers/probe sets into 4-plex reactions and evaluated with serial dilutions of synthesized viral RNAs. For all the multiplex assays, no cross-reactivity with other HFVs was observed, and the limits of detection were mainly between 45 and 150 copies/PCR. The reproducibility was satisfactory, since the coefficient of variation of Ct values were all less than 5% in each dilution of synthesized viral RNAs for both intra-assays and inter-assays. Evaluation of the method with available clinical serum samples collected from HFRS patients, SFTS patients and Dengue fever patients showed high sensitivity and specificity of the related multiplex assays on the clinical specimens. Conclusions Overall, the comprehensive multiplex one-step real-time qRT-PCR assays were established in this study, and proved to be specific, sensitive, stable and easy to serve as a useful tool for rapid detection of HFVs.
Collapse
|
456
|
Brett ME, Hinckley AF, Zielinski-Gutierrez EC, Mead PS. U.S. healthcare providers' experience with Lyme and other tick-borne diseases. Ticks Tick Borne Dis 2014; 5:404-8. [PMID: 24713280 DOI: 10.1016/j.ttbdis.2014.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
Surveillance indicates that tick-borne diseases are a common problem in the United States. Nevertheless, little is known regarding the experience or management practices of healthcare providers who treat these conditions. The purpose of the present study was to characterize the frequency of tick-borne diseases in clinical practice and the knowledge of healthcare providers regarding their management. Four questions about tick-borne diseases were added to the 2009 Docstyles survey, a nationally representative survey of >2000 U.S. healthcare providers. Topics included diseases encountered, management of patients with early Lyme disease (LD), provision of tick-bite prophylaxis, and sources of information on tick-borne diseases. Overall, 51.3% of practitioners had treated at least one patient for a tick-borne illness in the previous year. Among these, 75.1% had treated one type of disease, 19.0% two types of disease, and 5.9% three or more diseases. LD was encountered by 936 (46.8%) providers; Rocky Mountain spotted fever was encountered by 184 (9.2%) providers. Given a scenario involving early LD, 89% of providers would prescribe antibiotics at the first visit, with or without ordering a blood test. Tick-bite prophylaxis was prescribed by 31.0% of all practitioners, including 41.1% in high-LD-incidence states and 26.0% in low-incidence states. Tick-borne diseases are encountered frequently in clinical practice. Most providers would treat early LD promptly, suggesting they are knowledgeable regarding the limitations of laboratory testing in this setting. Conversely, providers in low-LD-incidence states frequently prescribe tick-bite prophylaxis, suggesting a need for education to reduce potential misdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Meghan E Brett
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Alison F Hinckley
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | | | - Paul S Mead
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
457
|
Ning YJ, Wang M, Deng M, Shen S, Liu W, Cao WC, Deng F, Wang YY, Hu Z, Wang H. Viral suppression of innate immunity via spatial isolation of TBK1/IKKε from mitochondrial antiviral platform. J Mol Cell Biol 2014; 6:324-37. [PMID: 24706939 PMCID: PMC7107466 DOI: 10.1093/jmcb/mju015] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For antiviral signaling mediated by retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), the recruitment of cytosolic RLRs and downstream molecules (such as TBK1 and IKKε) to mitochondrial platform is a central event that facilitates the establishment of host antiviral state. Here, we present an example of viral targeting for immune evasion through spatial isolation of TBK1/IKKε from mitochondrial antiviral platform, which was employed by severe fever with thrombocytopenia syndrome virus (SFTSV), a deadly bunyavirus emerging recently. We showed that SFTSV nonstructural protein NSs functions as the interferon (IFN) antagonist, mainly via suppressing TBK1/IKKε–IRF3 signaling. NSs mediates the formation of cytoplasmic inclusion bodies (IBs), and the blockage of IB formation impairs IFN-inhibiting activity of NSs. We next demonstrate that IBs are utilized to compartmentalize TBK1/IKKε. The compartmentalization results in spatial isolation of the kinases from mitochondria, and deprived TBK1/IKKε may participate in antiviral complex assembly, leading to the blockage of IFN induction. This study proposes a new role of viral IBs as virus-built ‘jail’ for imprisoning cellular factors and presents a novel and likely common mechanism of viral immune evasion through spatial isolation of critical signaling molecules from the mitochondrial antiviral platform.
Collapse
Affiliation(s)
- Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maping Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yan-Yi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
458
|
Basler CF, Woo PCY. Editorial overview: emerging viruses. Curr Opin Virol 2014; 5:v-vii. [PMID: 24680706 PMCID: PMC7128464 DOI: 10.1016/j.coviro.2014.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Christopher F Basler
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1124, Madison Avenue & 100th Street, New York, NY 10029-6574, USA.
| | - Patrick C Y Woo
- Department of Microbiology, University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
459
|
Xing Z, Schefers J, Schwabenlander M, Jiao Y, Liang M, Qi X, Li C, Goyal S, Cardona CJ, Wu X, Zhang Z, Li D, Collins J, Murtaugh MP. Novel bunyavirus in domestic and captive farmed animals, Minnesota, USA. Emerg Infect Dis 2014; 19:1487-9. [PMID: 23966016 PMCID: PMC5485073 DOI: 10.3201/eid1909.130165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We tested blood samples from domestic and captive farmed animals in Minnesota, USA, to determine exposure to severe fever with thrombocytopenia syndrome virus and Heartland-like virus. We found antibodies against virus nucleoproteins in 10%–18% of samples from cattle, sheep, goats, deer, and elk in 24 Minnesota counties.
Collapse
|
460
|
Qiu X, Kobinger GP. Retrospective Studies: Excellent Tools to Complement Surveillance. J Infect Dis 2014; 209:811-2. [PMID: 24231187 PMCID: PMC7107383 DOI: 10.1093/infdis/jit604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada
- Correspondence: Gary Kobinger, Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St, Winnipeg, Manitoba, R3E 3R2 ()
| | - Gary P. Kobinger
- National Microbiology Laboratory, Public Health Agency of Canada
- Department of Medical Microbiology
- Department of Immunology, University of Manitoba, Winnipeg, Canada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia
| |
Collapse
|
461
|
Wu X, Qi X, Liang M, Li C, Cardona CJ, Li D, Xing Z. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus. FASEB J 2014; 28:2504-16. [PMID: 24599967 DOI: 10.1096/fj.13-243857] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus is an emerging bunyavirus that causes a hemorrhagic fever with a high mortality rate. The virus is likely tick-borne and replicates primarily in hemopoietic cells, which may lead to disregulation of proinflammatory cytokine induction and loss of leukocytes and platelets. The viral genome contains L, M, and S segments encoding a viral RNA polymerase, glycoproteins G(n) and G(c), nucleoprotein (NP), and a nonstructural S segment (NSs) protein. NSs protein is involved in the regulation of host innate immune responses and suppression of IFNβ-promoter activities. In this article, we demonstrate that NSs protein can form viroplasm-like structures (VLSs) in infected and transfected cells. NSs protein molecules interact with one another, interact with NP, and were associated with viral RNA in infected cells, suggesting that NSs protein may be involved in viral replication. Furthermore, we observed that NSs-formed VLS colocalized with lipid droplets and that inhibitors of fatty acid biosynthesis decreased VLS formation or viral replication in transfected and infected cells. Finally, we have demonstrated that viral dsRNAs were also localized in VLS in infected cells, suggesting that NSs-formed VLS may be implicated in the replication of SFTS bunyavirus. These findings identify a novel function of nonstructural NSs in SFTSV-infected cells where it is a scaffolding component in a VLS functioning as a virus replication factory. This function is in addition to the role of NSs protein in modulating host responses that will broaden our understanding of viral pathogenesis of phleboviruses.
Collapse
Affiliation(s)
- Xiaodong Wu
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xian Qi
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Mifang Liang
- China Center for Disease Prevention and Control, Beijing, China; and
| | - Chuan Li
- China Center for Disease Prevention and Control, Beijing, China; and
| | - Carol J Cardona
- Veterinary and Biomedical Sciences, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Dexin Li
- China Center for Disease Prevention and Control, Beijing, China; and
| | - Zheng Xing
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; Veterinary and Biomedical Sciences, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
462
|
Montero-Astúa M, Rotenberg D, Leach-Kieffaber A, Schneweis BA, Park S, Park JK, German TL, Whitfield AE. Disruption of vector transmission by a plant-expressed viral glycoprotein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:296-304. [PMID: 24405031 DOI: 10.1094/mpmi-09-13-0287-fi] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Vector-borne viruses are a threat to human, animal, and plant health worldwide, requiring the development of novel strategies for their control. Tomato spotted wilt virus (TSWV) is one of the 10 most economically significant plant viruses and, together with other tospoviruses, is a threat to global food security. TSWV is transmitted by thrips, including the western flower thrips, Frankliniella occidentalis. Previously, we demonstrated that the TSWV glycoprotein GN binds to thrips vector midguts. We report here the development of transgenic plants that interfere with TSWV acquisition and transmission by the insect vector. Tomato plants expressing GN-S protein supported virus accumulation and symptom expression comparable with nontransgenic plants. However, virus titers in larval insects exposed to the infected transgenic plants were three-log lower than insects exposed to infected nontransgenic control plants. The negative effect of the GN-S transgenics on insect virus titers persisted to adulthood, as shown by four-log lower virus titers in adults and an average reduction of 87% in transmission efficiencies. These results demonstrate that an initial reduction in virus infection of the insect can result in a significant decrease in virus titer and transmission over the lifespan of the vector, supportive of a dose-dependent relationship in the virus-vector interaction. These findings demonstrate that plant expression of a viral protein can be an effective way to block virus transmission by insect vectors.
Collapse
|
463
|
Mourya DT, Yadav PD, Basu A, Shete A, Patil DY, Zawar D, Majumdar TD, Kokate P, Sarkale P, Raut CG, Jadhav SM. Malsoor virus, a novel bat phlebovirus, is closely related to severe fever with thrombocytopenia syndrome virus and heartland virus. J Virol 2014; 88:3605-9. [PMID: 24390329 PMCID: PMC3957954 DOI: 10.1128/jvi.02617-13] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022] Open
Abstract
During a survey in the year 2010, a novel phlebovirus was isolated from the Rousettus leschenaultii species of bats in western India. The virus was identified by electron microscopy from infected Vero E6 cells. Phylogenic analysis of the complete genome showed its close relation to severe fever with thrombocytopenia syndrome (SFTS) and Heartland viruses, which makes it imperative to further study its natural ecology and potential as a novel emerging zoonotic virus.
Collapse
Affiliation(s)
- D T Mourya
- Maximum Containment Laboratory, Microbial Containment Complex, National Institute of Virology, Pashan, Pune, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
464
|
SPRINGER YURIP, EISEN LARS, BEATI LORENZA, JAMES ANGELAM, EISEN REBECCAJ. Spatial distribution of counties in the continental United States with records of occurrence of Amblyomma americanum (Ixodida: Ixodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:342-51. [PMID: 24724282 PMCID: PMC4623429 DOI: 10.1603/me13115] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In addition to being a major nuisance biter, the lone star tick, Amblyomma americanum (L.), is increasingly recognized as an important vector of pathogens affecting humans, domestic animals, and wildlife. Despite its notoriety, efforts have been lacking to define the spatial occurrence ofA. americanum in the continental United States with precision beyond that conveyed in continental-scale distribution maps. Here we present a county-level distribution map for A. americanum generated by compiling collection records obtained from a search of the published literature and databases managed by the USDA, U.S. National Tick Collection, and Walter Reed Biosystematics Unit. Our decadal and cumulative maps, which visually summarize 18,121 collections made between 1898 and 2012, show that A. americanum is either established (> or = six ticks or -two life stages) or reported (<six ticks of a single life stage or number of ticks not specified) in 1,300 counties distributed among 39 states and the District of Columbia. Our cumulative map depicts a species with a core distributional area in the southern part of the eastern United States, but that also occurs further north, especially along the Atlantic Coast and into the Midwest. Although our decadal maps suggest a northward shift in the tick's distribution in recent decades, the lack of systematic tick surveillance makes this difficult to confirm. The data presented herein should aid in identifying areas posing risk for A. americanum-associated illnesses and environmental correlates that define the tick's distributional limits.
Collapse
Affiliation(s)
- YURI P. SPRINGER
- National Ecological Observatory Network, 1685 38th St. Ste 100, Boulder, CO 80301
- Bacterial Diseases Branch, Division of Vector Borne Infectious Diseases, National Center for Zoonotic, Enteric and Vector-Borne Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd., Fort Collins, CO 80522
- Corresponding author,
| | - LARS EISEN
- Department of Microbiology, Immunology and Pathology, Colorado State University, 3195 Rampart Rd., Fort Collins, CO 80523
| | - LORENZA BEATI
- Institute of Arthropodology and Parasitology, Georgia Southern University, Georgia Ave., Bldg. 204, PO Box 8056, Statesboro, GA 30460
| | - ANGELA M. JAMES
- Veterinary Services, Centers of Epidemiology and Animal Health, USDA–APHIS, 2150 Centre Ave., Bldg. B, Fort Collins, CO 80526
| | - REBECCA J. EISEN
- Bacterial Diseases Branch, Division of Vector Borne Infectious Diseases, National Center for Zoonotic, Enteric and Vector-Borne Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd., Fort Collins, CO 80522
| |
Collapse
|
465
|
Elliott RM, Brennan B. Emerging phleboviruses. Curr Opin Virol 2014; 5:50-7. [PMID: 24607799 PMCID: PMC4031632 DOI: 10.1016/j.coviro.2014.01.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/20/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023]
Abstract
The Bunyavidae family is the largest grouping of RNA viruses and arguably the most diverse. Bunyaviruses have a truly global distribution and can infect vertebrates, invertebrates and plants. The majority of bunyaviruses are vectored by arthropods and thus have the remarkable capability to replicate in hosts of disparate phylogeny. The family has provided many examples of emerging viruses including Sin Nombre and related viruses responsible for hantavirus cardiopulmonary syndrome in the Americas, first identified in 1993, and Schmallenberg virus which emerged in Europe in 2011, causing foetal malformations in ruminants. In addition, some well-known bunyaviruses like Rift Valley fever and Crimean-Congo haemorrhagic fever viruses continue to emerge in new geographical locations. In this short review we focus on newly identified viruses associated with severe haemorrhagic disease in humans in China and the US.
Collapse
Affiliation(s)
- Richard M Elliott
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK.
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
| |
Collapse
|
466
|
Chen ZH, Qin XC, Song R, Shen Y, Chen XP, Wang W, Zhao YX, Zhang JS, He JR, Li MH, Zhao XH, Liu DW, Fu XK, Tian D, Li XW, Xu J, Plyusnin A, Holmes EC, Zhang YZ. Co-circulation of multiple hemorrhagic fever diseases with distinct clinical characteristics in Dandong, China. PLoS One 2014; 9:e89896. [PMID: 24587107 PMCID: PMC3937409 DOI: 10.1371/journal.pone.0089896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/29/2014] [Indexed: 12/14/2022] Open
Abstract
Hemorrhagic fevers (HF) caused by viruses and bacteria are a major public health problem in China and characterized by variable clinical manifestations, such that it is often difficult to achieve accurate diagnosis and treatment. The causes of HF in 85 patients admitted to Dandong hospital, China, between 2011–2012 were determined by serological and PCR tests. Of these, 34 patients were diagnosed with Huaiyangshan hemorrhagic fever (HYSHF), 34 with Hemorrhagic Fever with Renal Syndrome (HFRS), one with murine typhus, and one with scrub typhus. Etiologic agents could not be determined in the 15 remaining patients. Phylogenetic analyses of recovered bacterial and viral sequences revealed that the causative infectious agents were closely related to those described in other geographical regions. As these diseases have no distinctive clinical features in their early stage, only 13 patients were initially accurately diagnosed. The distinctive clinical features of HFRS and HYSHF developed during disease progression. Enlarged lymph nodes, cough, sputum, and diarrhea were more common in HYSHF patients, while more HFRS cases presented with headache, sore throat, oliguria, percussion pain kidney area, and petechiae. Additionally, HYSHF patients displayed significantly lower levels of white blood cells (WBC), higher levels of creations kinase (CK) and alanine aminotransferase (ALT), while HFRS patients presented with an elevation of blood urea nitrogen (BUN) and creatinine (CREA). These clinical features will assist in the accurate diagnosis of both HYSHF and HFRS. Overall, our data reveal the complexity of pathogens causing HFs in a single Chinese hospital, and highlight the need for accurate early diagnosis and a better understanding of their distinctive clinical features.
Collapse
Affiliation(s)
- Zhi-Hai Chen
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xin-Cheng Qin
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rui Song
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yi Shen
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - Xiao-Ping Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong-Xiang Zhao
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - Jing-Shan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin-Rong He
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming-Hui Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue-Hua Zhao
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - De-Wei Liu
- Department of Infectious Diseases, Dandong Infectious Hospital, Dandong, Liaoning Province, China
| | - Xiao-Kang Fu
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Tian
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xing-Wang Li
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Alexander Plyusnin
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
467
|
Ladner JT, Savji N, Lofts L, Travassos da Rosa A, Wiley MR, Gestole MC, Rosen GE, Guzman H, Vasconcelos PFC, Nunes MRT, J Kochel T, Lipkin WI, Tesh RB, Palacios G. Genomic and phylogenetic characterization of viruses included in the Manzanilla and Oropouche species complexes of the genus Orthobunyavirus, family Bunyaviridae. J Gen Virol 2014; 95:1055-1066. [PMID: 24558222 DOI: 10.1099/vir.0.061309-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A thorough characterization of the genetic diversity of viruses present in vector and vertebrate host populations is essential for the early detection of and response to emerging pathogenic viruses, yet genetic characterization of many important viral groups remains incomplete. The Simbu serogroup of the genus Orthobunyavirus, family Bunyaviridae, is an example. The Simbu serogroup currently consists of a highly diverse group of related arboviruses that infect both humans and economically important livestock species. Here, we report complete genome sequences for 11 viruses within this group, with a focus on the large and poorly characterized Manzanilla and Oropouche species complexes. Phylogenetic and pairwise divergence analyses indicated the presence of high levels of genetic diversity within these two species complexes, on a par with that seen among the five other species complexes in the Simbu serogroup. Based on previously reported divergence thresholds between species, the data suggested that these two complexes should actually be divided into at least five species. Together these five species formed a distinct phylogenetic clade apart from the rest of the Simbu serogroup. Pairwise sequence divergences among viruses of this clade and viruses in other Simbu serogroup species complexes were similar to levels of divergence among the other orthobunyavirus serogroups. The genetic data also suggested relatively high levels of natural reassortment, with three potential reassortment events present, including two well-supported events involving viruses known to infect humans.
Collapse
Affiliation(s)
- Jason T Ladner
- Center for Genomic Sciences, United States Army Medical Institute for Infectious Disease, Frederick, MD, USA
| | - Nazir Savji
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Loreen Lofts
- Center for Genomic Sciences, United States Army Medical Institute for Infectious Disease, Frederick, MD, USA
| | - Amelia Travassos da Rosa
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael R Wiley
- Center for Genomic Sciences, United States Army Medical Institute for Infectious Disease, Frederick, MD, USA
| | - Marie C Gestole
- Center for Genomic Sciences, United States Army Medical Institute for Infectious Disease, Frederick, MD, USA
| | - Gail E Rosen
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Hilda Guzman
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pedro F C Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Marcio R T Nunes
- Virology Department, Naval Medical Research Unit Six, Lima, Peru
| | - Tadeusz J Kochel
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Robert B Tesh
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gustavo Palacios
- Center for Genomic Sciences, United States Army Medical Institute for Infectious Disease, Frederick, MD, USA
| |
Collapse
|
468
|
Kishimoto T, Kida K. [Diagnosis, treatment and prevention of infectious diseases. Topics: I. Countermeasures against epidemic infectious diseases; 7. Recent tick-borne disease--SFTS (severe fever with thorombocytopenia syndrome)]. ACTA ACUST UNITED AC 2014; 102:2846-53. [PMID: 24450121 DOI: 10.2169/naika.102.2846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Toshio Kishimoto
- Okayama Prefectural Institute for Environmental Science and Public Health, Japan
| | - Koji Kida
- Okayama Prefectural Institute for Environmental Science and Public Health, Japan
| |
Collapse
|
469
|
Palacios G, Tesh RB, Savji N, Travassos da Rosa APA, Guzman H, Bussetti AV, Desai A, Ladner J, Sanchez-Seco M, Lipkin WI. Characterization of the Sandfly fever Naples species complex and description of a new Karimabad species complex (genus Phlebovirus, family Bunyaviridae). J Gen Virol 2014; 95:292-300. [PMID: 24096318 PMCID: PMC3917069 DOI: 10.1099/vir.0.056614-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/23/2013] [Indexed: 12/24/2022] Open
Abstract
Genomic and antigenic characterization of members of the Sandfly fever Naples virus (SFNV) complex reveals the presence of five clades that differ in their geographical distribution. Saint Floris and Gordil viruses, both found in Africa, form one clade; Punique, Granada and Massilia viruses, all isolated in the western Mediterranean, constitute a second; Toscana virus, a third; SFNV isolates from Italy, Cyprus, Egypt and India form a fourth; while Tehran virus and a Serbian isolate Yu 8/76, represent a fifth. Interestingly, this last clade appears not to express the second non-structural protein ORF. Karimabad virus, previously classified as a member of the SFNV complex, and Gabek Forest virus are distinct and form a new species complex (named Karimabad) in the Phlebovirus genus. In contrast with the high reassortment frequency observed in some South American phleboviruses, the only virus of the SFNV complex with evidence of reassortment was Granada virus.
Collapse
Affiliation(s)
- Gustavo Palacios
- Center for Genomic Sciences, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, USA
| | - Robert B. Tesh
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nazir Savji
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Amelia P. A. Travassos da Rosa
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hilda Guzman
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ana Valeria Bussetti
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Aaloki Desai
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jason Ladner
- Center for Genomic Sciences, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, USA
| | - Maripaz Sanchez-Seco
- Centro Nacional de Microbiologia, Instituto de Salud ‘Carlos III’, Madrid, Spain
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
470
|
|
471
|
Cui N, Bao XL, Yang ZD, Lu QB, Hu CY, Wang LY, Wang BJ, Wang HY, Liu K, Yuan C, Fan XJ, Wang Z, Zhang L, Zhang XA, Hu LP, Liu W, Cao WC. Clinical progression and predictors of death in patients with severe fever with thrombocytopenia syndrome in China. J Clin Virol 2014; 59:12-7. [DOI: 10.1016/j.jcv.2013.10.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
472
|
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, Plantard O, Vayssier-Taussat M, Bonnet S, Spitalská E, Kazimírová M. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front Public Health 2014. [PMID: 25520947 DOI: 10.3389/fpubh.2014.00251.pmid:25520947;pmcid:pmc4248671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige , Trento , Italy
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Vetsuisse-Faculty, Swiss National Centre for Vector Entomology, Institute for Parasitology, University of Zurich , Zürich , Switzerland
| | - Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig , Leipzig , Germany
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Gábor Földvári
- Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University , Budapest , Hungary
| | - Olivier Plantard
- INRA, UMR1300 BioEpAR , Nantes , France ; LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR BioEpAR , Nantes , France
| | - Muriel Vayssier-Taussat
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Sarah Bonnet
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Eva Spitalská
- Institute of Virology, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
473
|
Bissinger BW, Schmidt JP, Owens JJ, Mitchell SM, Kennedy MK. Activity of the plant-based repellent, TT-4302 against the ticks Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis and Rhipicephalus sanguineus (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2014; 62:105-113. [PMID: 23907554 DOI: 10.1007/s10493-013-9719-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
The plant-based repellent TT-4302 (5 % geraniol) was compared to deet (15 %) in laboratory two-choice bioassays against the ticks Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Rhipicephalus sanguineus. At 2.5 and 3.5 h after treatment of filter paper with TT-4302, 100 % repellency was observed for all species at both time points with the exception of I. scapularis at the 3.5 h evaluation where repellency was 95.8 %. Deet was 100 % repellent at both time points for D. variabilis and R. sanguineus and was 100 % repellent at the 2.5 h evaluation for I. scapularis. Repellency of deet to A. americanum was 88.9 and 95.8 % at 2.5 and 3.5 h, respectively which was not significantly different than that of TT-4302. No significant difference against I. scapularis was observed between TT-4302 and deet at 3.5 h after treatment where deet was 87.5 % repellent. A variant of TT-4302, TT-4228 was tested in the laboratory against A. americanum and was compared to deet (15 %) in field trials against wild populations of ticks in North Carolina, USA. In the laboratory, TT-4228 was 94.4 and 87.5 % repellent at 2.5 and 3.5 h after treatment, respectively. In the field where the predominant tick species was A. americanum, significantly fewer ticks were collected from socks worn by human volunteers that were treated with TT-4228 compared to those treated with deet 2.5 or 3.5 h after treatment. Significantly fewer ticks were recovered from socks treated with TT-4228 than their paired untreated controls 2.5 or 3.5 h after treatment and repellencies were 90 and 70 %, respectively. Fewer ticks were collected from deet-treated compared to their paired untreated socks 2.5 h after application; however, no significant difference was found in the number of ticks collected from deet-and untreated socks 3.5 h after treatment.
Collapse
Affiliation(s)
- B W Bissinger
- TyraTech, Inc., 5151 McCrimmon Pkwy, Ste. 275, Morrisville, NC, 27560, USA,
| | | | | | | | | |
Collapse
|
474
|
Liu S, Chai C, Wang C, Amer S, Lv H, He H, Sun J, Lin J. Systematic review of severe fever with thrombocytopenia syndrome: virology, epidemiology, and clinical characteristics. Rev Med Virol 2013; 24:90-102. [PMID: 24310908 PMCID: PMC4237196 DOI: 10.1002/rmv.1776] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/19/2013] [Accepted: 11/04/2013] [Indexed: 01/12/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) was firstly discovered in China in 2010, followed by several reports from many other countries worldwide. SFTS virus (SFTSV) has been identified as the causative agent of the disease and has been recognized as a public health threat. This novel Bunyavirus belongs to the Phlebovirus genus in the family Bunyaviridae. This review also describes the different aspects of virology, pathogenesis, epidemiology, and clinical symptoms on the basis of the published article surveillance data and phylogenetic analyses of viral sequences of large, medium, and small segments retrieved from database using mega 5.05, simplot 3.5.1, network 4.611, and epi information system 3.5.3 software. SFTS presents with fever, thrombocytopenia, leukocytopenia, and considerable changes in several serum biomarkers. The disease has 10 ∼ 15% mortality rate, commonly because of multiorgan dysfunction. SFTSV is mainly reported in the rural areas of Central and North-Eastern China, with seasonal occurrence from May to September, mainly targeting those of ≥50 years of age. A wide range of domesticated animals, including sheep, goats, cattle, pigs, dogs, and chickens have been proven seropositive for SFTSV. Ticks, especially Haemaphysalis longicornis, are suspected to be the potential vector, which have a broad animal host range in the world. More studies are needed to elucidate the vector–animal–human ecological cycle, the pathogenic mechanisms in high level animal models and vaccine development. © 2013 The Authors. Reviews in Medical Virology published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | | | | | |
Collapse
|
475
|
The pathogenesis of severe fever with thrombocytopenia syndrome virus infection in alpha/beta interferon knockout mice: insights into the pathologic mechanisms of a new viral hemorrhagic fever. J Virol 2013; 88:1781-6. [PMID: 24257618 DOI: 10.1128/jvi.02277-13] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered Phlebovirus causing an emerging hemorrhagic fever in East Asia, with reported case fatality rates up to 30%. Despite the high case fatality rate and large number of persons at risk of infection, the pathobiology of the disease is unknown, and no effective animal model has been available for investigating its pathogenesis. We have studied mice and hamsters as potential small-animal models of SFTSV infection following subcutaneous, intraperitoneal, or intracerebral inoculation. Animal tissues were processed for viral load determination, histopathology, immunohistochemistry, and confocal microscopic studies. We found that immunocompetent adult mice and hamsters did not become ill after SFTSV infection. However, alpha/beta interferon receptor knockout (IFNAR(-/-)) mice were highly susceptible to SFTSV infection, and all mice died within 3 to 4 days after subcutaneous inoculation of 10(6) focus-forming units of SFTSV. Histologic examination of tissues of IFNAR(-/-) mice infected with SFTSV showed no detectable lesions. In contrast, by immunohistochemistry virus antigen was found in liver, intestine, kidney, spleen, lymphoid tissue, and brain, but not in the lungs. Mesenteric lymph nodes and spleen were the most heavily infected tissues. Quantitative reverse transcription-PCR (RT-PCR) confirmed the presence of virus in these tissues. Confocal microscopy showed that SFTSV colocalized with reticular cells but did not colocalize with dendritic cells, monocytes/macrophages, neutrophils, or endothelium. Our results indicate that SFTSV multiplied in all organs except for lungs and that mesenteric lymph nodes and spleen were the most heavily infected tissues. The major target cells of SFTSV appear to be reticular cells in lymphoid tissues of intestine and spleen.
Collapse
|
476
|
Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, Kamei T, Honda M, Ninomiya D, Sakai T, Senba T, Kaneyuki S, Sakaguchi S, Satoh A, Hosokawa T, Kawabe Y, Kurihara S, Izumikawa K, Kohno S, Azuma T, Suemori K, Yasukawa M, Mizutani T, Omatsu T, Katayama Y, Miyahara M, Ijuin M, Doi K, Okuda M, Umeki K, Saito T, Fukushima K, Nakajima K, Yoshikawa T, Tani H, Fukushi S, Fukuma A, Ogata M, Shimojima M, Nakajima N, Nagata N, Katano H, Fukumoto H, Sato Y, Hasegawa H, Yamagishi T, Oishi K, Kurane I, Morikawa S, Saijo M. The first identification and retrospective study of Severe Fever with Thrombocytopenia Syndrome in Japan. J Infect Dis 2013; 209:816-27. [PMID: 24231186 PMCID: PMC7107388 DOI: 10.1093/infdis/jit603] [Citation(s) in RCA: 621] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background. Severe fever with thrombocytopenia syndrome (SFTS) is caused by SFTS virus (SFTSV), a novel bunyavirus reported to be endemic in central and northeastern China. This article describes the first identified patient with SFTS and a retrospective study on SFTS in Japan. Methods. Virologic and pathologic examinations were performed on the patient's samples. Laboratory diagnosis of SFTS was made by isolation/genome amplification and/or the detection of anti-SFTSV immunoglobulin G antibody in sera. Physicians were alerted to the initial diagnosis and asked whether they had previously treated patients with symptoms similar to those of SFTS. Results. A female patient who died in 2012 received a diagnosis of SFTS. Ten additional patients with SFTS were then retrospectively identified. All patients were aged ≥50 years and lived in western Japan. Six cases were fatal. The ratio of males to females was 8:3. SFTSV was isolated from 8 patients. Phylogenetic analyses indicated that all of the Japanese SFTSV isolates formed a genotype independent to those from China. Most patients showed symptoms due to hemorrhage, possibly because of disseminated intravascular coagulation and/or hemophagocytosis. Conclusions. SFTS has been endemic to Japan, and SFTSV has been circulating naturally within the country.
Collapse
|
477
|
Goldsmith CS, Ksiazek TG, Rollin PE, Comer JA, Nicholson WL, Peret TCT, Erdman DD, Bellini WJ, Harcourt BH, Rota PA, Bhatnagar J, Bowen MD, Erickson BR, McMullan LK, Nichol ST, Shieh WJ, Paddock CD, Zaki SR. Cell culture and electron microscopy for identifying viruses in diseases of unknown cause. Emerg Infect Dis 2013; 19:886-91. [PMID: 23731788 PMCID: PMC3713842 DOI: 10.3201/eid1906.130173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During outbreaks of infectious diseases or in cases of severely ill patients, it is imperative to identify the causative agent. This report describes several events in which virus isolation and identification by electron microscopy were critical to initial recognition of the etiologic agent, which was further analyzed by additional laboratory diagnostic assays. Examples include severe acute respiratory syndrome coronavirus, and Nipah, lymphocytic choriomeningitis, West Nile, Cache Valley, and Heartland viruses. These cases illustrate the importance of the techniques of cell culture and electron microscopy in pathogen identification and recognition of emerging diseases.
Collapse
Affiliation(s)
- Cynthia S Goldsmith
- Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop G32, Atlanta, GA 30329, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
478
|
Non-structural proteins of arthropod-borne bunyaviruses: roles and functions. Viruses 2013; 5:2447-68. [PMID: 24100888 PMCID: PMC3814597 DOI: 10.3390/v5102447] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/20/2013] [Accepted: 09/25/2013] [Indexed: 12/24/2022] Open
Abstract
Viruses within the Bunyaviridae family are tri-segmented, negative-stranded RNA viruses. The family includes several emerging and re-emerging viruses of humans, animals and plants, such as Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, Schmallenberg virus and tomato spotted wilt virus. Many bunyaviruses are arthropod-borne, so-called arboviruses. Depending on the genus, bunyaviruses encode, in addition to the RNA-dependent RNA polymerase and the different structural proteins, one or several non-structural proteins. These non-structural proteins are not always essential for virus growth and replication but can play an important role in viral pathogenesis through their interaction with the host innate immune system. In this review, we will summarize current knowledge and understanding of insect-borne bunyavirus non-structural protein function(s) in vertebrate, plant and arthropod.
Collapse
|
479
|
Lanciotti RS, Kosoy OI, Bosco-Lauth AM, Pohl J, Stuchlik O, Reed M, Lambert AJ. Isolation of a novel orthobunyavirus (Brazoran virus) with a 1.7kb S segment that encodes a unique nucleocapsid protein possessing two putative functional domains. Virology 2013; 444:55-63. [DOI: 10.1016/j.virol.2013.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/30/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
|
480
|
Liu W, Lu QB, Cui N, Li H, Wang LY, Liu K, Yang ZD, Wang BJ, Wang HY, Zhang YY, Zhuang L, Hu CY, Yuan C, Fan XJ, Wang Z, Zhang L, Zhang XA, Walker DH, Cao WC. Case-fatality ratio and effectiveness of ribavirin therapy among hospitalized patients in china who had severe fever with thrombocytopenia syndrome. Clin Infect Dis 2013; 57:1292-9. [PMID: 23965284 DOI: 10.1093/cid/cit530] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The wide distribution and high case-fatality ratio of severe fever with thrombocytopenia syndrome (SFTS) have made it a significant public health problem. This study was designed to identify the predictors of fatal outcomes and to evaluate the effectiveness of antiviral therapy in treating SFTS virus (SFTSV)-infected patients. METHODS A cross-sectional study was performed in a general hospital located in Xinyang city, whereas the largest number of patients with SFTS in China were treated during 2011-2012. The primary outcome for the treatment effect analysis was death. Other outcomes included sequential platelet levels and viral loads observed throughout the hospitalization and the interval between the initiation of ribavirin therapy and the return of the platelet count to a normal level. RESULTS A total of 311 SFTSV-infected patients were included in the study. The most frequent clinical presentations were fever, weakness, myalgia, and gastrointestinal symptoms. Each patient had thrombocytopenia, leukopenia, or both. The case-fatality ratio (CFR) was 17.4% (95% confidence interval [CI], 13.1%-21.6%). Older age (odds ratio [OR], 1.061; 95% CI, 1.023-1.099; P = .001), decreased level of consciousness (OR, 5.397; 95% CI, 2.660-10.948; P < .001), and elevated levels of lactate dehydrogenase (>1200 U/L; OR, 2.620; 95% CI, 1.073-6.399; P = .035) and creatine kinase (>800 U/L; OR, 2.328; 95% CI, 1.129-4.800; P = .022) were significantly associated with fatal outcome. The CFRs were similar between patients who received ribavirin and those who did not. Ribavirin treatment showed no significant effect on either platelet counts or viral loads during hospitalization of patients with fatal or nonfatal cases. CONCLUSIONS These findings can improve knowledge about the characteristics of patients with fatal outcomes and the use of antiviral drug for SFTS.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
481
|
Zhang X, Liu Y, Zhao L, Li B, Yu H, Wen H, Yu XJ. An emerging hemorrhagic fever in China caused by a novel bunyavirus SFTSV. SCIENCE CHINA-LIFE SCIENCES 2013; 56:697-700. [PMID: 23917841 DOI: 10.1007/s11427-013-4518-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever in rural areas of China and is caused by a new bunyavirus, SFTSV, named after the disease. The transmission vectors and animal hosts of SFTSV are unclear. Ticks are the most likely transmission vectors and domestic animals, including goats, dogs, and cattle, are potential amplifying hosts of SFTSV. The clinical symptoms of SFTS are nonspecific, but major symptoms include fever, gastrointestinal symptoms, myalgia, dizziness, joint pain, chills, and regional lymphadenopathy. The most common abnormalities in laboratory test results are thrombocytopenia (95%), leukocytopenia (86%), and elevated levels of serum alanine aminotransferase, aspartate aminotransferase, creatine kinase, and lactate dehydrogenase. The fatality rate for SFTS is 12% on average, and the annual incidence of the disease is approximately five per 100000 of the rural population.
Collapse
Affiliation(s)
- XiaoShuang Zhang
- School of Public Health, Shandong University, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|
482
|
Xing Z, Schefers J, Schwabenlander M, Jiao Y, Liang M, Qi X, Li C, Goyal S, Cardona CJ, Wu X, Zhang Z, Li D, Collins J, Murtaugh MP. Novel Bunyavirus in Domestic and Captive Farmed Animals, Minnesota, USA. Emerg Infect Dis 2013. [DOI: 10.3201/eid1908.130165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
483
|
Savage HM, Godsey MS, Lambert A, Panella NA, Burkhalter KL, Harmon JR, Lash RR, Ashley DC, Nicholson WL. First detection of heartland virus (Bunyaviridae: Phlebovirus) from field collected arthropods. Am J Trop Med Hyg 2013; 89:445-452. [PMID: 23878186 PMCID: PMC3771279 DOI: 10.4269/ajtmh.13-0209] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Heartland virus (HRTV), the first pathogenic Phlebovirus (Family: Bunyaviridae) discovered in the United States, was recently described from two Missouri farmers. In 2012, we collected 56,428 ticks representing three species at 12 sites including both patients' farms. Amblyomma americanum and Dermacentor variabilis accounted for nearly all ticks collected. Ten pools composed of deplete nymphs of A. americanum collected at a patient farm and a nearby conservation area were reverse transcription-polymerase chain reaction positive, and eight pools yielded viable viruses. Sequence data from the nonstructural protein of the Small segment indicates that tick strains and human strains are very similar, ≥ 97.6% sequence identity. This is the first study to isolate HRTV from field-collected arthropods and to implicate ticks as potential vectors. Amblyomma americanum likely becomes infected by feeding on viremic hosts during the larval stage, and transmission to humans occurs during the spring and early summer when nymphs are abundant and actively host seeking.
Collapse
Affiliation(s)
- Harry M. Savage
- *Address correspondence to Harry M. Savage, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521. E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Human antibody neutralizes severe Fever with thrombocytopenia syndrome virus, an emerging hemorrhagic Fever virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1426-32. [PMID: 23863504 DOI: 10.1128/cvi.00222-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), a newly discovered member of the Bunyaviridae family, is the causative agent of an emerging hemorrhagic fever, SFTS, in China. Currently, there are no vaccines or effective therapies against SFTS. In this study, a combinatorial human antibody library was constructed from the peripheral lymphocytes of 5 patients who had recovered from SFTS. The library was screened against purified virions for the production of single-chain variable-region fragments (ScFv). Of the 6 positive clones, one clone (monoclonal antibody [MAb] 4-5) showed neutralizing activity against SFTSV infection in Vero cells. MAb 4-5 was found to effectively neutralize all of the clinical isolates of SFTSV tested, which were isolated from patients in China from 2010 to 2012. MAb 4-5 was found to bind a linear epitope in the ectodomain of glycoprotein Gn. Its neutralizing activity is attributed to blockage of the interactions between the Gn protein and the cellular receptor, indicating that inhibition of virus-cell attachment is its main mechanism. These data suggest that MAb 4-5 can be used as a promising candidate molecule for immunotherapy against SFTSV infection.
Collapse
|
485
|
Junglen S, Drosten C. Virus discovery and recent insights into virus diversity in arthropods. Curr Opin Microbiol 2013; 16:507-13. [PMID: 23850098 PMCID: PMC7108301 DOI: 10.1016/j.mib.2013.06.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 11/29/2022]
Abstract
Overview on arthropod-associated virus discovery. Description of newly characterized virus species. Projections for further research.
Recent studies on virus discovery have focused mainly on mammalian and avian viruses. Arbovirology with its long tradition of ecologically oriented investigation is now catching up, with important novel insights into the diversity of arthropod-associated viruses. Recent discoveries include taxonomically outlying viruses within the families Flaviviridae, Togaviridae, and Bunyaviridae, and even novel virus families within the order Nidovirales. However, the current focusing of studies on blood-feeding arthropods has restricted the range of arthropod hosts analyzed for viruses so far. Future investigations should include species from other arthropod taxa than Ixodita, Culicidae and Phlebotominae in order to shed light on the true diversity of arthropod viruses.
Collapse
Affiliation(s)
- Sandra Junglen
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany.
| | | |
Collapse
|
486
|
Zhang W, Zeng X, Zhang L, Peng H, Jiao Y, Zeng J, Treutlein HR. Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5). J Comput Aided Mol Des 2013; 27:539-50. [PMID: 23838839 DOI: 10.1007/s10822-013-9661-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 06/24/2013] [Indexed: 12/12/2022]
Abstract
In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.
Collapse
Affiliation(s)
- Wenshuai Zhang
- Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Institute of Pathogenic Microbiology, Ministry Health, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
487
|
Abstract
PURPOSE OF REVIEW We review latest developments in knowledge of established and emerging tick-borne infections in the United States other than Lyme borreliosis, emphasizing a clinical and geographic approach to diagnosis and management. RECENT FINDINGS The incidence of tick-borne diseases in the United States has increased. New tick-borne diseases have emerged and will likely continue to be identified. SUMMARY Clinicians should maintain suspicion for tick-borne diseases in children with acute infectious illnesses, and consider treating such patients presumptively to prevent complications. Knowledge of common tick vectors in the United States and the infections they transmit will allow pediatricians to appropriately assess and manage patients with tick-borne diseases.
Collapse
|
488
|
Jiao L, Ouyang S, Liang M, Niu F, Shaw N, Wu W, Ding W, Jin C, Peng Y, Zhu Y, Zhang F, Wang T, Li C, Zuo X, Luan CH, Li D, Liu ZJ. Structure of severe fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with suramin reveals therapeutic potential. J Virol 2013; 87:6829-39. [PMID: 23576501 PMCID: PMC3676114 DOI: 10.1128/jvi.00672-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 04/01/2013] [Indexed: 01/15/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome is an emerging infectious disease caused by a novel bunyavirus (SFTSV). Lack of vaccines and inadequate therapeutic treatments have made the spread of the virus a global concern. Viral nucleocapsid protein (N) is essential for its transcription and replication. Here, we present the crystal structures of N from SFTSV and its homologs from Buenaventura (BUE) and Granada (GRA) viruses. The structures reveal that phleboviral N folds into a compact core domain and an extended N-terminal arm that mediates oligomerization, such as tetramer, pentamer, and hexamer of N assemblies. Structural superimposition indicates that phleboviral N adopts a conserved architecture and uses a similar RNA encapsidation strategy as that of RVFV-N. The RNA binding cavity runs along the inner edge of the ring-like assembly. A triple mutant of SFTSV-N, R64D/K67D/K74D, almost lost its ability to bind RNA in vitro, is deficient in its ability to transcribe and replicate. Structural studies of the mutant reveal that both alterations in quaternary assembly and the charge distribution contribute to the loss of RNA binding. In the screening of inhibitors Suramin was identified to bind phleboviral N specifically. The complex crystal structure of SFTSV-N with Suramin was refined to a 2.30-Å resolution. Suramin was found sitting in the putative RNA binding cavity of SFTSV-N. The inhibitory effect of Suramin on SFTSV replication was confirmed in Vero cells. Therefore, a common Suramin-based therapeutic approach targeting SFTSV-N and its homologs could be developed for containing phleboviral outbreaks.
Collapse
Affiliation(s)
- Lianying Jiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songying Ouyang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mifang Liang
- Key Laboratory of Medical Virology, MOH, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Fengfeng Niu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Neil Shaw
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Wei Wu
- Key Laboratory of Medical Virology, MOH, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Wei Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Cong Jin
- Key Laboratory of Medical Virology, MOH, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Yao Peng
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Yanping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fushun Zhang
- Key Laboratory of Medical Virology, MOH, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Tao Wang
- Key Laboratory of Medical Virology, MOH, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Chuan Li
- Key Laboratory of Medical Virology, MOH, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory, Department of Molecular Biosciences, Chemistry of Life Processes Institute, and Center for Structural Genomics of Infectious Diseases, Northwestern University, Illinois, USA
| | - Dexin Li
- Key Laboratory of Medical Virology, MOH, National Institute for Viral Diseases Control and Prevention, Beijing, China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
489
|
Abstract
Pathogen discovery is critically important to infectious diseases and public health. Nearly all new outbreaks are caused by the emergence of novel viruses. Genomic tools for pathogen discovery include consensus PCR, microarrays, and deep sequencing. Downstream studies are often necessary to link a candidate novel virus to a disease.
Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease.
Collapse
|
490
|
Swei A, Russell BJ, Naccache SN, Kabre B, Veeraraghavan N, Pilgard MA, Johnson BJB, Chiu CY. The genome sequence of Lone Star virus, a highly divergent bunyavirus found in the Amblyomma americanum tick. PLoS One 2013; 8:e62083. [PMID: 23637969 PMCID: PMC3639253 DOI: 10.1371/journal.pone.0062083] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/17/2013] [Indexed: 12/17/2022] Open
Abstract
Viruses in the family Bunyaviridae infect a wide range of plant, insect, and animal hosts. Tick-borne bunyaviruses in the Phlebovirus genus, including Severe Fever with Thrombocytopenia Syndrome virus (SFTSV) in China, Heartland virus (HRTV) in the United States, and Bhanja virus in Eurasia and Africa have been associated with acute febrile illness in humans. Here we sought to characterize the growth characteristics and genome of Lone Star virus (LSV), an unclassified bunyavirus originally isolated from the lone star tick Amblyomma americanum. LSV was able to infect both human (HeLa) and monkey (Vero) cells. Cytopathic effects were seen within 72 h in both cell lines; vacuolization was observed in infected Vero, but not HeLa, cells. Viral culture supernatants were examined by unbiased deep sequencing and analysis using an in-house developed rapid computational pipeline for viral discovery, which definitively identified LSV as a phlebovirus. De novo assembly of the full genome revealed that LSV is highly divergent, sharing <61% overall amino acid identity with any other bunyavirus. Despite this sequence diversity, LSV was found by phylogenetic analysis to be part of a well-supported clade that includes members of the Bhanja group viruses, which are most closely related to SFSTV/HRTV. The genome sequencing of LSV is a critical first step in developing diagnostic tools to determine the risk of arbovirus transmission by A. americanum, a tick of growing importance given its expanding geographic range and competence as a disease vector. This study also underscores the power of deep sequencing analysis in rapidly identifying and sequencing the genomes of viruses of potential clinical and public health significance.
Collapse
Affiliation(s)
- Andrea Swei
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, United States of America
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Brandy J. Russell
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Samia N. Naccache
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, United States of America
| | - Beniwende Kabre
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, United States of America
| | - Narayanan Veeraraghavan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, United States of America
| | - Mark A. Pilgard
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Barbara J. B. Johnson
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Charles Y. Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
491
|
Barzon L, Lavezzo E, Costanzi G, Franchin E, Toppo S, Palù G. Next-generation sequencing technologies in diagnostic virology. J Clin Virol 2013; 58:346-50. [PMID: 23523339 DOI: 10.1016/j.jcv.2013.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/01/2013] [Accepted: 03/02/2013] [Indexed: 11/15/2022]
Abstract
The data deluge produced by next-generation sequencing (NGS) technologies is an appealing feature for clinical virologists that are involved in the diagnosis of emerging viral infections, molecular epidemiology of viral pathogens, drug-resistance testing, and also like to do some basic and clinical research. Indeed, NGS platforms are being implemented in many clinical and research laboratories, as the costs of these platforms are progressively decreasing. We provide here some suggestions for virologists who are planning to implement a NGS platform in their clinical laboratory and an overview on the potential applications of these technologies in diagnostic virology.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, Via A. Gabelli 63, I-35121 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
492
|
Palacios G, Savji N, Travassos da Rosa A, Guzman H, Yu X, Desai A, Rosen GE, Hutchison S, Lipkin WI, Tesh R. Characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): evidence for seven distinct species. J Virol 2013; 87:3187-95. [PMID: 23283959 PMCID: PMC3592153 DOI: 10.1128/jvi.02719-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/24/2012] [Indexed: 11/20/2022] Open
Abstract
Evolutionary insights into the phleboviruses are limited because of an imprecise classification scheme based on partial nucleotide sequences and scattered antigenic relationships. In this report, the serologic and phylogenetic relationships of the Uukuniemi group viruses and their relationships with other recently characterized tick-borne phleboviruses are described using full-length genome sequences. We propose that the viruses currently included in the Uukuniemi virus group be assigned to five different species as follows: Uukuniemi virus, EgAn 1825-61 virus, Fin V707 virus, Chizé virus, and Zaliv Terpenia virus would be classified into the Uukuniemi species; Murre virus, RML-105-105355 virus, and Sunday Canyon virus would be classified into a Murre virus species; and Grand Arbaud virus, Precarious Point virus, and Manawa virus would each be given individual species status. Although limited sequence similarity was detected between current members of the Uukuniemi group and Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus, a clear serological reaction was observed between some of them, indicating that SFTSV and Heartland virus should be considered part of the Uukuniemi virus group. Moreover, based on the genomic diversity of the phleboviruses and given the low correlation observed between complement fixation titers and genetic distance, we propose a system for classification of the Bunyaviridae based on genetic as well as serological data. Finally, the recent descriptions of SFTSV and Heartland virus also indicate that the public health importance of the Uukuniemi group viruses must be reevaluated.
Collapse
Affiliation(s)
- Gustavo Palacios
- United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
493
|
Gibson AK, Smith Z, Fuqua C, Clay K, Colbourne JK. Why so many unknown genes? Partitioning orphans from a representative transcriptome of the lone star tick Amblyomma americanum. BMC Genomics 2013; 14:135. [PMID: 23445305 PMCID: PMC3616916 DOI: 10.1186/1471-2164-14-135] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background Genomic resources within the phylum Arthropoda are largely limited to the true insects but are beginning to include unexplored subphyla, such as the Crustacea and Chelicerata. Investigations of these understudied taxa uncover high frequencies of orphan genes, which lack detectable sequence homology to genes in pre-existing databases. The ticks (Acari: Chelicerata) are one such understudied taxon for which genomic resources are urgently needed. Ticks are obligate blood-feeders that vector major diseases of humans, domesticated animals, and wildlife. In analyzing a transcriptome of the lone star tick Amblyomma americanum, one of the most abundant disease vectors in the United States, we find a high representation of unannotated sequences. We apply a general framework for quantifying the origin and true representation of unannotated sequences in a dataset and for evaluating the biological significance of orphan genes. Results Expressed sequence tags (ESTs) were derived from different life stages and populations of A. americanum and combined with ESTs available from GenBank to produce 14,310 ESTs, over twice the number previously available. The vast majority (71%) has no sequence homology to proteins archived in UniProtKB. We show that poor sequence or assembly quality is not a major contributor to this high representation by orphan genes. Moreover, most unannotated sequences are functional: a microarray experiment demonstrates that 59% of functional ESTs are unannotated. Lastly, we attempt to further annotate our EST dataset using genomic datasets from other members of the Acari, including Ixodes scapularis, four other tick species and the mite Tetranychus urticae. We find low homology with these species, consistent with significant divergence within this subclass. Conclusions We conclude that the abundance of orphan genes in A. americanum likely results from 1) taxonomic isolation stemming from divergence within the tick lineage and limited genomic resources for ticks and 2) lineage-specific genes needing functional genomic studies to evaluate their association with the unique biology of ticks. The EST sequences described here will contribute substantially to the development of tick genomics. Moreover, the framework provided for the evaluation of orphan genes can guide analyses of future transcriptome sequencing projects.
Collapse
Affiliation(s)
- Amanda K Gibson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | |
Collapse
|
494
|
Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol 2013; 87:4384-94. [PMID: 23388721 DOI: 10.1128/jvi.02628-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel bunyavirus that recently emerged in China. Infection with SFTSV is associated with case-fatality rates of up to 30%, and neither antivirals nor vaccines are available at present. Development of antiviral strategies requires the elucidation of virus-host cell interactions. Here, we analyzed host cell entry of SFTSV. Employing lentiviral and rhabdoviral vectors, we found that the Gn/Gc glycoproteins (Gn/Gc) of SFTSV mediate entry into a broad range of human and animal cell lines, as well as human macrophages and dendritic cells. The Gn/Gc proteins of La Crosse virus (LACV) and Rift Valley Fever Virus (RVFV), other members of the bunyavirus family, facilitated entry into an overlapping but not identical range of cell lines, suggesting that SFTSV, LACV, and RVFV might differ in their receptor requirements. Entry driven by SFTSV Gn/Gc was dependent on low pH but did not require the activity of the pH-dependent endosomal/lysosomal cysteine proteases cathepsins B and L. Instead, the activity of a cellular serine protease was required for infection driven by SFTSV and LACV Gn/Gc. Sera from convalescent SFTS patients inhibited SFTSV Gn/Gc-driven host cell entry in a dose-dependent fashion, demonstrating that the vector system employed is suitable to detect neutralizing antibodies. Finally, the C-type lectin DC-SIGN was found to serve as a receptor for SFTSV Gn/Gc-driven entry into cell lines and dendritic cells. Our results provide initial insights into cell tropism, receptor usage, and proteolytic activation of SFTSV and will aid in the understanding of viral spread and pathogenesis.
Collapse
|
495
|
Li D. A highly pathogenic new bunyavirus emerged in China. Emerg Microbes Infect 2013; 2:e1. [PMID: 26038435 PMCID: PMC3630492 DOI: 10.1038/emi.2013.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/08/2012] [Accepted: 12/19/2012] [Indexed: 12/05/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that was discovered in China in 2010. The causative agent has been identified as a new member of the Phlebovirus genus in the family Bunyaviridae and has been designated severe fever with thrombocytopenia virus (SFTSV). SFTSV infection can be transmitted person-to-person, and the average case fatality rate is approximately 10% in humans. There is a high seroprevalence of SFTSV infection in a wide range of domesticated animals, including sheep, goats, cattle, pigs, dogs and chickens. Ticks are suspected to be the vector that transmits the virus to humans. Currently, the SFTS endemic area is expanding. Therefore, SFTSV infection is an increasingly important public health threat.
Collapse
Affiliation(s)
- Dexin Li
- National Institute for Viral Disease Control and Prevention, China CDC , Beijing 102206, China
| |
Collapse
|
496
|
Characterization of the Bhanja serogroup viruses (Bunyaviridae): a novel species of the genus Phlebovirus and its relationship with other emerging tick-borne phleboviruses. J Virol 2013; 87:3719-28. [PMID: 23325688 DOI: 10.1128/jvi.02845-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bhanja virus (BHAV) and its antigenically close relatives Forecariah virus (FORV), Kismayo virus (KISV), and Palma virus (PALV) are thought to be members of the family Bunyaviridae, but they have not been assigned to a genus or species. Despite their broad geographical distribution and reports that BHAV causes sporadic cases of febrile illness and encephalitis in humans, the public health importance of the Bhanja serogroup viruses remains unclear, due in part to the lack of sequence and biochemical information for the virus proteins. In order to better define the molecular characteristics of this group, we determined the full-length sequences of the L, M, and S genome segments of multiple isolates of BHAV as well as FORV and PALV. The genome structures of these Bhanja viruses are similar to those of viruses belonging to the genus Phlebovirus. Functional domains and amino acid motifs in the viral proteins that are conserved among other known phleboviruses were also identified in proteins of the BHAV group. Phylogenetic and serological analyses revealed that the BHAVs are most closely related to the novel emerging tick-borne phleboviruses severe fever with thrombocytopenia syndrome virus and Heartland virus, which have recently been implicated as causing severe acute febrile illnesses associated with thrombocytopenia in humans in China and the United States. Our results indicate that the Bhanja serogroup viruses constitute a single novel species in the genus Phlebovirus. The results of this study should facilitate epidemiological surveillance for other, similar tick-borne phleboviruses that may represent unrecognized causes of febrile illness in humans.
Collapse
|
497
|
Abstract
Rift Valley fever virus (RVFV), like many other Bunyaviridae family members, is an emerging human and animal pathogen. Bunyaviruses have an outer lipid envelope bearing two glycoproteins, G(N) and G(C), required for cell entry. Bunyaviruses deliver their genome into the host-cell cytoplasm by fusing their envelope with an endosomal membrane. The molecular mechanism of this key entry step is unknown. The crystal structure of RVFV G(C) reveals a class II fusion protein architecture found previously in flaviviruses and alphaviruses. The structure identifies G(C) as the effector of membrane fusion and provides a direct view of the membrane anchor that initiates fusion. A structure of nonglycosylated G(C) reveals an extended conformation that may represent a fusion intermediate. Unanticipated similarities between G(C) and flavivirus envelope proteins reveal an evolutionary link between the two virus families and provide insights into the organization of G(C) in the outer shell of RVFV.
Collapse
|
498
|
Affiliation(s)
- G Antonelli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University, Rome, Italy.
| |
Collapse
|
499
|
To KK, Yuen KY. In memory of Patrick Manson, founding father of tropical medicine and the discovery of vector-borne infections. Emerg Microbes Infect 2012; 1:e31. [PMID: 26038403 PMCID: PMC3630944 DOI: 10.1038/emi.2012.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/31/2012] [Accepted: 09/12/2012] [Indexed: 02/04/2023]
Abstract
Patrick Manson, a clinician-scientist serving in China (1866–1889), discovered that many tropical infectious diseases require a vector peculiar to warm climate for person to person transmission. He demonstrated the nocturnal periodicity of microfilariae in the blood of patients with elephantiasis. These microfilariae undergo metamorphosis when ingested by the mosquito acting as the vector for the completion of their life cycle. Furthermore, he demonstrated the linkage between the lung fluke and endemic haemoptysis by finding operculated eggs in patients' sputa. He predicted that the miracidium from hatched eggs uses crustaceans, such as fresh-water snails found at tropical conditions, as the intermediate hosts in the life cycle of many trematodes. His vector hypothesis leads to vector control which is now the cornerstone for the World Health Organization's programme for the elimination/control of lymphatic filariasis, dracunculiasis and malaria. Before leaving China, he established the Alice Memorial Hospital, the Hong Kong College of Medicine for Chinese (the forerunner of the University of Hong Kong), and the Hong Kong Medical Society for medical service and education. He also incepted the Hong Kong Dairy Farm for supplying hygienic milk affordable by pregnant women, children and patients.
Collapse
Affiliation(s)
- Kelvin Kw To
- Department of Microbiology, State Key Laboratory for Emerging Infectious Diseases, Research Centre for Infection and Immunology, The University of Hong Kong , Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, State Key Laboratory for Emerging Infectious Diseases, Research Centre for Infection and Immunology, The University of Hong Kong , Hong Kong, China
| |
Collapse
|