451
|
Williams BY, Hamilton SL, Sarkar HK. The survival motor neuron protein interacts with the transactivator FUSE binding protein from human fetal brain. FEBS Lett 2000; 470:207-10. [PMID: 10734235 DOI: 10.1016/s0014-5793(00)01320-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To identify interacting proteins of survival motor neuron (SMN) in neurons, a fetal human brain cDNA library was screened using the yeast two-hybrid system. One identified group of SMN interacting clones encoded the DNA transactivator FUSE binding protein (FBP). FBP overexpressed in HEK293 cells or endogenously expressed in fetal and adult mouse brain bound specifically in vitro to recombinant SMN protein. Furthermore, an anti-FBP antibody specifically co-immunoprecipitated SMN when both proteins were overexpressed in HEK293 cells. These results demonstrate that FBP is a novel interacting partner of SMN and suggests a possible role for SMN in neuronal gene expression.
Collapse
Affiliation(s)
- B Y Williams
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
452
|
Growney JD, Scharf JM, Kunkel LM, Dietrich WF. Evolutionary divergence of the mouse and human Lgn1/SMA repeat structures. Genomics 2000; 64:62-81. [PMID: 10708519 DOI: 10.1006/geno.1999.6111] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The orthologous genomic segments on mouse chromosome 13D1-D3 and human chromosome 5q11.2-q13.3 have been extensively studied because of their involvement in two distinct disease phenotypes, spinal muscular atrophy (SMA) in human and susceptibility to Legionella pneumophila (determined by Lgn1) in mice. The overlapping intervals in both species contain genomic amplifications of distinct structure, indicating an independent origin. We have endeavored to construct a comprehensive comparative gene map of the mouse and human Lgn1/SMA intervals in the hopes that the origins and maintenance of the genomic amplifications may become clear. Our comparative gene map demonstrates that the only regional gene in common between the amplified segments in mouse and human is the Lgn1 candidate Naip/NAIP. We have also determined that mice of the 129 haplotype harbor seven intact and three partial Naip transcription units arranged in a closely linked direct repeat on chromosome 13. Several, but not all, of these Naip loci are contained within the Lgn1 critical interval. We present a model for the origins of the mouse and human repetitive arrays from a common ancestral haplotype.
Collapse
Affiliation(s)
- J D Growney
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
453
|
Hirsch E, Oohashi T, Ahmad M, Stamm S, Fässler R. Peri-implantation lethality in mice lacking the Sm motif-containing protein Lsm4. Mol Cell Biol 2000; 20:1055-62. [PMID: 10629062 PMCID: PMC85222 DOI: 10.1128/mcb.20.3.1055-1062.2000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small nuclear ribonucleoproteins (snRNPs) are particles present only in eukaryotic cells. They are involved in a large variety of RNA maturation processes, most notably in pre-mRNA splicing. Several of the proteins typically found in snRNPs contain a sequence signature, the Sm domain, conserved from yeast to mammals. By using a promoter trap strategy to target actively transcribed loci in murine embryonic stem cells, a new murine gene encoding an Sm motif-containing protein was identified. Database searches revealed that it is the mouse orthologue of Lsm4p, a protein found in yeast and human cells and putatively associated with U6 snRNA. Introduction of the geo reporter gene cassette under the control of the murine Lsm4 (mLsm4) endogenous promoter showed that the gene was ubiquitously transcribed in embryonic and adult tissues. The insertion of the geo cassette disrupted the mLsm4 allele, and homozygosity for the mutation led to a recessive embryonic lethal phenotype. mLsm4-null zygotes survived to the blastocyst stages, implanted into the uterus, but died shortly thereafter. The early death of mLsm4p-null mice suggests that the role of mLsm4p in splicing is essential and cannot be compensated by other Lsm proteins.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- Cloning, Molecular
- Embryo Implantation
- Embryonic and Fetal Development
- Female
- Fetal Death
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Humans
- Mice
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Small Nuclear/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Restriction Mapping
- Ribonucleoproteins, Small Nuclear/deficiency
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Schizosaccharomyces/genetics
- Sequence Alignment
- Sequence Deletion
- Sequence Homology, Amino Acid
- Stem Cells/physiology
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- E Hirsch
- Max Planck Institut für Biochemie, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
454
|
Giesemann T, Rathke-Hartlieb S, Rothkegel M, Bartsch JW, Buchmeier S, Jockusch BM, Jockusch H. A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with smn in nuclear gems. J Biol Chem 1999; 274:37908-14. [PMID: 10608857 DOI: 10.1074/jbc.274.53.37908] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by the loss of alpha-motoneurons in the spinal cord followed by atrophy of skeletal muscles. SMA-determining candidate genes, SMN1 and SMN2, have been identified on human chromosome 5q. The corresponding SMN protein is expressed ubiquitously. It is coded by seven exons and contains conspicuous proline-rich motifs in its COOH-terminal third (exons 4, 5, and 6). Such motifs are known to bind to profilins (PFNs), small proteins engaged in the control of actin dynamics. We tested whether profilins interact with SMN via its polyproline stretches. Using the yeast two-hybrid system we show that profilins bind to SMN and that this binding depends on its proline-rich motifs. These results were confirmed by coimmunoprecipitation and by in vitro binding studies. Two PFN isoforms, I and II, are known, of which II is characteristic for central nervous system tissue. We show by in situ hybridization that both PFNs are highly expressed in mouse spinal cord and that PFN II is expressed predominantly in neurons. In motoneurons, the primary target of neurodegeneration in SMA, profilins are highly concentrated and colocalize with SMN in the cytoplasm of the cell body and in nuclear gems. Likewise, SMN and PFN I colocalize in gems of HeLa cells. Although SMN interacts with both profilin isoforms, binding of PFN II was stronger than of PFN I in all assays employed. Because the SMN genes are expressed ubiquitously, our findings suggest that the interaction of PFN II with SMN may be involved in neuron-specific effects of SMN mutations.
Collapse
Affiliation(s)
- T Giesemann
- Department of Cell Biology, Zoological Institute, Technical University of Braunschweig, D-38092 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
455
|
Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano MT, Carmo-Fonseca M. The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol 1999; 147:715-28. [PMID: 10562276 PMCID: PMC2156166 DOI: 10.1083/jcb.147.4.715] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The spliceosomal snRNAs U1, U2, U4, and U5 are synthesized in the nucleus, exported to the cytoplasm to assemble with Sm proteins, and reimported to the nucleus as ribonucleoprotein particles. Recently, two novel proteins involved in biogenesis of small nuclear ribonucleoproteins (snRNPs) were identified, the Spinal muscular atrophy disease gene product (SMN) and its associated protein SIP1. It was previously reported that in HeLa cells, SMN and SIP1 form discrete foci located next to Cajal (coiled) bodies, the so-called "gemini of coiled bodies" or "gems." An intriguing feature of gems is that they do not appear to contain snRNPs. Here we show that gems are present in a variable but small proportion of rapidly proliferating cells in culture. In the vast majority of cultured cells and in all primary neurons analyzed, SMN and SIP1 colocalize precisely with snRNPs in the Cajal body. The presence of SMN and SIP1 in Cajal bodies is confirmed by immunoelectron microscopy and by microinjection of antibodies that interfere with the integrity of the structure. The association of SMN with snRNPs and coilin persists during cell division, but at the end of mitosis there is a lag period between assembly of new Cajal bodies in the nucleus and detection of SMN in these structures, suggesting that SMN is targeted to preformed Cajal bodies. Finally, treatment of cells with leptomycin B (a drug that blocks export of U snRNAs to the cytoplasm and consequently import of new snRNPs into the nucleus) is shown to deplete snRNPs (but not SMN or SIP1) from the Cajal body. This suggests that snRNPs flow through the Cajal body during their biogenesis pathway.
Collapse
Affiliation(s)
- Teresa Carvalho
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa Codex, Portugal
| | - Fátima Almeida
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa Codex, Portugal
| | - Alexandre Calapez
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa Codex, Portugal
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain
| | - Maria T. Berciano
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain
| | - Maria Carmo-Fonseca
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa Codex, Portugal
| |
Collapse
|
456
|
Pellizzoni L, Charroux B, Dreyfuss G. SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc Natl Acad Sci U S A 1999; 96:11167-72. [PMID: 10500148 PMCID: PMC18005 DOI: 10.1073/pnas.96.20.11167] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1999] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a common motor neuron degenerative disease and the leading genetic cause of death of young children. The survival of motor neurons (SMN) gene, the SMA disease gene, is homozygously deleted or mutated in more than 98% of SMA patients. The SMN protein interacts with itself, with SMN-interacting protein 1, and with several spliceosomal small nuclear ribonucleoprotein (snRNP) Sm proteins. A complex containing SMN plays a critical role in spliceosomal snRNP assembly and in pre-mRNA splicing. SMN mutants found in SMA patients show reduced self-association and lack the capacity to regenerate the splicing machinery. Here we demonstrate that SMN mutants found in SMA patients are defective in binding to Sm proteins. Moreover, we show that SMN, but not mutants found in SMA patients, can form large oligomers and that SMN oligomerization is required for high-affinity binding to spliceosomal snRNP Sm proteins. These findings directly link the impaired interaction between SMN and Sm proteins to a defect in snRNP metabolism and to SMA.
Collapse
Affiliation(s)
- L Pellizzoni
- Howard Hughes Medical Institute, Department of Biochemistry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | |
Collapse
|
457
|
Endrizzi M, Huang S, Scharf JM, Kelter AR, Wirth B, Kunkel LM, Miller W, Dietrich WF. Comparative sequence analysis of the mouse and human Lgn1/SMA interval. Genomics 1999; 60:137-51. [PMID: 10486205 DOI: 10.1006/geno.1999.5910] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human chromosome 5q11.2-q13.3 and its ortholog on mouse chromosome 13 contain candidate genes for an inherited human neurodegenerative disorder called spinal muscular atrophy (SMA) and for an inherited mouse susceptibility to infection with Legionella pneumophila (Lgn1). These homologous genomic regions also have unusual repetitive organizations that create practical difficulties in mapping and raise interesting issues about the evolutionary origin of the repeats. In an attempt to analyze this region in detail, and as a way to identify additional candidate genes for these diseases, we have determined the sequence of 179 kb of the mouse Lgn1/SMA interval. We have analyzed this sequence using BLAST searches and various exon prediction programs to identify potential genes. Since these methods can generate false-positive exon declarations, our alignments of the mouse sequence with available human orthologous sequence allowed us to discriminate rapidly among this collection of potential coding regions by indicating which regions were well conserved and were more likely to represent actual coding sequence. As a result of our analysis, we accurately mapped two additional genes in the SMA interval that can be tested for involvement in the pathogenesis of SMA. While no new Lgn1 candidates emerged, we have identified new genetic markers that exclude Smn as an Lgn1 candidate. In addition to providing important resources for studying SMA and Lgn1, our data provide further evidence of the value of sequencing the mouse genome as a means to help with the annotation of the human genomic sequence and vice versa.
Collapse
Affiliation(s)
- M Endrizzi
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
458
|
Zerres K, Davies KE. 59th ENMC International Workshop: Spinal Muscular Atrophies: recent progress and revised diagnostic criteria 17-19 April 1998, Soestduinen, The Netherlands. Neuromuscul Disord 1999; 9:272-8. [PMID: 10399757 DOI: 10.1016/s0960-8966(99)00016-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- K Zerres
- Institute for Human Genetics, Technical University, Aachen Germany
| | | |
Collapse
|
459
|
Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 1999; 96:6307-11. [PMID: 10339583 PMCID: PMC26877 DOI: 10.1073/pnas.96.11.6307] [Citation(s) in RCA: 1150] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SMN1 and SMN2 (survival motor neuron) encode identical proteins. A critical question is why only the homozygous loss of SMN1, and not SMN2, results in spinal muscular atrophy (SMA). Analysis of transcripts from SMN1/SMN2 hybrid genes and a new SMN1 mutation showed a direct relationship between presence of disease and exon 7 skipping. We have reported previously that the exon-skipped product SMNDelta7 is partially defective for self-association and SMN self-oligomerization correlated with clinical severity. To evaluate systematically which of the five nucleotides that differ between SMN1 and SMN2 effect alternative splicing of exon 7, a series of SMN minigenes was engineered and transfected into cultured cells, and their transcripts were characterized. Of these nucleotide differences, the exon 7 C-to-T transition at codon 280, a translationally silent variance, was necessary and sufficient to dictate exon 7 alternative splicing. Thus, the failure of SMN2 to fully compensate for SMN1 and protect from SMA is due to a nucleotide exchange (C/T) that attenuates activity of an exonic enhancer. These findings demonstrate the molecular genetic basis for the nature and pathogenesis of SMA and illustrate a novel disease mechanism. Because individuals with SMA retain the SMN2 allele, therapy targeted at preventing exon 7 skipping could modify clinical outcome.
Collapse
Affiliation(s)
- C L Lorson
- Department of Dermatology, New England Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
460
|
Wirth B, Herz M, Wetter A, Moskau S, Hahnen E, Rudnik-Schöneborn S, Wienker T, Zerres K. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet 1999; 64:1340-56. [PMID: 10205265 PMCID: PMC1377870 DOI: 10.1086/302369] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Problems with diagnosis and genetic counseling occur for patients with autosomal recessive proximal spinal muscular atrophy (SMA) who do not show the most common mutation: homozygous absence of at least exon 7 of the telomeric survival motor neuron gene (SMN1). Here we present molecular genetic data for 42 independent nondeleted SMA patients. A nonradioactive quantitative PCR test showed one SMN1 copy in 19 patients (45%). By sequencing cloned reverse-transcription (RT) PCR products or genomic fragments of SMN1, we identified nine different mutations in 18 of the 19 patients, six described for the first time: three missense mutations (Y272C, T274I, S262I), three frameshift mutations in exons 2a, 2b, and 4 (124insT, 241-242ins4, 591delA), one nonsense mutation in exon 1 (Q15X), one Alu-mediated deletion from intron 4 to intron 6, and one donor splice site mutation in intron 7 (c.922+6T-->G). The most frequent mutation, Y272C, was found in 6 (33%) of 18 patients. Each intragenic mutation found in at least two patients occurred on the same haplotype background, indicating founder mutations. Genotype-phenotype correlation allowed inference of the effect of each mutation on the function of the SMN1 protein and the role of the SMN2 copy number in modulating the SMA phenotype. In 14 of 23 SMA patients with two SMN1 copies, at least one intact SMN1 copy was sequenced, which excludes a 5q-SMA and suggests the existence of further gene(s) responsible for approximately 4%-5% of phenotypes indistinguishable from SMA. We determined the validity of the test, and we discuss its practical implications and limitations.
Collapse
Affiliation(s)
- B Wirth
- Institute of Human Genetics, Wilhelmstrasse 31, D-53111 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
461
|
Bertrandy S, Burlet P, Clermont O, Huber C, Fondrat C, Thierry-Mieg D, Munnich A, Lefebvre S. The RNA-binding properties of SMN: deletion analysis of the zebrafish orthologue defines domains conserved in evolution. Hum Mol Genet 1999; 8:775-82. [PMID: 10196366 DOI: 10.1093/hmg/8.5.775] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a common autosomal recessive disorder that results in the degeneration of spinal motor neurons. SMA is caused by alterations of the survival motor neuron ( SMN ) gene which encodes a novel protein of hitherto unclear function. The SMN protein associates with ribonucleoprotein particles involved in RNA processing and exhibits an RNA-binding capacity. We have isolated the zebrafish Danio rerio and nematode Caenorhabditis elegans orthologues and have found that the RNA-binding capacity is conserved across species. Purified recombinant SMN proteins from both species showed selectivity to poly(G) homopolymer RNA in vitro, similar to that of the human protein. Studying deletions of the zebrafish SMN protein, we defined an RNA-binding element in exon 2a, which is highly conserved across species, and revealed that its binding activity is modulated by protein domains encoded by exon 2b and exon 3. Finally, the deleted recombinant zebrafish protein mimicking an SMA frameshift mutation showed a dramatic change in vitro in the formation of the RNA-protein complexes. These observations indicate that the RNA-binding capacity of SMN is an evolutionarily conserved function and further support the view that defects in RNA metabolism most likely account for the pathogenesis of SMA.
Collapse
Affiliation(s)
- S Bertrandy
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant, INSERM U393, IFREM, Institut Necker, Hôpital Enfants Malades, 149 rue de Sèvres, 75743 Paris cédex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
462
|
Abstract
Spinal muscular atrophy is an autosomal recessive disease characterized by motor neurone loss, muscle atrophy and weakness. Deletion or mutation of the SMN1 gene reduces intracellular survival motor neurone protein levels causes spinal muscular atrophy, most likely by interfering with spliceosome assembly. A range of clinical severity and corresponding survival motor neurone levels is seen because of the presence of copies of the transcriptionally inefficient SMN2 gene and possibly other modifying genes. The delineation of SMN1 as the gene that causes spinal muscular atrophy and the identification of genes that modify spinal muscular atrophy raise the prospect of gene therapy or in-vivo gene activation treatment for this frequently fatal disorder.
Collapse
Affiliation(s)
- N H Gendron
- Children's Hospital of Eastern Ontario Research Institute, Solange Gauthier Karsh Laboratory, Ottawa, Canada.
| | | |
Collapse
|
463
|
Abstract
Spinal muscular atrophy is caused by mutations in the SMN1 gene, the product of which is part of a multi-component complex involved in the assembly of small nuclear ribonucleoproteins. A recent study indicates that SMN may also play a role in pre-mRNA splicing.
Collapse
Affiliation(s)
- A G Matera
- Department of Genetics Center for Human Genetics Program in Cell Biology Case Western Reserve University University Hospitals of Cleveland Cleveland Ohio 44106-4955 USA.
| |
Collapse
|
464
|
Béchade C, Rostaing P, Cisterni C, Kalisch R, La Bella V, Pettmann B, Triller A. Subcellular distribution of survival motor neuron (SMN) protein: possible involvement in nucleocytoplasmic and dendritic transport. Eur J Neurosci 1999; 11:293-304. [PMID: 9987032 DOI: 10.1046/j.1460-9568.1999.00428.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spinal muscular atrophy (SMA) is among the most common recessive autosomal diseases and is characterized by the loss of spinal motor neurons. A gene termed 'Survival of Motor Neurons' (SMN) has been identified as the SMA-determining gene. Recent work indicates the involvement of the SMN protein and its associated protein SIP1 in spliceosomal snRNP biogenesis. However, the function of SMN remains unknown. Here, we have studied the subcellular localization of SMN in the rat spinal cord and more generally in the central nervous system (CNS), by light fluorescence and electron microscopy. SMN immunoreactivity (IR) was found in the different regions of the spinal cord but also in various regions of the CNS such as the brainstem, cerebellum, thalamus, cortex and hippocampus. In most neurons, we observed a speckled labelling of the cytoplasm and a discontinuous staining of the nuclear envelope. For some neurons (e.g. brainstem nuclei, dentate gyrus, cortex: layer V) and, in particular in motoneurons, SMN-IR was also present as prominent nuclear dot-like-structures. In these nuclear dots, SMN colocalized with SIP1 and with fibrillarin, a marker of coiled bodies. Ultrastructural studies in the anterior horn of the spinal cord confirmed the presence of SMN in the coiled bodies and also revealed the protein at the external side of nuclear pores complexes, in association with polyribosomes, and in dendrites, associated with microtubules. These localizations suggest that, in addition to its involvement in the spliceosome biogenesis, the SMN protein could also play a part in nucleocytoplasmic and dendritic transport.
Collapse
Affiliation(s)
- C Béchade
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique (INSERM U497), Paris, France
| | | | | | | | | | | | | |
Collapse
|
465
|
Fehlings MG, Skaf G. A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine (Phila Pa 1976) 1998; 23:2730-7. [PMID: 9879098 DOI: 10.1097/00007632-199812150-00012] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cervical spondylotic myelopathy (CSM) is the most common cause of spinal cord dysfunction. Despite advances in diagnosis and surgical treatment, many patients still have severe permanent neurologic deficits caused by this condition. An improved understanding of the pathophysiology of cervical spondylotic myelopathy, particularly at a cellular and molecular level, may allow improved treatments in the future. A detailed review of articles in the literature pertaining to cervical spondylotic myelopathy was supplemented by an analysis of relevant mechanisms of spinal cord injury. The pathologic course of cervical spondylotic myelopathy is characterized by early involvement of the corticospinal tracts and later destruction of anterior horn cells, demyelination of lateral and dorsolateral tracts, and relative preservation of anterior columns. Static and mechanical factors and ischemia are critical to the development of cervical spondylotic myelopathy. Free radical-and cation-mediated cell injury, glutamatergic toxicity, and apoptosis may be of relevance to the pathophysiology of cervical spondylotic myelopathy. To date, research in cervical spondylotic myelopathy has focused exclusively on the role of mechanical factors and ischemia. Fundamental research at a cellular and molecular level, particularly in the areas of glutamatergic toxicity and apoptosis may result in clinically relevant treatments for this condition.
Collapse
Affiliation(s)
- M G Fehlings
- Division of Neurosurgery, Toronto Hospital, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
466
|
Abstract
Significant progress has been made in the identification of genes and chromosomal loci associated with several types of motor neuron disease. Of particular interest is recent work on the pathogenic mechanisms underlying these diseases, especially studies in in vitro model systems and in transgenic and gene-targeted mice.
Collapse
Affiliation(s)
- P C Wong
- Department of Pathology, Division of Neuropathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205-2196, USA.
| | | | | |
Collapse
|
467
|
Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 1998; 95:615-24. [PMID: 9845364 DOI: 10.1016/s0092-8674(00)81632-3] [Citation(s) in RCA: 413] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a common motor neuron degenerative disease that results from reduced levels of, or mutations in, the Survival of Motor Neurons (SMN) protein. SMN is found in the cytoplasm and the nucleus where it is concentrated in gems. SMN interacts with spliceosomal snRNP proteins and is critical for snRNP assembly in the cytoplasm. We show that a dominant-negative mutant SMN (SMNdeltaN27) causes a dramatic reorganization of snRNPs in the nucleus. Furthermore, SMNdeltaN27 inhibits pre-mRNA splicing in vitro, while wild-type SMN stimulates splicing. SMN mutants found in SMA patients cannot stimulate splicing. These findings demonstrate that SMN plays a crucial role in the generation of the pre-mRNA splicing machinery and thus in mRNA biogenesis, and they link the function of SMN in this pathway to SMA.
Collapse
Affiliation(s)
- L Pellizzoni
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | |
Collapse
|
468
|
Burlet P, Huber C, Bertrandy S, Ludosky MA, Zwaenepoel I, Clermont O, Roume J, Delezoide AL, Cartaud J, Munnich A, Lefebvre S. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet 1998; 7:1927-33. [PMID: 9811937 DOI: 10.1093/hmg/7.12.1927] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder characterized by degeneration of motor neurons of the spinal cord and muscular atrophy. SMA is caused by alterations to the survival of motor neuron (SMN) gene, the function of which has hitherto been unclear. Here, we present immunoblot analyses showing that normal SMN protein expression undergoes a marked decay in the postnatal period compared with fetal development. Morphological and immunohistochemical analyses of the SMN protein in human fetal tissues showed a general distribution in the cytoplasm, except in muscle cells, where SMN protein was immunolocalized to large cytoplasmic dot-like structures and was tightly associated with membrane-free heavy sedimenting complexes. These cytoplasmic structures were similar in size to gem. The SMN protein was markedly deficient in tissues derived from type I SMA fetuses, including skeletal muscles and, as previously shown, spinal cord. While our data do not help decide whether SMA results from impaired SMN expression in spinal cord, skeletal muscle or both, they suggest a requirement for SMN protein during embryo-fetal development.
Collapse
Affiliation(s)
- P Burlet
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant, INSERM Unité 393, IFREM, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
469
|
Tizzano EF, Cabot C, Baiget M. Cell-specific survival motor neuron gene expression during human development of the central nervous system: implications for the pathogenesis of spinal muscular atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:355-61. [PMID: 9708795 PMCID: PMC1852981 DOI: 10.1016/s0002-9440(10)65578-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spinal muscular atrophy is an autosomal recessive disorder characterized by the progressive loss or degeneration of the motor neurons. To investigate the expression of survival motor neuron (SMN), the spinal muscular atrophy-determining gene, and its relationship with the pathogenesis of the disease, we analyzed by means of in situ hybridization the location of SMN mRNA in fetal, newborn, infant, and adult human central nervous system tissues. The large motor neurons of the spinal cord are the main cells that express SMN together with the neurons of the medulla oblongata, the pyramidal cells of the cortex, and the Purkinje cells of the cerebellum. Some sensory neurons from the posterior horn and dorsal root ganglia express SMN to a lesser degree. Furthermore, strong SMN expression is detected in the ependymal cells of the central canal. The expression is present in the spinal cord at 8 weeks of fetal life throughout postnatal and adult life. The sharp expression of SMN in the motor neurons of the human spinal cord, the target cells in spinal muscular atrophy, suggests that this gene is implicated in neuronal development and in the pathogenesis of the disease. The location of the SMN gene expression in other neuronal structures not clearly or directly associated with clinical manifestations or pathological findings of spinal muscular atrophy may indicate a varying sensitivity to the absence or dysfunction of the SMN gene in motor neurons.
Collapse
Affiliation(s)
- E F Tizzano
- Servei de Genética, Hospital de Sant Pau, Barcelona, Spain.
| | | | | |
Collapse
|
470
|
|
471
|
Affiliation(s)
- A G Matera
- Department of Genetics, Center for Human Genetics, Center for RNA Molecular Biology and Program in Cell Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4955, USA.
| | | |
Collapse
|
472
|
Affiliation(s)
- P Desjardins
- Neuroscience Research Unit, CHUM (Campus Saint-Luc), Montreal, Quebec, Canada
| | | |
Collapse
|
473
|
Francis JW, Sandrock AW, Bhide PG, Vonsattel JP, Brown RH. Heterogeneity of subcellular localization and electrophoretic mobility of survival motor neuron (SMN) protein in mammalian neural cells and tissues. Proc Natl Acad Sci U S A 1998; 95:6492-7. [PMID: 9600994 PMCID: PMC27826 DOI: 10.1073/pnas.95.11.6492] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy is caused by defects in the survival motor neuron (SMN) gene. To better understand the patterns of expression of SMN in neuronal cells and tissues, we raised a polyclonal antibody (abSMN) against a synthetic oligopeptide from SMN exon 2. AbSMN immunostaining in neuroblastoma cells and mouse and human central nervous system (CNS) showed intense labeling of nuclear "gems," along with prominent nucleolar immunoreactivity in mouse and human CNS tissues. Strong cytoplasmic labeling was observed in the perikarya and proximal dendrites of human spinal motor neurons but not in their axons. Immunoblot analysis revealed a 34-kDa species in the insoluble protein fractions from human SY5Y neuroblastoma cells, embryonic mouse spinal cord cultures, and human CNS tissue. By contrast, a 38-kDa species was detected in the cytosolic fraction of SY5Y cells. We conclude that SMN protein is expressed prominently in both the cytoplasm and nucleus in multiple types of neurons in brain and spinal cord, a finding consistent with a role for SMN as a determinant of neuronal viability.
Collapse
Affiliation(s)
- J W Francis
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
474
|
Lorson CL, Strasswimmer J, Yao JM, Baleja JD, Hahnen E, Wirth B, Le T, Burghes AH, Androphy EJ. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 1998; 19:63-6. [PMID: 9590291 DOI: 10.1038/ng0598-63] [Citation(s) in RCA: 353] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spinal muscular atrophy (SMA) is a motor-neuron disorder resulting from anterior-horn-cell death. The autosomal recessive form has a carrier frequency of 1 in 50 and is the most common genetic cause of infant death. SMA is categorized as types I-III, ranging from severe to mild, based upon age of onset and clinical course. Two closely flanking copies of the survival motor neuron (SMN) gene are on chromosome 5q13 (ref. 1). The telomeric SMN (SMN1) copy is homozygously deleted or converted in >95% of SMA patients, while a small number of SMA disease alleles contain missense mutations within the carboxy terminus. We have identified a modular oligomerization domain within exon 6 of SMN1. All previously identified missense mutations map within or immediately adjacent to this domain. Comparison of wild-type to mutant SMN proteins of type I, II and III SMA patients showed a direct correlation between oligomerization and clinical type. Moreover, the most abundant centromeric SMN product, which encodes exons 1-6 but not 7, demonstrated reduced self-association. These findings identify decreased SMN self-association as a biochemical defect in SMA, and imply that disease severity is proportional to the intracellular concentration of oligomerization-competent SMN proteins.
Collapse
Affiliation(s)
- C L Lorson
- Department of Dermatology, New England Medical Center and Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Burghes A. Reply to Mackenzie. Am J Hum Genet 1998. [DOI: 10.1086/301728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|