451
|
|
452
|
Jalava J, Marttila H. Application of molecular genetic methods in macrolide, lincosamide and streptogramin resistance diagnostics and in detection of drug-resistant Mycobacterium tuberculosis. APMIS 2005; 112:838-55. [PMID: 15638840 DOI: 10.1111/j.1600-0463.2004.apm11211-1209.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial susceptibility testing has traditionally been based on measurements of minimal inhibitory concentrations of antimicrobials. Molecular genetic studies on antimicrobial resistance have produced a great deal of genetic information which can be used for diagnosis of antimicrobial resistance determinants. Bacteria can acquire resistance to macrolides, lincosamides and streptogramin antibiotics by modification of the target site of the drugs, by active efflux of the drugs, and by inactivation of the drugs. The genetic backgrounds of these resistance mechanisms are well known and several molecular methods for detection of resistance determinants have been developed. Outbreaks of multidrug-resistant tuberculosis have focused international attention on the emergence of Mycobacterium tuberculosis strains that are resistant to antimycobacterial agents. Knowledge of the antimycobacterial resistance genetics and progress in molecular methods has made it possible to develop rapid molecular methods for susceptibility testing. This review presents the genetic background of drug resistance and introduces some methods for genotypic susceptibility testing.
Collapse
Affiliation(s)
- Jari Jalava
- National Public Health Institute, Department of Human Microbial Ecology and Inflammation, Turku University Central Hospital, Turku, Finland.
| | | |
Collapse
|
453
|
Bonofiglio L, Ojeda MI, de Mier C, Vay C, Famiglietti A, Gutkind G, Mollerach M. Phenotypic and genotypic characterization of macrolide resistant Streptococcus pneumoniae recovered from adult patients with community-acquired pneumonia in an Argentinian teaching hospital. Int J Antimicrob Agents 2005; 25:260-3. [PMID: 15737523 DOI: 10.1016/j.ijantimicag.2004.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 10/25/2004] [Indexed: 11/20/2022]
Abstract
Streptococcus pneumoniae isolates (n = 262) were recovered from adult patients with community-acquired pneumonia. Erythromycin-resistance levels increased from 9% (1997-1998) to 16% (2000-2002). Sampling for resistance mechanisms prevalent within 19 erythromycin-resistant S. pneumoniae showed mef(E) in 13/19 isolates while 4/19 carried the erm(B) gene (3/19 cMLS(B) and 1/19 iMLS(B) phenotype). MIC ranges for erythromycin and clindamycin were 0.5-16 mg/l and <0.008-0.063 mg/l for the M phenotype, 128-512 mg/l and 128-256 mg/l for the cMLS(B) phenotype, and 4 and <0.008 mg/l for the iMLS(B) phenotype. This is the first report studying the prevalence of macrolide resistance determinants in S. pneumoniae in our country.
Collapse
Affiliation(s)
- L Bonofiglio
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, 1113, Junín 956, Argentina
| | | | | | | | | | | | | |
Collapse
|
454
|
Beyer D, Pepper K. The streptogramin antibiotics: update on their mechanism of action. Expert Opin Investig Drugs 2005; 7:591-9. [PMID: 15991995 DOI: 10.1517/13543784.7.4.591] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibiotics of the streptogramin class are an association of two types of chemically different compounds, group A molecules and group B molecules, acting in synergy. The combination of these molecules generally inhibits bacterial growth at a lower concentration than does either the group A or group B molecule alone and is often bactericidal against strains of bacteria for which each type of molecule alone is only bacteriostatic. The semisynthetic streptogramin quinupristin/dalfopristin (RP 59500), the first water-soluble member of this class, is under development for the treatment of severe infections caused by methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, penicillin-resistant Streptococcus pneumoniae, glycopeptide-resistant Enterococcus faecium, and other organisms. The streptogramins block the translation of mRNA into protein. Both group A and group B molecules bind to the peptidyl-transferase domain of the bacterial ribosome. The group B molecule stimulates the dissociation of peptidyl-tRNA from the ribosome and may interfere with the passage of the completed polypeptide away from the peptidyl-transferase centre. The group A molecule inhibits the elongation of the polypeptide chain by preventing both the binding of aminoacyl-tRNA to the ribosomal A site and the formation of the peptide bond. When the two types of molecule are used in combination, the binding of the group A molecule alters the conformation of the ribosome such that the affinity of the ribosome for the B molecule is increased. This accounts, in part or entirely, for the observed synergy. This synergy is unaffected by ribosomal modifications conferring resistance to the macrolides, lincosamides, and group B molecules alone.
Collapse
Affiliation(s)
- D Beyer
- Rhône-Poulenc Rorer S. A., Centre de Recherche, 13 Quai Jules Guesde, F-94403 Vitry sur Seine, France.
| | | |
Collapse
|
455
|
Abstract
Macrolide and ketolide antibacterials remain a very dynamically active group. To overcome erythromycin A resistance within Gram-positive cocci and bacteria, novel compounds have been semi-synthesised, such as ketolides and C-4'' carbamate erythromycylamine derivatives. The continual efforts of those studying macrolides have led to molecular level investigations into the mechanism of action of these antibacterials. Among all novel derivatives, only telithromycin and AB-773 are currently under development. No real novel developments have been seen with the 15- and 16-membered ring macrolides, however, research is also continuing in this area. This review is an update of our knowledge in the field of macrolides.
Collapse
Affiliation(s)
- A Bryskier
- Hoescht Marion Roussel, 102 Route de Noisy, 93230 Romainville Cedex, France.
| |
Collapse
|
456
|
Haanperä M, Huovinen P, Jalava J. Detection and quantification of macrolide resistance mutations at positions 2058 and 2059 of the 23S rRNA gene by pyrosequencing. Antimicrob Agents Chemother 2005; 49:457-60. [PMID: 15616336 PMCID: PMC538907 DOI: 10.1128/aac.49.1.457-460.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A pyrosequencing method for detection and quantification of macrolide resistance mutations at positions 2058 and 2059 (Escherichia coli numbering) of the 23S rRNA gene is described. The method was developed and tested for Streptococcus pneumoniae, Streptococcus pyogenes, Mycobacterium avium, Campylobacter jejuni, and Haemophilus influenzae.
Collapse
Affiliation(s)
- Marjo Haanperä
- Human Microbial Ecology Laboratory, National Public Health Institute, Kiinamyllynkatu 13, FI-20520 Turku, Finland.
| | | | | |
Collapse
|
457
|
Xiong L, Korkhin Y, Mankin AS. Binding site of the bridged macrolides in the Escherichia coli ribosome. Antimicrob Agents Chemother 2005; 49:281-8. [PMID: 15616307 PMCID: PMC538896 DOI: 10.1128/aac.49.1.281-288.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ketolides represent the latest group of macrolide antibiotics. Tight binding of ketolides to the ribosome appears to correlate with the presence of an extended alkyl-aryl side chain. Recently developed 6,11-bridged bicyclic ketolides extend the spectrum of platforms used to generate new potent macrolides with extended alkyl-aryl side chains. The purpose of the present study was to characterize the site of binding and the action of bridged macrolides in the ribosomes of Escherichia coli. All the bridged macrolides investigated efficiently protected A2058 and A2059 in domain V of 23S rRNA from modification by dimethyl sulfate and U2609 from modification by carbodiimide. In addition, bridged macrolides that carry extended alkyl-aryl side chains protruding from the 6,11 bridge protected A752 in helix 35 of domain II of 23S rRNA from modification by dimethyl sulfate. Bridged macrolides efficiently displaced erythromycin from the ribosome in a competition binding assay. The A2058G mutation in 23S rRNA conferred resistance to the bridged macrolides. The U2609C mutation, which renders E. coli resistant to the previously studied ketolides telithromycin and cethromycin, barely affected cell susceptibility to the bridged macrolides used in this study. The results of the biochemical and genetic studies indicate that in the E. coli ribosome, bridged macrolides bind in the nascent peptide exit tunnel at the site previously described for other macrolide antibiotics. The presence of the side chain promotes the formation of specific interactions with the helix 35 of 23S rRNA.
Collapse
Affiliation(s)
- Liqun Xiong
- Center for Pharmaceutical Biotechnology, University of Illinois, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | | | |
Collapse
|
458
|
Matsuoka M, Narita M, Okazaki N, Ohya H, Yamazaki T, Ouchi K, Suzuki I, Andoh T, Kenri T, Sasaki Y, Horino A, Shintani M, Arakawa Y, Sasaki T. Characterization and molecular analysis of macrolide-resistant Mycoplasma pneumoniae clinical isolates obtained in Japan. Antimicrob Agents Chemother 2005; 48:4624-30. [PMID: 15561835 PMCID: PMC529214 DOI: 10.1128/aac.48.12.4624-4630.2004] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, Mycoplasma pneumoniae strains that are clinically resistant to macrolide antibiotics have occasionally been encountered in Japan. Of 76 strains of M. pneumoniae isolated in three different areas in Japan during 2000 to 2003, 13 strains were erythromycin (ERY) resistant. Of these 13 strains, 12 were highly ERY resistant (MIC, > or =256 microg/ml) and 1 was weakly resistant (MIC, 8 microg/ml). Nucleotide sequencing of domains II and V of 23S rRNA and ribosomal proteins L4 and L22, which are associated with ERY resistance, showed that 10 strains had an A-to-G transition at position 2063 (corresponding to 2058 in Escherichia coli numbering), 1 strain showed A-to-C transversion at position 2063, 1 strain showed an A-to-G transition at position 2064, and the weakly ERY-resistant strain showed C-to-G transversion at position 2617 (corresponding to 2611 in E. coli numbering) of domain V. Domain II and ribosomal proteins L4 and L22 were not involved in the ERY resistance of these clinical M. pneumoniae strains. In addition, by using our established restriction fragment length polymorphism technique to detect point mutations of PCR products for domain V of the 23S rRNA gene of M. pneumoniae, we found that 23 (24%) of 94 PCR-positive oral samples taken from children with respiratory infections showed A2063G mutation. These results suggest that ERY-resistant M. pneumoniae infection is not unusual in Japan.
Collapse
Affiliation(s)
- Mayumi Matsuoka
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
459
|
Lewis JS, Jorgensen JH. Inducible Clindamycin Resistance in Staphylococci: Should Clinicians and Microbiologists be Concerned? Clin Infect Dis 2005; 40:280-5. [PMID: 15655748 DOI: 10.1086/426894] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 09/01/2004] [Indexed: 11/03/2022] Open
Abstract
The increasing incidence of a variety of infections due to Staphylococcus aureus--and, especially, the expanding role of community-associated methicillin-resistant S. aureus (MRSA)--has led to emphasis on the need for safe and effective agents to treat both systemic and localized staphylococcal infections. Unlike most previously noted strains of health care-associated MRSA, community-acquired MRSA isolates are often susceptible to several non- beta -lactam drug classes, although they are usually not susceptible to macrolides. Several newer antimicrobial agents and a few older agents are available for treatment of systemic staphylococcal infections, but use may be limited by the relatively high cost of these agents or the need for parenteral administration. Inexpensive oral agents for treatment of localized, community-acquired MRSA infection include clindamycin, trimethoprim-sulfamethoxazole, and newer tetracyclines. Clindamycin has been used successfully to treat pneumonia and soft-tissue and musculoskeletal infections due to MRSA in adults and children. However, concern over the possibility of emergence of clindamycin resistance during therapy has discouraged some clinicians from prescribing that agent. Simple laboratory testing (e.g., the erythromycin-clindamycin "D-zone" test) can separate strains that have the genetic potential (i.e., the presence of erm genes) to become resistant during therapy from strains that are fully susceptible to clindamycin.
Collapse
Affiliation(s)
- James S Lewis
- Pharmacy Service, University Health System, Department of Clinical Pharmacy and Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | |
Collapse
|
460
|
DeNap JCB, Hergenrother PJ. Bacterial death comes full circle: targeting plasmid replication in drug-resistant bacteria. Org Biomol Chem 2005; 3:959-66. [PMID: 15750634 DOI: 10.1039/b500182j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is now common for bacterial infections to resist the preferred antibiotic treatment. In particular, hospital-acquired infections that are refractory to multiple antibiotics and ultimately result in death of the patient are prevalent. Many of the bacteria causing these infections have become resistant to antibiotics through the process of lateral gene transfer, with the newly acquired genes encoding a variety of resistance-mediating proteins. These foreign genes often enter the bacteria on plasmids, which are small, circular, extrachromosomal pieces of DNA. This plasmid-encoded resistance has been observed for virtually all classes of antibiotics and in a wide variety of Gram-positive and Gram-negative organisms; many antibiotics are no longer effective due to such plasmid-encoded resistance. The systematic removal of these resistance-mediating plasmids from the bacteria would re-sensitize bacteria to standard antibiotics. As such, plasmids offer novel targets that have heretofore been unexploited clinically. This Perspective details the role of plasmids in multi-drug resistant bacteria, the mechanisms used by plasmids to control their replication, and the potential for small molecules to disrupt plasmid replication and re-sensitize bacteria to antibiotics. An emphasis is placed on plasmid replication that is mediated by small counter-transcript RNAs, and the "plasmid addiction" systems that employ toxins and antitoxins.
Collapse
Affiliation(s)
- Johna C B DeNap
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
461
|
Yonath A, Bashan A. Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Annu Rev Microbiol 2004; 58:233-51. [PMID: 15487937 DOI: 10.1146/annurev.micro.58.030603.123822] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-resolution structures of ribosomal complexes revealed that minute amounts of clinically relevant antibiotics hamper protein biosynthesis by limiting ribosomal mobility or perturbing its elaborate architecture, designed for navigating and controlling peptide bond formation and continuous amino acid polymerization. To accomplish this, the ribosome contributes positional rather than chemical catalysis, provides remote interactions governing accurate substrate alignment within the flexible peptidyl-transferase center (PTC) pocket, and ensures nascent-protein chirality through spatial limitations. Peptide bond formation is concurrent with aminoacylated-tRNA 3' end translocation and is performed by a rotatory motion around the axis of a sizable ribosomal symmetry-related region, which is located around the PTC in all known crystal structures. Guided by ribosomal-RNA scaffold along an exact pattern, the rotatory motion results in stereochemistry that is optimal for peptide bond formation and for nascent protein entrance into the exit tunnel, the main target of antibiotics targeting ribosomes. By connecting the PTC, the decoding center, and the tRNA entrance and exit regions, the symmetry-related region can transfer intraribosomal signals, guaranteeing smooth processivity of amino acid polymerization.
Collapse
Affiliation(s)
- Ada Yonath
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel.
| | | |
Collapse
|
462
|
Novotny GW, Jakobsen L, Andersen NM, Poehlsgaard J, Douthwaite S. Ketolide antimicrobial activity persists after disruption of interactions with domain II of 23S rRNA. Antimicrob Agents Chemother 2004; 48:3677-83. [PMID: 15388419 PMCID: PMC521900 DOI: 10.1128/aac.48.10.3677-3683.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ketolides are the latest derivatives developed from the macrolide erythromycin to improve antimicrobial activity. All macrolides and ketolides bind to the 50S ribosomal subunit, where they come into contact with adenosine 2058 (A2058) within domain V of the 23S rRNA and block protein synthesis. An additional interaction at nucleotide A752 in the rRNA domain II is made via the synthetic carbamate-alkyl-aryl substituent in the ketolides HMR3647 (telithromycin) and HMR3004, and this interaction contributes to their improved activities. Only a few macrolides, including tylosin, come into contact with domain II of the rRNA and do so via interactions with nucleotides G748 and A752. We have disrupted these macrolide-ketolide interaction sites in the rRNA to assess their relative importance for binding. Base substitutions at A752 were shown to confer low levels of resistance to telithromycin but not to HMR3004, while deletion of A752 confers low levels of resistance to both ketolides. Mutations at position 748 confer no resistance. Substitution of guanine at A2058 gives rise to the MLS(B) (macrolide, lincosamide, and streptogramin B) phenotype, which confers resistance to all the drugs. However, resistance to ketolides was abolished when the mutation at position 2058 was combined with a mutation in domain II of the same rRNA. In contrast, the same dual mutations in rRNAs conferred enhanced resistance to tylosin. Our results show that the domain II interactions of telithromycin and HMR3004 differ from each other and from those of tylosin. The data provide no indication that mutations within domain II, either alone or in combination with an A2058 mutation, can confer significant levels of telithromycin resistance.
Collapse
Affiliation(s)
- Guy W Novotny
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
463
|
Zhanel GG, Hisanaga T, Nichol K, Wierzbowski A, Hoban DJ. Ketolides: an emerging treatment for macrolide-resistant respiratory infections, focusing on S. pneumoniae. Expert Opin Emerg Drugs 2004; 8:297-321. [PMID: 14661991 DOI: 10.1517/14728214.8.2.297] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Resistance to antibiotics in community acquired respiratory infections is increasing worldwide. Resistance to the macrolides can be class-specific, as in efflux or ribosomal mutations, or, in the case of erythromycin ribosomal methylase (erm)-mediated resistance, may generate cross-resistance to other related classes. The ketolides are a new subclass of macrolides specifically designed to combat macrolide-resistant respiratory pathogens. X-ray crystallography indicates that ketolides bind to a secondary region in domain II of the 23S rRNA subunit, resulting in an improved structure-activity relationship. Telithromycin and cethromycin (formerly ABT-773) are the two most clinically advanced ketolides, exhibiting greater activity towards both typical and atypical respiratory pathogens. As a subclass of macrolides, ketolides demonstrate potent activity against most macrolide-resistant streptococci, including ermB- and macrolide efflux (mef)A-positive Streptococcus pneumoniae. Their pharmacokinetics display a long half-life as well as extensive tissue distribution and uptake into respiratory tissues and fluids, allowing for once-daily dosing. Clinical trials focusing on respiratory infections indicate bacteriological and clinical cure rates similar to comparators, even in patients infected with macrolide-resistant strains.
Collapse
Affiliation(s)
- George G Zhanel
- MS 673 Microbiology, Department of Clinical Microbiology, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada.
| | | | | | | | | |
Collapse
|
464
|
Liu M, Novotny GW, Douthwaite S. Methylation of 23S rRNA nucleotide G745 is a secondary function of the RlmAI methyltransferase. RNA (NEW YORK, N.Y.) 2004; 10:1713-20. [PMID: 15388872 PMCID: PMC1370659 DOI: 10.1261/rna.7820104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/23/2004] [Indexed: 05/18/2023]
Abstract
Several groups of Gram-negative bacteria possess an RlmA(I) methyltransferase that methylates 23S rRNA nucleotide G745 at the N1 position. Inactivation of rlmA(I) in Acinetobacter calcoaceticus and Escherichia coli reduces growth rates by at least 30%, supposedly due to ribosome malfunction. Wild-type phenotypes are restored by introduction of plasmid-encoded rlmA(I), but not by the orthologous Gram-positive gene rlmA(II) that methylates the neighboring nucleotide G748. Nucleotide G745 interacts with A752 in a manner that does not involve the guanine N1 position. When a cytosine is substituted at A752, a Watson-Crick G745-C752 pair is formed occluding the guanine N1 and greatly reducing RlmA(I) methylation. Methylation is completely abolished by substitution of the G745 base. Intriguingly, the absence of methylation in E. coli rRNA mutant strains causes no reduction in growth rate. Furthermore, the slow-growing rlmA(I) knockout strains of Acinetobacter and E. coli revert to the wild-type growth phenotype after serial passages on agar plates. All the cells tested were pseudorevertants, and none of them had recovered G745 methylation. Analyses of the pseudorevertants failed to reveal second-site mutations in the ribosomal components close to nucleotide G745. The results indicate that cell growth is not dependent on G745 methylation, and that the RlmA(I) methyltransferase therefore has another (as yet unidentified) primary function.
Collapse
Affiliation(s)
- Mingfu Liu
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
465
|
Auerbach T, Bashan A, Yonath A. Ribosomal antibiotics: structural basis for resistance, synergism and selectivity. Trends Biotechnol 2004; 22:570-6. [PMID: 15491801 DOI: 10.1016/j.tibtech.2004.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Various antibiotics bind to ribosomes at functionally relevant locations such as the peptidyl-transferase center (PTC) and the exit tunnel for nascent proteins. High-resolution structures of antibiotics bound to ribosomal particles from a eubacterium that is similar to pathogens and an archaeon that shares properties with eukaryotes are deciphering subtle differences in these highly conserved locations that lead to drug selectivity and thereby facilitate clinical usage. These structures also show that members of antibiotic families with structural differences might bind to specific ribosomal pockets in different modes dominated by their chemical properties. Similarly, the chemical properties of drugs might govern variations in the nature of seemingly identical mechanisms of drug resistance. The observed variability in binding modes justifies expectations for structural design of improved antibiotic properties.
Collapse
Affiliation(s)
- Tamar Auerbach
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | | | | |
Collapse
|
466
|
Harrow SA, Gilpin BJ, Klena JD. Characterization of erythromycin resistance in Campylobacter coli and Campylobacter jejuni isolated from pig offal in New Zealand. J Appl Microbiol 2004; 97:141-8. [PMID: 15186451 DOI: 10.1111/j.1365-2672.2004.02278.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To determine the level and mechanism(s) of antimicrobial resistance in Campylobacter isolates obtained from human and environmental sources from South Canterbury, New Zealand. METHODS AND RESULTS A total of 251 Campylobacter isolates were tested for susceptibility to ciprofloxacin, erythromycin, nalidixic acid and tetracycline using disc diffusion assays. Five pig offal isolates were observed to be highly erythromycin resistant, with minimal inhibitory concentrations determined to be >/=256 microg ml(-1). Nucleotide sequencing of the 23S ribosomal DNA (rDNA) in these resistant isolates identified an A --> G change at Escherichia coli position 2059 that has been previously implicated in erythromycin resistance in Campylobacter coli. Macrorestriction profiling using pulsed-field gel electrophoresis showed these isolates were nonclonal. CONCLUSIONS The majority of Campylobacter isolates from South Canterbury remain sensitive to the most clinically relevant antimicrobial agents. Our results support other reports showing that specific variations in the 23S rDNA contribute to erythromycin resistance. SIGNIFICANCE AND IMPACTS OF THE STUDY This study defines the baseline frequency of antimicrobial resistance associated with Campylobacter isolates from South Canterbury, and discusses the likely molecular mechanisms conferring erythromycin resistance in this organism. Resistance to erythromycin in these isolates is not linked to a dominant Campylobacter clone and has likely arisen independently in different genetic lines exposed to selective antimicrobial pressure.
Collapse
Affiliation(s)
- S A Harrow
- Department of Plant and Microbial Sciences, University of Canterbury, Christchurch, New Zealand.
| | | | | |
Collapse
|
467
|
Mariani-Kurkdjian P, Doit C, Deforche D, Brahimi N, Francois M, Van den Abbeele T, Bingen E. Émergence de la résistance aux macrolides chez Streptococcus pyogenes en pédiatrie. ACTA ACUST UNITED AC 2004; 52:489-92. [PMID: 15465270 DOI: 10.1016/j.patbio.2004.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 07/16/2004] [Indexed: 11/24/2022]
Abstract
A total of 206 recent throat isolates of Streptococcus pyogenes collected between 2002 and 2004 from children were tested for their susceptibility to penicillin, amoxycillin, erythromycin, clarythromycin and clindamycin. The erythromycin resistant isolates were further studied for their genetic mechanism of resistance by means of PCR. In all, 14.5% of the strains were erythromycin resistant and 13.5 and 1% expressed the constitutive MLS(B) and M resistance phenotypes and harbored the ermB and mef A genes respectively.
Collapse
|
468
|
Jackson CR, Fedorka-Cray PJ, Barrett JB, Ladely SR. Effects of tylosin use on erythromycin resistance in enterococci isolated from swine. Appl Environ Microbiol 2004; 70:4205-10. [PMID: 15240302 PMCID: PMC444810 DOI: 10.1128/aem.70.7.4205-4210.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of tylosin on erythromycin-resistant enterococci was examined on three farms; farm A used tylosin for growth promotion, farm B used tylosin for treatment of disease, and farm C did not use tylosin for either growth promotion or disease treatment. A total of 1,187 enterococci were isolated from gestation, farrowing, suckling, nursery, and finishing swine from the farms. From a subset of those isolates (n = 662), 59% (124 out of 208), 28% (80 out of 281), and 2% (4 out of 170) were resistant to erythromycin (MIC >/= 8 microg/ml) from farms A, B, and C, respectively. PCR analysis and Southern blotting revealed that 95% (65 out of 68) of isolates chosen from all three farms for further study were positive for ermB, but all were negative for ermA and ermC. By using Southern blotting, ermB was localized to the chromosome in 56 of the isolates while 9 isolates from farms A and B contained ermB on two similar-sized plasmid bands (12 to 16 kb). Pulsed-field gel electrophoresis revealed that the isolates were genetically diverse and represented a heterogeneous population of enterococci. This study suggests that although there was resistance to a greater number of enterococcal isolates on a farm where tylosin was used as a growth promotant, resistant enterococci also existed on a farm where no antimicrobial agents were used.
Collapse
Affiliation(s)
- Charlene R Jackson
- United States Department of Agriculture, Agricultural Research Service, Antimicrobial Resistance Research Unit, Richard B. Russell Research Center, Athens, GA 30605, USA.
| | | | | | | |
Collapse
|
469
|
Syrogiannopoulos GA, Bozdogan B, Grivea IN, Ednie LM, Kritikou DI, Katopodis GD, Beratis NG, Applebaum PC. Two dosages of clarithromycin for five days, amoxicillin/clavulanate for five days or penicillin V for ten days in acute group A streptococcal tonsillopharyngitis. Pediatr Infect Dis J 2004; 23:857-65. [PMID: 15361727 DOI: 10.1097/01.inf.0000138080.74674.a2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Short course antimicrobial therapy is suggested for group A streptococcal tonsillopharyngitis. METHODS The bacteriologic and clinical efficacies of clarithromycin [30 or 15 mg/kg/day twice daily (b.i.d.)] or amoxicillin/clavulanate (43.8/6.2 mg/kg/day b.i.d.) for 5 days or penicillin V (30 mg/kg/day 3 times a day) for 10 days were compared. In a randomized, open label, parallel group, multicenter study, 626 children (2-16 years old) with tonsillopharyngitis were enrolled; 537 were evaluable for efficacy. Follow-up evaluations were performed at 4-8 and 21-28 days after therapy. RESULTS At enrollment, 26% of the Streptococcus pyogenes isolates were clarithromycin-nonsusceptible. All regimens had an apparently similar clinical efficacy. The long term S. pyogenes eradication rates were 102 of 123 (83%) with amoxicillin/clavulanate and 88 of 114 (77%) with penicillin V. In the 30- and 15-mg/kg/day clarithromycin groups, eradication occurred in 71 of 86 (83%) and 59 of 80 (74%) of the clarithromycin-susceptible isolates (P = 0.33), and in 4 of 28 (14%) and 5 of 26 (19%) of the clarithromycin-resistant isolates, respectively (clarithromycin-susceptible versus -resistant, P < 0.0001). Both clarithromycin dosages were well-tolerated. CONCLUSIONS In group A streptococcal tonsillopharyngitis, 5 days of clarithromycin or amoxicillin/clavulanate treatment had clinical efficacy comparable with that of 10 days of penicillin V treatment; however, amoxicillin/clavulanate and penicillin V were bacteriologically more effective than clarithromycin because of its failure to eradicate the clarithromycin-resistant S. pyogenes isolates. The 5-day clarithromycin regimens are not recommended for treatment of streptococcal tonsillopharyngitis in areas where in vitro resistance of group A streptococci to clarithromycin is common.
Collapse
|
470
|
Hasenbein ME, Warner JE, Lambert KG, Cole SE, Onderdonk AB, McAdam AJ. Detection of multiple macrolide- and lincosamide-resistant strains of Streptococcus pyogenes from patients in the Boston area. J Clin Microbiol 2004; 42:1559-63. [PMID: 15071004 PMCID: PMC387580 DOI: 10.1128/jcm.42.4.1559-1563.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrolide (including erythromycin and azithromycin) and lincosamide (including clindamycin) antibiotics are recommended for treatment of penicillin-allergic patients with Streptococcus pyogenes pharyngitis. Resistance to erythromycin in S. pyogenes can be as high as 48% in specific populations in the United States. Macrolide and lincosamide resistance in S. pyogenes is mediated by several different genes. Expression of the erm(A) or erm(B) genes causes resistance to erythromycin and inducible or constitutive resistance to clindamycin, respectively, whereas expression of the mef(A) gene leads to resistance to erythromycin but not clindamycin. We studied the resistance of S. pyogenes to erythromycin and clindamycin at an urban tertiary-care hospital. Of 196 sequential isolates from throat cultures, 15 (7.7%) were resistant to erythromycin. Three of these were also constitutively resistant to clindamycin and had the erm(B) gene. Five of the erythromycin-resistant isolates were resistant to clindamycin upon induction with erythromycin and had the erm(A) gene. The remaining seven erythromycin-resistant isolates were susceptible to clindamycin even upon induction with erythromycin and had the mef(A) gene. Pulsed-field gel electrophoresis analysis and emm typing demonstrated that the erythromycin-resistant S. pyogenes comprised multiple strains. These results demonstrate that multiple mechanisms of resistance to macrolide and lincosamide antibiotics are present in S. pyogenes strains in the United States.
Collapse
Affiliation(s)
- Meredith E Hasenbein
- Department of Laboratory Medicine, Children's Hospital Boston and Harvard Medical School, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
471
|
O'Farrell HC, Scarsdale JN, Rife JP. Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli. J Mol Biol 2004; 339:337-53. [PMID: 15136037 DOI: 10.1016/j.jmb.2004.02.068] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 02/20/2004] [Accepted: 02/23/2004] [Indexed: 11/25/2022]
Abstract
The bacterial enzyme KsgA catalyzes the transfer of a total of four methyl groups from S-adenosyl-l-methionine (S-AdoMet) to two adjacent adenosine bases in 16S rRNA. This enzyme and the resulting modified adenosine bases appear to be conserved in all species of eubacteria, eukaryotes, and archaebacteria, and in eukaryotic organelles. Bacterial resistance to the aminoglycoside antibiotic kasugamycin involves inactivation of KsgA and resulting loss of the dimethylations, with modest consequences to the overall fitness of the organism. In contrast, the yeast ortholog, Dim1, is essential. In yeast, and presumably in other eukaryotes, the enzyme performs a vital role in pre-rRNA processing in addition to its methylating activity. Another ortholog has been discovered recently, h-mtTFB in human mitochondria, which has a second function; this enzyme is a nuclear-encoded mitochondrial transcription factor. The KsgA enzymes are homologous to another family of RNA methyltransferases, the Erm enzymes, which methylate a single adenosine base in 23S rRNA and confer resistance to the MLS-B group of antibiotics. Despite their sequence similarity, the two enzyme families have strikingly different levels of regulation that remain to be elucidated. We have crystallized KsgA from Escherichia coli and solved its structure to a resolution of 2.1A. The structure bears a strong similarity to the crystal structure of ErmC' from Bacillus stearothermophilus and a lesser similarity to sc-mtTFB, the Saccharomyces cerevisiae version of h-mtTFB. Comparison of the three crystal structures and further study of the KsgA protein will provide insight into this interesting group of enzymes.
Collapse
Affiliation(s)
- Heather C O'Farrell
- Department of Biochemistry, Virginia Commonwealth University, Richmond VA 23298-0133, USA
| | | | | |
Collapse
|
472
|
Min YH, Jeong JH, Choi YJ, Yun HJ, Lee K, Shim MJ, Kwak JH, Choi EC. Heterogeneity of macrolide-lincosamide-streptogramin B resistance phenotypes in enterococci. Antimicrob Agents Chemother 2004; 47:3415-20. [PMID: 14576096 PMCID: PMC253760 DOI: 10.1128/aac.47.11.3415-3420.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the macrolide resistance phenotypes of 241 clinical isolates of erythromycin-resistant enterococci (MICs, > or = 1 microg/ml), including 147 Enterococcus faecalis strains and 94 Enterococcus faecium strains, collected from a hospital in Seoul, Korea, between 1999 and 2000. By the erythromycin (40 micro g)-josamycin (100 microg) double-disk test, 93 strains were assigned to the constitutive macrolide, lincosamide, and streptogramin B (MLS(B)) resistance (cMLS(B)) phenotype, and the remaining 148 strains were assigned to the inducible MLS(B) resistance (iMLS(B)) phenotype. Of the strains with the iMLS(B) phenotype, 36 exhibited a reversibly inducible MLS(B) (riMLS(B)) phenotype, i.e., blunting of the erythromycin zone of inhibition, which indicates that the 16-membered-ring macrolide josamycin is a more effective inducer than the 14-membered-ring macrolide erythromycin. Sequence analysis of the regulatory regions of the erm(B) genes from all of the strains exhibiting the riMLS(B) phenotype revealed not only erm(Bv) [where v represents variant; previously erm(AMR)] (n = 13), as reported previously, but also three kinds of erm(B) variants, which were designated erm(Bv1) (n = 17), erm(Bv2) (n = 3), and erm(Bv3) (n = 3), respectively. In lacZ reporter gene assays of these variants, the 16-membered-ring macrolide tylosin had stronger inducibility than erythromycin at > or = 0.1 microg/ml. These findings highlight the versatility of erm(B) in induction specificity.
Collapse
Affiliation(s)
- Yu-Hong Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Korea
| | | | | | | | | | | | | | | |
Collapse
|
473
|
Norrby SR, Quinn J, Rangaraju M, Leroy B. Evaluation of 5-day therapy with telithromycin, a novel ketolide antibacterial, for the treatment of tonsillopharyngitis. Clin Microbiol Infect 2004; 10:615-23. [PMID: 15214873 DOI: 10.1111/j.1469-0691.2004.00908.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pooled analysis of two double-blind, multicentre, Phase III studies compared oral telithromycin 800 mg once-daily for 5 days with penicillin V 500 mg three-times-daily or clarithromycin 250 mg twice-daily for 10 days in the treatment of Streptococcus pyogenes (group A beta-haemolytic streptococcus; GABHS) tonsillopharyngitis. Patients aged > or = 13 years with acute GABHS tonsillopharyngitis were randomised to receive telithromycin (n = 430), penicillin (n = 197) or clarithromycin (n = 231). Clinical isolates of S. pyogenes (n = 590) obtained from throat swab samples on study entry were tested for their in-vitro susceptibility to telithromycin, clarithromycin and azithromycin. Telithromycin demonstrated in-vitro activity against the clinical isolates of S. pyogenes (MIC50/90 0.03/0.06 mg/L) higher than clarithromycin or azithromycin (MIC50/90 0.06/0.06 mg/L and 0.12/0.25 mg/L, respectively), including erythromycin-resistant strains. At the post-therapy/test of cure (TOC) visit (days 16-23), satisfactory bacteriological outcome was demonstrated for 88.3% (234/265) and 88.6% (225/254) of telithromycin- and comparator-treated patients, respectively (per-protocol population). Overall, GABHS eradication rates were 88.7% (235/265) for telithromycin and 89.0% (226/254) for comparators. The clinical cure rates at the post-therapy/TOC visit were 93.6% (248/265) and 90.9% (220/242) for telithromycin and pooled comparators, respectively. Telithromycin was generally well-tolerated. Most adverse events considered to be possibly related to study medication were gastrointestinal and of mild intensity. Discontinuations as a result of adverse events were few in both treatment groups. In conclusion, telithromycin 800 mg once-daily for 5 days was as effective as penicillin V or clarithromycin for 10 days in the treatment of GABHS tonsillopharyngitis.
Collapse
Affiliation(s)
- S R Norrby
- Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | | | | | |
Collapse
|
474
|
Walsh SR, Ferraro MJ, Durand ML. Clindamycin-resistant Streptococcus pyogenes: report of a case. Diagn Microbiol Infect Dis 2004; 49:223-5. [PMID: 15246514 DOI: 10.1016/j.diagmicrobio.2004.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 03/30/2004] [Indexed: 11/26/2022]
Abstract
A sentinel isolate of clindamycin-resistant Streptococcus pyogenes from a case of mixed aerobic-anaerobic necrotizing fasciitis prompted our clinical laboratory to change its protocol and subsequently perform routine susceptibility testing on all S. pyogenes isolated from blood and soft tissue specimens. Emerging clindamycin resistance may have serious implications in the treatment of severe S. pyogenes infections.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | |
Collapse
|
475
|
Maravić G, Bujnicki JM, Flögel M. Mutational analysis of basic residues in the N-terminus of the rRNA:m6A methyltransferase ErmC'. Folia Microbiol (Praha) 2004; 49:3-7. [PMID: 15114858 DOI: 10.1007/bf02931637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Erm methyltransferases mediate the resistance to the macrolide-lincosamide-streptogramin B antibiotics via dimethylation of a specific adenine residue in 23S rRNA. The role of positively charged N-terminal residues of the ErmC' methyltransferase in RNA binding and/or catalysis was determined. Mutational analysis of amino acids K4 and K7 was performed and the mutants were characterized in in vivo and in vitro experiments. The K4 and K7 residues were suggested not to be essential for the enzyme activity but to provide a considerable support for the catalytic step of the reaction, probably by maintaining the optimum conformation of the transition state through interactions with the phosphate backbone of RNA.
Collapse
Affiliation(s)
- G Maravić
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, Univesity of Zagreb, 10000 Zagreb, Croatia.
| | | | | |
Collapse
|
476
|
Misyurina OY, Chipitsyna EV, Finashutina YP, Lazarev VN, Akopian TA, Savicheva AM, Govorun VM. Mutations in a 23S rRNA gene of Chlamydia trachomatis associated with resistance to macrolides. Antimicrob Agents Chemother 2004; 48:1347-9. [PMID: 15047540 PMCID: PMC375314 DOI: 10.1128/aac.48.4.1347-1349.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For six clinical isolates of Chlamydia trachomatis, in vitro susceptibility to erythromycin, azithromycin, and josamycin has been determined. Four isolates were resistant to all the antibiotics and had the mutations A2058C and T2611C (Escherichia coli numbering) in the 23S rRNA gene. All the isolates had mixed populations of bacteria that did and did not carry 23S rRNA gene mutations.
Collapse
Affiliation(s)
- O Y Misyurina
- Research Institute of Physico-Chemical Medicine, Russian Federation Ministry of Health, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
477
|
Douthwaite S, Crain PF, Liu M, Poehlsgaard J. The Tylosin-resistance Methyltransferase RlmAII (TlrB) Modifies the N-1 Position of 23S rRNA Nucleotide G748. J Mol Biol 2004; 337:1073-7. [PMID: 15046978 DOI: 10.1016/j.jmb.2004.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 02/12/2004] [Indexed: 11/30/2022]
Abstract
The methyltransferase RlmA(II) (TlrB) confers resistance to the macrolide antibiotic tylosin in the drug-producing strain Streptomyces fradiae. The resistance conferred by RlmA(II) is highly specific for tylosin, and no resistance is conferred to other macrolide drugs, or to lincosamide and streptogramin B (MLS(B)) drugs that bind to the same region on the bacterial ribosome. In this study, the methylation site of RlmA(II) is identified unambiguously by liquid chromatography/electrospray ionization mass spectrometry as the N-1 position of 23S rRNA nucleotide G748. This position is contacted by the mycinose sugar moiety of tylosin, which is absent from the other drugs. The selective resistance to tylosin conferred by m(1)G748 illustrates how differences in drug structure facilitate the drug fit at the MLS(B)-binding site. This observation is of relevance for the rational design of novel antimicrobials targeting the MLS(B) site, especially if the antimicrobials are to be used against pathogens possessing m(1)G748.
Collapse
Affiliation(s)
- Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
478
|
Das K, Acton T, Chiang Y, Shih L, Arnold E, Montelione GT. Crystal structure of RlmAI: implications for understanding the 23S rRNA G745/G748-methylation at the macrolide antibiotic-binding site. Proc Natl Acad Sci U S A 2004; 101:4041-6. [PMID: 14999102 PMCID: PMC384692 DOI: 10.1073/pnas.0400189101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RlmA class of enzymes (RlmA(I) and RlmA(II)) catalyzes N1-methylation of a guanine base (G745 in Gram-negative and G748 in Gram-positive bacteria) of hairpin 35 of 23S rRNA. We have determined the crystal structure of Escherichia coli RlmA(I) at 2.8-A resolution, providing 3D structure information for the RlmA class of RNA methyltransferases. The dimeric protein structure exhibits features that provide new insights into its molecular function. Each RlmA(I) molecule has a Zn-binding domain, responsible for specific recognition and binding of its rRNA substrate, and a methyltransferase domain. The asymmetric RlmA(I) dimer observed in the crystal structure has a well defined W-shaped RNA-binding cleft. Two S-adenosyl-l-methionine substrate molecules are located at the two valleys of the W-shaped RNA-binding cleft. The unique shape of the RNA-binding cleft, different from that of known RNA-binding proteins, is highly specific and structurally complements the 3D structure of hairpin 35 of bacterial 23S rRNA. Apart from the hairpin 35, parts of hairpins 33 and 34 also interact with the RlmA(I) dimer.
Collapse
Affiliation(s)
- Kalyan Das
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
479
|
Ubukata K. Problems associated with high prevalence of multidrug-resistant bacteria in patients with community-acquired infections. J Infect Chemother 2004; 9:285-91. [PMID: 14691647 DOI: 10.1007/s10156-003-0278-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Indexed: 10/26/2022]
Affiliation(s)
- Kimiko Ubukata
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641 Tokyo, Japan.
| |
Collapse
|
480
|
Buriánková K, Doucet-Populaire F, Dorson O, Gondran A, Ghnassia JC, Weiser J, Pernodet JL. Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 2004; 48:143-50. [PMID: 14693532 PMCID: PMC310192 DOI: 10.1128/aac.48.1.143-150.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intrinsic resistance of the Mycobacterium tuberculosis complex (MTC) to most antibiotics, including macrolides, is generally attributed to the low permeability of the mycobacterial cell wall. However, nontuberculous mycobacteria (NTM) are much more sensitive to macrolides than members of the MTC. A search for macrolide resistance determinants within the genome of M. tuberculosis revealed the presence of a sequence encoding a putative rRNA methyltransferase. The deduced protein is similar to Erm methyltransferases, which confer macrolide-lincosamide-streptogramin (MLS) resistance by methylation of 23S rRNA, and was named ErmMT. The corresponding gene, ermMT (erm37), is present in all members of the MTC but is absent in NTM species. Part of ermMT is deleted in some vaccine strains of Mycobacterium bovis BCG, such as the Pasteur strain, which lack the RD2 region. The Pasteur strain was susceptible to MLS antibiotics, whereas MTC species harboring the RD2 region were resistant to them. The expression of ermMT in the macrolide-sensitive Mycobacterium smegmatis and BCG Pasteur conferred MLS resistance. The resistance patterns and ribosomal affinity for erythromycin of Mycobacterium host strains expressing ermMT, srmA (monomethyltransferase from Streptomyces ambofaciens), and ermE (dimethyltransferase from Saccharopolyspora erythraea) were compared, and the ones conferred by ErmMT were similar to those conferred by SrmA, corresponding to the MLS type I phenotype. These results suggest that ermMT plays a major role in the intrinsic macrolide resistance of members of the MTC and could be the first example of a gene conferring resistance by target modification in mycobacteria.
Collapse
Affiliation(s)
- Karolína Buriánková
- Institut de Génétique et Microbiologie, UMR CNRS 8621, Université Paris-Sud 11, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
481
|
Farrell DJ, Morrissey I, Bakker S, Morris L, Buckridge S, Felmingham D. Molecular epidemiology of multiresistant Streptococcus pneumoniae with both erm(B)- and mef(A)-mediated macrolide resistance. J Clin Microbiol 2004; 42:764-8. [PMID: 14766850 PMCID: PMC344484 DOI: 10.1128/jcm.42.2.764-768.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/22/2003] [Accepted: 10/29/2003] [Indexed: 11/20/2022] Open
Abstract
Of a total of 1043 macrolide-resistant Streptococcus pneumoniae isolates collected from 24 countries as part of PROTEKT 1999-2000, 71 isolates tested positive for both the mef(A) and erm(B) genes. Of 69 isolates subjected to further molecular investigations, all were resistant to tetracycline, 63 (91.3%) were resistant to penicillin, and 57 (82.6%) were resistant to trimethoprim-sulfamethoxazole. One isolate was also fluoroquinolone resistant, and another was resistant to quinupristin-dalfopristin. The ketolide telithromycin retained activity against all of the isolates. Of the 69 of these 71 isolates viable for further testing, 46 were from South Korea, 13 were from the United States, 8 came from Japan, and 1 each came from Mexico and Hungary. One major clonal complex (59 [85.5%] of 69 isolates) was identified by serotyping (with 85.5% of the isolates being 19A or 19F), pulsed-field gel electrophoresis, and multilocus sequence typing. The remaining isolates were less clonal in nature. Representative isolates were shown to carry the mobile genetic elements Tn1545 and mega, were negative for Tn1207.1, had tetracycline resistance mediated by tet(M), and contained the mef(E) variant of mef(A). All isolates were positive for mel, a homologue of the msr(A) efflux gene. These clones are obviously very efficient at global dissemination, and hence it will be very important to monitor their progress through continued surveillance. Telithromycin demonstrated high levels of activity (MIC for 90% of the strains tested, 0.5 micro g/ml; MIC range, 0.06 to 1 micro g/ml) against all isolates.
Collapse
|
482
|
Ubukata K, Iwata S, Sunakawa K. In vitro activities of new ketolide, telithromycin, and eight other macrolide antibiotics against Streptococcus pneumoniae having mefA and ermB genes that mediate macrolide resistance. J Infect Chemother 2003; 9:221-6. [PMID: 14513389 DOI: 10.1007/s10156-003-0258-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 06/03/2003] [Indexed: 11/27/2022]
Abstract
The comparative in vitro activity of a new ketolide, telithromycin (TEL), and eight other macrolide-lincosamide antibiotics (MLS) against 215 strains, of Streptococcus pneumoniae including penicillin-resistant isolates (PRSP), was determined by the agar dilution method. These strains were isolated from patients with pneumonia, otitis media, and purulent meningitis between 1995 and 1997. Two genes, mefA and ermB, that encode MLS resistance in the strains were identified by polymerase chain reaction (PCR). Of the strains, 30.2% (n = 65) had the mefA gene, 37.7% (n = 81) had the ermB gene, and 1.4% (n = 3) had both resistant genes. The minimum inhibitory concentration (MIC90s) of TEL and 16-membered ring MLS for strains having the mefA gene were 0.063-0.25 microg/ml, which were the same level as those for MLS-susceptible strains. On the other hand, the strains with the mefA gene showed low-level resistance to 14- and 15-membered ring MLS, with MIC90s ranging from 1 to 4 microg/ml. Only the MIC90 of TEL at 0.5 microg/ml, for strains having the ermB gene was superior to that of the 14-, 15-, and 16-membered ring MLS (MIC90, > or =64 microg/ml). TEL also showed excellent activity against PRSP having abnormal pbp1a, pbp2x, and pbp2b genes. Most strains having the mefA and ermB genes were serotyped to 3, 6, 14, 19, and 23. These results suggest that TEL may be a useful chemotherapeutic agent for respiratory tract infections caused by S. pneumoniae.
Collapse
Affiliation(s)
- Kimiko Ubukata
- Laboratory of Infectious Agents Surveillance, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Sirokane, Minato-ku, Tokyo 108-8641, Japan.
| | | | | |
Collapse
|
483
|
Klare I, Konstabel C, Badstübner D, Werner G, Witte W. Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int J Food Microbiol 2003; 88:269-90. [PMID: 14597000 DOI: 10.1016/s0168-1605(03)00190-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enterococci are the second to third most important bacterial genus in hospital infections. Especially Enterococcus (E.) faecium possesses a broad spectrum of natural and acquired antibiotic resistances which are presented in detail in this paper. From medical point of view, the transferable resistances to glycopeptides (e.g., vancomycin, VAN, or teicoplanin, TPL) and streptogramins (e.g., quinupristin/dalfopristin, Q/D) in enterococci are of special interest. The VanA type of enterococcal glycopeptide resistance is the most important one (VAN-r, TPL-r); its main reservoir is E. faecium. Glycopeptide-resistant E. faecium (GREF) can be found in hospitals and outside of them, namely in European commercial animal husbandry in which the glycopeptide avoparcin (AVO) was used as growth promoter in the past. There are identical types of the vanA gene clusters in enterococci from different ecological origins (faecal samples of animals, animal feed, patients in hospitals, persons in the community, waste water samples). Obviously, across the food chain (by GREF-contaminated meat products), these multiple-resistant bacteria or their vanA gene clusters can reach humans. In hospital infections, widespread epidemic-virulent E. faecium isolates of the same clone with or without glycopeptide resistance can occur; these strains often harbour different plasmids and the esp gene. This indicates that hospital-adapted epidemic-virulent E. faecium strains have picked up the vanA gene cluster after they were already widely spread. The streptogramin virginiamycin was also used as feed additive in commercial animal husbandry in Europe for more than 20 years, and it created reservoirs for streptogramin-resistant E. faecium (SREF). In 1998/1999, SREF could be isolated in Germany from waste water of sewage treatment plants, from faecal samples and meat products of animals that were fed virginiamycin (cross resistance to Q/D), from stools of humans in the community, and from clinical samples. These isolations of SREF occurred in a time before the streptogramin combination Q/D was introduced for therapeutic purposes in German hospitals in May 2000, while other streptogramins were not used in German clinics. This seems to indicate that the origin of these SREF or their streptogramin resistance gene(s) originated from other sources outside the hospitals, probably from commercial animal husbandry. In order to prevent the dissemination of multiple antibiotic-resistant enterococci or their transferable resistance genes, a prudent use of antibiotics is necessary in human and veterinary medicine, and in animal husbandry.
Collapse
Affiliation(s)
- Ingo Klare
- Robert Koch Institute, Wernigerode Branch, Burgstrasse 37, D-38855 Wernigerode, Germany.
| | | | | | | | | |
Collapse
|
484
|
Parsad D, Pandhi R, Dogra S. A guide to selection and appropriate use of macrolides in skin infections. Am J Clin Dermatol 2003; 4:389-97. [PMID: 12762831 DOI: 10.2165/00128071-200304060-00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dermatologists must be aware of the adverse effects of antimicrobial agents as well as various drug interactions that may influence the choice of drug as well as specific drug schedules. The development of modern antibacterials has improved the treatment of cutaneous bacterial infections. Macrolide antibacterials continue to be an important therapeutic class of drugs with established efficacy in a variety of skin infections. All macrolides inhibit protein synthesis by reversibly binding to the 23S ribosomal RNA in the 50S-subunit. Erythromycin, the prototype of macrolide antibacterials, was isolated from the metabolic products of a strain of Streptomyces erytherus in 1952. Originally, erythromycin was introduced as an alternative to penicillin because of its activity against the Gram-positive organisms. Numerous studies have demonstrated the efficacy and safety of erythromycin for various infectious diseases. Unfortunately, erythromycin is associated with a number of drawbacks including a narrow spectrum of activity, unfavorable pharmacokinetic properties, poor gastrointestinal tolerability, and a significant number of drug-drug interactions. Newer macrolides have been developed to address these limitations. The pharmacokinetics of azithromycin and clarithromycin allow for shorter dosing schedules because of prolonged tissue levels. The efficacy of azithromycin for the treatment of skin and soft tissue infections in adults and children is well established. The unique pharmakinetics of azithromycin makes it a suitable agent for the treatment of acne. Clarithromycin represents a clear advance in the macrolide management of patients with leprosy and skin infections with atypical mycobacteria. Dirithromycin and roxithromycin display no clinical or bacteriological adcantage over erythromycin despite a superior pharmacokinetic profile. An area of concern is the increasing macrolide resistance that is being reported with some of the common pathogens which may limit the clinical usefulness of this class of antimicrobial agents in future.
Collapse
Affiliation(s)
- Davinder Parsad
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | | | | |
Collapse
|
485
|
Martel A, Meulenaere V, Devriese LA, Decostere A, Haesebrouck F. Macrolide and lincosamide resistance in the gram-positive nasal and tonsillar flora of pigs. Microb Drug Resist 2003; 9:293-7. [PMID: 12959408 DOI: 10.1089/107662903322286508] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Macrolide and lincosamide resistance phenotypes and the presence of the erm(A), erm(B), erm(C), and mef(A) genes were determined in 344 bacterial strains belonging to 34 species and nine genera, isolated from the tonsils and nasal cavities of 2-week- and 6-week-old piglets, derived from four different farms. These piglets had never before been treated with macrolides or lincosamides. Macrolide and lincosamide resistance was most frequently present in Streptococcus and Enterococcus strains, of which over two-thirds were resistant. These genera were followed in decreasing order of resistance frequency by Lactobacillus, Rothia, Staphylococcus, Arcanobacterium, Actinomyces, Pediococcus strains. Only five infrequently occurring species did not show resistance. This high frequency of resistance in nontreated piglets indicates that resistant strains circulate in the herds. In streptococci, enterococci, and Lactobacillus strains, resistance was most often encoded by the erm(B) gene and in staphylococci by erm(A) or erm(C). The erm(B) gene was sporadically detected in other bacterial genera (Actinomyces, Rothia, Aerococcus, Pediococcus). The sequence of the erm(B) gene of 29 strains of 11 pigs originating from the four different farms was determined. This sequence was identical in 12 strains and only differed by 1-6 nucleotides in the other strains, indicating that exchanges of resistance genes might occur between bacterial species and genera belonging to the nasal or tonsillar flora of piglets.
Collapse
Affiliation(s)
- A Martel
- Department of Pathology, Bacteriology, and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
486
|
Lopardo HA, Vidal P, Jeric P, Centron D, Paganini H, Facklam RR, Elliott J. Six-month multicenter study on invasive infections due to group B streptococci in Argentina. J Clin Microbiol 2003; 41:4688-94. [PMID: 14532204 PMCID: PMC254350 DOI: 10.1128/jcm.41.10.4688-4694.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Revised: 06/09/2003] [Accepted: 07/30/2003] [Indexed: 11/20/2022] Open
Abstract
There is little information about invasive infections by group B streptococci (GBS) and their antimicrobial susceptibilities in Latin America. We performed a prospective multicenter study to determine the serotype distribution and the antimicrobial susceptibility of GBS in Argentina. We identified 58 cases, but only 44 had sufficient data to be evaluated. Eight early-, four late-, and one fatal late, late-onset neonatal infections due to GBS were found. A total of 31 patients were adults with bacteremia, skin and soft tissue infections, osteomyelitis, arthritis, meningitis, abdominal infections, and renal abscess. Serotype III was prevalent in late-onset neonatal disease, and several serotypes (Ia/c, III, Ia, and II) were involved in early-onset neonatal infections. Serotypes II, Ia/c, III, and IV were commonly found in adults, with serotype II prevalent in younger adults (18 to 69 years old) and serotype Ia/c prevalent in elderly adults (>70 years old). The mortality rate attributable to GBS infections was 10.8%. All GBS were susceptible to penicillin and ceftriaxone. Resistance to clindamycin (1.7%), erythromycin (5.2%), azithromycin (5.2%), minocycline (69%), and tetracycline (72.4%), to high levels of kanamycin and amikacin (1.7%), and to intermediately high levels of gentamicin (1.7%) was observed. The bifunctional enzyme AAC6'-APH2" was detected in the isolate resistant to aminoglycosides, and other genetic determinants were identified in other resistant isolates: tetM and tetO in tetracycline-resistant streptococci and mefA and ermTR for efflux-mediated and inducible macrolide-lincosamide-streptogramin B-resistant streptococci, respectively. For clinical purposes and rapid and easy detection of high-level aminoglycoside-resistant GBS, a screening method that used 1,000- micro g kanamycin disks is proposed.
Collapse
Affiliation(s)
- Horacio A Lopardo
- Servicio de Microbiología, Hospital de Pediatría, Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
487
|
Affiliation(s)
- Ada Yonath
- Dept. of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel.
| |
Collapse
|
488
|
Maravić G, Feder M, Pongor S, Flögel M, Bujnicki JM. Mutational analysis defines the roles of conserved amino acid residues in the predicted catalytic pocket of the rRNA:m6A methyltransferase ErmC'. J Mol Biol 2003; 332:99-109. [PMID: 12946350 DOI: 10.1016/s0022-2836(03)00863-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methyltransferases (MTases) from the Erm family catalyze S-adenosyl-L-methionine-dependent modification of a specific adenine residue in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B antibiotics. Despite the available structural data and functional analyses on the level of the RNA substrate, still very little is known about the mechanism of rRNA:adenine-N(6) methylation. Only predictions regarding various aspects of this reaction have been made based on the analysis of the crystal structures of methyltransferase ErmC' (without the RNA) and their comparison with the crystallographic and biochemical data for better studied DNA:m(6)A MTases. To validate the structure-based predictions of presumably essential residues in the catalytic pocket of ErmC', we carried out the site-directed mutagenesis and studied the function of the mutants in vitro and in vivo. Our results indicate that the active site of rRNA:m(6)A MTases is much more tolerant to amino acid substitutions than the active site of DNA:m(6)A MTases. Only the Y104 residue implicated in stabilization of the target base was found to be indispensable. Remarkably, the N101 residue from the "catalytic" motif IV and two conserved residues that form the floor (F163) and one of the walls (N11) of the base-binding site are not essential for catalysis in ErmC'. This somewhat surprising result is discussed in the light of the available structural data and in the phylogenetic context of the Erm family.
Collapse
Affiliation(s)
- Gordana Maravić
- Protein Structure and Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
489
|
Bashan A, Zarivach R, Schluenzen F, Agmon I, Harms J, Auerbach T, Baram D, Berisio R, Bartels H, Hansen HAS, Fucini P, Wilson D, Peretz M, Kessler M, Yonath A. Ribosomal crystallography: peptide bond formation and its inhibition. Biopolymers 2003; 70:19-41. [PMID: 12925991 DOI: 10.1002/bip.10412] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ribosomes, the universal cellular organelles catalyzing the translation of genetic code into proteins, are protein/RNA assemblies, of a molecular weight 2.5 mega Daltons or higher. They are built of two subunits that associate for performing protein biosynthesis. The large subunit creates the peptide bond and provides the path for emerging proteins. The small has key roles in initiating the process and controlling its fidelity. Crystallographic studies on complexes of the small and the large eubacterial ribosomal subunits with substrate analogs, antibiotics, and inhibitors confirmed that the ribosomal RNA governs most of its activities, and indicated that the main catalytic contribution of the ribosome is the precise positioning and alignment of its substrates, the tRNA molecules. A symmetry-related region of a significant size, containing about two hundred nucleotides, was revealed in all known structures of the large ribosomal subunit, despite the asymmetric nature of the ribosome. The symmetry rotation axis, identified in the middle of the peptide-bond formation site, coincides with the bond connecting the tRNA double-helical features with its single-stranded 3' end, which is the moiety carrying the amino acids. This thus implies sovereign movements of tRNA features and suggests that tRNA translocation involves a rotatory motion within the ribosomal active site. This motion is guided and anchored by ribosomal nucleotides belonging to the active site walls, and results in geometry suitable for peptide-bond formation with no significant rearrangements. The sole geometrical requirement for this proposed mechanism is that the initial P-site tRNA adopts the flipped orientation. The rotatory motion is the major component of unified machinery for peptide-bond formation, translocation, and nascent protein progression, since its spiral nature ensures the entrance of the nascent peptide into the ribosomal exit tunnel. This tunnel, assumed to be a passive path for the growing chains, was found to be involved dynamically in gating and discrimination.
Collapse
Affiliation(s)
- Anat Bashan
- Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
490
|
Pituch H, Van Belkum A, Van Den Braak N, Obuch-Woszczatynski P, Verbrugh H, Meisel-Mikołajczyk F, uczak M. Recent emergence of an epidemic clindamycin-resistant clone of Clostridium difficile among Polish patients with C. difficile-associated diarrhea. J Clin Microbiol 2003; 41:4184-7. [PMID: 12958245 PMCID: PMC193821 DOI: 10.1128/jcm.41.9.4184-4187.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of both the antibiotic resistance and the virulence characteristics of anaerobic human microbial pathogens is important in order to improve our understanding of a number of clinically significant infectious diseases, including Clostridium difficile-associated diarrhea (CDAD). We determined the presence of the clindamycin resistance-associated gene ermB and the ribotype of 33 C. difficile strains isolated from Polish patients suffering from CDAD. While all strains produced cytotoxin B (TcdB), enterotoxin A (TcdA) was produced by a subset of 15 strains only. The results showed that a single ermB-positive, TcdA(-)B(+) C. difficile strain with ribotype A has disseminated widely in the two Warsaw hospitals under investigation. Although different strains with the same phenotype were detected, the genotype A strain appeared to be the only one with a clear epidemic character. Apparently, enhanced local spread of CDAD-causing C. difficile may be restricted to a limited number of bacterial genotypes only.
Collapse
Affiliation(s)
- Hanna Pituch
- Department of Medical Microbiology, Centre of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
491
|
Maravić G, Bujnicki JM, Feder M, Pongor S, Flögel M. Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions. Nucleic Acids Res 2003; 31:4941-9. [PMID: 12907737 PMCID: PMC169915 DOI: 10.1093/nar/gkg666] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Erm family of adenine-N(6) methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Hence, these proteins are important potential drug targets. Despite the availability of the NMR and crystal structures of two members of the family (ErmAM and ErmC', respectively) and extensive studies on the RNA substrate, the substrate-binding site and the amino acids involved in RNA recognition by the Erm MTases remain unknown. It has been proposed that the small C-terminal domain functions as a target-binding module, but this prediction has not been tested experimentally. We have undertaken structure-based mutational analysis of 13 charged or polar residues located on the predicted rRNA-binding surface of ErmC' with the aim to identify the area of protein-RNA interactions. The results of in vivo and in vitro analyses of mutant protein suggest that the key RNA-binding residues are located not in the small domain, but in the large catalytic domain, facing the cleft between the two domains. Based on the mutagenesis data, a preliminary three-dimensional model of ErmC' complexed with the minimal substrate was constructed. The identification of the RNA-binding site of ErmC' may be useful for structure-based design of novel drugs that do not necessarily bind to the cofactor-binding site common to many S-adenosyl-L- methionine-dependent MTases, but specifically block the substrate-binding site of MTases from the Erm family.
Collapse
MESH Headings
- Alanine/genetics
- Amino Acid Sequence
- Binding Sites/genetics
- Cell Division/drug effects
- Cell Division/genetics
- Drug Resistance, Bacterial/genetics
- Erythromycin/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Kinetics
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sequence Homology, Amino Acid
- Substrate Specificity
Collapse
Affiliation(s)
- Gordana Maravić
- Protein Structure and Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
492
|
Syrogiannopoulos GA, Grivea IN, Ednie LM, Bozdogan B, Katopodis GD, Beratis NG, Davies TA, Appelbaum PC. Antimicrobial susceptibility and macrolide resistance inducibility of Streptococcus pneumoniae carrying erm(A), erm(B), or mef(A). Antimicrob Agents Chemother 2003; 47:2699-702. [PMID: 12878546 PMCID: PMC166089 DOI: 10.1128/aac.47.8.2699-2702.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythromycin-resistant Streptococcus pneumoniae isolates from young carriers were tested for their antimicrobial susceptibility; additionally, inducibility of macrolide and clindamycin resistance was investigated in pneumococci carrying erm(A), erm(B), or mef(A). Of 125 strains tested, 101 (81%) were multidrug resistant. Different levels of induction were observed with erythromycin, miocamycin, and clindamycin in erm(B) strains; however, in erm(A) strains only erythromycin was an inducer. Induction did not affect macrolide MICs in mef(A) strains.
Collapse
Affiliation(s)
- George A Syrogiannopoulos
- Department of Pediatrics, General University Hospital, University of Patras, School of Medicine, Patras, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
493
|
Abstract
BACKGROUND Antimicrobial treatment of pediatric respiratory tract infections has evolved during the past 30 years as a result of antimicrobial resistance. The focus of antimicrobial therapy in these conditions has shifted from penicillins to other agents because of the dramatic increase in antimicrobial resistance among common respiratory pathogens, including Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. It is important for clinicians to understand how resistance develops so that they can help prevent this phenomenon from occurring with other antimicrobials. METHODS This article reviews the published literature on resistance to macrolide antimicrobials among common pediatric respiratory tract pathogens and clinical and bacteriologic outcomes of infections with these pathogens. RESULTS Resistance among common pediatric respiratory tract pathogens to macrolides occurs through two main mechanisms, alteration of the target site and active efflux. Although resistance patterns vary by geographic region, the widespread use of macrolides has contributed to the emergence of both types of macrolide-resistant organisms. Conditions that favor the selection and proliferation of resistant strains include children with repeated, close contact who frequently receive antimicrobial treatment or prophylaxis, such as children who attend day care. Recent US surveillance data show that 20 to 30% of S. pneumoniae are resistant to macrolides, with approximately two-thirds of macrolide-resistant strains associated with an efflux mechanism and the remainder associated with a ribosomal methylase. Additionally, although less well-known, virtually all strains of H. influenzae have an intrinsic macrolide efflux pump. As resistance to macrolides has increased, clinical failures have resulted, and these agents are no longer considered appropriate for empiric first line antimicrobial therapy of acute otitis media and sinusitis unless patients are truly penicillin-allergic. Therefore, other antimicrobials are recommended for the empiric treatment of children with respiratory tract infections, including higher doses of amoxicillin and amoxicillin/clavulanate (90 mg/kg/day amoxicillin), cefuroxime axetil and intramuscular ceftriaxone. CONCLUSIONS As resistance to macrolides increases and clinical failures in children become more common with this class of antimicrobials, judicious use of antimicrobials is needed. This includes limiting antimicrobial use for viral infections and using the most effective agents when antimicrobials are clinically indicated, such as higher doses of amoxicillin and amoxicillin/clavulanate. Application of these principles may prevent proliferation and further development of resistance.
Collapse
Affiliation(s)
- Michael R Jacobs
- Clinical Microbiology, University Hospitals of Cleveland, Cleveland, OH
| | | |
Collapse
|
494
|
Tenson T, Lovmar M, Ehrenberg M. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 2003; 330:1005-14. [PMID: 12860123 DOI: 10.1016/s0022-2836(03)00662-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The macrolide-lincosamide-streptogramin B class (MLS) of antibiotics contains structurally different but functionally similar drugs, that all bind to the 50S ribosomal subunit. It has been suggested that these compounds block the path by which nascent peptides exit the ribosome. We have studied the mechanisms of action of four macrolides (erythromycin, josamycin, spiramycin and telithromycin), one lincosamide (clindamycin) and one streptogramin B (pristinamycin IA). All these MLS drugs cause dissociation of peptidyl-tRNA from the ribosome. Josamycin, spiramycin and clindamycin, that extend to the peptidyl transferase center, cause dissociation of peptidyl-tRNAs containing two, three or four amino acid residues. Erythromycin, which does not reach the peptidyl transferase center, induces dissociation of peptidyl-tRNAs containing six, seven or eight amino acid residues. Pristinamycin IA causes dissociation of peptidyl-tRNAs with six amino acid residues and telithromycin allows polymerisation of nine or ten amino acid residues before peptidyl-tRNA dissociates. Our data, in combination with previous structural information, suggest a common mode of action for all MLS antibiotics, which is modulated by the space available between the peptidyl transferase center and the drug.
Collapse
Affiliation(s)
- Tanel Tenson
- Institute of Technology, Tartu University, Riia 23, Tartu 51010, Estonia.
| | | | | |
Collapse
|
495
|
Martel A, Devriese LA, Decostere A, Haesebrouck F. Presence of macrolide resistance genes in streptococci and enterococci isolated from pigs and pork carcasses. Int J Food Microbiol 2003; 84:27-32. [PMID: 12781951 DOI: 10.1016/s0168-1605(02)00390-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Macrolide and lincosamide (ML)-resistant streptococci and enterococci from tonsillar and colon swabs from 33 pigs and 99 pork carcasses swabs from animals originating from different farms in Belgium were isolated, and their ML resistance phenotypes and genotypes were determined by disk diffusion test and PCR assay, amplifying the ermB gene and the mefA gene. From each of the 33 pigs and 88 of the 99 carcasses' swabs, at least one resistant strain was isolated. The predominant phenotype was the constitutively expressed macrolides, lincosamides and streptogramin B (MLS(B)) phenotype. This phenotype was most often encoded by the ermB gene. A minority of the strains showed the M phenotype encoded by the mefA gene in streptococci, or the L or ML phenotype.
Collapse
Affiliation(s)
- A Martel
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
496
|
Treede I, Jakobsen L, Kirpekar F, Vester B, Weitnauer G, Bechthold A, Douthwaite S. The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Mol Microbiol 2003; 49:309-18. [PMID: 12828631 DOI: 10.1046/j.1365-2958.2003.03558.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Avilamycin is an orthosomycin antibiotic that has shown considerable potential for clinical use, although it is presently used as a growth promoter in animal feed. Avilamycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit. The ribosomes of the producer strain, Streptomyces viridochromogenes Tü57, are protected from the drug by the action of three resistance factors located in the avilamycin biosynthetic gene cluster. Two of the resistance factors, aviRa and aviRb, encode rRNA methyltransferases that specifically target 23S rRNA. Recombinant AviRa and AviRb proteins retain their activity after purification, and both specifically methylate in vitro transcripts of 23S rRNA domain V. Reverse transcriptase primer extension indicated that AviRa is an N-methyltransferase that targets G2535 within helix 91 of the rRNA, whereas AviRb modified the 2'-O-ribose position of nucleotide U2479 within helix 89. MALDI mass spectrometry confirmed the exact positions of each of these modifications, and additionally established that a single methyl group is added at each nucleotide. Neither of these two nucleotides have previously been described as a target for enzymatic methylation. Molecular models of the 50S subunit crystal structure show that the N-1 of the G2535 base and the 2'-hydroxyl of U2479 are separated by approximately 10 A, a distance that can be spanned by avilamycin. In addition to defining new resistance mechanisms, these data refine our understanding of the probable ribosome contacts made by orthosomycins and of how these antibiotics inhibit protein synthesis.
Collapse
Affiliation(s)
- Irina Treede
- Department of Pharmaceutical Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
497
|
Berisio R, Harms J, Schluenzen F, Zarivach R, Hansen HAS, Fucini P, Yonath A. Structural insight into the antibiotic action of telithromycin against resistant mutants. J Bacteriol 2003; 185:4276-9. [PMID: 12837804 PMCID: PMC164882 DOI: 10.1128/jb.185.14.4276-4279.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crystal structure of the ketolide telithromycin bound to the Deinococcus radiodurans large ribosomal subunit shows that telithromycin blocks the ribosomal exit tunnel and interacts with domains II and V of the 23S RNA. Comparisons to other clinically relevant macrolides provided structural insights into its enhanced activity against macrolide-resistant strains.
Collapse
Affiliation(s)
- Rita Berisio
- Max-Planck-Research Unit for Ribosomal Structure, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
498
|
Jensen LB, Hammerum AM, Bager F, Aarestrup FM. Streptogramin resistance among Enterococcus faecium isolated from production animals in Denmark in 1997. Microb Drug Resist 2003; 8:369-74. [PMID: 12523635 DOI: 10.1089/10766290260469642] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genetic background for streptogramin resistance was examined in Enterococcus faecium isolated from pigs (n = 55) and broilers (n = 207) in 1997 in Denmark. Fifty-one percent and 67%, respectively, of the isolates were resistant to streptogramins. Among streptogramin-resistant E. faecium (SREF), the genetic background for streptogramin A resistance could be determined in 96% of the isolates from broilers, compared with 14% among SREF from pigs. For broiler isolates 89% of SREF contained the vat(E) gene and 10% the vat(D) gene. Three of these isolates contained both resistance genes. Among SREF from pigs two isolates contained the vat(E) gene and two others the vat(D) gene. The genetic background for streptogramin B was most often identified as the erm(B) gene encoding macrolide, lincosamide, and streptogramin B (MLSB) resistance. Among SREF, 84% and 86% of isolates from broilers and pigs, respectively, contained the erm(B). In SREF from broilers, the erm(B) gene was physically linked to the vat(E) gene in 62% of the vat(E)-positive isolates and 79% of the isolates containing vat(D). erm(A) was detected in two SREF of broiler origin. Both isolates also contained the erm(B) gene. No SREF contained the vgb(A) gene encoding streptogramin B resistance. On the basis of genetic characterization, streptogramin-resistant isolates from broiler were divided into subgroups, according to the presence of the streptogramin A genes, to determine possible co-resistance to antimicrobials, especially glycopeptides. Twenty-five percent of the SREF from broilers were glycopeptide resistant (MIC > 16 microg/ml). None of the isolates containing the streptogramin A gene vat(D) was resistant to glycopeptide, whereas isolates containing the vat(E) gene had a lower prevalence to glycopeptide resistance than the streptogramin-sensitive isolates.
Collapse
Affiliation(s)
- Lars Bogø Jensen
- Section for Antimicrobial Resistance and Environmental Microbiology, Danish Veterinary Institute, DK-1790 Copenhagen V, Denmark.
| | | | | | | |
Collapse
|
499
|
Agmon I, Auerbach T, Baram D, Bartels H, Bashan A, Berisio R, Fucini P, Hansen HAS, Harms J, Kessler M, Peretz M, Schluenzen F, Yonath A, Zarivach R. On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Derived on 20 October 2002 at the 28th FEBS Meeting in Istanbul. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2543-56. [PMID: 12787020 DOI: 10.1046/j.1432-1033.2003.03634.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High-resolution crystal structures of large ribosomal subunits from Deinococcus radiodurans complexed with tRNA-mimics indicate that precise substrate positioning, mandatory for efficient protein biosynthesis with no further conformational rearrangements, is governed by remote interactions of the tRNA helical features. Based on the peptidyl transferase center (PTC) architecture, on the placement of tRNA mimics, and on the existence of a two-fold related region consisting of about 180 nucleotides of the 23S RNA, we proposed a unified mechanism integrating peptide bond formation, A-to-P site translocation, and the entrance of the nascent protein into its exit tunnel. This mechanism implies sovereign, albeit correlated, motions of the tRNA termini and includes a spiral rotation of the A-site tRNA-3' end around a local two-fold rotation axis, identified within the PTC. PTC features, ensuring the precise orientation required for the A-site nucleophilic attack on the P-site carbonyl-carbon, guide these motions. Solvent mediated hydrogen transfer appears to facilitate peptide bond formation in conjunction with the spiral rotation. The detection of similar two-fold symmetry-related regions in all known structures of the large ribosomal subunit, indicate the universality of this mechanism, and emphasizes the significance of the ribosomal template for the precise alignment of the substrates as well as for accurate and efficient translocation. The symmetry-related region may also be involved in regulatory tasks, such as signal transmission between the ribosomal features facilitating the entrance and the release of the tRNA molecules. The protein exit tunnel is an additional feature that has a role in cellular regulation. We showed by crystallographic methods that this tunnel is capable of undergoing conformational oscillations and correlated the tunnel mobility with sequence discrimination, gating and intracellular regulation.
Collapse
Affiliation(s)
- Ilana Agmon
- Department of Structural Biology, The Weizmann Institute, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
500
|
Farrell DJ, Douthwaite S, Morrissey I, Bakker S, Poehlsgaard J, Jakobsen L, Felmingham D. Macrolide resistance by ribosomal mutation in clinical isolates of Streptococcus pneumoniae from the PROTEKT 1999-2000 study. Antimicrob Agents Chemother 2003; 47:1777-83. [PMID: 12760848 PMCID: PMC155854 DOI: 10.1128/aac.47.6.1777-1783.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sixteen (1.5%) of the 1,043 clinical macrolide-resistant Streptococcus pneumoniae isolates collected and analyzed in the 1999-2000 PROTEKT (Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin) study have resistance mechanisms other than rRNA methylation or efflux. We have determined the macrolide resistance mechanisms in all 16 isolates by sequencing the L4 and L22 riboprotein genes, plus relevant segments of the four genes for 23S rRNA, and the expression of mutant rRNAs was analyzed by primer extension. Isolates from Canada (n = 4), Japan (n = 3), and Australia (n = 1) were found to have an A2059G mutation in all four 23S rRNA alleles. The Japanese isolates additionally had a G95D mutation in riboprotein L22; all of these originated from the same collection center and were clonal. Three of the Canadian isolates were also clonal; the rest were not genetically related. Four German isolates had A2059G in one, two, and three 23S rRNA alleles and A2058G in two 23S rRNA alleles, respectively. An isolate from the United States had C2611G in three 23S rRNA alleles, one isolate from Poland had A2058G in three 23S rRNA alleles, one isolate from Turkey had A2058G in four 23S rRNA alleles, and one isolate from Canada had A2059G in two 23S rRNA alleles. Erythromycin and clindamycin resistance gradually increased with the number of A2059G alleles, whereas going from one to two mutant alleles caused sharp rises in the azithromycin, roxithromycin, and rokitamycin MICs. Comparisons of mutation dosage with rRNA expression indicates that not all alleles are equally expressed. Despite their high levels of macrolide resistance, all 16 isolates remained susceptible to the ketolide telithromycin (MICs, 0.015 to 0.25 microg/ml).
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Drug Resistance, Bacterial
- Electrophoresis, Gel, Pulsed-Field
- Humans
- Macrolides
- Pneumococcal Infections/microbiology
- Point Mutation/genetics
- Polymerase Chain Reaction
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Streptococcus pneumoniae/drug effects
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/metabolism
Collapse
|