451
|
|
452
|
Scales BS, Huffnagle GB. The microbiome in wound repair and tissue fibrosis. J Pathol 2013; 229:323-31. [PMID: 23042513 PMCID: PMC3631561 DOI: 10.1002/path.4118] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 02/06/2023]
Abstract
Bacterial colonization occurs in all wounds, chronic or acute, and the break in epithelium integrity that defines a wound impairs the forces that shape and constrain the microbiome at that site. This review highlights the interactions between bacterial communities in the wound and the ultimate resolution of the wound or development of fibrotic lesions. Chronic wounds support complex microbial communities comprising a wide variety of bacterial phyla, genera, and species, including some fastidious anaerobic bacteria not identified using culture-based methods. Thus, the complexity of bacterial communities in wounds has historically been underestimated. There are a number of intriguing possibilities to explain these results that may also provide novel insights into changes and adaptation of bacterial metabolic networks in inflamed and wounded mucosa, including the critical role of biofilm formation. It is well accepted that the heightened state of activation of host cells in a wound that is driven by the microbiota can certainly lead to detrimental effects on wound regeneration, but the microbiota of the wound may also have beneficial effects on wound healing. Studies in experimental systems have clearly demonstrated a beneficial effect for members of the gut microbiota on regulation of systemic inflammation, which could also impact wound healing at sites outside the gastrointestinal tract. The utilization of culture-independent microbiology to characterize the microbiome of wounds and surrounding mucosa has raised many intriguing questions regarding previously held notions about the cause and effect relationships between bacterial colonization and wound repair and mechanisms involved in this symbiotic relationship.
Collapse
Affiliation(s)
- Brittan S. Scales
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Gary B. Huffnagle
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
453
|
Petropavlovskii A, Sillanpää M. Removal of micropollutants by biofilms: current approaches and future prospects. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/21622515.2013.865794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
454
|
Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci U S A 2012; 110:1059-64. [PMID: 23277552 DOI: 10.1073/pnas.1214550110] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Most infections result from colonization by more than one microbe. Within such polymicrobial infections, microbes often display synergistic interactions that result in increased disease severity. Although many clinical studies have documented the occurrence of synergy in polymicrobial infections, little is known about the underlying molecular mechanisms. A prominent pathogen in many polymicrobial infections is Pseudomonas aeruginosa, a Gram-negative bacterium that displays enhanced virulence during coculture with Gram-positive bacteria. In this study we discovered that during coinfection, P. aeruginosa uses peptidoglycan shed by Gram-positive bacteria as a cue to stimulate production of multiple extracellular factors that possess lytic activity against prokaryotic and eukaryotic cells. Consequently, P. aeruginosa displays enhanced virulence in a Drosophila model of infection when cocultured with Gram-positive bacteria. Inactivation of a gene (PA0601) required for peptidoglycan sensing mitigated this phenotype. Using Drosophila and murine models of infection, we also show that peptidoglycan sensing results in P. aeruginosa-mediated reduction in the Gram-positive flora in the infection site. Our data suggest that P. aeruginosa has evolved a mechanism to survey the microbial community and respond to Gram-positive produced peptidoglycan through production of antimicrobials and toxins that not only modify the composition of the community but also enhance host killing. Additionally, our results suggest that therapeutic strategies targeting Gram-positive bacteria might be a viable approach for reducing the severity of P. aeruginosa polymicrobial infections.
Collapse
|
455
|
Chelli-Chentouf N, Tir Touil Meddah A, Mullié C, Aoues A, Meddah B. In vitro and in vivo antimicrobial activity of Algerian Hoggar Salvadora persica L. extracts against microbial strains from children's oral cavity. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:57-66. [PMID: 22963838 DOI: 10.1016/j.jep.2012.08.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvadora persica L. (miswak) is traditionally used to ensure oral hygiene Muslim people in developing countries where it is growing. The antibacterial properties of Salvadora persica L. originating from various geographic areas have already been reported. However, they have never been tested for samples originating from Hoggar, where extreme weather conditions could lead to different properties for this Salvadora persica L. ecotype. AIM OF THE STUDY To assess the in vitro and in vivo antimicrobial activities of methanolic extract of Algerian Hoggar Salvadora persica L. (miswak) on some isolated and identified strains from the oral cavity of school children aged from 6 to 12 with (n=20) and without (n=20) caries. MATERIALS AND METHODS After a qualitative and quantitative analysis of dental plaque samples from the selected children, the effect of methanolic extract of Hoggar miswak against oral bacterial and fungal strains isolated from the oral cavity of children with caries was tested by both agar disc diffusion and microdilution methods. The stability and physicochemical parameters of Hoggar Salvadora persica L. mouthwash were also assessed compared. The in vivo antimicrobial effect of Hoggar miswak rinse on dental plaque samples was also tested over a week. RESULTS Four bacterial genera (Staphylococcus, Streptococcus, Escherichia and Lactobacillus) were commonly identified in all subjects at different colonization levels. A statistically significant difference in colonization levels between the two groups of children was recorded. Hoggar miswak extract more significantly inhibited the growth of Gram negative bacteria from the dental plaque than Gram positive ones. Hoggar Salvadora persica L. mouthwash was stable at 4 °C and 25 °C over the period of conservation (one week) while a temperature of 40 °C induced variations in the physicochemical parameters and considered not suitable for preservation. The in vivo study revealed a significant reduction in bacteria of the oral cavity using miswak mouthwash as compared to placebo. CONCLUSION Hoggar miswak extract displayed a strong antimicrobial effect both in vitro and in vivo. Its use as a mouthrinse could therefore be recommended as a preventive measure to preserve from tooth decay.
Collapse
Affiliation(s)
- Nadia Chelli-Chentouf
- Laboratoire de Bioconversion, Génie Microbiologique et Sécurité Sanitaire, Faculté des Sciences de la Nature et de la Vie, Université de Mascara, Route Mamounia, 29000 Mascara, Algérie.
| | | | | | | | | |
Collapse
|
456
|
Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob Agents Chemother 2012; 57:74-82. [PMID: 23070170 DOI: 10.1128/aac.01599-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Candida albicans, an opportunistic fungus, and Staphylococcus aureus, a bacterial pathogen, are two clinically relevant biofilm-forming microbes responsible for a majority of catheter-related infections, with such infections often resulting in catheter loss and removal. Not only do these pathogens cause a substantial number of nosocomial infections independently, but also they are frequently found coexisting as polymicrobial biofilms on host and environmental surfaces. Antimicrobial lock therapy is a current strategy to sterilize infected catheters. However, the robustness of this technique against polymicrobial biofilms has remained largely untested. Due to its antimicrobial activity, safety, stability, and affordability, we tested the hypothesis that ethanol (EtOH) could serve as a potentially efficacious catheter lock solution against C. albicans and S. aureus biofilms. Therefore, we optimized the dose and time necessary to achieve killing of both monomicrobial and polymicrobial biofilms formed on polystyrene and silicone surfaces in a static microplate lock therapy model. Treatment with 30% EtOH for a minimum of 4 h was inhibitory for monomicrobial and polymicrobial biofilms, as evidenced by XTT {sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide inner salt} metabolic activity assays and confocal microscopy. Experiments to determine the regrowth of microorganisms on silicone after EtOH treatment were also performed. Importantly, incubation with 30% EtOH for 4 h was sufficient to kill and inhibit the growth of C. albicans, while 50% EtOH was needed to completely inhibit the regrowth of S. aureus. In summary, we have systematically defined the dose and duration of EtOH treatment that are effective against and prevent regrowth of C. albicans and S. aureus monomicrobial and polymicrobial biofilms in an in vitro lock therapy model.
Collapse
|
457
|
Falciani C, Lozzi L, Pollini S, Luca V, Carnicelli V, Brunetti J, Lelli B, Bindi S, Scali S, Di Giulio A, Rossolini GM, Mangoni ML, Bracci L, Pini A. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS One 2012; 7:e46259. [PMID: 23056272 PMCID: PMC3462775 DOI: 10.1371/journal.pone.0046259] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/31/2012] [Indexed: 01/21/2023] Open
Abstract
The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.
Collapse
Affiliation(s)
- Chiara Falciani
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Luisa Lozzi
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Simona Pollini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Vincenzo Luca
- Dipartimento di Scienze Biochimiche A. Fanelli, Università di Roma, La Sapienza, Roma, Italy
| | - Veronica Carnicelli
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L’Aquila, L’Aquila, Italy
| | | | - Barbara Lelli
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Stefano Bindi
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Silvia Scali
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Antonio Di Giulio
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L’Aquila, L’Aquila, Italy
| | - Gian Maria Rossolini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Maria Luisa Mangoni
- Dipartimento di Scienze Biochimiche A. Fanelli, Università di Roma, La Sapienza, Roma, Italy
| | - Luisa Bracci
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Alessandro Pini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
- * E-mail:
| |
Collapse
|
458
|
Immune modulation by group B Streptococcus influences host susceptibility to urinary tract infection by uropathogenic Escherichia coli. Infect Immun 2012; 80:4186-94. [PMID: 22988014 DOI: 10.1128/iai.00684-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Urinary tract infection (UTI) is most often caused by uropathogenic Escherichia coli (UPEC). UPEC inoculation into the female urinary tract (UT) can occur through physical activities that expose the UT to an inherently polymicrobial periurethral, vaginal, or gastrointestinal flora. We report that a common urogenital inhabitant and opportunistic pathogen, group B Streptococcus (GBS), when present at the time of UPEC exposure, undergoes rapid UPEC-dependent exclusion from the murine urinary tract, yet it influences acute UPEC-host interactions and alters host susceptibility to persistent outcomes of bladder and kidney infection. GBS presence results in increased UPEC titers in the bladder lumen during acute infection and reduced inflammatory responses of murine macrophages to live UPEC or purified lipopolysaccharide (LPS), phenotypes that require GBS mimicry of host sialic acid residues. Taken together, these studies suggest that despite low titers, the presence of GBS at the time of polymicrobial UT exposure may be an overlooked risk factor for chronic pyelonephritis and recurrent UTI in susceptible groups, even if it is outcompeted and thus absent by the time of diagnosis.
Collapse
|
459
|
|
460
|
Peters BM, Ovchinnikova ES, Krom BP, Schlecht LM, Zhou H, Hoyer LL, Busscher HJ, van der Mei HC, Jabra-Rizk MA, Shirtliff ME. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. MICROBIOLOGY-SGM 2012; 158:2975-2986. [PMID: 22918893 DOI: 10.1099/mic.0.062109-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterium Staphylococcus (St.) aureus and the opportunistic fungus Candida albicans are currently among the leading nosocomial pathogens, often co-infecting critically ill patients, with high morbidity and mortality. Previous investigations have demonstrated preferential adherence of St. aureus to C. albicans hyphae during mixed biofilm growth. In this study, we aimed to characterize the mechanism behind this observed interaction. C. albicans adhesin-deficient mutant strains were screened by microscopy to identify the specific receptor on C. albicans hyphae recognized by St. aureus. Furthermore, an immunoassay was developed to validate and quantify staphylococcal binding to fungal biofilms. The findings from these experiments implicated the C. albicans adhesin agglutinin-like sequence 3 (Als3p) in playing a major role in the adherence process. This association was quantitatively established using atomic force microscopy, in which the adhesion force between single cells of the two species was significantly reduced for a C. albicans mutant strain lacking als3. Confocal microscopy further confirmed these observations, as St. aureus overlaid with a purified recombinant Als3 N-terminal domain fragment (rAls3p) exhibited robust binding. Importantly, a strain of Saccharomyces cerevisiae heterologously expressing Als3p was utilized to further confirm this adhesin as a receptor for St. aureus. Although the parental strain does not bind bacteria, expression of Als3p on the cell surface conferred upon the yeast the ability to strongly bind St. aureus. To elucidate the implications of these in vitro findings in a clinically relevant setting, an ex vivo murine model of co-infection was designed using murine tongue explants. Fluorescent microscopic images revealed extensive hyphal penetration of the epithelium typical of C. albicans mucosal infection. Interestingly, St. aureus bacterial cells were only seen within the epithelial tissue when associated with the invasive hyphae. This differed from tongues infected with St. aureus alone or in conjunction with the als3 mutant strain of C. albicans, where bacterial presence was limited to the outer layers of the oral tissue. Collectively, the findings generated from this study identified a key role for C. albicans Als3p in mediating this clinically relevant fungal-bacterial interaction.
Collapse
Affiliation(s)
- Brian M Peters
- Department of Microbial Pathogenesis, University of Maryland - Baltimore, Dental School, 650 W. Baltimore Street, Baltimore, MD 21201, USA.,Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland - Baltimore, 660 W. Redwood Street, Baltimore, MD 21201, USA
| | - Ekaterina S Ovchinnikova
- Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.,Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lisa Marie Schlecht
- Department of Restorative Dentistry and Periodontology, Ludwig Maximilian University of Munich, Goethestrasse 70, 80336 Munich, Germany
| | - Han Zhou
- West China College of Stomatology, Sichuan University, PR China.,Department of Microbial Pathogenesis, University of Maryland - Baltimore, Dental School, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Lois L Hoyer
- Department of Pathobiology, University of Illinois, 2001 S. Lincoln Ave., Urbana, IL 61802, USA
| | - Henk J Busscher
- Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Mary Ann Jabra-Rizk
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, USA.,Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland - Baltimore, 650 W Baltimore Street, Baltimore, MD 21201, USA.,Department of Microbiology and Immunology, School of Medicine, University of Maryland - Baltimore, 660 W. Redwood Street, Baltimore, MD 21201, USA
| | - Mark E Shirtliff
- Department of Microbiology and Immunology, School of Medicine, University of Maryland - Baltimore, 660 W. Redwood Street, Baltimore, MD 21201, USA.,Department of Microbial Pathogenesis, University of Maryland - Baltimore, Dental School, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
461
|
Lebeaux D, Ghigo JM. [Management of biofilm-associated infections: what can we expect from recent research on biofilm lifestyles?]. Med Sci (Paris) 2012; 28:727-39. [PMID: 22920875 DOI: 10.1051/medsci/2012288015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Biofilms are surface-associated microbial communities present in all environments. Although biofilms play important ecological roles, they also lead to negative or deleterious effects in industrial and medical settings. In the latter, high levels of antibiotic tolerance of bacterial biofilms developing on medical devices and during chronic infections determine the physiopathology of many healthcare-associated infections. Original approaches have been developed to avoid bacterial adhesion or biofilm development targetting specific mechanisms or pathways. We herein review recent data about biofilm lifestyle understanding and ways to fight against related infections.
Collapse
Affiliation(s)
- David Lebeaux
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, 75015 Paris, France
| | | |
Collapse
|
462
|
Zhou Y, Smith D, Leong BJ, Brännström K, Almqvist F, Chapman MR. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 2012; 287:35092-35103. [PMID: 22891247 DOI: 10.1074/jbc.m112.383737] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloids are highly aggregated proteinaceous fibers historically associated with neurodegenerative conditions including Alzheimers, Parkinsons, and prion-based encephalopathies. Polymerization of amyloidogenic proteins into ordered fibers can be accelerated by preformed amyloid aggregates derived from the same protein in a process called seeding. Seeding of disease-associated amyloids and prions is highly specific and cross-seeding is usually limited or prevented. Here we describe the first study on the cross-seeding potential of bacterial functional amyloids. Curli are produced on the surface of many Gram-negative bacteria where they facilitate surface attachment and biofilm development. Curli fibers are composed of the major subunit CsgA and the nucleator CsgB, which templates CsgA into fibers. Our results showed that curli subunit homologs from Escherichia coli, Salmonella typhimurium LT2, and Citrobacter koseri were able to cross-seed in vitro. The polymerization of Escherichia coli CsgA was also accelerated by fibers derived from a distant homolog in Shewanella oneidensis that shares less than 30% identity in primary sequence. Cross-seeding of curli proteins was also observed in mixed colony biofilms with E. coli and S. typhimurium. CsgA was secreted from E. coli csgB- mutants assembled into fibers on adjacent S. typhimurium that presented CsgB on its surfaces. Similarly, CsgA was secreted by S. typhimurium csgB- mutants formed curli on CsgB-presenting E. coli. This interspecies curli assembly enhanced bacterial attachment to agar surfaces and supported pellicle biofilm formation. Collectively, this work suggests that the seeding specificity among curli homologs is relaxed and that heterogeneous curli fibers can facilitate multispecies biofilm development.
Collapse
Affiliation(s)
- Yizhou Zhou
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Daniel Smith
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Bryan J Leong
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | | | - Fredrik Almqvist
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden; Umeå Center for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Matthew R Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048; Umeå Center for Microbial Research, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
463
|
Kraneveld EA, Buijs MJ, Bonder MJ, Visser M, Keijser BJF, Crielaard W, Zaura E. The relation between oral Candida load and bacterial microbiome profiles in Dutch older adults. PLoS One 2012; 7:e42770. [PMID: 22900048 PMCID: PMC3416775 DOI: 10.1371/journal.pone.0042770] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/11/2012] [Indexed: 11/18/2022] Open
Abstract
Currently there are no evidence-based ecological measures for prevention of overgrowth and subsequent infection by fungi in the oral cavity. The aim of this study was to increase our knowledge on fungal-bacterial ecological interactions. Salivary Candida abundance of 82 Dutch adults aged 58-80 years was established relative to the bacterial load by quantitative PCR analysis of the Internal Transcribed (ITS) region (Candida) and 16S rDNA gene (bacteria). The salivary microbiome was assessed using barcoded pyrosequencing of the bacterial hypervariable regions V5-V7 of 16S rDNA. Sequencing data was preprocessed by denoising and chimera removal, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. Both OTU-based (PCA, diversity statistics) and phylogeny-based analyses (UniFrac, PCoA) were performed. Saliva of Dutch older adults contained 0-4 × 10(8) CFU/mL Candida with a median Candida load of 0.06%. With increased Candida load the diversity of the salivary microbiome decreased significantly (p<0.001). Increase in the Candida load correlated positively with class Bacilli, and negatively with class Fusobacteria, Flavobacteria, and Bacteroidia. Microbiomes with high Candida load were less diverse and had a distinct microbial composition towards dominance by saccharolytic and acidogenic bacteria--streptococci. The control of the acidification of the oral environment may be a potential preventive measure for Candida outgrowth that should be evaluated in longitudinal clinical intervention trials.
Collapse
Affiliation(s)
- Eefje A. Kraneveld
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Marc J. Bonder
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Marjolein Visser
- Department of Health Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Bart J. F. Keijser
- Microbiology and Systems Biology, TNO Earth, Environmental and Life Sciences, Zeist, The Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
464
|
Georgiadou SP, Kontoyiannis DP. Concurrent lung infections in patients with hematological malignancies and invasive pulmonary aspergillosis: how firm is the Aspergillus diagnosis? J Infect 2012; 65:262-8. [PMID: 22580034 DOI: 10.1016/j.jinf.2012.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/17/2012] [Accepted: 05/02/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Immunocompromised patients with hematological malignancies and/or recipients of hematopoietic stem cell transplants are constantly exposed to several fungal, bacterial, and viral respiratory pathogens. METHODS We retrospectively evaluated all patients with invasive pulmonary aspergillosis (IPA) and underlying hematological malignancies for the presence of concurrent, microbiologically documented pulmonary infections during a 5-year period (2005-2010). RESULTS We found 126 such patients that frequently had coinfections (49%) with respiratory pathogens other than Aspergillus species, with a higher rate in patients with probable IPA (53%) than in those with proven IPA (29%; P=0.038). CONCLUSIONS As the majority of patients with IPA in daily practice have probable IPA, often according to only the combination of positivity for serological biomarkers and radiological findings, our data may raise skepticism about both the certainty of IPA diagnosis and the evaluation of response to antifungals in a subset of these patients.
Collapse
Affiliation(s)
- Sarah P Georgiadou
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|