451
|
The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response. EMBO J 2008; 27:1243-54. [PMID: 18388864 DOI: 10.1038/emboj.2008.45] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 12/17/2007] [Indexed: 11/08/2022] Open
Abstract
Notch signalling has an important role in skin homeostasis, promoting keratinocyte differentiation and suppressing tumorigenesis. Here we show that this pathway also has an essential anti-apoptotic function in the keratinocyte UVB response. Notch1 expression and activity are significantly induced, in a p53-dependent manner, by UVB exposure of primary keratinocytes as well as intact epidermis of both mouse and human origin. The apoptotic response to UVB is increased by deletion of the Notch1 gene or down-modulation of Notch signalling by pharmacological inhibition or genetic suppression of 'canonical' Notch/CSL/MAML1-dependent transcription. Conversely, Notch activation protects keratinocytes against apoptosis through a mechanism that is not linked to Notch-induced cell cycle withdrawal or NF-kappaB activation. Rather, transcription of FoxO3a, a key pro-apoptotic gene, is under direct negative control of Notch/HERP transcription in keratinocytes, and upregulation of this gene accounts for the increased susceptibility to UVB of cells with suppressed Notch signalling. Thus, the canonical Notch/HERP pathway functions as a protective anti-apoptotic mechanism in keratinocytes through negative control of FoxO3a expression.
Collapse
|
452
|
Chahdi A, Sorokin A. Endothelin-1 couples betaPix to p66Shc: role of betaPix in cell proliferation through FOXO3a phosphorylation and p27kip1 down-regulation independently of Akt. Mol Biol Cell 2008; 19:2609-19. [PMID: 18385518 DOI: 10.1091/mbc.e07-05-0424] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The phosphorylation of forkhead transcription factor FOXO3a by Akt is critical regulator of cell proliferation induced by serum. We show that endothelin-1 (ET-1) stimulation of primary human mesangial cells (HMCs) induces betaPix and p66Shc up-regulation, resulting in the formation of the betaPix/p66Shc complex. In transformed HMCs, ET-1 induces a biphasic phosphorylation of p66Shc and FOXO3a. The second phase leads to p27(kip1) down-regulation independently of Akt. Depletion of betaPix blocks the second phase of p66Shc and FOXO3a phosphorylation and prevents p27(kip1) down-regulation induced by ET-1. Depletion of either betaPix or p66Shc inhibits ET-1-induced cell proliferation. The expression of beta(1)Pix induces FOXO3a phosphorylation through activation of Rac1, ERK1/2, and p66Shc. Using either p66Shc- or Akt-depleted cells; we show that beta(1)Pix-induced FOXO3a phosphorylation requires p66Shc but not Akt. beta(1)Pix-induced p27(kip1) down-regulation was blocked by U0126 but not by wortmannin. Endogenous betaPix and FOXO3a are constitutively associated with endogenous p66Shc. FOXO3a and p66Shc binding requires beta(1)Pix homodimerization. Expression of beta(1)Pix homodimerization deficient mutant abrogates beta(1)Pix-induced p27(kip1) down-regulation and cell proliferation. Our results identify p66Shc and FOXO3a as novel partners of beta(1)Pix and represent the first direct evidence of beta(1)Pix in cell proliferation via Erk/p66Shc-dependent and Akt-independent mechanisms.
Collapse
Affiliation(s)
- Ahmed Chahdi
- Kidney Disease Center, Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
453
|
Salih DAM, Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 2008; 20:126-36. [PMID: 18394876 PMCID: PMC2387118 DOI: 10.1016/j.ceb.2008.02.005] [Citation(s) in RCA: 454] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 02/14/2008] [Accepted: 02/18/2008] [Indexed: 01/10/2023]
Abstract
The FoxO family of Forkhead transcription factors functions at the interface of tumor suppression, energy metabolism, and organismal longevity. FoxO factors are key downstream targets of insulin, growth factor, nutrient, and oxidative stress stimuli that coordinate a wide range of cellular outputs. FoxO-dependent cellular responses include gluconeogenesis, neuropeptide secretion, atrophy, autophagy, apoptosis, cell cycle arrest, and stress resistance. This review will discuss the roles of the mammalian FoxO family in a variety of cell types, from stem cells to mature cells, in the context of the whole organism. Given the overwhelming evidence that the FoxO factors promote longevity in invertebrates, this review will also discuss the potential role of the FoxO factors in the aging of mammalian organisms.
Collapse
Affiliation(s)
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford CA 94305
| |
Collapse
|
454
|
Zander L, Bemark M. Identification of genes deregulated during serum-free medium adaptation of a Burkitt's lymphoma cell line. Cell Prolif 2008; 41:136-55. [PMID: 18211290 DOI: 10.1111/j.1365-2184.2007.00500.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Serum is usually added to growth media when mammalian cells are cultured in vitro to supply the cells with growth factors, hormones, nutrients and trace elements. Defined proteins and metal ions, such as insulin, growth factors, transferrin and sodium selenite, are sometimes also included and can in some cases substitute serum components. How adaptation to serum free media influences cells has not been studied in detail. MATERIALS AND METHODS We have adapted the Burkitt's lymphoma line Ramos to a serum-free medium that supports long-term survival and studied gene expression changes that occurred during the adaptation process. RESULTS AND CONCLUSIONS The adaptation process was characterized by initial cell population growth arrest, and after that extensive cell death, followed by proliferation and long-term survival of clonal cultures. Proliferation and cell cycle progression of the serum-free cultures closely mimicked that of serum-dependent cells. Affymetrix micro-array technology was used to identify gene expression alterations that had occurred during the adaptation. Most changes were subtle, but frequently the genes with altered expression were involved in basal cellular functions such as cell division, cell cycle regulation, apoptosis and cell signalling. Some alterations were restored when the cells were transferred back to serum-containing medium, indicating that expression of these genes was controlled by components in serum. Others were not, and may represent changes that were selected during the adaptation process. Among these were, for example, several genes within the Wnt signalling pathway.
Collapse
Affiliation(s)
- L Zander
- Department of Microbiology and Immunology, Gothenburg University, Göteborg, Sweden
| | | |
Collapse
|
455
|
Tullet JMA, Hertweck M, Hyung An J, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 2008; 132:1025-38. [PMID: 18358814 PMCID: PMC2367249 DOI: 10.1016/j.cell.2008.01.030] [Citation(s) in RCA: 712] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 12/18/2007] [Accepted: 01/18/2008] [Indexed: 12/27/2022]
Abstract
Insulin/IGF-1-like signaling (IIS) is central to growth and metabolism and has a conserved role in aging. In C. elegans, reductions in IIS increase stress resistance and longevity, effects that require the IIS-inhibited FOXO protein DAF-16. The C. elegans transcription factor SKN-1 also defends against oxidative stress by mobilizing the conserved phase 2 detoxification response. Here we show that IIS not only opposes DAF-16 but also directly inhibits SKN-1 in parallel. The IIS kinases AKT-1, -2, and SGK-1 phosphorylate SKN-1, and reduced IIS leads to constitutive SKN-1 nuclear accumulation in the intestine and SKN-1 target gene activation. SKN-1 contributes to the increased stress tolerance and longevity resulting from reduced IIS and delays aging when expressed transgenically. Furthermore, SKN-1 that is constitutively active increases life span independently of DAF-16. Our findings indicate that the transcription network regulated by SKN-1 promotes longevity and is an important direct target of IIS.
Collapse
Affiliation(s)
- Jennifer M. A. Tullet
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center; Department of Pathology, Harvard Medical School; Harvard Stem Cell Institute, 1 Joslin Place, Boston, MA, 02215, USA
| | - Maren Hertweck
- Center of Biochemistry and Molecular Cell Research (ZBMZ, Faculty of Medicine), Bioinformatics and Molecular Genetics (Faculty of Biology), University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Jae Hyung An
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center; Department of Pathology, Harvard Medical School; Harvard Stem Cell Institute, 1 Joslin Place, Boston, MA, 02215, USA
- Protein Network Research Center, Yonsei University, 134 Shinchon-dong, Seodaemungu, Seoul, 120-749, Republic of Korea
| | - Joseph Baker
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center; Department of Pathology, Harvard Medical School; Harvard Stem Cell Institute, 1 Joslin Place, Boston, MA, 02215, USA
| | - Ji Yun Hwang
- Protein Network Research Center, Yonsei University, 134 Shinchon-dong, Seodaemungu, Seoul, 120-749, Republic of Korea
| | - Shu Liu
- Center of Biochemistry and Molecular Cell Research (ZBMZ, Faculty of Medicine), Bioinformatics and Molecular Genetics (Faculty of Biology), University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Riva P. Oliveira
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center; Department of Pathology, Harvard Medical School; Harvard Stem Cell Institute, 1 Joslin Place, Boston, MA, 02215, USA
| | - Ralf Baumeister
- Center of Biochemistry and Molecular Cell Research (ZBMZ, Faculty of Medicine), Bioinformatics and Molecular Genetics (Faculty of Biology), University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
- Center for Systems Biology (ZBSA), University of Freiburg, D-79104 Freiburg, Germany
| | - T. Keith Blackwell
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center; Department of Pathology, Harvard Medical School; Harvard Stem Cell Institute, 1 Joslin Place, Boston, MA, 02215, USA
| |
Collapse
|
456
|
Deregulated expression of pro-survival and pro-apoptotic p53-dependent genes upon Elongator deficiency in colon cancer cells. Biochem Pharmacol 2008; 75:2122-34. [PMID: 18430410 DOI: 10.1016/j.bcp.2008.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/06/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
Elongator, a multi-subunit complex assembled by the IkappaB kinase-associated protein (IKAP)/hELP1 scaffold protein is involved in transcriptional elongation in the nucleus as well as in tRNA modifications in the cytoplasm. However, the biological processes regulated by Elongator in human cells only start to be elucidated. Here we demonstrate that IKAP/hELP1 depleted colon cancer-derived cells show enhanced basal expression of some but not all pro-apoptotic p53-dependent genes such as BAX. Moreover, Elongator deficiency causes increased basal and daunomycin-induced expression of the pro-survival serum- and glucocorticoid-induced protein kinase (SGK) gene through a p53-dependent pathway. Thus, our data collectively demonstrate that Elongator deficiency triggers the activation of p53-dependent genes harbouring opposite functions with respect to apoptosis.
Collapse
|
457
|
A brain-specific SGK1 splice isoform regulates expression of ASIC1 in neurons. Proc Natl Acad Sci U S A 2008; 105:4459-64. [PMID: 18334630 DOI: 10.1073/pnas.0800958105] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases and noxious stimuli to the brain enhance transcription of serum- and glucocorticoid-induced kinase-1 (SGK1). Here, we report that the SGK1 gene encodes a brain-specific additional isoform, SGK1.1, which exhibits distinct regulation, properties, and functional effects. SGK1.1 decreases expression of the acid-sensing ion channel-1 (ASIC1); thereby, SGK1.1 may limit neuronal injury associated to activation of ASIC1 in ischemia. Given that neurons express at least two splice isoforms, SGK1 and SGK1.1, driven by distinct promoters, any changes in SGK1 transcript level must be examined to define the isoform induced by each stimulus or neurological disorder.
Collapse
|
458
|
Nelson TJ, Sun MK, Hongpaisan J, Alkon DL. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 2008; 585:76-87. [PMID: 18402935 DOI: 10.1016/j.ejphar.2008.01.051] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/29/2007] [Accepted: 01/21/2008] [Indexed: 01/04/2023]
Abstract
Protein kinase C (PKC) is involved in synaptic remodeling, induction of protein synthesis, and many other processes important in learning and memory. Activation of neuronal protein kinase C correlates with, and may be essential for, all phases of learning, including acquisition, consolidation, and reconsolidation. Protein kinase C activation is closely tied to hydrolysis of membrane lipids. Phospholipases C and A2 produce 1,2-diacylglycerol and arachidonic acid, which are direct activators of protein kinase C. Phospholipase C also produces inositol triphosphate, which releases calcium from internal stores. Protein kinase C interacts with many of the same pathways as insulin; therefore, it should not be surprising that insulin signaling and protein kinase C activation can both have powerful effects on memory storage and synaptic remodeling. However, investigating the possible roles of insulin in memory storage can be challenging, due to the powerful peripheral effects of insulin on glucose and the low concentration of insulin in the brain. Although peripheral for insulin, synthesized in the beta-cells of the pancreas, is primarily involved in regulating glucose, small amounts of insulin are also present in the brain. The functions of this brain insulin are inadequately understood. Protein kinase C may also contribute to insulin resistance by phosphorylating the insulin receptor substrates required for insulin signaling. Insulin is also responsible insulin-long term depression, a type of synaptic plasticity that is also dependent on protein kinase C. However, insulin can also activate PKC signaling pathways via PLC gamma, Erk 1/2 MAP kinase, and src stimulation. Taken together, the available evidence suggests that the major impact of protein kinase C and its interaction with insulin in the mature, fully differentiated nervous system appears to be to induce synaptogenesis, enhance memory, reduce Alzheimer's pathophysiology, and stimulate neurorepair.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, 9601 Medical Center Drive, Rockville, Maryland 20850 USA
| | | | | | | |
Collapse
|
459
|
van Grevenynghe J, Procopio FA, He Z, Chomont N, Riou C, Zhang Y, Gimmig S, Boucher G, Wilkinson P, Shi Y, Yassine-Diab B, Said EA, Trautmann L, El Far M, Balderas RS, Boulassel MR, Routy JP, Haddad EK, Sekaly RP. Transcription factor FOXO3a controls the persistence of memory CD4(+) T cells during HIV infection. Nat Med 2008; 14:266-74. [PMID: 18311149 DOI: 10.1038/nm1728] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/16/2008] [Indexed: 01/10/2023]
Abstract
The persistence of central memory CD4(+) T cells (T(CM) cells) is a major correlate of immunological protection in HIV/AIDS, as the rate of T(CM) cell decline predicts HIV disease progression. In this study, we show that T(CM) cells and effector memory CD4(+) T cells (T(EM) cells) from HIV(+) elite controller (EC) subjects are less susceptible to Fas-mediated apoptosis and persist longer after multiple rounds of T cell receptor triggering when compared to T(CM) and T(EM) cells from aviremic successfully treated (ST) subjects or from HIV(-) donors. We show that persistence of T(CM) cells from EC subjects is a direct consequence of inactivation of the FOXO3a pathway. Silencing the transcriptionally active form of FOXO3a by small interfering RNA or by introducing a FOXO3a dominant-negative form (FOXO3a Nt) extended the long-term survival of T(CM) cells from ST subjects to a length of time similar to that of T(CM) cells from EC subjects. The crucial role of FOXO3a in the survival of memory cells will help shed light on the underlying immunological mechanisms that control viral replication in EC subjects.
Collapse
Affiliation(s)
- Julien van Grevenynghe
- Laboratoire d'Immunologie, Centre de Recherche, Hôpital Saint-Luc, Centre Hospitalier de l'Université de Montréal, 264 Boulevard Rene-Levesque Est, Montréal, Québec H2X 1P1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
460
|
Glauser DA, Schlegel W. FoxO proteins in pancreatic β-cells as potential therapeutic targets in diabetes. Expert Rev Endocrinol Metab 2008; 3:175-185. [PMID: 30764091 DOI: 10.1586/17446651.3.2.175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetes results from complete (Type 1) or progressive (Type 2) insulin insufficiency. Resulting chronic and acute hyperglycemia are thus prevented mainly by insulin injections, a therapy that is care intensive, costly and does not abolish vascular damage, with severe consequences for the patient in the long term. In view of the epidemic spread of the disease, diabetes is considered a major threat for public healthcare systems. Thus, there is a great incentive to find therapies and drugs preserving or restoring pancreatic β-cells mass and function. In this context, this review addresses the FoxO transcription factors as direct or indirect, in vivo or ex vivo drug targets, since FoxO proteins play a central role for β-cells growth and resistance to oxidative stress. The review includes specific proposals for preclinical drug development.
Collapse
Affiliation(s)
- Dominique A Glauser
- a Fondation pour Recherches Médicales, University of Geneva, 64 ave de la Roseraie, 1211 Geneva, Switzerland.
| | - Werner Schlegel
- b Fondation pour Recherches Médicales, Medical Faculty, University of Geneva, 64 ave de la Roseraie, 1211 Geneva, Switzerland.
| |
Collapse
|
461
|
Belguise K, Sonenshein GE. PKCtheta promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor alpha synthesis. J Clin Invest 2008; 117:4009-21. [PMID: 18037997 DOI: 10.1172/jci32424] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/19/2007] [Indexed: 12/14/2022] Open
Abstract
The vast majority of primary human breast cancer tissues display aberrant nuclear NF-kappaB c-Rel expression. A causal role for c-Rel in mammary tumorigenesis has been demonstrated using a c-Rel transgenic mouse model; however, tumors developed with a long latency, suggesting a second event is needed to trigger tumorigenesis. Here we show that c-Rel activity in the mammary gland is repressed by estrogen receptor alpha (ERalpha) signaling, and we identify an epigenetic mechanism in breast cancer mediated by activation of what we believe is a novel PKCtheta-Akt pathway that leads to downregulation of ERalpha synthesis and derepression of c-Rel. ERalpha levels were lower in c-Rel-induced mammary tumors compared with normal mammary gland tissue. PKCtheta induced c-Rel activity and target gene expression and promoted growth of c-Rel- and c-RelxCK2alpha-driven mouse mammary tumor-derived cell lines. RNA expression levels of PKCtheta and c-Rel target genes were inversely correlated with ERalpha levels in human breast cancer specimens. PKCtheta activated Akt, thereby inactivating forkhead box O protein 3a (FOXO3a) and leading to decreased synthesis of its target genes, ERalpha and p27(Kip1). Thus we have shown that activation of PKCtheta inhibits the FOXO3a/ERalpha/p27(Kip1) axis that normally maintains an epithelial cell phenotype and induces c-Rel target genes, thereby promoting proliferation, survival, and more invasive breast cancer.
Collapse
Affiliation(s)
- Karine Belguise
- Department of Biochemistry and Women's Health Interdisciplinary Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
462
|
Lee EJ, Chun JS, Hyun SH, Ahn HR, Jeong JM, Hong SK, Hong JT, Chang IK, Jeon HY, Han YS, Auh CK, Park JI, Kang SS. Regulation Fe65 localization to the nucleus by SGK1 phosphorylation of its Ser566 residue. BMB Rep 2008; 41:41-7. [DOI: 10.5483/bmbrep.2008.41.1.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
463
|
Yan L, Lavin VA, Moser LR, Cui Q, Kanies C, Yang E. PP2A regulates the pro-apoptotic activity of FOXO1. J Biol Chem 2008; 283:7411-20. [PMID: 18211894 DOI: 10.1074/jbc.m708083200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
FOXO1, a member of the evolutionarily conserved forkhead family of transcription factors, regulates expression of a number of genes that play critical roles in cell cycle and apoptosis. A pivotal regulatory mechanism of FOXO is reversible phosphorylation, catalyzed by kinases and phosphatases. Phosphorylation of FOXO1 is associated with 14-3-3 binding and cytosolic localization, whereas dephosphorylated FOXO1 translocates to the nucleus and is transcriptionally active. Experiments were performed to identify the serine/threonine phosphatase that dephosphorylates FOXO1. PP2A inhibitors, okadaic acid and fostriecin, increased FOXO1 phosphorylation in vitro and in cells. Microcystin-agarose pull-downs suggested that a phosphatase binds to FOXO1, and PP2A catalytic subunit was identified in endogenous FOXO1 immunocomplexes, indicating that PP2A is a FOXO1 phosphatase. Purified PP2A interacted directly with FOXO1 and dephosphorylated FOXO1 in vitro. Silencing of PP2A protected FOXO1 from dephosphorylation and delayed FOXO1 nuclear translocation, confirming the physiologic role of PP2A in the regulation of FOXO1 function. Furthermore, inhibition of PP2A phosphatases rescued FOXO1-mediated cell death by regulating the level of the pro-apoptotic protein BIM. We conclude that PP2A is a physiologic phosphatase of FOXO1.
Collapse
Affiliation(s)
- Ling Yan
- Department of Pediatrics, Cancer Biology, , The Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
464
|
Nakamura T, Sakamoto K. Forkhead transcription factor FOXO subfamily is essential for reactive oxygen species-induced apoptosis. Mol Cell Endocrinol 2008; 281:47-55. [PMID: 18035477 DOI: 10.1016/j.mce.2007.10.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 11/27/2022]
Abstract
Intracellular accumulation of reactive oxygen species is implicated in the pathogenesis of cancer and other diseases by disturbing proper cell cycle control or cell survival. Here, we show that the expression and phosphorylation of FOXO is drastically affected by H(2)O(2) treatment, resulting in drastic induction of luteal cell apoptosis. Western blot analysis revealed that FOXO1a accumulated preferentially in the nucleus upon ROS stimuli, resulting in the transactivation of IRS promoter activity driven by H(2)O(2)-activated FOXO1a. Because ROS-induced cell death was suppressed by co-transfection of a FOXO3a mutant that lacks the activation-domain of transcription, transactivation of pro-apoptotic genes by FOXO was necessary to cause ROS-induced apoptosis. In fact, expression of several pro-apoptotic genes, such as Bim and BCL-6 was induced in H(2)O(2)-stimulated cells, and was blocked by co-transfection of dominant-negative type FOXO3a mutant. These findings indicate that FOXO is a key regulator of ROS-induced apoptosis in mammalian cells.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | | |
Collapse
|
465
|
Yu HG, Ai YW, Yu LL, Zhou XD, Liu J, Li JH, Xu XM, Liu S, Chen J, Liu F, Qi YL, Deng Q, Cao J, Liu SQ, Luo HS, Yu JP. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer 2008; 122:433-443. [PMID: 17935137 DOI: 10.1002/ijc.23049] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The major obstacle to successful treatment of gastric cancer is chemotherapy resistance. Our study was designed to investigate the role of phosphoinositide 3-kinase (PI3K)/Akt pathway in the development of chemoresistance in gastric cancer. In the present study, elevated Akt expression and Akt phosphorylation (Ser 473), as well as decreased PTEN expression were observed in 28 cases of gastric cancer tissues. Etoposide and doxorubicin stimulated Akt and PI3K activities in 2 gastric cancer cell lines (BGC-823 and SGC-7901), and the activities were concentration and time-dependent. Up-regulation of PTEN expression in BGC-823 cells by PEAK8-PTEN transient transfection obviously decreased the basal and anticancer drugs induced Akt activities, then sensitized BGC-823 cells to etoposide and doxorubicin. Pretreatment of BGC-823 and SGC-7901 cells with wortmannin, a PI3K inhibitor, attenuated cells's resistance to etoposide and doxorubicin. In addition, pretreatment of wortmannin blocked etoposide and doxorubicin induced IkappaB-alpha degradation, NFkappaB activation, phosphorylation of Akt, MDM-2 and forkhead transcription factors. Wortmannin pretreatment also promoted the accumulation of p27/Kip, but inhibited the Mcl-1 expression. Furthermore, wortmannin promoted etoposide and doxorubicin induced caspase-3, caspase-9 activation and poly ADP-ribose polymerase cleavage. Taken together, the observations indicate the PI3K/Akt pathway plays an important role in the chemoresistance of gastric cancer cells. A new strategy for combined chemotherapy of gastric cancer should be designed to more specifically block PI3K/Akt pathway and then decrease the amount of resistant cells.
Collapse
Affiliation(s)
- Hong-Gang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan Univeristy, Wuhan, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
466
|
Abstract
The Forkhead family of transcription factors modulates a wide variety of cellular functions in cardiovascular tissues. In this review article, we discuss recent advances in our understanding of regulation provided by the forkhead factors in cardiac myocytes and vascular cells.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA
| | | | | |
Collapse
|
467
|
Abstract
Ageing is associated with an increased onset of cancer. Understanding the molecular mechanisms that underlie the age dependency of cancer will have important implications for preventing and treating this pathology. The signalling pathway connecting insulin and FOXO transcription factors provides the most compelling example for a conserved genetic pathway at the interface between ageing and cancer. FOXO transcription factors (FOXO) promote longevity and tumour suppression. FOXO transcription factors are directly phosphorylated in response to insulin/growth factor signalling by the protein kinase Akt, thereby causing their sequestration in the cytoplasm. In the absence of insulin/growth factors, FOXO factors translocate to the nucleus where they trigger a range of cellular responses, including resistance to oxidative stress, a phenotype highly coupled with lifespan extension. FOXO factors integrate stress stimuli via phosphorylation, acetylation and mono-ubiquitination of a series of regulatory sites. Understanding how FOXO proteins integrate environmental conditions to control specific gene expression programmes will be pivotal in identifying ways to slow the onset of cancer in ageing individuals.
Collapse
Affiliation(s)
- E L Greer
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
468
|
Torgersen KM, Aandahl EM, Taskén K. Molecular architecture of signal complexes regulating immune cell function. Handb Exp Pharmacol 2008:327-63. [PMID: 18491059 DOI: 10.1007/978-3-540-72843-6_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Signals transmitted via multichain immunoreceptors control the development, differentiation and activation of hematopoetic cells. The cytoplasmic parts of these receptors contain immunoreceptor tyrosine-based activation motifs (ITAMs) that upon phosphorylation by members of the Src tyrosine kinase family orchestrate a complex set of signaling events involving tyrosine phosphorylation, generation of second messengers like DAG, IP3 and Ca2+, activation of effector molecules like Ras and MAPKs and the translocation and activation of transcription factors like NFAT, API and NF-kB. Spatial and temporal organization of these signaling events is essential both to connect the receptors to downstream cascades as well as to control the functional outcome of the immune activation. Throughout this process control and fine-tuning of the different signals are necessary both for effective immune function and in order to avoid inappropriate or exaggerated immune activation and autoimmunity. This control includes modulating mechanisms that set the threshold for activation and reset the activation status after an immune response has been launched. One immunomodulating pathway is the cAMP-protein kinase A-Csk pathway scaffolded by a supramolecular complex residing in lipid rafts with the A kinase-anchoring protein (AKAP) ezrin, the Csk-binding protein PAG and a linker between the two, EBP50. Failure of correct scaffolding and loss of spatiotemporal control can potentially have severe consequences, leading to immune failure or autoimmunity. The clinical relevance of supramolecular complexes specifically organized by scaffolding proteins in regulating immune activity and the specter of genetic diseases linked to different signaling components suggest that protein-protein contact surfaces can be potential targets for drug intervention. It is also of interest to note that different pathogens have evolved strategies to specifically modulate signal integration, thereby rewiring the signal in a way beneficial for their survival. In addition to demonstrating the importance of different signal processes, these adaptations are elegant illustrations of the potential for drug targeting of protein assembly. This chapter reviews some of the important scaffolding events downstream of immunoreceptors with focus on signaling transduction through the T-cell receptor (TCR).
Collapse
Affiliation(s)
- K M Torgersen
- The Biotechnology Centre of Oslo, Gaustadalléen 21, PO Box 1125 Blindern, Oslo, Norway
| | | | | |
Collapse
|
469
|
Cameron AR, Anton S, Melville L, Houston NP, Dayal S, McDougall GJ, Stewart D, Rena G. Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a. Aging Cell 2008; 7:69-77. [PMID: 18005251 DOI: 10.1111/j.1474-9726.2007.00353.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In vertebrates and invertebrates, relationships between diet and health are controlled by a conserved signalling pathway responsive to insulin-like ligands. In invertebrate models for example, forkhead transcription factor family O (FOXO) transcription factors in this pathway regulate the rate of aging in response to dietary cues, and in vertebrates, obesity and age-induced deficits in the same pathway are thought to contribute to dysregulation of hepatic gluconeogenesis through genes such as phosphoenolpyruvate carboxykinase (PEPCK). Recently, we have begun to screen for dietary constituents capable of regulating this pathway in our cell culture model. Here, we identify three black tea theaflavins, theaflavin 3-O-gallate, theaflavin 3'-O-gallate, theaflavin 3,3'di-O-gallate and thearubigins as novel mimics of insulin/IGF-1 action on mammalian FOXO1a, PEPCK and moreover we provide evidence that the effects on this pathway of the green tea constituent (-)-epigallocatechin gallate depend on its ability to be converted into these larger structures. With the exception of water, tea is the most popular drink globally, but despite this, little is known about the biological availability of black tea polyphenols in vivo or the molecular target(s) mediating the effects presented here. Further investigation in these two areas might provide insight into how age-related metabolic disease may be deferred.
Collapse
Affiliation(s)
- Amy R Cameron
- Neurosciences Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
| | | | | | | | | | | | | | | |
Collapse
|
470
|
Zielak A, Canty M, Forde N, Coussens P, Smith G, Lonergan P, Ireland J, Evans A. Differential expression of genes for transcription factors in theca and granulosa cells following selection of a dominant follicle in cattle. Mol Reprod Dev 2008; 75:904-14. [DOI: 10.1002/mrd.20819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
471
|
Simon P, Schneck M, Hochstetter T, Koutsouki E, Mittelbronn M, Merseburger A, Weigert C, Niess A, Lang F. Differential regulation of serum- and glucocorticoid-inducible kinase 1 (SGK1) splice variants based on alternative initiation of transcription. Cell Physiol Biochem 2007; 20:715-28. [PMID: 17982254 DOI: 10.1159/000110432] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2007] [Indexed: 11/19/2022] Open
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a key-regulator of transport, cell volume and cell survival. SGK1 transcription is under genomic control of a wide variety of hormones and cell stressors. Little is known, however, about sequence variation in SGK1 transcripts. Thus, we took an in silico approach to determine sequence variations in the N-terminal region of SGK1, which is considered particularly important for subcellular SGK1 localization. Expressed Sequence Tag analysis revealed two novel phylogenetically highly conserved SGK1 mRNAs with different promoter sites based on alternative initiation of transcription at -2981, -850 upstream of the transcription initiation site (+1) of the reference mRNA. RT-PCR in various human cell lines and tissues confirmed the expression of the 3 alternative splice variants, which differed exclusively in their first exons. The two novel variants were devoid of the localization and degradation signal with otherwise unchanged and intact open reading frames. Spatial distribution of transcription factor binding sites among the three promoter sites indicated common responsiveness to glucocorticoids but different responsiveness to hypoxia and cellular differentiation. Differential expression under those conditions was confirmed for all variants in cultured myoblasts and myotubes. p53 and ETF-1 binding sites were overrepresented at the promoter site of the reference sequence variant SGK1(+1). Transcript levels were 4.1-fold [SGK1(+1)] and 3.1-fold [SGK1(-850)] higher in renal clear cell carcinoma than in remote tissue. The transcript levels were 42-fold [SGK1(+1)], 26-fold [SGK1(-850)] and 17-fold [SGK1(-2981)] higher in highly malignant human glioma cells than in non-neoplastic brain tissue. SGK1 transcript levels were differentially increased by differentiation or hypoxia (treatment with CoCl(2)). In conclusion, the present observations disclose the transcription of three distinct SGK1 splice variants, which are all markedly upregulated in tumor tissue but differentially upregulated following differentiation or hypoxia.
Collapse
Affiliation(s)
- Perikles Simon
- Medical Clinic, Department of Sports Medicine, University of Tuebingen, Tuebingen (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
472
|
Lara-Pezzi E, Winn N, Paul A, McCullagh K, Slominsky E, Santini MP, Mourkioti F, Sarathchandra P, Fukushima S, Suzuki K, Rosenthal N. A naturally occurring calcineurin variant inhibits FoxO activity and enhances skeletal muscle regeneration. J Cell Biol 2007; 179:1205-18. [PMID: 18086917 PMCID: PMC2140042 DOI: 10.1083/jcb.200704179] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 11/19/2007] [Indexed: 11/22/2022] Open
Abstract
The calcium-activated phosphatase calcineurin (Cn) transduces physiological signals through intracellular pathways to influence the expression of specific genes. Here, we characterize a naturally occurring splicing variant of the CnAbeta catalytic subunit (CnAbeta1) in which the autoinhibitory domain that controls enzyme activation is replaced with a unique C-terminal region. The CnAbeta1 enzyme is constitutively active and dephosphorylates its NFAT target in a cyclosporine-resistant manner. CnAbeta1 is highly expressed in proliferating myoblasts and regenerating skeletal muscle fibers. In myoblasts, CnAbeta1 knockdown activates FoxO-regulated genes, reduces proliferation, and induces myoblast differentiation. Conversely, CnAbeta1 overexpression inhibits FoxO and prevents myotube atrophy. Supplemental CnAbeta1 transgene expression in skeletal muscle leads to enhanced regeneration, reduced scar formation, and accelerated resolution of inflammation. This unique mode of action distinguishes the CnAbeta1 isoform as a candidate for interventional strategies in muscle wasting treatment.
Collapse
Affiliation(s)
- Enrique Lara-Pezzi
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Nadine Winn
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Angelika Paul
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Karl McCullagh
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, England, UK
| | - Esfir Slominsky
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Maria Paola Santini
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Foteini Mourkioti
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Padmini Sarathchandra
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Satsuki Fukushima
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Ken Suzuki
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Nadia Rosenthal
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| |
Collapse
|
473
|
Abstract
The Foxo subfamily of forkhead (Fox) transcription factors are mammalian homologues of the Caenorhabditis elegans DAF-16 longevity gene, and play key roles in cellular and organism survival, death, proliferation and metabolism. A growing body of evidence indicates that Foxo proteins furthermore play critical roles in immune cell homeostasis, modulating inflammation in some disease states such as inflammatory arthritis and systemic lupus erythematosus (SLE), via fundamental roles in T cells, B cells, neurophils and other myeloid lineages. This review summarizes current knowledge of the Foxo family members in general and in immunity, including their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Stanford L Peng
- Inflammation, Autoimmunity, Transplantation Research, Palo Alto, CA 94304, USA.
| |
Collapse
|
474
|
Abstract
Glucocorticoids (GCs) are provided as co-medication with chemotherapy in breast cancer, albeit
several lines of evidence indicate that their use may have diverse effects and in fact may inhibit
chemosensitivity. The molecular basis of GC-induced resistance to chemotherapy in breast cancer
remains poorly defined. Recent researchers, in an attempt to clarify some aspects of the underlying
pathways, provide convincing evidence that GCs induce effects that are dependent upon the
glucocorticoid-receptor (GR)-mediated transcriptional regulation of specific genes known to play key
roles in cellular/tissue functions, including growth, apoptosis, differentiation, metastasis and
cell survival. In this review, we focus on how GC-induced chemoresistance in breast cancer is
mediated by the GR, unravelling the molecular interplay of GR signalling with other signalling
cascades prevalent in breast cancer. We also include a detailed description of GR structure and
function, summarizing data gained during recent years into the mechanism(s) of the cross-talk
between the GR and other signalling cascades and secondary messengers, via which
GCs exert their pleiotropic effects.
Collapse
Affiliation(s)
- Paraskevi Moutsatsou
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece.
| | | |
Collapse
|
475
|
Krol J, Francis RE, Albergaria A, Sunters A, Polychronis A, Coombes RC, Lam EWF. The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells. Mol Cancer Ther 2007; 6:3169-79. [PMID: 18089711 DOI: 10.1158/1535-7163.mct-07-0507] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gefitinib is a specific inhibitor of the epidermal growth factor receptor (EGFR) that causes growth delay in cancer cell lines and human tumor xenografts expressing high levels of EGFR. An understanding of the downstream cellular targets of gefitinib will allow the discovery of biomarkers for predicting outcomes and monitoring anti-EGFR therapies and provide information for key targets for therapeutic intervention. In this study, we investigated the role of FOXO3a in gefitinib action and resistance. Using two gefitinib-sensitive (i.e., BT474 and SKBR3) as well as three other resistant breast carcinoma cell lines (i.e., MCF-7, MDA-MB-231, and MDA-MB-453), we showed that gefitinib targets the transcription factor FOXO3a to mediate cell cycle arrest and cell death in sensitive breast cancer cells. In the sensitive cells, gefitinib treatment causes cell cycle arrest predominantly at the G(0)-G(1) phase and apoptosis, which is associated with FOXO3a dephosphorylation at Akt sites and nuclear translocation, whereas in the resistant cells, FOXO3a stays phosphorylated and remains in the cytoplasm. The nuclear accumulation of FOXO3a in response to gefitinib was confirmed in tumor tissue sections from breast cancer patients presurgically treated with gefitinib as monotherapy. We also showed that knockdown of FOXO3a expression using small interfering RNA (siRNA) can rescue sensitive BT474 cells from gefitinib-induced cell-proliferative arrest, whereas reintroduction of active FOXO3a in resistant MDA-MB-231 cells can at least partially restore cell-proliferative arrest and sensitivity to gefitinib. These results suggest that the FOXO3a dephosphorylation and nuclear localization have a direct role in mediating the gefitinib-induced proliferative arrest and in determining sensitivity to gefitinib.
Collapse
Affiliation(s)
- Janna Krol
- Cancer Research UK Labs and Department of Cancer Medicine, Imperial College London, MRC Cyclotron Building, Imperial College School of Medicine at Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
476
|
Kikuchi S, Nagai T, Kunitama M, Kirito K, Ozawa K, Komatsu N. Active FKHRL1 overcomes imatinib resistance in chronic myelogenous leukemia-derived cell lines via the production of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Sci 2007; 98:1949-58. [PMID: 17900262 PMCID: PMC11158645 DOI: 10.1111/j.1349-7006.2007.00623.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/12/2007] [Accepted: 08/22/2007] [Indexed: 12/20/2022] Open
Abstract
FKHRL1 (also called FOXO3a) is a member of the Forkhead Box, class O (FOXO) subfamily of forkhead transcription factors and functions downstream of Bcr-Abl tyrosine kinase as a phosphorylated inactive form in chronic myelogenous leukemia (CML). The Bcr-Abl tyrosine kinase inhibitor imatinib induces cell cycle arrest and subsequent apoptosis via the conversion of FKHRL1 from the phosphorylated inactive form to the dephosphorylated active form in CML-derived cell lines. In the present study, we examined whether active FKHRL1 can overcome resistance to imatinib. To this end, we generated a 4-hydroxytamoxifen-inducible active FKHRL1 (FKHRL1-TM; a triple mutant of FKHRL1 in which all three Akt phosphorylation sites have been mutated)-estrogen receptor fusion protein expression system in CML-derived imatinib-resistant cell lines. 4-Hydroxytamoxifen inhibited cell growth and cell cycle progression, and subsequently induced apoptosis, accompanied by upregulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Thus, active FKHRL1 antagonized deregulated proliferation and induced apoptosis in these cell lines. In addition, imatinib-resistant cells underwent apoptosis after transfection with full-length TRAIL cDNA. Collectively, our results suggest that active FKHRL1 can overcome imatinib resistance in CML cells, in part via TRAIL production.
Collapse
Affiliation(s)
- Satoru Kikuchi
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi-ken 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
477
|
Affiliation(s)
- Friedrich C Luft
- Franz Volhard Clinic, HELIOS Kliniken Berlin, Medical Faculty of the Charité, Humboldt University, Wiltbergstrasse 50, 13125, Berlin-Buch, Germany.
| |
Collapse
|
478
|
Yang KJ, Shin S, Piao L, Shin E, Li Y, Park KA, Byun HS, Won M, Hong J, Kweon GR, Hur GM, Seok JH, Chun T, Brazil DP, Hemmings BA, Park J. Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding. J Biol Chem 2007; 283:1480-1491. [PMID: 18024423 DOI: 10.1074/jbc.m706361200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1-Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti-phospho-Tyr(9) antibodies showed that the level of Tyr(9) phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr(9), distinct from Tyr(373/376), is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr(9) phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.
Collapse
Affiliation(s)
- Keum-Jin Yang
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Sanghee Shin
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Longzhen Piao
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Eulsoon Shin
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Yuwen Li
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Kyeong Ah Park
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Hee Sun Byun
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Minho Won
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Janghee Hong
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, College of Medicine, Chungnam National University, Taejeon 301-131, South Korea
| | - Gang Min Hur
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Jeong Ho Seok
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea
| | - Taehoon Chun
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Derek P Brazil
- University College Dublin School of Biomolecular and Biomedical Science, University College Dublin Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Brian A Hemmings
- Friedrich Miescher Institute for Biomedical Research, Basel CH-4058, Switzerland
| | - Jongsun Park
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Taejeon 301-131, South Korea.
| |
Collapse
|
479
|
Abstract
The Forkhead transcription factor FOXO3a has emerged as a versatile target for diseases that impact upon neuronal survival, vascular integrity, immune function, and cellular metabolism. Enthusiasm is high to fill a critical treatment void through FOXO3a signaling for several neurodegenerative disorders that include aging, neuromuscular disease, systemic lupus erythematosus, stroke, and diabetic complications. Here we discuss the influence of FOXO3a upon cell survival and longevity, the intricate signal transduction pathways of FOXO3a, insights into present disease models, and the potential clinical translation of FOXO3a signaling into novel therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
480
|
Sakai R, Irie Y, Murata T, Ishige A, Anjiki N, Watanabe K. Toki-to protects dopaminergic neurons in the substantia nigra from neurotoxicity of MPTP in mice. Phytother Res 2007; 21:868-73. [PMID: 17486689 DOI: 10.1002/ptr.2172] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease of the brain characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN). No clinically proven drugs that may halt or retard the progression of PD have been reported. This study examined the anti-PD effect of a traditional Japanese/Chinese herbal remedy Toki-to (TKT) using mice treated with a neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine (MPTP). TKT showed improvement of MPTP-induced PD-like symptoms (bradykinesia) in a behavioral test (pole test). Histological studies of SNs from these mice demonstrated that TKT had a protective effect on dopaminergic neurons against MPTP neurotoxicity. Real-time RT-PCR analyses of mRNA from SNs demonstrated that expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) genes were decreased by MPTP treatment and that these decreases were reversed by TKT administration prior to MPTP treatment. DNA microarray analyses indicated that TKT per se suppressed gene expression of serum- and glucocorticoid regulated kinase (SGK) that is believed to be a molecule that drives the pathogenesis of PD. Hence, it is suggested that TKT may inhibit the activation of SGK at the transcriptional level and thusmay participate in halting the progression of MPTP-induced neurotoxicity.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Behavior, Animal
- Dopamine/metabolism
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Gene Expression Regulation/drug effects
- Japan
- Male
- Medicine, Traditional
- Mice
- Mice, Inbred C57BL
- Neurons/metabolism
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/drug therapy
- Phytotherapy
- Plants, Medicinal
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Substantia Nigra/metabolism
Collapse
Affiliation(s)
- Risa Sakai
- Department of Oriental Medicine, Keio University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
481
|
Zhao B, Lehr R, Smallwood AM, Ho TF, Maley K, Randall T, Head MS, Koretke KK, Schnackenberg CG. Crystal structure of the kinase domain of serum and glucocorticoid-regulated kinase 1 in complex with AMP PNP. Protein Sci 2007; 16:2761-9. [PMID: 17965184 DOI: 10.1110/ps.073161707] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine protein kinase of the AGC family which participates in the control of epithelial ion transport and is implicated in proliferation and apoptosis. We report here the 1.9 A crystal structure of the catalytic domain of inactive human SGK1 in complex with AMP-PNP. SGK1 exists as a dimer formed by two intermolecular disulfide bonds between Cys258 in the activation loop and Cys193. Although most of the SGK1 structure closely resembles the common protein kinase fold, the structure around the active site is unique when compared to most protein kinases. The alphaC helix is not present in this inactive form of SGK1 crystal structure; instead, the segment corresponding to the C helix forms a beta-strand that is stabilized by the N-terminal segment of the activation loop through a short antiparallel beta-sheet. Since the differences from other kinases occur around the ATP binding site, this structure can provide valuable insight into the design of selective and highly potent ATP-competitive inhibitors of SGK1 kinase.
Collapse
Affiliation(s)
- Baoguang Zhao
- Department of Computational and Structural Chemistry, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Serum/glucocorticoid-induced protein kinase-1 facilitates androgen receptor-dependent cell survival. Cell Death Differ 2007; 14:2085-94. [PMID: 17932503 DOI: 10.1038/sj.cdd.4402227] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Androgen receptor (AR) is a critical factor in the development and progression of prostate cancer. We and others recently demonstrated that eliminating AR expression leads to apoptotic cell death in AR-positive prostate cancer cells. To understand the mechanisms of AR-dependent survival, we performed a genome-wide search for AR-regulated survival genes. We found that serum/glucocorticoid-induced protein kinase-1 (SGK-1) mRNA levels were significantly upregulated after androgen stimulation, which was confirmed to be AR dependent. Promoter analysis revealed that the AR interacted with the proximal and distal regions of the sgk1 promoter, leading to sgk-1 promoter activation after androgen stimulation. Functional assays demonstrated that SGK-1 was indispensable for the protective effect of androgens on cell death induced by serum starvation. SGK-1 overexpression not only rescued cells from AR small-interfering RNA (siRNA)-induced apoptosis, but also enhanced AR transactivation, even in the absence of androgen. Additionally, SGK-1 siRNA reduced AR transactivation, indicating a positive feedback effect of SGK-1 expression on AR-mediated gene expression and cellular survival. Taken together, our data suggest that SGK-1 is an androgen-regulated gene that plays a pivotal role in AR-dependent survival and gene expression.
Collapse
|
483
|
Takano M, Lu Z, Goto T, Fusi L, Higham J, Francis J, Withey A, Hardt J, Cloke B, Stavropoulou AV, Ishihara O, Lam EWF, Unterman TG, Brosens JJ, Kim JJ. Transcriptional cross talk between the forkhead transcription factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol 2007; 21:2334-49. [PMID: 17609436 DOI: 10.1210/me.2007-0058] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Differentiation of human endometrial stromal cells (HESCs) into decidual cells is associated with induction of the forkhead transcription factor forkhead box O1A (FOXO1). We performed a genomic screen to identify decidua-specific genes under FOXO1 control. Primary HESCs were transfected with small interfering RNA targeting FOXO1 or with nontargeting control small interfering RNA before treatment with a cAMP analogue and the progestin, medroxyprogesterone acetate for 72 h. Total RNA was processed for whole genome analysis using high-density oligonucleotide arrays. We identified 3405 significantly regulated genes upon decidualization of HESCs, 507 (15.3%) of which were aberrantly expressed upon FOXO1 knockdown. Among the most up-regulated FOXO1-dependent transcriptional targets were WNT signaling-related genes (WNT4, WNT16 ), the insulin receptor (INSR), differentiation markers (PRL, IGFBP1, and LEFTY2), and the cyclin-dependent kinase inhibitor p57(Kip2) (CDKN1C). Analysis of FOXO1-dependent down-regulated genes uncovered several factors involved in cell cycle regulation, including CCNB1, CCNB2, MCM5, CDC2 and NEK2. Cell viability assay and cell cycle analysis demonstrated that FOXO1 silencing promotes proliferation of differentiating HESCs. Using a glutathione-S-transferase pull-down assay, we confirmed that FOXO1 interacts with progesterone receptor, irrespectively of the presence of ligand. In agreement, knockdown of PR disrupted the regulation of FOXO1 target genes involved in differentiation (IGFBP1, PRL, and WNT4) and cell cycle regulation (CDKN1, CCNB2 and CDC2) in HESCs treated with either cAMP plus medroxyprogesterone acetate or with cAMP alone. Together, the data demonstrate that FOXO1 engages in transcriptional cross talk with progesterone receptor to coordinate cell cycle regulation and differentiation of HESCs.
Collapse
Affiliation(s)
- Masashi Takano
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Feroze-Zaidi F, Fusi L, Takano M, Higham J, Salker MS, Goto T, Edassery S, Klingel K, Boini KM, Palmada M, Kamps R, Groothuis PG, Lam EWF, Smith SK, Lang F, Sharkey AM, Brosens JJ. Role and regulation of the serum- and glucocorticoid-regulated kinase 1 in fertile and infertile human endometrium. Endocrinology 2007; 148:5020-9. [PMID: 17640988 DOI: 10.1210/en.2007-0659] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using cDNA microarray analysis, we identified SGK1 (serum- and glucocorticoid-regulated kinase 1) as a gene aberrantly expressed in midsecretory endometrium of women with unexplained infertility. SGK1 is a serine/threonine kinase involved primarily in epithelial ion transport and cell survival responses. Real-time quantitative PCR analysis of a larger, independent sample set timed to coincide with the period of uterine receptivity confirmed increased expression of SGK1 transcripts in infertile women compared with fertile controls. We further demonstrate that SGK1 expression is regulated by progesterone in human endometrium in vivo as well as in explant cultures. During the midsecretory phase of the cycle, SGK1 mRNA and protein were predominantly but not exclusively expressed in the luminal epithelium, and expression in this cellular compartment was higher in infertile women. In the stromal compartment, SGK1 expression was largely confined to decidualizing cells adjacent to the luminal epithelium. In primary culture, SGK1 was induced and phosphorylated upon decidualization of endometrial stromal cells in response to 8-bromo-cAMP and progestin treatment. Moreover, overexpression of SGK1 in decidualizing cells enhanced phosphorylation and cytoplasmic translocation of the forkhead transcription factor FOXO1 and inhibited the expression of PRL, a major decidual marker gene. Conversely, knockdown of endogenous SGK1 by small interfering RNA increased nuclear FOXO1 levels and enhanced PRL expression. The observation that SGK1 targets FOXO1 in differentiating human endometrium, together with its distinct temporal and spatial expression pattern and increased expression in infertile patients, suggest a major role for this kinase in early pregnancy events.
Collapse
Affiliation(s)
- Fakhera Feroze-Zaidi
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Failor KL, Desyatnikov Y, Finger LA, Firestone GL. Glucocorticoid-induced degradation of glycogen synthase kinase-3 protein is triggered by serum- and glucocorticoid-induced protein kinase and Akt signaling and controls beta-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Mol Endocrinol 2007; 21:2403-15. [PMID: 17595317 DOI: 10.1210/me.2007-0143] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glucocorticoid hormones stimulate adherens junction and tight junction formation in Con8 mammary epithelial tumor cells and induce the production of a stable nonphosphorylated beta-catenin protein localized exclusively to the cell periphery. Glycogen synthase kinase-3 (GSK3) phosphorylation of beta-catenin is known to trigger the degradation of this adherens junction protein, suggesting that steroid-activated cascades may be targeting this protein kinase. We now demonstrate that treatment with the synthetic glucocorticoid dexamethasone induces the ubiquitin-26S proteasome-mediated degradation of GSK3 protein with no change in GSK3 transcript levels. In transfected cells, deletion of the N-terminal nine amino acids or mutation of the serine-9 phosphorylation site on GSK3-beta prevented its glucocorticoid-induced degradation. Expression of stabilized GSK3 mutant proteins ablated the glucocorticoid-induced tight junction sealing and resulted in production of a nonphosphorylated beta-catenin that localizes to both the nucleus and the cell periphery in steroid-treated cells. Serine-9 on GSK3 can be phosphorylated by Sgk (serum- and glucocorticoid-induced protein kinase) and by Akt. Expression of dominant-negative forms of either Sgk- or Akt-inhibited glucocorticoid induced GSK3 ubiquitination and degradation and disrupted the dexamethasone-induced effects on beta-catenin dynamics. Furthermore, the steroid-induced tight junction sealing is attenuated in cells expressing dominant-negative forms of either Sgk or Akt, although the effect of blunting Sgk signaling was significantly greater. Taken together, we have uncovered a new cellular cascade in which Sgk and Akt trigger the glucocorticoid-regulated phosphorylation, ubiquitination, and degradation of GSK3, which alters beta-catenin dynamics, leading to the formation of adherens junctions and tight junction sealing.
Collapse
Affiliation(s)
- Kim L Failor
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | | | | | |
Collapse
|
486
|
Buse P, Maiyar AC, Failor KL, Tran S, Leong MLL, Firestone GL. The stimulus-dependent co-localization of serum- and glucocorticoid-regulated protein kinase (Sgk) and Erk/MAPK in mammary tumor cells involves the mutual interaction with the importin-alpha nuclear import protein. Exp Cell Res 2007; 313:3261-75. [PMID: 17692313 PMCID: PMC3422670 DOI: 10.1016/j.yexcr.2007.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/21/2007] [Accepted: 07/03/2007] [Indexed: 01/04/2023]
Abstract
In Con8 rat mammary epithelial tumor cells, indirect immunofluorescence revealed that Sgk (serum- and glucocorticoid-regulated kinase) and Erk/MAPK (extracellular signal-regulated protein kinase/mitogen activated protein kinase) co-localized to the nucleus in serum-treated cells and to the cytoplasmic compartment in cells treated with the synthetic glucocorticoid dexamethasone. Moreover, the subcellular distribution of the importin-alpha nuclear transport protein was similarly regulated in a signal-dependent manner. In vitro GST-pull down assays revealed the direct interaction of importin-alpha with either Sgk or Erk/MAPK, while RNA interference knockdown of importin-alpha expression disrupted the localization of both Sgk and Erk into the nucleus of serum-treated cells. Wild type or kinase dead forms of Sgk co-immunoprecipitated with Erk/MAPK from either serum- or dexamethasone-treated mammary tumor cells, suggesting the existence of a protein complex containing both kinases. In serum-treated cells, nucleus residing Sgk and Erk/MAPK were both hyperphosphorylated, indicative of their active states, whereas, in dexamethasone-treated cells Erk/MAPK, but not Sgk, was in its inactive hypophosphorylated state. Treatment with a MEK inhibitor, which inactivates Erk/MAPK, caused the relocalization of both Sgk and ERK to the cytoplasm. We therefore propose that the signal-dependent co-localization of Sgk and Erk/MAPK mediated by importin-alpha represents a new pathway of signal integration between steroid and serum/growth factor-regulated pathways.
Collapse
Affiliation(s)
- Patricia Buse
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
487
|
Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 2007; 282:30107-19. [PMID: 17711846 DOI: 10.1074/jbc.m705325200] [Citation(s) in RCA: 663] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The maintenance of homeostasis throughout an organism's life span requires constant adaptation to changes in energy levels. The AMP-activated protein kinase (AMPK) plays a critical role in the cellular responses to low energy levels by switching off energy-consuming pathways and switching on energy-producing pathways. However, the transcriptional mechanisms by which AMPK acts to adjust cellular energy levels are not entirely characterized. Here, we find that AMPK directly regulates mammalian FOXO3, a member of the FOXO family of Forkhead transcription factors known to promote resistance to oxidative stress, tumor suppression, and longevity. We show that AMPK phosphorylates human FOXO3 at six previously unidentified regulatory sites. Phosphorylation by AMPK leads to the activation of FOXO3 transcriptional activity without affecting FOXO3 subcellular localization. Using a genome-wide microarray analysis, we identify a set of target genes that are regulated by FOXO3 when phosphorylated at these six regulatory sites in mammalian cells. The regulation of FOXO3 by AMPK may play a crucial role in fine tuning gene expression programs that control energy balance and stress resistance in cells throughout life.
Collapse
Affiliation(s)
- Eric L Greer
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
488
|
Abstract
Forkhead box O (FoxO) transcription factors FoxO1, FoxO3a, FoxO4 and FoxO6, the mammalian orthologs of Caenorhabditis elegans DAF-16, are emerging as an important family of proteins that modulate the expression of genes involved in apoptosis, the cell cycle, DNA damage repair, oxidative stress, cell differentiation, glucose metabolism and other cellular functions. FoxO proteins are regulated by multiple mechanisms. They undergo inhibitory phosphorylation by protein kinases such as Akt, SGK, IKK and CDK2 in response to external and internal stimuli. By contrast, they are activated by upstream regulators such as JNK and MST1 under stress conditions. Their activities are counterbalanced by the acetylases CBP and p300 and the deacetylase SIRT1. Also, whereas polyubiquitylation of FoxO1 and FoxO3a leads to their degradation by the proteasome, monoubiquitylation of FoxO4 facilitates its nuclear localization and augments its transcriptional activity. Thus, the potent functions of FoxO proteins are tightly controlled by complex signaling pathways under physiological conditions; dysregulation of these proteins may ultimately lead to disease such as cancer.
Collapse
Affiliation(s)
- Haojie Huang
- Cancer Center and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
489
|
Barreyro FJ, Kobayashi S, Bronk SF, Werneburg NW, Malhi H, Gores GJ. Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis. J Biol Chem 2007; 282:27141-27154. [PMID: 17626006 DOI: 10.1074/jbc.m704391200] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hepatocyte lipoapoptosis, a critical feature of nonalcoholic steatohepatitis, can be replicated in vitro by incubating hepatocytes with saturated free fatty acids (FFA). These toxic FFA induce Bim expression, which is requisite for their cytotoxicity. Because the FoxO3a transcription factor has been implicated in Bim expression, our aim was to determine if FFA induce Bim by a FoxO3a-dependent mechanism. In Huh-7 cells, the saturated FFA, palmitic and stearic acid, increased Bim mRNA 16-fold. Treatment of cells with the saturated FFA induced FoxO3a dephosphorylation (activation) and nuclear translocation and stimulated a FoxO luciferase-based reporter assay; direct binding of FoxO3a to the Bim promoter was also confirmed by a chromatin immunoprecipitation assay. A small interfering RNA-targeted knockdown of FoxO3a abrogated FFA-mediated Bim induction and apoptosis. FoxO3a was activated by a phosphatase 2A-dependent mechanism, since okadaic acid- and small interfering RNA-targeted knockdown of this phosphatase blocked FoxO3a dephosphorylation, Bim expression, and apoptosis. Consistent with these data, phosphatase 2A activity was also stimulated 3-fold by saturated FFA. Immunoprecpitation studies revealed an FFA-dependent association between FoxO3a and protein phosphatase 2A. FFA-mediated FoxO3a activation by protein phosphatase 2A was also observed in HepG2 cells and murine hepatocytes. In conclusion, saturated FFA stimulate protein phosphatase 2A activity, which activates FoxO3a, inducing expression of the intracellular death mediator Bim.
Collapse
Affiliation(s)
- Fernando J Barreyro
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Shogo Kobayashi
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Steven F Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Nathan W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905.
| |
Collapse
|
490
|
Abstract
The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration.
Collapse
Affiliation(s)
- Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, SPH2-117, Boston, MA 02115, USA.
| | | |
Collapse
|
491
|
Behzad H, Jamil S, Denny TA, Duronio V. Cytokine-mediated FOXO3a phosphorylation suppresses FasL expression in hemopoietic cell lines: investigations of the role of Fas in apoptosis due to cytokine starvation. Cytokine 2007; 38:74-83. [PMID: 17604640 DOI: 10.1016/j.cyto.2007.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 01/31/2007] [Accepted: 05/08/2007] [Indexed: 11/26/2022]
Abstract
We have investigated phosphatidylinositol 3-kinase (PI3K)-dependent survival signalling pathways using several cytokines in three different hemopoietic cell lines, MC/9, FDC-P1, and TF-1. Cytokines caused PI3K- and PKB-dependent phosphorylation of FOXO3a (previously known as FKHRL1) at three distinct sites. Following cytokine withdrawal or PI3K inhibition, both of which are known to lead to apoptosis, there was a loss of FOXO3a phosphorylation, and a resulting increase in forkhead transcriptional activity, along with increased expression of Fas Ligand (FasL), which could be detected at the cell surface. Concurrently, an increase in cell surface expression of Fas was also detected. Despite the presence of both FasL and Fas, there was no detectable evidence that activation of Fas-mediated apoptotic events was contributing to apoptosis resulting from cytokine starvation or inhibition of PI3K activity. Thus, inhibition of FOXO3a activity is mediated by the PI3K-PKB pathway, but regulation of FasL is not the primary means by which cell survival is regulated in cytokine-dependent hemopoietic cells. We were also able to confirm increased expression of known FOXO3a targets, Bim and p27kip1. Together, these results support the conclusion that mitochondrial-mediated signals play the major role in apoptosis of hemopoietic cells due to loss of cytokine signalling.
Collapse
Affiliation(s)
- Hayedeh Behzad
- Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6
| | | | | | | |
Collapse
|
492
|
Goto T, Takano M, Albergaria A, Briese J, Pomeranz KM, Cloke B, Fusi L, Feroze-Zaidi F, Maywald N, Sajin M, Dina RE, Ishihara O, Takeda S, Lam EWF, Bamberger AM, Ghaem-Maghami S, Brosens JJ. Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells. Oncogene 2007; 27:9-19. [PMID: 17599040 DOI: 10.1038/sj.onc.1210626] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The forkhead transcription factor FOXO1, a downstream target of phosphatidylinositol-3-kinase/Akt signalling pathway, regulates cyclic differentiation and apoptosis in normal endometrium, but its role in endometrial carcinogenesis is unknown. Screening of endometrial cancer cell lines demonstrated that FOXO1 is expressed in HEC-1B cells, but not in Ishikawa cells, which in turn highly express the FOXO1 targeting E3-ubiquitin ligase Skp2. FOXO1 transcript levels were also lower in Ishikawa cells and treatment with the proteasomal inhibitor was insufficient to restore expression. Lack of FOXO1 expression in Ishikawa cells was not accounted for by differential promoter methylation or activity, but correlated with increased messenger RNA (mRNA) turnover. Comparative analysis demonstrated that HEC-1B cells proliferate slower, but are more resistant to paclitaxel-mediated cell death than Ishikawa cells, which were partially reversed upon silencing of FOXO1 in HEC-1B cells or its re-expression in Ishikawa cells. We further show that FOXO1 is required for the expression of the growth arrest- and DNA-damage-inducible gene GADD45alpha. Analysis of biopsy samples demonstrated a marked loss of FOXO1 and GADD45alpha mRNA and protein expression in endometrioid endometrial cancer compared to normal endometrium. Together, these observations suggest that loss of FOXO1 perturbs endometrial homeostasis, promotes uncontrolled cell proliferation and increases susceptibility to genotoxic insults.
Collapse
Affiliation(s)
- T Goto
- 1Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
493
|
Amato R, Menniti M, Agosti V, Boito R, Costa N, Bond HM, Barbieri V, Tagliaferri P, Venuta S, Perrotti N. IL-2 signals through Sgk1 and inhibits proliferation and apoptosis in kidney cancer cells. J Mol Med (Berl) 2007; 85:707-21. [PMID: 17571248 DOI: 10.1007/s00109-007-0205-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/14/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
The interleukin-2 is a cytokine that is essential for lymphocytic survival and function. Ectopic expression of the IL-2 receptor in epithelial tissues has been reported previously, although the functional significance of this expression is still being investigated. We provided novel structural and functional information on the expression of the IL-2 receptor in kidney cancer cells and in other normal and neoplastic human epithelial tissues. In A-498 kidney cancer cells, we showed that IL-2 binding to its own receptor triggers a signal transduction pathway leading to the inhibition of proliferation and apoptosis. We found that the inhibition of proliferation is associated with Erk1/2 dephosphorylation, whereas the survival signals appear to be mediated by Sgk1 activation. This investigation focuses on the IL-2 induced regulation of Sgk1 and describes a role of the IL-2 receptor and Sgk1 in the regulation of epithelial tumor cell death and survival.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Experimental and Clinical Medicine G. Salvatore, University Magna Graecia, Campus Biomedico, Località Germaneto, Viale Europa, Catanzaro, 88100, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
494
|
Kim MJ, Chae JS, Kim KJ, Hwang SG, Yoon KW, Kim EK, Yun HJ, Cho JH, Kim J, Kim BW, Kim HC, Kang SS, Lang F, Cho SG, Choi EJ. Negative regulation of SEK1 signaling by serum- and glucocorticoid-inducible protein kinase 1. EMBO J 2007; 26:3075-85. [PMID: 17568772 PMCID: PMC1914103 DOI: 10.1038/sj.emboj.7601755] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 05/22/2007] [Indexed: 12/23/2022] Open
Abstract
Serum- and glucocorticoid-inducible protein kinase 1 (SGK1) has been implicated in diverse cellular activities including the promotion of cell survival. The molecular mechanism of the role of SGK1 in protection against cellular stress has remained unclear, however. We have now shown that SGK1 inhibits the activation of SEK1 and thereby negatively regulates the JNK signaling pathway. SGK1 was found to physically associate with SEK1 in intact cells. Furthermore, activated SGK1 mediated the phosphorylation of SEK1 on serine 78, resulting in inhibition of the binding of SEK1 to JNK1, as well as to MEKK1. Replacement of serine 78 of SEK1 with alanine abolished SGK1-mediated SEK1 inhibition. Oxidative stress upregulated SGK1 expression, and depletion of SGK1 by RNA interference potentiated the activation of SEK1 induced by oxidative stress in Rat2 fibroblasts. Moreover, such SGK1 depletion prevented the dexamethasone-induced increase in SGK1 expression, as well as the inhibitory effects of dexamethasone on paclitaxel-induced SEK1-JNK signaling and apoptosis in MDA-MB-231 breast cancer cells. Together, our results suggest that SGK1 negatively regulates stress-activated signaling through inhibition of SEK1 function.
Collapse
Affiliation(s)
- Myung Jin Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ji Soo Chae
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Kwang Je Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sang Gil Hwang
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Kyoung Wan Yoon
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Eun Kyung Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hee Jae Yun
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jun-Ho Cho
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jeehyun Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Bong-Woo Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Hyung-chul Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sang Sun Kang
- School of Science Education, Chungbuk National University, Chongju, Korea
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Eui-Ju Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
- Graduate School of Biotechnology, Korea University, Anam-dong, Seoul 136-701, Republic of Korea. Tel.: +82 2 3290 3446; +Fax: 82 2 3290 4741; E-mail:
| |
Collapse
|
495
|
Lee RM, Masaki T, Yang HS, Liu J, Chen J, Li L, Blumenthal DK, Cheung AK. Different signaling responses to anti-proliferative agents in human aortic and venous smooth muscle cells. J Cell Biochem 2007; 99:835-44. [PMID: 16721826 DOI: 10.1002/jcb.20903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proliferation of smooth muscle cells (SMCs) contributes to the stenosis of coronary arteries and vascular grafts. Local delivery of anti-proliferative drugs can prevent vascular stenosis. To understand the cellular responses to anti-proliferative agents, we investigated the signaling events in cultured human aortic SMCs (ASMCs), saphenous venous SMCs (VSMCs), and dermal fibroblasts (DFs) in response to paclitaxel or etoposide. Cellular mitochondrial and proliferative activities were examined with the methylthiazoletetrazolium (MTT) dye reduction and the bromodeoxyuridine (BrdU) incorporation assay, respectively. Cell proliferation was almost completely suppressed by paclitaxel or etoposide, but apoptosis was achieved in only about 50% of cells at the highest drug concentrations, suggesting the presence of compensatory mechanisms to prevent apoptosis. Examination of three important signaling pathways revealed significant differences between ASMCs, VSMCs, and DFs. Treatment with either paclitaxel or etoposide caused a transient phosphorylation/activation of p42 MAPK in ASMCs and DFs, but had no effect on phospho-p42/44 MAPK in VSMCs. High-dose etoposide enhanced p38 MAPK activation in ASMCs, but not in VSMCs. The p38 inhibitor, PD169316, partially inhibited etoposide-induced ASMC apoptosis, but induced apoptosis in VSMCs. The effects of etoposide and paclitaxel on Akt also differed between ASMCs and VSMCs. These observations indicate that ASMCs and VSMCs differ in the response of signaling pathways to anti-proliferative agents. In ASMCs, p42/44 MAPK appears to serve a pro-survival role, whereas p38 MAPK is a pro-apoptotic regulator. In contrast, p38 MAPK is an important pro-survival regulator in VSMCs and p42/44 MAPK appears to play a minor role in responding to anti-proliferative drugs.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Aorta/cytology
- Cell Proliferation/drug effects
- Cells, Cultured
- Etoposide/pharmacology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Humans
- MAP Kinase Signaling System/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Paclitaxel/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Saphenous Vein/cytology
- Tubulin Modulators/pharmacology
Collapse
Affiliation(s)
- Ray M Lee
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | |
Collapse
|
496
|
Foxo3a Is Essential for Maintenance of the Hematopoietic Stem Cell Pool. Cell Stem Cell 2007; 1:101-12. [PMID: 18371339 DOI: 10.1016/j.stem.2007.02.001] [Citation(s) in RCA: 677] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/22/2007] [Accepted: 02/21/2007] [Indexed: 12/13/2022]
|
497
|
Lengyel F, Vértes Z, Kovács KA, Környei JL, Sümegi B, Vértes M. Effect of estrogen and inhibition of phosphatidylinositol-3 kinase on Akt and FOXO1 in rat uterus. Steroids 2007; 72:422-8. [PMID: 17433823 DOI: 10.1016/j.steroids.2007.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 02/06/2007] [Accepted: 03/02/2007] [Indexed: 11/26/2022]
Abstract
The importance of FOXO transcription factors in regulating different aspects of cellular homeostasis and apoptosis has become apparent. Akt/protein kinase B has been shown to phosphorylate and inactivate members of FOXO family of transcription factors. Akt and its upstream regulator, phosphatidylinositol-3 kinase (PI3K) are involved in rapid action of estrogen (E2) in different cells and tissues. The aim of the present study was to analyze the E2/PI3K/Akt/FOXO pathway in rat uterus. In response to E2, phosphorylation of Akt/PKB on Ser473 and FOXO1 on Ser256 and Thr24 residues increased but with distinct kinetics, regulating the activation and inactivation of Akt and FOXO1 proteins, respectively. The antiestrogen ICI 182,780 prevented E2 induced Akt activation suggesting that estrogen receptors mediate this effect of E2. Intrauterine injection of Wortmannin caused a decrease in the phosphorylation of Ser473 of Akt, and attenuated phosphorylation of its downstream target FOXO1 at Ser256 and at Thr24. However, the effect of E2 on phosphorylation of Thr24 showed a kinetic pattern distinct from that of Ser256. Our results suggest that the E2/PI3K/Akt/FOXO1 pathway in rat uterus is functioning even at the lack of ovarian hormones and responses to E2 treatment. Estradiol increases Akt phosphorylation through a Wortmannin sensitive way, presumably involving PI3K. The present work shows that PI3K plays a crucial role in the phosphorylation and inactivation of FOXO1 in vivo, indicating that the regulation of this transcription factor is a more complex event in uterine cells requiring further investigations.
Collapse
Affiliation(s)
- Ferenc Lengyel
- Institute of Physiology, Pécs University Medical School, Szigeti út 12, Pécs H7624, Hungary.
| | | | | | | | | | | |
Collapse
|
498
|
Auld CA, Fernandes KM, Morrison RF. Skp2-mediated p27(Kip1) degradation during S/G2 phase progression of adipocyte hyperplasia. J Cell Physiol 2007; 211:101-11. [PMID: 17096381 DOI: 10.1002/jcp.20915] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
p27(Kip1), an important regulator of Cdk2 activity and G1/S transition, is tightly regulated in a cell-type and condition-specific manner to integrate mitogenic and differentiation signals governing cell cycle progression. We show that p27 protein levels progressively declined from mid-G1 through late-G2 phase as density-arrested 3T3-L1 preadipocytes synchronously reentered the cell cycle during early stages of adipocyte differentiation. This dramatic fall in p27 protein accumulation was due, at least in part, to a decrease in protein stability. Specific inhibitors of the 26S proteasome were shown to completely block the decrease in p27 protein levels throughout G1, increase the abundance of ubiquitylated p27 protein, and inhibit G1/S transition resulting in G1 arrest. It is further demonstrated that p27 was phosphorylated on threonine 187 during S phase progression by Cdk2 and that phosphorylated p27 was polyubiquitylated and degraded. Furthermore, we demonstrate that Skp2 and Cks1 dramatically increased during S/G2 phase progression concomitantly with the maximal fall in p27 protein. Complete knockdown of Skp2 with RNA interference partially prevented p27 degradation equivalent to that observed with Cdk2 blockade suggesting that the SCF(Skp2) E3 ligase and other proteasome-dependent mechanisms contribute to p27 degradation during preadipocyte replication. Interestingly, Skp2-mediated p27 degradation was not essential for G1/S or S/G2 transition as preadipocytes shifted from quiescence to proliferation during adipocyte hyperplasia. Finally, evidence is presented suggesting that elevated p27 protein in the absence of Skp2 was neutralized by sequestration of p27 protein into Cyclin D1/Cdk4 complexes.
Collapse
Affiliation(s)
- Corinth A Auld
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | | | | |
Collapse
|
499
|
|
500
|
Mounier C, Posner BI. Transcriptional regulation by insulin: from the receptor to the gene. Can J Physiol Pharmacol 2007; 84:713-24. [PMID: 16998535 DOI: 10.1139/y05-152] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin, after binding to its receptor, regulates many cellular processes and the expression of several genes. For a subset of genes, insulin exerts a negative effect on transcription; for others, the effect is positive. Insulin controls gene transcription by modifying the binding of transcription factors on insulin-response elements or by regulating their transcriptional activities. Different insulin-signaling cascades have been characterized as mediating the insulin effect on gene transcription. In this review, we analyze recent data on the molecular mechanisms, mostly in the liver, through which insulin exerts its effect. We first focus on the key transcription factors (viz. Foxo, sterol-response-element-binding protein family (SREBP), and Sp1) involved in the regulation of gene transcription by insulin. We then present current information on the way insulin downregulates and upregulates gene transcription, using as examples of downregulation phosphoenolpyruvate carboxykinase (PEPCK) and insulin-like growth factor binding protein 1 (IGFBP-1) genes and of upregulation the fatty acid synthase and malic enzyme genes. The last part of the paper focuses on the signaling cascades activated by insulin in the liver, leading to the modulation of gene transcription.
Collapse
Affiliation(s)
- Catherine Mounier
- BioMed, Department of Biological Science, University of Quebec in Montreal, 141 President Kennedy, Montreal, QC H2X 3Y7, Canada
| | | |
Collapse
|