451
|
Abstract
OBJECTIVES The authors investigated aging effects on the envelope of the frequency following response to dynamic and static components of speech. Older adults frequently experience problems understanding speech, despite having clinically normal hearing. Improving audibility with hearing aids provides variable benefit, as amplification cannot restore the temporal precision degraded by aging. Previous studies have demonstrated age-related delays in subcortical timing specific to the dynamic, transition region of the stimulus. However, it is unknown whether this delay is mainly due to a failure to encode rapid changes in the formant transition because of central temporal processing deficits or as a result of cochlear damage that reduces audibility for the high-frequency components of the speech syllable. To investigate the nature of this delay, the authors compared subcortical responses in younger and older adults with normal hearing to the speech syllables /da/ and /a/, hypothesizing that the delays in peak timing observed in older adults are mainly caused by temporal processing deficits in the central auditory system. DESIGN The frequency following response was recorded to the speech syllables /da/ and /a/ from 15 younger and 15 older adults with normal hearing, normal IQ, and no history of neurological disorders. Both speech syllables were presented binaurally with alternating polarities at 80 dB SPL at a rate of 4.3 Hz through electromagnetically shielded insert earphones. A vertical montage of four Ag-AgCl electrodes (Cz, active, forehead ground, and earlobe references) was used. RESULTS The responses of older adults were significantly delayed with respect to younger adults for the transition and onset regions of the /da/ syllable and for the onset of the /a/ syllable. However, in contrast with the younger adults who had earlier latencies for /da/ than for /a/ (as was expected given the high-frequency energy in the /da/ stop consonant burst), latencies in older adults were not significantly different between the responses to /da/ and /a/. An unexpected finding was noted in the amplitude and phase dissimilarities between the two groups in the later part of the steady-state region, rather than in the transition region. This amplitude reduction may indicate prolonged neural recovery or response decay associated with a loss of auditory nerve fibers. CONCLUSIONS These results suggest that older adults' peak timing delays may arise from decreased synchronization to the onset of the stimulus due to reduced audibility, though the possible role of impaired central auditory processing cannot be ruled out. Conversely, a deterioration in temporal processing mechanisms in the auditory nerve, brainstem, or midbrain may be a factor in the sudden loss of synchronization in the later part of the steady-state response in older adults.
Collapse
|
452
|
Lichtenhan JT, Hartsock J, Dornhoffer JR, Donovan KM, Salt AN. Drug delivery into the cochlear apex: Improved control to sequentially affect finely spaced regions along the entire length of the cochlear spiral. J Neurosci Methods 2016; 273:201-209. [PMID: 27506463 DOI: 10.1016/j.jneumeth.2016.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. NEW METHOD Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. RESULTS Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. CONCLUSIONS Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined.
Collapse
Affiliation(s)
- J T Lichtenhan
- Washington University School of Medicine, Department of Otolaryngology, Saint Louis, MO 63110, USA.
| | - J Hartsock
- Washington University School of Medicine, Department of Otolaryngology, Saint Louis, MO 63110, USA
| | - J R Dornhoffer
- University of Arkansas School of Medicine, Little Rock, AR 72205, USA
| | - K M Donovan
- Program in Audiology and Communication Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - A N Salt
- Washington University School of Medicine, Department of Otolaryngology, Saint Louis, MO 63110, USA
| |
Collapse
|
453
|
Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16052. [PMID: 27525291 PMCID: PMC4972090 DOI: 10.1038/mtm.2016.52] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 06/11/2016] [Indexed: 01/21/2023]
Abstract
Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing.
Collapse
|
454
|
Möhrle D, Ni K, Varakina K, Bing D, Lee SC, Zimmermann U, Knipper M, Rüttiger L. Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 2016; 44:173-184. [DOI: 10.1016/j.neurobiolaging.2016.05.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 11/30/2022]
|
455
|
Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes. Proc Natl Acad Sci U S A 2016; 113:E4716-25. [PMID: 27462107 DOI: 10.1073/pnas.1605737113] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For sounds of a given frequency, spiral ganglion neurons (SGNs) with different thresholds and dynamic ranges collectively encode the wide range of audible sound pressures. Heterogeneity of synapses between inner hair cells (IHCs) and SGNs is an attractive candidate mechanism for generating complementary neural codes covering the entire dynamic range. Here, we quantified active zone (AZ) properties as a function of AZ position within mouse IHCs by combining patch clamp and imaging of presynaptic Ca(2+) influx and by immunohistochemistry. We report substantial AZ heterogeneity whereby the voltage of half-maximal activation of Ca(2+) influx ranged over ∼20 mV. Ca(2+) influx at AZs facing away from the ganglion activated at weaker depolarizations. Estimates of AZ size and Ca(2+) channel number were correlated and larger when AZs faced the ganglion. Disruption of the deafness gene GIPC3 in mice shifted the activation of presynaptic Ca(2+) influx to more hyperpolarized potentials and increased the spontaneous SGN discharge. Moreover, Gipc3 disruption enhanced Ca(2+) influx and exocytosis in IHCs, reversed the spatial gradient of maximal Ca(2+) influx in IHCs, and increased the maximal firing rate of SGNs at sound onset. We propose that IHCs diversify Ca(2+) channel properties among AZs and thereby contribute to decomposing auditory information into complementary representations in SGNs.
Collapse
|
456
|
Lee JH, Chang SY, Moy WJ, Oh C, Kim SH, Rhee CK, Ahn JC, Chung PS, Jung JY, Lee MY. Simultaneous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model. PeerJ 2016; 4:e2252. [PMID: 27547558 PMCID: PMC4963219 DOI: 10.7717/peerj.2252] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/23/2016] [Indexed: 11/22/2022] Open
Abstract
Noise-induced hearing loss is a common type of hearing loss. The effects of laser therapy have been investigated from various perspectives, including in wound healing, inflammation reduction, and nerve regeneration, as well as in hearing research. A promising feature of the laser is its capability to penetrate soft tissue; depending on the wavelength, laser energy can penetrate into the deepest part of the body without damaging non-target soft tissues. Based on this idea, we developed bilateral transtympanic laser therapy, which uses simultaneous laser irradiation in both ears, and evaluated the effects of bilateral laser therapy on cochlear damage caused by noise overexposure. Thus, the purpose of this research was to assess the benefits of simultaneous bilateral laser therapy compared with unilateral laser therapy and a control. Eighteen Sprague-Dawley rats were exposed to narrow-band noise at 115 dB SPL for 6 h. Multiple auditory brainstem responses were measured after each laser irradiation, and cochlear hair cells were counted after the 15th such irradiation. The penetration depth of the 808 nm laser was also measured after sacrifice. Approximately 5% of the laser energy reached the contralateral cochlea. Both bilateral and unilateral laser therapy decreased the hearing threshold after noise overstimulation in the rat model. The bilateral laser therapy group showed faster functional recovery at all tested frequencies compared with the unilateral laser therapy group. However, there was no difference in the endpoint ABR results or final hair cell survival, which was analyzed histologically.
Collapse
Affiliation(s)
- Jae-Hun Lee
- College of Medicine, Dankook University, Beckman Laser Institute Korea , Cheonan , South Korea
| | - So-Young Chang
- College of Medicine, Dankook University, Beckman Laser Institute Korea , Cheonan , South Korea
| | - Wesley J Moy
- Beckman Laser Institute and Medical Clinic, University of California , Irvine , CA , United States
| | - Connie Oh
- Beckman Laser Institute and Medical Clinic, University of California , Irvine , CA , United States
| | - Se-Hyung Kim
- Department of Otolaryngology-Head and Neck Surgery, Jeju National University School of Medicine , Jeju , South Korea
| | - Chung-Ku Rhee
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University , Cheonan , South Korea
| | - Jin-Chul Ahn
- Department of Biomedical Science, College of Medicine, Dankook University , Cheonan , South Korea
| | - Phil-Sang Chung
- College of Medicine, Dankook University, Beckman Laser Institute Korea, Cheonan, South Korea; Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea
| | - Jae Yun Jung
- College of Medicine, Dankook University, Beckman Laser Institute Korea, Cheonan, South Korea; Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea
| | - Min Young Lee
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University , Cheonan , South Korea
| |
Collapse
|
457
|
Crossmodal plasticity in auditory, visual and multisensory cortical areas following noise-induced hearing loss in adulthood. Hear Res 2016; 343:92-107. [PMID: 27387138 DOI: 10.1016/j.heares.2016.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/21/2022]
Abstract
Complete or partial hearing loss results in an increased responsiveness of neurons in the core auditory cortex of numerous species to visual and/or tactile stimuli (i.e., crossmodal plasticity). At present, however, it remains uncertain how adult-onset partial hearing loss affects higher-order cortical areas that normally integrate audiovisual information. To that end, extracellular electrophysiological recordings were performed under anesthesia in noise-exposed rats two weeks post-exposure (0.8-20 kHz at 120 dB SPL for 2 h) and age-matched controls to characterize the nature and extent of crossmodal plasticity in the dorsal auditory cortex (AuD), an area outside of the auditory core, as well as in the neighboring lateral extrastriate visual cortex (V2L), an area known to contribute to audiovisual processing. Computer-generated auditory (noise burst), visual (light flash) and combined audiovisual stimuli were delivered, and the associated spiking activity was used to determine the response profile of each neuron sampled (i.e., unisensory, subthreshold multisensory or bimodal). In both the AuD cortex and the multisensory zone of the V2L cortex, the maximum firing rates were unchanged following noise exposure, and there was a relative increase in the proportion of neurons responsive to visual stimuli, with a concomitant decrease in the number of neurons that were solely responsive to auditory stimuli despite adjusting the sound intensity to account for each rat's hearing threshold. These neighboring cortical areas differed, however, in how noise-induced hearing loss affected audiovisual processing; the total proportion of multisensory neurons significantly decreased in the V2L cortex (control 38.8 ± 3.3% vs. noise-exposed 27.1 ± 3.4%), and dramatically increased in the AuD cortex (control 23.9 ± 3.3% vs. noise-exposed 49.8 ± 6.1%). Thus, following noise exposure, the cortical area showing the greatest relative degree of multisensory convergence transitioned ventrally, away from the audiovisual area, V2L, toward the predominantly auditory area, AuD. Overall, the collective findings of the present study support the suggestion that crossmodal plasticity induced by adult-onset hearing impairment manifests in higher-order cortical areas as a transition in the functional border of the audiovisual cortex.
Collapse
|
458
|
Dlugaiczyk J, Hecker D, Neubert C, Buerbank S, Campanelli D, Becker CM, Betz H, Knipper M, Rüttiger L, Schick B. Loss of glycine receptors containing the α3 subunit compromises auditory nerve activity, but not outer hair cell function. Hear Res 2016; 337:25-34. [DOI: 10.1016/j.heares.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/25/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
459
|
Sanchez TG, Moraes F, Casseb J, Cota J, Freire K, Roberts LE. Tinnitus is associated with reduced sound level tolerance in adolescents with normal audiograms and otoacoustic emissions. Sci Rep 2016; 6:27109. [PMID: 27265722 PMCID: PMC4893619 DOI: 10.1038/srep27109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
Recent neuroscience research suggests that tinnitus may reflect synaptic loss in the cochlea that does not express in the audiogram but leads to neural changes in auditory pathways that reduce sound level tolerance (SLT). Adolescents (N = 170) completed a questionnaire addressing their prior experience with tinnitus, potentially risky listening habits, and sensitivity to ordinary sounds, followed by psychoacoustic measurements in a sound booth. Among all adolescents 54.7% reported by questionnaire that they had previously experienced tinnitus, while 28.8% heard tinnitus in the booth. Psychoacoustic properties of tinnitus measured in the sound booth corresponded with those of chronic adult tinnitus sufferers. Neither hearing thresholds (≤15 dB HL to 16 kHz) nor otoacoustic emissions discriminated between adolescents reporting or not reporting tinnitus in the sound booth, but loudness discomfort levels (a psychoacoustic measure of SLT) did so, averaging 11.3 dB lower in adolescents experiencing tinnitus in the acoustic chamber. Although risky listening habits were near universal, the teenagers experiencing tinnitus and reduced SLT tended to be more protective of their hearing. Tinnitus and reduced SLT could be early indications of a vulnerability to hidden synaptic injury that is prevalent among adolescents and expressed following exposure to high level environmental sounds.
Collapse
Affiliation(s)
- Tanit Ganz Sanchez
- University of São Paulo School of Medicine, São Paulo, Brazil.,Instituto Ganz Sanchez, São Paulo, Brazil.,Association of Interdisciplinary Research and Divulgation of Tinnitus, São Paulo, Brazil
| | | | | | - Jaci Cota
- Instituto Ganz Sanchez, São Paulo, Brazil
| | - Katya Freire
- Association of Interdisciplinary Research and Divulgation of Tinnitus, São Paulo, Brazil
| | - Larry E Roberts
- Department of Psychology Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
460
|
Reijntjes DO, Pyott SJ. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery. Hear Res 2016; 336:1-16. [DOI: 10.1016/j.heares.2016.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
|
461
|
Shi L, Chang Y, Li X, Aiken SJ, Liu L, Wang J. Coding Deficits in Noise-Induced Hidden Hearing Loss May Stem from Incomplete Repair of Ribbon Synapses in the Cochlea. Front Neurosci 2016; 10:231. [PMID: 27252621 PMCID: PMC4879136 DOI: 10.3389/fnins.2016.00231] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/09/2016] [Indexed: 12/01/2022] Open
Abstract
Recent evidence has shown that noise-induced damage to the synapse between inner hair cells (IHCs) and type I afferent auditory nerve fibers (ANFs) may occur in the absence of permanent threshold shift (PTS), and that synapses connecting IHCs with low spontaneous rate (SR) ANFs are disproportionately affected. Due to the functional importance of low-SR ANF units for temporal processing and signal coding in noisy backgrounds, deficits in cochlear coding associated with noise-induced damage may result in significant difficulties with temporal processing and hearing in noise (i.e., “hidden hearing loss”). However, significant noise-induced coding deficits have not been reported at the single unit level following the loss of low-SR units. We have found evidence to suggest that some aspects of neural coding are not significantly changed with the initial loss of low-SR ANFs, and that further coding deficits arise in association with the subsequent reestablishment of the synapses. This suggests that synaptopathy in hidden hearing loss may be the result of insufficient repair of disrupted synapses, and not simply due to the loss of low-SR units. These coding deficits include decreases in driven spike rate for intensity coding as well as several aspects of temporal coding: spike latency, peak-to-sustained spike ratio and the recovery of spike rate as a function of click-interval.
Collapse
Affiliation(s)
- Lijuan Shi
- Department of Physiology, Medical College of Southeast University Nanjing, China
| | - Yin Chang
- Department of Physiology, Medical College of Southeast University Nanjing, China
| | - Xiaowei Li
- Department of Physiology, Medical College of Southeast University Nanjing, China
| | - Steven J Aiken
- School of Human Communication Disorders, Dalhousie University Halifax, NS, Canada
| | - Lijie Liu
- Department of Physiology, Medical College of Southeast University Nanjing, China
| | - Jian Wang
- Department of Physiology, Medical College of Southeast UniversityNanjing, China; School of Human Communication Disorders, Dalhousie UniversityHalifax, NS, Canada
| |
Collapse
|
462
|
Huet A, Batrel C, Tang Y, Desmadryl G, Wang J, Puel JL, Bourien J. Sound coding in the auditory nerve of gerbils. Hear Res 2016; 338:32-9. [PMID: 27220483 DOI: 10.1016/j.heares.2016.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Gerbils possess a very specialized cochlea in which the low-frequency inner hair cells (IHCs) are contacted by auditory nerve fibers (ANFs) having a high spontaneous rate (SR), whereas high frequency IHCs are innervated by ANFs with a greater SR-based diversity. This specificity makes this animal a unique model to investigate, in the same cochlea, the functional role of different pools of ANFs. The distribution of the characteristic frequencies of fibers shows a clear bimodal shape (with a first mode around 1.5 kHz and a second around 12 kHz) and a notch in the histogram near 3.5 kHz. Whereas the mean thresholds did not significantly differ in the two frequency regions, the shape of the rate-intensity functions does vary significantly with the fiber characteristic frequency. Above 3.5 kHz, the sound-driven rate is greater and the slope of the rate-intensity function is steeper. Interestingly, high-SR fibers show a very good synchronized onset response in quiet (small first-spike latency jitter) but a weak response under noisy conditions. The low-SR fibers exhibit the opposite behavior, with poor onset synchronization in quiet but a robust response in noise. Finally, the greater vulnerability of low-SR fibers to various injuries including noise- and age-related hearing loss is discussed with regard to patients with poor speech intelligibility in noisy environments. Together, these results emphasize the need to perform relevant clinical tests to probe the distribution of ANFs in humans, and develop appropriate techniques of rehabilitation. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
Affiliation(s)
- Antoine Huet
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France
| | - Charlène Batrel
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France
| | - Yong Tang
- Hospital of Kunming Medical University, E.N.T Department, Kunming, China
| | - Gilles Desmadryl
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France
| | - Jing Wang
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France.
| | - Jérôme Bourien
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France
| |
Collapse
|
463
|
Letter to the Editor: Examination of Potential Sex Influences in . Auditory Function in Normal-Hearing, Noise-Exposed Human Ears, Ear Hear, 36, 172-184. Ear Hear 2016; 36:738-40. [PMID: 26441036 DOI: 10.1097/aud.0000000000000228] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
464
|
Cardin V. Effects of Aging and Adult-Onset Hearing Loss on Cortical Auditory Regions. Front Neurosci 2016; 10:199. [PMID: 27242405 PMCID: PMC4862970 DOI: 10.3389/fnins.2016.00199] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/22/2016] [Indexed: 11/13/2022] Open
Abstract
Hearing loss is a common feature in human aging. It has been argued that dysfunctions in central processing are important contributing factors to hearing loss during older age. Aging also has well documented consequences for neural structure and function, but it is not clear how these effects interact with those that arise as a consequence of hearing loss. This paper reviews the effects of aging and adult-onset hearing loss in the structure and function of cortical auditory regions. The evidence reviewed suggests that aging and hearing loss result in atrophy of cortical auditory regions and stronger engagement of networks involved in the detection of salient events, adaptive control and re-allocation of attention. These cortical mechanisms are engaged during listening in effortful conditions in normal hearing individuals. Therefore, as a consequence of aging and hearing loss, all listening becomes effortful and cognitive load is constantly high, reducing the amount of available cognitive resources. This constant effortful listening and reduced cognitive spare capacity could be what accelerates cognitive decline in older adults with hearing loss.
Collapse
Affiliation(s)
- Velia Cardin
- Department of Experimental Psychology, Deafness, Cognition and Language Research Centre, University College LondonLondon, UK; Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Swedish Institute for Disability Research, Linköping UniversityLinköping, Sweden
| |
Collapse
|
465
|
Paquette ST, Gilels F, White PM. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse. Sci Rep 2016; 6:25056. [PMID: 27162161 PMCID: PMC4861931 DOI: 10.1038/srep25056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
Cochlear neuropathy resulting from unsafe noise exposure is a life altering condition that affects many people. This hearing dysfunction follows a conserved mechanism where inner hair cell synapses are lost, termed cochlear synaptopathy. Here we investigate cochlear synaptopathy in the FVB/nJ mouse strain as a prelude for the investigation of candidate genetic mutations for noise damage susceptibility. We used measurements of auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to assess hearing recovery in FVB/nJ mice exposed to two different noise levels. We also utilized confocal fluorescence microscopy in mapped whole mount cochlear tissue, in conjunction with deconvolution and three-dimensional modeling, to analyze numbers, volumes and positions of paired synaptic components. We find evidence for significant synapse reorganization in response to both synaptopathic and sub-synaptopathic noise exposures in FVB/nJ. Specifically, we find that the modulation in volume of very small synaptic ribbons correlates with the presence of reduced ABR peak one amplitudes in both levels of noise exposures. These experiments define the use of FVB/nJ mice for further genetic investigations into the mechanisms of noise damage. They further suggest that in the cochlea, neuronal-inner hair cell connections may dynamically reshape as part of the noise response.
Collapse
Affiliation(s)
- Stephen T Paquette
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Box 603, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Felicia Gilels
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Box 603, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Patricia M White
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Box 603, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| |
Collapse
|
466
|
O'Brien GE, Imennov NS, Rubinstein JT. Simulating electrical modulation detection thresholds using a biophysical model of the auditory nerve. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:2448. [PMID: 27250141 DOI: 10.1121/1.4947430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Modulation detection thresholds (MDTs) assess listeners' sensitivity to changes in the temporal envelope of a signal and have been shown to strongly correlate with speech perception in cochlear implant users. MDTs are simulated with a stochastic model of a population of auditory nerve fibers that has been verified to accurately simulate a number of physiologically important temporal response properties. The procedure to estimate detection thresholds has previously been applied to stimulus discrimination tasks. The population model simulates the MDT-stimulus intensity relationship measured in cochlear implant users. The model also recreates the shape of the modulation transfer function and the relationship between MDTs and carrier rate. Discrimination based on fluctuations in synchronous firing activity predicts better performance at low carrier rates, but quantitative measures of modulation coding predict better neural representation of high carrier rate stimuli. Manipulating the number of fibers and a temporal integration parameter, the width of a sliding temporal integration window, varies properties of the MDTs, such as cutoff frequency and peak threshold. These results demonstrate the importance of using a multi-diameter fiber population in modeling the MDTs and demonstrate a wider applicability of this model to simulating behavioral performance in cochlear implant listeners.
Collapse
Affiliation(s)
- Gabrielle E O'Brien
- Department of Otolaryngology, V. M. Bloedel Hearing Research Center, University of Washington, Box 3657923, CHDD building, CD 176, Seattle, Washington 98196, USA
| | - Nikita S Imennov
- Department of Otolaryngology, V. M. Bloedel Hearing Research Center, University of Washington, Box 3657923, CHDD building, CD 176, Seattle, Washington 98196, USA
| | - Jay T Rubinstein
- Department of Otolaryngology, V. M. Bloedel Hearing Research Center, University of Washington, Box 3657923, CHDD building, CD 176, Seattle, Washington 98196, USA
| |
Collapse
|
467
|
Song Q, Shen P, Li X, Shi L, Liu L, Wang J, Yu Z, Stephen K, Aiken S, Yin S, Wang J. Coding deficits in hidden hearing loss induced by noise: the nature and impacts. Sci Rep 2016; 6:25200. [PMID: 27117978 PMCID: PMC4846864 DOI: 10.1038/srep25200] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/13/2016] [Indexed: 12/18/2022] Open
Abstract
Hidden hearing refers to the functional deficits in hearing without deterioration in hearing sensitivity. This concept is proposed based upon recent finding of massive noise-induced damage on ribbon synapse between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea without significant permanent threshold shifts (PTS). Presumably, such damage may cause coding deficits in auditory nerve fibers (ANFs). However, such deficits had not been detailed except that a selective loss of ANFs with low spontaneous rate (SR) was reported. In the present study, we investigated the dynamic changes of ribbon synapses and the coding function of ANF single units in one month after a brief noise exposure that caused a massive damage of ribbon synapses but no PTS. The synapse count and functional response measures indicates a large portion of the disrupted synapses were re-connected. This is consistent with the fact that the change of SR distribution due to the initial loss of low SR units is recovered quickly. However, ANF coding deficits were developed later with the re-establishment of the synapses. The deficits were found in both intensity and temporal processing, revealing the nature of synaptopathy in hidden hearing loss.
Collapse
Affiliation(s)
- Qiang Song
- Department of Otolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China
| | - Pei Shen
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China
| | - Xiaowei Li
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China
| | - Lijuan Shi
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China
| | - Lijie Liu
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China
| | - Jiping Wang
- Department of Otolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China
| | - Zhiping Yu
- School of Human Communication Disorders, Dalhousie University, 1256 Barrington St. Dalhousie University, Halifax, NS B3J1Y6, Canada
| | - Kegan Stephen
- School of Human Communication Disorders, Dalhousie University, 1256 Barrington St. Dalhousie University, Halifax, NS B3J1Y6, Canada
| | - Steve Aiken
- School of Human Communication Disorders, Dalhousie University, 1256 Barrington St. Dalhousie University, Halifax, NS B3J1Y6, Canada
| | - Shankai Yin
- Department of Otolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China
| | - Jian Wang
- Department of Otolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China.,School of Human Communication Disorders, Dalhousie University, 1256 Barrington St. Dalhousie University, Halifax, NS B3J1Y6, Canada
| |
Collapse
|
468
|
Suzuki J, Corfas G, Liberman MC. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci Rep 2016; 6:24907. [PMID: 27108594 PMCID: PMC4842978 DOI: 10.1038/srep24907] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/04/2016] [Indexed: 12/27/2022] Open
Abstract
In acquired sensorineural hearing loss, such as that produced by noise or aging, there can be massive loss of the synaptic connections between cochlear sensory cells and primary sensory neurons, without loss of the sensory cells themselves. Because the cell bodies and central projections of these cochlear neurons survive for months to years, there is a long therapeutic window in which to re-establish functional connections and improve hearing ability. Here we show in noise-exposed mice that local delivery of neurotrophin-3 (NT-3) to the round window niche, 24 hours after an exposure that causes an immediate loss of up to 50% loss of synapses in the cochlear basal region, can regenerate pre- and post-synaptic elements at the hair cell / cochlear nerve interface. This synaptic regeneration, as documented by confocal microscopy of immunostained cochlear sensory epithelia, was coupled with a corresponding functional recovery, as seen in the suprathreshold amplitude of auditory brainstem response Wave 1. Cochlear delivery of neurotrophins in humans is likely achievable as an office procedure via transtympanic injection, making our results highly significant in a translational context.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otology and Laryngology, Harvard Medical School, Boston MA 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye &Ear Infirmary, Boston MA 02114, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - M Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston MA 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye &Ear Infirmary, Boston MA 02114, USA
| |
Collapse
|
469
|
O'Brien GE, Rubinstein JT. The development of biophysical models of the electrically stimulated auditory nerve: Single-node and cable models. NETWORK (BRISTOL, ENGLAND) 2016; 27:135-156. [PMID: 27070730 DOI: 10.3109/0954898x.2016.1162338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the last few decades, biophysical models have emerged as a prominent tool in the study and improvement of cochlear implants, a neural prosthetic that restores a degree of sound perception to the profoundly deaf. Owing to the spatial phenomena associated with extracellular stimulation, these models have evolved to a relatively high degree of morphological and physiological detail: single-node models in the tradition of Hodgkin-Huxley are paired with cable descriptions of the auditory nerve fiber. No singular model has emerged as a frontrunner to the field; rather, parameter sets deriving from the channel kinetics and morphologies of numerous organisms (mammalian and otherwise) are combined and tuned to foster strong agreement with response properties observed in vivo, such as refractoriness, summation, and strength-duration relationships. Recently, biophysical models of the electrically stimulated auditory nerve have begun to incorporate adaptation and stochastic mechanisms, in order to better realize the goal of predicting realistic neural responses to a wide array of stimuli.
Collapse
Affiliation(s)
- Gabrielle E O'Brien
- a Department of Otolaryngology, V.M. Bloedel Hearing Research Center , University of Washington , Seattle , Washington , USA
| | - Jay T Rubinstein
- a Department of Otolaryngology, V.M. Bloedel Hearing Research Center , University of Washington , Seattle , Washington , USA
| |
Collapse
|
470
|
Effects of noise exposure on development of tinnitus and hyperacusis: Prevalence rates 12 months after exposure in middle-aged rats. Hear Res 2016; 334:30-6. [DOI: 10.1016/j.heares.2015.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 11/02/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022]
|
471
|
Hossain ME, Jassim WA, Zilany MSA. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram. PLoS One 2016; 11:e0150415. [PMID: 26967160 PMCID: PMC4788356 DOI: 10.1371/journal.pone.0150415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants.
Collapse
Affiliation(s)
- Mohammad E. Hossain
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Wissam A. Jassim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Muhammad S. A. Zilany
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
472
|
Abstract
Sensorineural hearing impairment is the most common form of hearing loss, and encompasses pathologies of the cochlea and the auditory nerve. Hearing impairment caused by abnormal neural encoding of sound stimuli despite preservation of sensory transduction and amplification by outer hair cells is known as 'auditory neuropathy'. This term was originally coined for a specific type of hearing impairment affecting speech comprehension beyond changes in audibility: patients with this condition report that they "can hear but cannot understand". This type of hearing impairment can be caused by damage to the sensory inner hair cells (IHCs), IHC ribbon synapses or spiral ganglion neurons. Human genetic and physiological studies, as well as research on animal models, have recently shown that disrupted IHC ribbon synapse function--resulting from genetic alterations that affect presynaptic glutamate loading of synaptic vesicles, Ca(2+) influx, or synaptic vesicle exocytosis--leads to hearing impairment termed 'auditory synaptopathy'. Moreover, animal studies have demonstrated that sound overexposure causes excitotoxic loss of IHC ribbon synapses. This mechanism probably contributes to hearing disorders caused by noise exposure or age-related hearing loss. This Review provides an update on recently elucidated sensory, synaptic and neural mechanisms of hearing impairment, their corresponding clinical findings, and discusses current rehabilitation strategies as well as future therapies.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Arnold Starr
- Center for Hearing Research, University of California, Irvine, California 92697, USA
| |
Collapse
|
473
|
Abstract
Tinnitus is a phantom auditory sensation that reduces quality of life for millions of people worldwide, and for which there is no medical cure. Most cases of tinnitus are associated with hearing loss caused by ageing or noise exposure. Exposure to loud recreational sound is common among the young, and this group are at increasing risk of developing tinnitus. Head or neck injuries can also trigger the development of tinnitus, as altered somatosensory input can affect auditory pathways and lead to tinnitus or modulate its intensity. Emotional and attentional state could be involved in the development and maintenance of tinnitus via top-down mechanisms. Thus, military personnel in combat are particularly at risk owing to combined risk factors (hearing loss, somatosensory system disturbances and emotional stress). Animal model studies have identified tinnitus-associated neural changes that commence at the cochlear nucleus and extend to the auditory cortex and other brain regions. Maladaptive neural plasticity seems to underlie these changes: it results in increased spontaneous firing rates and synchrony among neurons in central auditory structures, possibly generating the phantom percept. This Review highlights the links between animal and human studies, and discusses several therapeutic approaches that have been developed to target the neuroplastic changes underlying tinnitus.
Collapse
|
474
|
Valero MD, Hancock KE, Liberman MC. The middle ear muscle reflex in the diagnosis of cochlear neuropathy. Hear Res 2016; 332:29-38. [PMID: 26657094 PMCID: PMC5244259 DOI: 10.1016/j.heares.2015.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 02/04/2023]
Abstract
Cochlear neuropathy, i.e. the loss of auditory nerve fibers (ANFs) without loss of hair cells, may cause hearing deficits without affecting threshold sensitivity, particularly if the subset of ANFs with high thresholds and low spontaneous rates (SRs) is preferentially lost, as appears to be the case in both aging and noise-damaged cochleas. Because low-SR fibers may also be important drivers of the medial olivocochlear reflex (MOCR) and middle-ear muscle reflex (MEMR), these reflexes might be sensitive metrics of cochlear neuropathy. To test this hypothesis, we measured reflex strength and reflex threshold in mice with noise-induced neuropathy, as documented by confocal analysis of immunostained cochlear whole-mounts. To assay the MOCR, we measured contra-noise modulation of ipsilateral distortion-product otoacoustic emissions (DPOAEs) before and after the administration of curare to block the MEMR or curare + strychnine to also block the MOCR. The modulation of DPOAEs was 1) dominated by the MEMR in anesthetized mice, with a smaller contribution from the MOCR, and 2) significantly attenuated in neuropathic mice, but only when the MEMR was intact. We then measured MEMR growth functions by monitoring contra-noise induced changes in the wideband reflectance of chirps presented to the ipsilateral ear. We found 1) that the changes in wideband reflectance were mediated by the MEMR alone, and 2) that MEMR threshold was elevated and its maximum amplitude was attenuated in neuropathic mice. These data suggest that the MEMR may be valuable in the early detection of cochlear neuropathy.
Collapse
Affiliation(s)
- Michelle D Valero
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
475
|
Noise-Induced Hearing Loss: Permanent Versus Temporary Threshold Shifts and the Effects of Hair Cell Versus Neuronal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 875:1-7. [DOI: 10.1007/978-1-4939-2981-8_1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
476
|
Kortlang S, Mauermann M, Ewert SD. Suprathreshold auditory processing deficits in noise: Effects of hearing loss and age. Hear Res 2016; 331:27-40. [DOI: 10.1016/j.heares.2015.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/15/2022]
|
477
|
Oxenham AJ. Predicting the Perceptual Consequences of Hidden Hearing Loss. Trends Hear 2016; 20:2331216516686768. [PMID: 28024462 PMCID: PMC5318942 DOI: 10.1177/2331216516686768] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 11/20/2022] Open
Abstract
Recent physiological studies in several rodent species have revealed that permanent damage can occur to the auditory system after exposure to a noise that produces only a temporary shift in absolute thresholds. The damage has been found to occur in the synapses between the cochlea's inner hair cells and the auditory nerve, effectively severing part of the connection between the ear and the brain. This synaptopathy has been termed hidden hearing loss because its effects are not thought to be revealed in standard clinical, behavioral, or physiological measures of absolute threshold. It is currently unknown whether humans suffer from similar deficits after noise exposure. Even if synaptopathy occurs in humans, it remains unclear what the perceptual consequences might be or how they should best be measured. Here, we apply a simple theoretical model, taken from signal detection theory, to provide some predictions for what perceptual effects could be expected for a given loss of synapses. Predictions are made for a number of basic perceptual tasks, including tone detection in quiet and in noise, frequency discrimination, level discrimination, and binaural lateralization. The model's predictions are in line with the empirical observations that a 50% loss of synapses leads to changes in threshold that are too small to be reliably measured. Overall, the model provides a simple initial quantitative framework for understanding and predicting the perceptual effects of synaptopathy in humans.
Collapse
Affiliation(s)
- Andrew J. Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
478
|
Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss. J Assoc Res Otolaryngol 2015; 17:89-101. [PMID: 26691159 DOI: 10.1007/s10162-015-0550-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022] Open
Abstract
Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits.
Collapse
|
479
|
Chen GD, Sheppard A, Salvi R. Noise trauma induced plastic changes in brain regions outside the classical auditory pathway. Neuroscience 2015; 315:228-45. [PMID: 26701290 DOI: 10.1016/j.neuroscience.2015.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/19/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
The effects of intense noise exposure on the classical auditory pathway have been extensively investigated; however, little is known about the effects of noise-induced hearing loss on non-classical auditory areas in the brain such as the lateral amygdala (LA) and striatum (Str). To address this issue, we compared the noise-induced changes in spontaneous and tone-evoked responses from multiunit clusters (MUC) in the LA and Str with those seen in auditory cortex (AC) in rats. High-frequency octave band noise (10-20 kHz) and narrow band noise (16-20 kHz) induced permanent threshold shifts at high-frequencies within and above the noise band but not at low frequencies. While the noise trauma significantly elevated spontaneous discharge rate (SR) in the AC, SRs in the LA and Str were only slightly increased across all frequencies. The high-frequency noise trauma affected tone-evoked firing rates in frequency and time-dependent manner and the changes appeared to be related to the severity of noise trauma. In the LA, tone-evoked firing rates were reduced at the high-frequencies (trauma area) whereas firing rates were enhanced at the low-frequencies or at the edge-frequency dependent on severity of hearing loss at the high frequencies. The firing rate temporal profile changed from a broad plateau to one sharp, delayed peak. In the AC, tone-evoked firing rates were depressed at high frequencies and enhanced at the low frequencies while the firing rate temporal profiles became substantially broader. In contrast, firing rates in the Str were generally decreased and firing rate temporal profiles become more phasic and less prolonged. The altered firing rate and pattern at low frequencies induced by high-frequency hearing loss could have perceptual consequences. The tone-evoked hyperactivity in low-frequency MUC could manifest as hyperacusis whereas the discharge pattern changes could affect temporal resolution and integration.
Collapse
Affiliation(s)
- G-D Chen
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | - A Sheppard
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - R Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
480
|
Kiefer L, Schauen A, Abendroth S, Gaese B, Nowotny M. Variation in acoustic overstimulation changes tinnitus characteristics. Neuroscience 2015; 310:176-87. [DOI: 10.1016/j.neuroscience.2015.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 08/12/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
481
|
Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear Res 2015; 330:191-9. [PMID: 25769437 PMCID: PMC4567542 DOI: 10.1016/j.heares.2015.02.009] [Citation(s) in RCA: 515] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/26/2015] [Accepted: 02/25/2015] [Indexed: 12/24/2022]
Abstract
The classic view of sensorineural hearing loss (SNHL) is that the "primary" targets are hair cells, and that cochlear-nerve loss is "secondary" to hair cell degeneration. Our recent work in mouse and guinea pig has challenged that view. In noise-induced hearing loss, exposures causing only reversible threshold shifts (and no hair cell loss) nevertheless cause permanent loss of >50% of cochlear-nerve/hair-cell synapses. Similarly, in age-related hearing loss, degeneration of cochlear synapses precedes both hair cell loss and threshold elevation. This primary neural degeneration has remained hidden for three reasons: 1) the spiral ganglion cells, the cochlear neural elements commonly assessed in studies of SNHL, survive for years despite loss of synaptic connection with hair cells, 2) the synaptic terminals of cochlear nerve fibers are unmyelinated and difficult to see in the light microscope, and 3) the degeneration is selective for cochlear-nerve fibers with high thresholds. Although not required for threshold detection in quiet (e.g. threshold audiometry or auditory brainstem response threshold), these high-threshold fibers are critical for hearing in noisy environments. Our research suggests that 1) primary neural degeneration is an important contributor to the perceptual handicap in SNHL, and 2) in cases where the hair cells survive, neurotrophin therapies can elicit neurite outgrowth from spiral ganglion neurons and re-establishment of their peripheral synapses. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
- Sharon G Kujawa
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA; Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA, USA; Department of Audiology, Massachusetts Eye and Ear, Boston, MA, USA
| | - M Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA; Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA, USA.
| |
Collapse
|
482
|
Stefanescu RA, Shore SE. NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus. Front Neural Circuits 2015; 9:75. [PMID: 26622224 PMCID: PMC4653590 DOI: 10.3389/fncir.2015.00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022] Open
Abstract
Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NMDAr). Well-timed bimodal auditory-somatosensory stimulation, in vivo equivalent of spike-timing-dependent plasticity, can induce stimulus-timing-dependent plasticity (StTDP) of the FCs spontaneous and tone-evoked firing rates. In healthy guinea pigs, the resulting distribution of StTDP learning rules across a FC neural population is dominated by a Hebbian profile while anti-Hebbian, suppressive and enhancing LRs are less frequent. In this study, we investigate in vivo, the NMDAr contribution to FC baseline activity and long term plasticity. We find that blocking the NMDAr decreases the synchronization of FC- spontaneous activity and mediates differential modulation of FC rate-level functions such that low, and high threshold units are more likely to increase, and decrease, respectively, their maximum amplitudes. Three significant alterations in mean learning-rule profiles were identified: transitions from an initial Hebbian profile towards (1) an anti-Hebbian; (2) a suppressive profile; and (3) transitions from an anti-Hebbian to a Hebbian profile. FC units preserving their learning rules showed instead, NMDAr-dependent plasticity to unimodal acoustic stimulation, with persistent depression of tone-evoked responses changing to persistent enhancement following the NMDAr antagonist. These results reveal a crucial role of the NMDAr in mediating FC baseline activity and long-term plasticity which have important implications for signal processing and auditory pathologies related to maladaptive plasticity of dorsal cochlear nucleus circuitry.
Collapse
Affiliation(s)
- Roxana A Stefanescu
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA
| | - Susan E Shore
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA ; Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
483
|
Liberman MC, Liberman LD, Maison SF. Chronic Conductive Hearing Loss Leads to Cochlear Degeneration. PLoS One 2015; 10:e0142341. [PMID: 26580411 PMCID: PMC4651495 DOI: 10.1371/journal.pone.0142341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
Synapses between cochlear nerve terminals and hair cells are the most vulnerable elements in the inner ear in both noise-induced and age-related hearing loss, and this neuropathy is exacerbated in the absence of efferent feedback from the olivocochlear bundle. If age-related loss is dominated by a lifetime of exposure to environmental sounds, reduction of acoustic drive to the inner ear might improve cochlear preservation throughout life. To test this, we removed the tympanic membrane unilaterally in one group of young adult mice, removed the olivocochlear bundle in another group and compared their cochlear function and innervation to age-matched controls one year later. Results showed that tympanic membrane removal, and the associated threshold elevation, was counterproductive: cochlear efferent innervation was dramatically reduced, especially the lateral olivocochlear terminals to the inner hair cell area, and there was a corresponding reduction in the number of cochlear nerve synapses. This loss led to a decrease in the amplitude of the suprathreshold cochlear neural responses. Similar results were seen in two cases with conductive hearing loss due to chronic otitis media. Outer hair cell death was increased only in ears lacking medial olivocochlear innervation following olivocochlear bundle cuts. Results suggest the novel ideas that 1) the olivocochlear efferent pathway has a dramatic use-dependent plasticity even in the adult ear and 2) a component of the lingering auditory processing disorder seen in humans after persistent middle-ear infections is cochlear in origin.
Collapse
Affiliation(s)
- M. Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts, United States of America
| | - Leslie D. Liberman
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, United States of America
| | - Stéphane F. Maison
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, United States of America
- Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
484
|
Goutman JD, Elgoyhen AB, Gómez-Casati ME. Cochlear hair cells: The sound-sensing machines. FEBS Lett 2015; 589:3354-61. [PMID: 26335749 PMCID: PMC4641020 DOI: 10.1016/j.febslet.2015.08.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022]
Abstract
The sensory epithelium of the mammalian inner ear contains two types of mechanosensory cells: inner (IHC) and outer hair cells (OHC). They both transduce mechanical force generated by sound waves into electrical signals. In their apical end, these cells possess a set of stereocilia representing the mechanosensing organelles. IHC are responsible for detecting sounds and transmitting the acoustic information to the brain by converting graded depolarization into trains of action potentials in auditory nerve fibers. OHC are responsible for the active mechanical amplification process that leads to the fine tuning and high sensitivity of the mammalian inner ear. This active amplification is the consequence of the ability of OHC to alter their cell length in response to changes in membrane potential, and is controlled by an efferent inhibitory innervation. Medial olivocochlear efferent fibers, originating in the brainstem, synapse directly at the base of OHC and release acetylcholine. A very special type of nicotinic receptor, assembled by α9α10 subunits, participates in this synapse. Here we review recent knowledge and the role of both afferent and efferent synapse in the inner ear.
Collapse
Affiliation(s)
- Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor N Torres" (CONICET-UBA), Vuelta de Obligado 2490, Buenos Aires, Argentina.
| | - A Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor N Torres" (CONICET-UBA), Vuelta de Obligado 2490, Buenos Aires, Argentina; Tercera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, Argentina
| | - María Eugenia Gómez-Casati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor N Torres" (CONICET-UBA), Vuelta de Obligado 2490, Buenos Aires, Argentina; Tercera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, Argentina.
| |
Collapse
|
485
|
Jonsdottir V, Rantala LM, Oskarsson GK, Sala E. Effects of pedagogical ideology on the perceived loudness and noise levels in preschools. Noise Health 2015; 17:282-93. [PMID: 26356370 PMCID: PMC4900493 DOI: 10.4103/1463-1741.165044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
High activity noise levels that result in detrimental effects on speech communication have been measured in preschools. To find out if different pedagogical ideologies affect the perceived loudness and levels of noise, a questionnaire study inquiring about the experience of loudness and voice symptoms was carried out in Iceland in eight private preschools, called "Hjalli model", and in six public preschools. Noise levels were also measured in the preschools. Background variables (stress level, age, length of working career, education, smoking, and number of children per teacher) were also analyzed in order to determine how much they contributed toward voice symptoms and the experience of noisiness. Results indicate that pedagogical ideology is a significant factor for predicting noise and its consequences. Teachers in the preschool with tighter pedagogical control of discipline (the "Hjalli model") experienced lower activity noise loudness than teachers in the preschool with a more relaxed control of behavior (public preschool). Lower noise levels were also measured in the "Hjalli model" preschool and fewer "Hjalli model" teachers reported voice symptoms. Public preschool teachers experienced more stress than "Hjalli model" teachers and the stress level was, indeed, the background variable that best explained the voice symptoms and the teacher's perception of a noisy environment. Discipline, structure, and organization in the type of activity predicted the activity noise level better than the number of children in the group. Results indicate that pedagogical ideology is a significant factor for predicting self-reported noise and its consequences.
Collapse
|
486
|
Novel High Content Screen Detects Compounds That Promote Neurite Regeneration from Cochlear Spiral Ganglion Neurons. Sci Rep 2015; 5:15960. [PMID: 26521685 PMCID: PMC4629150 DOI: 10.1038/srep15960] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
Abstract
The bipolar spiral ganglion neurons (SGN) carry sound information from cochlear hair cells to the brain. After noise, antibiotic or toxic insult to the cochlea, damage to SGN and/or hair cells causes hearing impairment. Damage ranges from fiber and synapse degeneration to dysfunction and loss of cells. New interventions to regenerate peripheral nerve fibers could help reestablish transfer of auditory information from surviving or regenerated hair cells or improve results from cochlear implants, but the biochemical mechanisms to target are largely unknown. Presently, no drugs exist that are FDA approved to stimulate the regeneration of SGN nerve fibers. We designed an original phenotypic assay to screen 440 compounds of the NIH Clinical Collection directly on dissociated mouse spiral ganglia. The assay detected one compound, cerivastatin, that increased the length of regenerating neurites. The effect, mimicked by other statins at different optimal concentrations, was blocked by geranylgeraniol. These results demonstrate the utility of screening small compound libraries on mixed cultures of dissociated primary ganglia. The success of this screen narrows down a moderately sized library to a single compound which can be elevated to in-depth in vivo studies, and highlights a potential new molecular pathway for targeting of hearing loss drugs.
Collapse
|
487
|
Rance G, Starr A. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 2015; 138:3141-58. [PMID: 26463676 DOI: 10.1093/brain/awv270] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 01/19/2023] Open
Abstract
The effects of inner ear abnormality on audibility have been explored since the early 20th century when sound detection measures were first used to define and quantify 'hearing loss'. The development in the 1970s of objective measures of cochlear hair cell function (cochlear microphonics, otoacoustic emissions, summating potentials) and auditory nerve/brainstem activity (auditory brainstem responses) have made it possible to distinguish both synaptic and auditory nerve disorders from sensory receptor loss. This distinction is critically important when considering aetiology and management. In this review we address the clinical and pathophysiological features of auditory neuropathy that distinguish site(s) of dysfunction. We describe the diagnostic criteria for: (i) presynaptic disorders affecting inner hair cells and ribbon synapses; (ii) postsynaptic disorders affecting unmyelinated auditory nerve dendrites; (iii) postsynaptic disorders affecting auditory ganglion cells and their myelinated axons and dendrites; and (iv) central neural pathway disorders affecting the auditory brainstem. We review data and principles to identify treatment options for affected patients and explore their benefits as a function of site of lesion.
Collapse
Affiliation(s)
- Gary Rance
- 1 Department of Audiology and Speech Pathology, The University of Melbourne, 550 Swanston Street, Parkville 3010 Australia
| | - Arnold Starr
- 2 Department of Neurology, The University of California (Irvine), 200 S. Manchester Ave., Suite 206, Orange, CA 92868-4280, USA
| |
Collapse
|
488
|
Verhulst S, Bharadwaj HM, Mehraei G, Shera CA, Shinn-Cunningham BG. Functional modeling of the human auditory brainstem response to broadband stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:1637-59. [PMID: 26428802 PMCID: PMC4592442 DOI: 10.1121/1.4928305] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 05/19/2023]
Abstract
Population responses such as the auditory brainstem response (ABR) are commonly used for hearing screening, but the relationship between single-unit physiology and scalp-recorded population responses are not well understood. Computational models that integrate physiologically realistic models of single-unit auditory-nerve (AN), cochlear nucleus (CN) and inferior colliculus (IC) cells with models of broadband peripheral excitation can be used to simulate ABRs and thereby link detailed knowledge of animal physiology to human applications. Existing functional ABR models fail to capture the empirically observed 1.2-2 ms ABR wave-V latency-vs-intensity decrease that is thought to arise from level-dependent changes in cochlear excitation and firing synchrony across different tonotopic sections. This paper proposes an approach where level-dependent cochlear excitation patterns, which reflect human cochlear filter tuning parameters, drive AN fibers to yield realistic level-dependent properties of the ABR wave-V. The number of free model parameters is minimal, producing a model in which various sources of hearing-impairment can easily be simulated on an individualized and frequency-dependent basis. The model fits latency-vs-intensity functions observed in human ABRs and otoacoustic emissions while maintaining rate-level and threshold characteristics of single-unit AN fibers. The simulations help to reveal which tonotopic regions dominate ABR waveform peaks at different stimulus intensities.
Collapse
Affiliation(s)
- Sarah Verhulst
- Cluster of Excellence "Hearing4all" and Medizinische Physik, Department of Medical Physics and Acoustics, Oldenburg University, Carl-von-Ossietzky Strasse 9-11, 26129 Oldenburg, Germany
| | - Hari M Bharadwaj
- Center of Computational Neuroscience and Neural Technology, Boston University, 677 Beacon Street, Boston, Massachusetts 02215, USA
| | - Golbarg Mehraei
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, USA
| | - Christopher A Shera
- Eaton-Peabody Laboratory, 243 Charles Street, Boston, Massachusetts 02114, USA
| | - Barbara G Shinn-Cunningham
- Center of Computational Neuroscience and Neural Technology, Boston University, 677 Beacon Street, Boston, Massachusetts 02215, USA
| |
Collapse
|
489
|
Towards a Diagnosis of Cochlear Neuropathy with Envelope Following Responses. J Assoc Res Otolaryngol 2015; 16:727-45. [PMID: 26323349 DOI: 10.1007/s10162-015-0539-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022] Open
Abstract
Listeners with normal audiometric thresholds can still have suprathreshold deficits, for example, in the ability to discriminate sounds in complex acoustic scenes. One likely source of these deficits is cochlear neuropathy, a loss of auditory nerve (AN) fibers without hair cell damage, which can occur due to both aging and moderate acoustic overexposure. Since neuropathy can affect up to 50 % of AN fibers, its impact on suprathreshold hearing is likely profound, but progress is hindered by lack of a robust non-invasive test of neuropathy in humans. Reduction of suprathreshold auditory brainstem responses (ABRs) can be used to quantify neuropathy in inbred mice. However, ABR amplitudes are highly variable in humans, and thus more challenging to use. Since noise-induced neuropathy is selective for AN fibers with high thresholds, and because phase locking to temporal envelopes is particularly strong in these fibers, the envelope following response (EFR) might be a more robust measure. We compared EFRs to sinusoidally amplitude-modulated tones and ABRs to tone-pips in mice following a neuropathic noise exposure. EFR amplitude, EFR phase-locking value, and ABR amplitude were all reduced in noise-exposed mice. However, the changes in EFRs were more robust: the variance was smaller, thus inter-group differences were clearer. Optimum detection of neuropathy was achieved with high modulation frequencies and moderate levels. Analysis of group delays was used to confirm that the AN population was dominating the responses at these high modulation frequencies. Application of these principles in clinical testing can improve the differential diagnosis of sensorineural hearing loss.
Collapse
|
490
|
Adenomatous Polyposis Coli Protein Deletion in Efferent Olivocochlear Neurons Perturbs Afferent Synaptic Maturation and Reduces the Dynamic Range of Hearing. J Neurosci 2015; 35:9236-45. [PMID: 26085645 DOI: 10.1523/jneurosci.4384-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Normal hearing requires proper differentiation of afferent ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) that carry acoustic information to the brain. Within individual IHCs, presynaptic ribbons show a size gradient with larger ribbons on the modiolar face and smaller ribbons on the pillar face. This structural gradient is associated with a gradient of spontaneous rates and threshold sensitivity, which is essential for a wide dynamic range of hearing. Despite their importance for hearing, mechanisms that direct ribbon differentiation are poorly defined. We recently identified adenomatous polyposis coli protein (APC) as a key regulator of interneuronal synapse maturation. Here, we show that APC is required for ribbon size heterogeneity and normal cochlear function. Compared with wild-type littermates, APC conditional knock-out (cKO) mice exhibit decreased auditory brainstem responses. The IHC ribbon size gradient is also perturbed. Whereas the normal-developing IHCs display ribbon size gradients before hearing onset, ribbon sizes are aberrant in APC cKOs from neonatal ages on. Reporter expression studies show that the CaMKII-Cre used to delete the floxed APC gene is present in efferent olivocochlear (OC) neurons, not IHCs or SGNs. APC loss led to increased volumes and numbers of OC inhibitory dopaminergic boutons on neonatal SGN fibers. Our findings identify APC in efferent OC neurons as essential for regulating ribbon heterogeneity, dopaminergic terminal differentiation, and cochlear sensitivity. This APC effect on auditory epithelial cell synapses resembles interneuronal and nerve-muscle synapses, thereby defining a global role for APC in synaptic maturation in diverse cell types. SIGNIFICANCE STATEMENT This study identifies novel molecules and cellular interactions that are essential for the proper maturation of afferent ribbon synapses in sensory cells of the inner ear, and for normal hearing.
Collapse
|
491
|
Abstract
OBJECTIVE Electrophysiologic responses to acoustic stimuli are present in nearly all cochlear implant recipients when measured at the round window (RW). Intracochlear recording sites might provide an even larger signal and improve the sensitivity and the potential clinical utility of electrocochleography (ECoG). Thus, the goal of this study is to compare RW to intracochlear recording sites and to determine if such recordings can be used to monitor cochlear function during insertion of a cochlear implant. METHODS Intraoperative ECoG recordings were obtained in subjects receiving a cochlear implant from the RW and from just inside scala tympani (n = 26). Stimuli were tones at high levels (80-100 dB HL). Further recordings were obtained during insertions of a temporary lateral cochlear wall electrode (n = 8). Response magnitudes were determined as the sum of the first and second harmonics amplitudes. RESULTS All subjects had measurable extracochlear responses at the RW. Twenty cases (78%) showed a larger intracochlear response, compared with three (11%) that had a smaller response and three that were unchanged. On average, signal amplitudes increased with increasing electrode insertion depths, with the largest increase between 15 and 20 mm from the RW. CONCLUSION ECoG to acoustic stimuli via an intracochlear electrode is feasible in standard cochlear implant recipients. The increased signal can improve the speed and efficiency of data collection. The growth of response magnitudes with deeper intrascalar electrode positions could be explained by closer proximity or favorable geometry with respect to residual apical signal generators. Reductions in magnitude may represent unfavorable geometry or cochlear trauma.
Collapse
|
492
|
Li S, Kalappa BI, Tzounopoulos T. Noise-induced plasticity of KCNQ2/3 and HCN channels underlies vulnerability and resilience to tinnitus. eLife 2015; 4. [PMID: 26312501 PMCID: PMC4592936 DOI: 10.7554/elife.07242] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing rate in dorsal cochlear nucleus principal neurons, fusiform cells. This hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in noise-exposed mice that do not develop tinnitus (non-tinnitus mice), remain unknown. Our results show that noise exposure induces, on average, a reduction in KCNQ2/3 channel activity in fusiform cells in noise-exposed mice by 4 days after exposure. Tinnitus is developed in mice that do not compensate for this reduction within the next 3 days. Resilience to tinnitus is developed in mice that show a re-emergence of KCNQ2/3 channel activity and a reduction in HCN channel activity. Our results highlight KCNQ2/3 and HCN channels as potential targets for designing novel therapeutics that may promote resilience to tinnitus.
Collapse
Affiliation(s)
- Shuang Li
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Bopanna I Kalappa
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Thanos Tzounopoulos
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
493
|
Letter to the Editor: An Alternative Interpretation of Issues Surrounding the Exchange Rates Re: Dobie, R.A., & Clark, W.W. (2014) Exchange Rates for Intermittent and Fluctuating Occupational Noise: A Systematic Review of Studies of Human Permanent Threshold Shift, Ear Hear, 35, 86-96. Ear Hear 2015; 36:485-7. [PMID: 25866945 DOI: 10.1097/aud.0000000000000164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
494
|
Effects of steep high-frequency hearing loss on speech recognition using temporal fine structure in low-frequency region. Hear Res 2015; 326:66-74. [DOI: 10.1016/j.heares.2015.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022]
|
495
|
Abstract
Cochlear synaptic loss, rather than hair cell death, is the earliest sign of damage in both noise- and age-related hearing impairment (Kujawa and Liberman, 2009; Sergeyenko et al., 2013). Here, we compare cochlear aging after two types of noise exposure: one producing permanent synaptic damage without hair cell loss and another producing neither synaptopathy nor hair cell loss. Adult mice were exposed (8-16 kHz, 100 or 91 dB SPL for 2 h) and then evaluated from 1 h to ∼ 20 months after exposure. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses (ABRs). Cochlear whole mounts and plastic sections were studied to quantify hair cells, cochlear neurons, and the synapses connecting them. The synaptopathic noise (100 dB) caused 35-50 dB threshold shifts at 24 h. By 2 weeks, thresholds had recovered, but synaptic counts and ABR amplitudes at high frequencies were reduced by up to ∼ 45%. As exposed animals aged, synaptopathy was exacerbated compared with controls and spread to lower frequencies. Proportional ganglion cell losses followed. Threshold shifts first appeared >1 year after exposure and, by ∼ 20 months, were up to 18 dB greater in the synaptopathic noise group. Outer hair cell losses were exacerbated in the same time frame (∼ 10% at 32 kHz). In contrast, the 91 dB exposure, producing transient threshold shift without acute synaptopathy, showed no acceleration of synaptic loss or cochlear dysfunction as animals aged, at least to ∼ 1 year after exposure. Therefore, interactions between noise and aging may require an acute synaptopathy, but a single synaptopathic exposure can accelerate cochlear aging.
Collapse
|
496
|
Diehl PU, Schaette R. Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model. Front Neurol 2015; 6:157. [PMID: 26236277 PMCID: PMC4502361 DOI: 10.3389/fneur.2015.00157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Hyperacusis is a frequent auditory disorder that is characterized by abnormal loudness perception where sounds of relatively normal volume are perceived as too loud or even painfully loud. As hyperacusis patients show decreased loudness discomfort levels (LDLs) and steeper loudness growth functions, it has been hypothesized that hyperacusis might be caused by an increase in neuronal response gain in the auditory system. Moreover, since about 85% of hyperacusis patients also experience tinnitus, the conditions might be caused by a common mechanism. However, the mechanisms that give rise to hyperacusis have remained unclear. Here, we have used a computational model of the auditory system to investigate candidate mechanisms for hyperacusis. Assuming that perceived loudness is proportional to the summed activity of all auditory nerve (AN) fibers, the model was tuned to reproduce normal loudness perception. We then evaluated a variety of potential hyperacusis gain mechanisms by determining their effects on model equal-loudness contours and comparing the results to the LDLs of hyperacusis patients with normal hearing thresholds. Hyperacusis was best accounted for by an increase in non-linear gain in the central auditory system. Good fits to the average patient LDLs were obtained for a general increase in gain that affected all frequency channels to the same degree, and also for a frequency-specific gain increase in the high-frequency range. Moreover, the gain needed to be applied after subtraction of spontaneous activity of the AN, which is in contrast to current theories of tinnitus generation based on amplification of spontaneous activity. Hyperacusis and tinnitus might therefore be caused by different changes in neuronal processing in the central auditory system.
Collapse
Affiliation(s)
- Peter U. Diehl
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | | |
Collapse
|
497
|
Eggermont JJ, Roberts LE. Tinnitus: animal models and findings in humans. Cell Tissue Res 2015; 361:311-36. [PMID: 25266340 PMCID: PMC4487353 DOI: 10.1007/s00441-014-1992-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
Chronic tinnitus (ringing of the ears) is a medically untreatable condition that reduces quality of life for millions of individuals worldwide. Most cases are associated with hearing loss that may be detected by the audiogram or by more sensitive measures. Converging evidence from animal models and studies of human tinnitus sufferers indicates that, while cochlear damage is a trigger, most cases of tinnitus are not generated by irritative processes persisting in the cochlea but by changes that take place in central auditory pathways when auditory neurons lose their input from the ear. Forms of neural plasticity underlie these neural changes, which include increased spontaneous activity and neural gain in deafferented central auditory structures, increased synchronous activity in these structures, alterations in the tonotopic organization of auditory cortex, and changes in network behavior in nonauditory brain regions detected by functional imaging of individuals with tinnitus and corroborated by animal investigations. Research on the molecular mechanisms that underlie neural changes in tinnitus is in its infancy and represents a frontier for investigation.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, and Department of Psychology, University of Calgary, 2500 University Drive N.W, Calgary, AB, Canada,
| | | |
Collapse
|
498
|
Knipper M, Panford-Walsh R, Singer W, Rüttiger L, Zimmermann U. Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res 2015; 361:77-93. [PMID: 25843689 PMCID: PMC4487345 DOI: 10.1007/s00441-015-2168-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 01/08/2023]
Abstract
Before hearing onset, inner hair cell (IHC) maturation proceeds under the influence of spontaneous Ca(2+) action potentials (APs). The temporal signature of the IHC Ca(2+) AP is modified through an efferent cholinergic feedback from the medial olivocochlear bundle (MOC) and drives the IHC pre- and post-synapse phenotype towards low spontaneous (spike) rate (SR), high-threshold characteristics. With sensory experience, the IHC pre- and post-synapse phenotype matures towards the instruction of low-SR, high-threshold and of high-SR, low-threshold auditory fiber characteristics. Corticosteroid feedback together with local brain-derived nerve growth factor (BDNF) and catecholaminergic neurotransmitters (dopamine) might be essential for this developmental step. In this review, we address the question of whether the control of low-SR and high-SR fiber characteristics is linked to various degrees of vulnerability of auditory fibers in the mature system. In particular, we examine several IHC synaptopathies in the context of various hearing disorders and exemplified shortfalls before and after hearing onset.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
499
|
Vetter DE. Cellular signaling protective against noise-induced hearing loss – A role for novel intrinsic cochlear signaling involving corticotropin-releasing factor? Biochem Pharmacol 2015; 97:1-15. [PMID: 26074267 DOI: 10.1016/j.bcp.2015.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022]
Abstract
Hearing loss afflicts approximately 15% of the world's population, and crosses all socioeconomic boundaries. While great strides have been made in understanding the genetic components of syndromic and non-syndromic hearing loss, understanding of the mechanisms underlying noise-induced hearing loss (NIHL) have come much more slowly. NIHL is not simply a mechanism by which older individuals loose their hearing. Significantly, the incidence of NIHL is increasing, and is now involving ever younger populations. This may predict future increased occurrences of hearing loss. Current research has shown that even short-term exposures to loud sounds generating what was previously considered temporary hearing loss, actually produces an almost immediate and permanent loss of specific populations of auditory nerve fibers. Additionally, recurrent exposures to intense sound may hasten age-related hearing loss. While NIHL is a significant medical concern, to date, few compounds have delivered significant protection, arguing that new targets need to be identified. In this commentary, we will explore cellular signaling processes taking place in the cochlea believed to be involved in protection against hearing loss, and highlight new data suggestive of novel signaling not previously recognized as occurring in the cochlea, that is perhaps protective of hearing. This includes a recently described local hypothalamic-pituitary-adrenal axis (HPA)-like signaling system fully contained in the cochlea. This system may represent a local cellular stress-response system based on stress hormone release similar to the systemic HPA axis. Its discovery may hold hope for new drug therapies that can be delivered directly to the cochlea, circumventing systemic side effects.
Collapse
Affiliation(s)
- Douglas E Vetter
- University of Mississippi Medical Center, Department of Neurobiology and Anatomical Sciences, 2500 N. State St., Jackson, MS 39216, USA.
| |
Collapse
|
500
|
Basner M, Brink M, Bristow A, de Kluizenaar Y, Finegold L, Hong J, Janssen SA, Klaeboe R, Leroux T, Liebl A, Matsui T, Schwela D, Sliwinska-Kowalska M, Sörqvist P. ICBEN review of research on the biological effects of noise 2011-2014. Noise Health 2015; 17:57-82. [PMID: 25774609 PMCID: PMC4918662 DOI: 10.4103/1463-1741.153373] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mandate of the International Commission on Biological Effects of Noise (ICBEN) is to promote a high level of scientific research concerning all aspects of noise-induced effects on human beings and animals. In this review, ICBEN team chairs and co-chairs summarize relevant findings, publications, developments, and policies related to the biological effects of noise, with a focus on the period 2011-2014 and for the following topics: Noise-induced hearing loss; nonauditory effects of noise; effects of noise on performance and behavior; effects of noise on sleep; community response to noise; and interactions with other agents and contextual factors. Occupational settings and transport have been identified as the most prominent sources of noise that affect health. These reviews demonstrate that noise is a prevalent and often underestimated threat for both auditory and nonauditory health and that strategies for the prevention of noise and its associated negative health consequences are needed to promote public health.
Collapse
Affiliation(s)
- Mathias Basner
- Department of Psychiatry, Division of Sleep and Chronobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|