451
|
McArdle F, Spiers S, Aldemir H, Vasilaki A, Beaver A, Iwanejko L, McArdle A, Jackson MJ. Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice. J Physiol 2004; 561:233-44. [PMID: 15331678 PMCID: PMC1665333 DOI: 10.1113/jphysiol.2004.069914] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/11/2004] [Accepted: 08/25/2004] [Indexed: 12/25/2022] Open
Abstract
Adaptations of skeletal muscle following exercise are accompanied by changes in gene expression, which can result in protection against subsequent potentially damaging exercise. One cellular signal activating these adaptations may be an increased production of reactive oxygen and nitrogen species (ROS). The aim of this study was to examine the effect of a short period of non-damaging contractions on the subsequent susceptibility of muscle to contraction-induced damage and to examine the changes in gene expression that occur following the initial contraction protocol. Comparisons with changes in gene expression in cultured myotubes following treatment with a non-damaging concentration of hydrogen peroxide (H(2)O(2)) were used to identify redox-sensitive genes whose expression may be modified by the increased ROS production during contractions. Hindlimb muscles of mice were subjected to a preconditioning, non-damaging isometric contraction protocol in vivo. After 4 or 12 h, extensor digitorum longus (EDL) and soleus muscles were removed and subjected to a (normally) damaging contraction protocol in vitro. Muscles were also analysed for changes in gene expression induced by the preconditioning protocol using cDNA expression techniques. In a parallel study, C(2)C(12) myotubes were treated with a non-damaging concentration (100 microM) of H(2)O(2) and, at 4 and 12 h following treatment, myotubes were treated with a damaging concentration of H(2)O(2) (2 mM). Myotubes were analysed for changes in gene expression at 4 h following treatment with 100 microM H(2)O(2) alone. Data demonstrate that a prior period of non-damaging contractile activity resulted in significant protection of EDL and soleus muscles against a normally damaging contraction protocol 4 h later. This protection was associated with significant changes in gene expression. Prior treatment of myotubes with a non-damaging concentration of H(2)O(2) also resulted in significant protection against a damaging treatment, 4 and 12 h later. Comparison of changes in gene expression in both studies identified haem oxygenase-1 as the sole gene showing increased expression during adaptation in both instances suggesting that activation of this gene results from the increased ROS production during contractile activity and that it may play a role in protection of muscle cells against subsequent exposure to damaging activity.
Collapse
Affiliation(s)
- F McArdle
- Department of Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
452
|
Morikawa K, Fujiki T, Matoba T, Kubota H, Hatanaka M, Takahashi S, Shimokawa H. Important Role of Superoxide Dismutase in EDHF-Mediated Responses of Human Mesenteric Arteries. J Cardiovasc Pharmacol 2004; 44:552-6. [PMID: 15505491 DOI: 10.1097/00005344-200411000-00006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The endothelium synthesizes and releases several vasodilator substances, including prostacyclin, nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF). We have identified hydrogen peroxide (H2O2) as an EDHF in mouse and human mesenteric arteries and porcine coronary microvessels. We also have recently demonstrated that Cu,Zn-SOD plays an important role in EDHF synthesis in mouse mesenteric arteries. However, it remains to be determined whether SOD also plays an important role in EDHF-mediated responses of human arteries. In this study, we addressed this point in human mesenteric arteries. We used small mesenteric arteries of patients who underwent gastrectomy operations. Isometric tensions and membrane potentials were recorded in the presence of indomethacin and N-nitro-L-arginine to inhibit the synthesis of prostacyclin and NO, respectively. Pretreatment with Tiron, a cell-permeable SOD-mimetic, significantly enhanced the EDHF-mediated relaxations and hyperpolarizations to bradykinin, and this effect was abolished by catalase, indicating that this enhancing effect was achieved by H2O2. By contrast, Tiron did not affect endothelium-independent relaxations, indicating that the enhancing effect of Tiron is not caused by the enhancement of vascular smooth muscle responses. These results indicate that SOD plays an important role in EDHF-mediated relaxations and hyperpolarizations of human mesenteric arteries.
Collapse
Affiliation(s)
- Keiko Morikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
453
|
Abstract
This review focuses on the role of oxidative processes in atherosclerosis and its resultant cardiovascular events. There is now a consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. The oxidative modification hypothesis of atherosclerosis predicts that low-density lipoprotein (LDL) oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis. In support of this hypothesis, oxidized LDL can support foam cell formation in vitro, the lipid in human lesions is substantially oxidized, there is evidence for the presence of oxidized LDL in vivo, oxidized LDL has a number of potentially proatherogenic activities, and several structurally unrelated antioxidants inhibit atherosclerosis in animals. An emerging consensus also underscores the importance in vascular disease of oxidative events in addition to LDL oxidation. These include the production of reactive oxygen and nitrogen species by vascular cells, as well as oxidative modifications contributing to important clinical manifestations of coronary artery disease such as endothelial dysfunction and plaque disruption. Despite these abundant data however, fundamental problems remain with implicating oxidative modification as a (requisite) pathophysiologically important cause for atherosclerosis. These include the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis, and observations in animals that suggest dissociation between atherosclerosis and lipoprotein oxidation. Indeed, it remains to be established that oxidative events are a cause rather than an injurious response to atherogenesis. In this context, inflammation needs to be considered as a primary process of atherosclerosis, and oxidative stress as a secondary event. To address this issue, we have proposed an "oxidative response to inflammation" model as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.
Collapse
Affiliation(s)
- Roland Stocker
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
454
|
Kawabata A, Nakaya Y, Ishiki T, Kubo S, Kuroda R, Sekiguchi F, Kawao N, Nishikawa H, Kawai K. Receptor-activating peptides for PAR-1 and PAR-2 relax rat gastric artery via multiple mechanisms. Life Sci 2004; 75:2689-702. [PMID: 15369704 DOI: 10.1016/j.lfs.2004.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 07/06/2004] [Indexed: 11/26/2022]
Abstract
Receptor-activating peptides for protease-activated receptors (PARs) 1 or 2 enhance gastric mucosal blood flow (GMBF) and protect against gastric mucosal injury in rats. We thus examined and characterized the effects of PAR-1 and PAR-2 agonists on the isometric tension in isolated rat gastric artery. The agonists for PAR-2 or PAR-1 produced vasodilation in the endothelium-intact arterial rings, which was abolished by removal of the endothelium. The mechanisms underlying the PAR-2- and PAR-1-mediated relaxation involved NO, endothelium-derived hyperpolarizing factor (EDHF) and prostanoids, to distinct extent, as evaluated by use of inhibitors of NO synthase, cyclo-oxygenase and Ca2+-activated K+ channels. The EDHF-dependent relaxation responses were significantly attenuated by gap junction inhibitors. These findings demonstrate that endothelial PAR-1 and PAR-2, upon activation, dilate the gastric artery via NO and prostanoid formation and also EDHF mechanisms including gap junctions, which would enhance GMBF.
Collapse
Affiliation(s)
- Atsufumi Kawabata
- Division of Physiology and Pathophysiology, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Kaul DK, Liu XD, Chang HY, Nagel RL, Fabry ME. Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice. J Clin Invest 2004. [DOI: 10.1172/jci200421633] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
456
|
Talukder MAH, Fujiki T, Morikawa K, Motoishi M, Kubota H, Morishita T, Tsutsui M, Takeshita A, Shimokawa H. Up-Regulated Neuronal Nitric Oxide Synthase Compensates Coronary Flow Response to Bradykinin in Endothelial Nitric Oxide Synthase-Deficient Mice. J Cardiovasc Pharmacol 2004; 44:437-45. [PMID: 15454851 DOI: 10.1097/01.fjc.0000139450.64337.cd] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been reported that endothelium-dependent relaxations are preserved in isolated coronary arteries of endothelial nitric oxide synthase-deficient (eNOS-/-) mice with a possible involvement of nNOS. However, it remains to be examined whether nNOS compensates coronary flow response in a beating heart of eNOS-/- mice and if so, whether and where nNOS is up-regulated. Coronary flow response to bradykinin was examined in Langendorff-perfused hearts from WT and eNOS-/- mice. Bradykinin-induced coronary flow was greater in eNOS-/- mice than in WT mice, and indomethacin had no inhibitory effect on it. Bradykinin receptor antagonist HOE-140 abolished the bradykinin response in both strains. Non-selective NOSs inhibitor L-NNA inhibited the bradykinin-induced coronary flow in both strains, whereas specific inhibitors of nNOS, SMTC, and 7-NI, significantly attenuated the coronary flow response only in eNOS-/- mice. A guanylate cyclase inhibitor ODQ also attenuated the bradykinin response in eNOS-/- mice. Immunohistochemistry revealed the presence of nNOS mainly in coronary vascular smooth muscle cells (VSMCs) in both strains and Western blot analysis demonstrated a marked increase in cardiac nNOS expression in eNOS-/- mice. These results indicate that nNOS compensates coronary flow response to bradykinin in eNOS-/- mice, for which up-regulation of nNOS in VSMCs may be involved.
Collapse
Affiliation(s)
- M A Hassan Talukder
- Department of Cardiovascular Medicine, Kyushu University, Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
457
|
Voinea M, Georgescu A, Manea A, Dragomir E, Manduteanu I, Popov D, Simionescu M. Superoxide dismutase entrapped-liposomes restore the impaired endothelium-dependent relaxation of resistance arteries in experimental diabetes. Eur J Pharmacol 2004; 484:111-8. [PMID: 14729388 DOI: 10.1016/j.ejphar.2003.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Diabetes is associated with impaired endothelium-dependent relaxation. We questioned whether administration of superoxide dismutase (superoxide: superoxide oxidoreductase, EC 1.15.1.1) entrapped in long-circulating liposomes improves the vascular reactivity of the resistance arteries. Using the myograph technique, the vasodilation in response to acetylcholine was measured in mesenteric resistance arteries isolated from diabetic or normal hamsters treated for 3 days with superoxide dismutase entrapped in liposomes, with the same concentrations of free superoxide dismutase and plain liposomes, or untreated. Superoxide dismutase activity and nitric oxide (NO) levels were assayed by spectrophotometry, superoxide dismutase levels by Western blot and the role of N(pi)-nitro-L-arginine ethylester (L-NAME) on vasodilation by the myograph technique. Our data revealed that: (i) superoxide dismutase entrapped in liposomes restored to a great extent the endothelium-dependent relaxation of diabetic hamster resistance arteries; (ii) in superoxide dismutase entrapped in liposomes-treated diabetic animals, the activity and the level of superoxide dismutase in arterial homogenates as well as the serum nitrite levels were significantly higher than those in untreated hamsters or hamsters treated with free superoxide dismutase and plain liposomes: (iii) L-NAME inhibited the response of arteries to acetylcholine in superoxide dismutase entrapped in liposomes-treated diabetic hamsters. These results suggest that superoxide dismutase entrapped in liposomes is effective in scavenging superoxide anions, increases nitric oxide bioactivity and improves the vasorelaxation of resistance arteries in diabetic hamsters.
Collapse
Affiliation(s)
- Manuela Voinea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu"8, B.P. Hasdeu St., PO Box 35-14, 79691, Bucharest, Romania.
| | | | | | | | | | | | | |
Collapse
|
458
|
Hatoum OA, Binion DG, Miura H, Telford G, Otterson MF, Gutterman DD. Role of hydrogen peroxide in ACh-induced dilation of human submucosal intestinal microvessels. Am J Physiol Heart Circ Physiol 2004; 288:H48-54. [PMID: 15345486 DOI: 10.1152/ajpheart.00663.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several mediators of vasodilation, which include prostacyclin (PGI(2)), nitric oxide, and endothelium-derived hyperpolarizing factor (EDHF). We have recently defined the role of nitric oxide and PGI(2) in the dilation of submucosal intestinal arterioles from patients with normal bowel function. However, significant endothelium-dependent dilator capacity to ACh remained after inhibiting both these mediators. The current study was designed to examine the potential role of EDHF in human intestinal submucosal arterioles. ACh elicited endothelium-dependent relaxation in the presence of inhibitors of nitric oxide synthase and cyclooxygenase (23 +/- 10%, n = 6). This ACh-induced relaxation was inhibited and converted to constriction by catalase (-53 +/- 10%, n = 6) or KCl (-30 +/- 3%, n = 7), whereas 17-octadecynoic acid and 6-(2-propargylloxyphenyl) hexanoic acid, two inhibitors of cytochrome P450 monooxygenase, had no significant effect (3 +/- 1% and 20 +/- 8%, n = 5, respectively). Exogenous H(2)O(2) elicited dose-dependent relaxation of intact microvessels (52 +/- 10%, n = 7) but caused frank vasoconstriction in arterioles denuded of endothelium (-73 +/- 8%, n = 7). ACh markedly increased the dichlorofluorescein fluorescence in intact arterioles in the presence of nitric oxide synthase and cyclooxygenase inhibitors compared with control and compared with catalase-treated microvessels (363.6 +/- 49, 218.8 +/- 10.6, 221.9 +/- 27.9, respectively, P < 0.05 ANOVA, n = 5 arbitrary units). No changes in the dichlorofluorescein fluorescence were recorded in vessels treated with ACh alone. These results indicate that endothelial production of H(2)O(2) occurs in response to ACh in human gut mucosal arterioles but that H(2)O(2) is not an EDHF in this tissue. Rather, we speculate that it stimulates the release of a chemically distinct EDHF.
Collapse
Affiliation(s)
- Ossama A Hatoum
- Cardiovascular Research Center, Department of Surgery, Froedtert Memorial Lutheran Hospital, Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
459
|
Ellis A, Triggle CR. Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarization and vascular tone. Can J Physiol Pharmacol 2004; 81:1013-28. [PMID: 14719036 DOI: 10.1139/y03-106] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Opinions on the role of reactive oxygen species (ROS) in the vasculature have shifted in recent years, such that they are no longer merely regarded as indicators of cellular damage or byproducts of metabolism--they may also be putative mediators of physiological functions. Hydrogen peroxide (H2O2), in particular, can initiate vascular myocyte proliferation (and, incongruously, apoptosis), hyperplasia, cell adhesion, migration, and the regulation of smooth muscle tone. Endothelial cells express enzymes that produce ROS in response to various stimuli, and H2O2 is a potent relaxant of vascular smooth muscle. H2O2 itself can mediate endothelium-dependent relaxations in some vascular beds. Although nitric oxide (NO) is well recognized as an endothelium-derived dilator, it is also well established, particularly in the microvasculature, that another factor, endothelium-derived hyperpolarizing factor (EDHF), is a significant determinant of vasodilatory tone. This review primarily focuses on the hypothesis that H2O2 is an EDHF in resistance arteries. Putative endothelial sources of H2O2 and the effects of H2O2 on potassium channels, calcium homeostasis, and vascular smooth muscle tone are discussed. Furthermore, given the perception that ROS can more likely elicit cytotoxic effects than perform signalling functions, the arguments for and against H2O2 being an endogenous vasodilator are assessed.
Collapse
Affiliation(s)
- Anthie Ellis
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, AB, Canada
| | | |
Collapse
|
460
|
Veerareddy S, Cooke CLM, Baker PN, Davidge ST. Gender differences in myogenic tone in superoxide dismutase knockout mouse: animal model of oxidative stress. Am J Physiol Heart Circ Physiol 2004; 287:H40-5. [PMID: 14975934 DOI: 10.1152/ajpheart.01179.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress mediated by prooxidants has been implicated in the pathogenesis of vascular disorders. However, the effect of prooxidants on myogenic regulation of vascular function and the differential influence of gender is not known. SOD, an intracellular enzyme, restricts excess prooxidant levels and may limit vascular dysfunction. We therefore tested the effects of Cu,Zn SOD deficiency on vascular tone in both male and female SOD knockout (SOD−/−) mice. We hypothesized that myogenic tone would be enhanced in SOD−/− mice by excess prooxidants compared with wild-type control mice. Indeed, resistance-sized mesenteric arteries from SOD−/− mice exhibited enhanced myogenic tone compared with control mice. Myogenic tone was lower in female than male control mice. Interestingly, this gender effect was absent in SOD−/− mice, such that myogenic tone of mesenteric arteries from females was equated to that of arteries from males. Furthermore, the pathways that modulate myogenic tone were diverse. In both male and female control mice, inhibition of prostaglandin H synthase (PGHS) and nitric oxide synthase (NOS) pathways enhanced myogenic tone. In female SOD−/− mice, inhibition of PGHS and NOS pathways enhanced myogenic tone to a greater extent compared with control mice. Conversely, in male SOD−/− mice, NOS and PGHS inhibition did not alter tone and only inhibition of gap junctions enhanced myogenic tone. In conclusion, this study revealed enhanced myogenic tone in SOD−/− mice compared with control mice. Furthermore, Cu,Zn SOD deficiency particularly enhanced myogenic tone in female mice such that their vascular tone attained the level of male SOD−/− mice, possibly mediated by prooxidants.
Collapse
Affiliation(s)
- Sukrutha Veerareddy
- Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
461
|
Kansui Y, Fujii K, Nakamura K, Goto K, Oniki H, Abe I, Shibata Y, Iida M. Angiotensin II receptor blockade corrects altered expression of gap junctions in vascular endothelial cells from hypertensive rats. Am J Physiol Heart Circ Physiol 2004; 287:H216-24. [PMID: 15016632 DOI: 10.1152/ajpheart.00915.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blockade of the renin-angiotensin system improves the impaired endothelium-dependent relaxations associated with hypertension and aging, partly through amelioration of endothelium-derived hyperpolarizing factor (EDHF)-mediated responses. Although the nature of EDHF is still controversial, recent studies have suggested the involvement of gap junctions in EDHF-mediated responses. Gap junctions consist of connexins (Cx), and we therefore tested whether the expression of Cx in vascular endothelial cells would be altered by hypertension and antihypertensive treatment. Spontaneously hypertensive rats (SHR) were treated with either the angiotensin II type 1 receptor antagonist candesartan or the combination of hydralazine and hydrochlorothiazide for 3 mo from 5 to 8 mo of age. Confocal laser scanning microscopy after immunofluorescent labeling with antibodies against Cx37, Cx40, and Cx43 revealed that the expression of Cx37 and Cx40 in endothelial cells of the mesenteric artery was significantly lower in SHR than in WKY. Treatment with candesartan, but not the combination of hydralazine and hydrochlorothiazide, significantly increased the expression of Cx37 and Cx40, although blood pressure decreased similarly. On the other hand, the expression of Cx43, though scarce and heterogeneous, was increased in SHR compared with WKY, and candesartan treatment lowered the expression of Cx43. These findings suggest that renin-angiotensin system blockade corrects the decreased expression of Cx37 and Cx40 in arterial endothelial cells of hypertensive rats, partly independently of blood pressure, whereas the expression of Cx43 changed in the opposite direction. It remains to be clarified whether these changes in Cx37 and Cx40 are related to endothelial function, particularly that attributable to EDHF.
Collapse
Affiliation(s)
- Yasuo Kansui
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
462
|
Abstract
Isoprostanes are widely recognized as useful markers of membrane lipid peroxidation. It seems to be less well appreciated, however, that they also elicit important biological responses, even though this was first shown at the same time that they were introduced as markers of oxidative stress. The past several years have seen the list of cells/tissues which are sensitive to isoprostanes grow considerably: in fact, as we summarize here, there is now evidence that essentially every cell type in the lung responds in some pathologically relevant way to isoprostanes. In this sense, they might well be considered as not just markers of oxidative stress and inflammation, but also as a novel group of inflammatory mediators. Moreover, in addition to their pathological effects, we summarize here the evidence which has led us to hypothesize that isoprostanes could play an important role in vascular smooth muscle physiology as "endothelium-derived hyperpolarizing factors."
Collapse
Affiliation(s)
- L J Janssen
- Department of Medicine, Asthma Research Group, Father Sean O'Sullivan Research Center, Firestone Institute for Respiratory Health, St. Joseph's Hospital, McMaster University, Hamilton, Ont., Canada L8N4A6.
| |
Collapse
|
463
|
Kansui Y, Fujii K, Goto K, Abe I, Iida M. EFFECTS OF FLUVASTATIN ON ENDOTHELIUM-DERIVED HYPERPOLARIZING FACTOR- AND NITRIC OXIDE-MEDIATED RELAXATIONS IN ARTERIES OF HYPERTENSIVE RATS. Clin Exp Pharmacol Physiol 2004; 31:354-9. [PMID: 15191411 DOI: 10.1111/j.1440-1681.2004.04011.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endothelial cells release endothelium-derived hyperpolarizing factor (EDHF), as well as nitric oxide (NO). It has recently been suggested that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) improve NO-mediated endothelial function, partially independently of their cholesterol-lowering effects. It is, however, unclear whether statins improve EDHF-mediated responses. Eight-month-old stroke-prone spontaneously hypertensive rats (SHRSP) were treated with fluvastatin (10 mg/kg per day) for 1 month. Age-matched, normotensive Wistar Kyoto (WKY) rats served as controls. Both EDHF- and NO-mediated relaxations were impaired in SHRSP compared with WKY rats. Fluvastatin treatment did not affect blood pressure and serum total cholesterol. The acetylcholine (ACh)-induced, EDHF-mediated hyperpolarization in mesenteric arteries did not significantly differ between fluvastatin-treated SHRSP and untreated SHRSP and the responses in both groups were significantly smaller compared with those of WKY rats. Endothelium-derived hyperpolarizing factor-mediated relaxations, as assessed by the relaxation to ACh in mesenteric arteries contracted with noradrenaline in the presence of N(G)-nitro-l-arginine and indomethacin, were virtually absent and similar in both SHRSP groups. In contrast, NO-mediated relaxation, as assessed by the relaxation in response to ACh in rings contracted with 77 mmol/L KCl, was improved in fluvastatin-treated SHRSP compared with untreated SHRSP (maximum relaxation in control and fluvastatin groups 42.0 +/- 5.2 and 61.2 +/- 3.8%, respectively; P < 0.05). Hyperpolarization and relaxation in response to levcromakalim, an ATP-sensitive K(+) channel opener, were similar between the two SHRSP groups. These findings suggest that fluvastatin improves NO-mediated relaxation, but not EDHF-mediated hyperpolarization and relaxation, in SHRSP. Thus, the beneficial effects of the statin on endothelial function may be mainly ascribed to an improvement in the NO pathway, but not EDHF.
Collapse
Affiliation(s)
- Yasuo Kansui
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
464
|
Ozawa Y, Hayashi K, Wakino S, Kanda T, Homma K, Takamatsu I, Tatematsu S, Yoshioka K, Saruta T. Free Radical Activity Depends on Underlying Vasoconstrictors in Renal Microcirculation. Clin Exp Hypertens 2004; 26:219-29. [PMID: 15132300 DOI: 10.1081/ceh-120030231] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined the role of free radicals in renal microvascular tone induced by various vasoactive stimuli. Isolated perfused rat hydronephrotic kidneys were used for direct visualization of renal microcirculation. The effect of tempol on angiotensin II-, norepinephrine-, KCl-, and pressure-induced afferent arteriolar constriction was evaluated. Under angiotensin II-induced constriction, tempol (3 mmol/L) caused 57 +/- 8% dilation of afferent arterioles. In contrast, tempol elicited only 38 +/- 8% and 26 +/- 9% dilation of norepinephrine- and KCl-induced constriction. Similarly, myogenic response induced by elevating renal arterial pressure from 80 to 180 mmHg was resistant to the vasodilator action of tempol (22 +/- 7% inhibition). Furthermore, tempol failed to reverse nitro-L-arginine methylester-induced afferent constriction, nor had vasodilator effect on the angiotensin II-induced constriction in the presence of nitro-L-arginine methylester. In contrast, nitroprusside elicited marked vasodilation of angiotensin II- (97 +/- 5% reversal) and norepinephrine-induced afferent constriction (89 +/- 6% reversal), but had less effect on KCl- (46 +/- 8% reversal) and pressure-induced constriction (26 +/- 9% reversal). These different actions were also observed when polyethylene-glycolated superoxide dismutase was used as an antioxidant. In conclusion, the role of free radicals in afferent arteriolar tone varies, depending on the underlying vasoconstrictor stimuli, with greater contribution of free radicals to angiotensin II-induced constriction. The heterogeneity in the responsiveness to free radical scavengers is attributed to both magnitude of free radicals produced and sensitivity of the underlying vasoconstrictors to nitric oxide.
Collapse
Affiliation(s)
- Yuri Ozawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
465
|
Eskurza I, Monahan KD, Robinson JA, Seals DR. Effect of acute and chronic ascorbic acid on flow-mediated dilatation with sedentary and physically active human ageing. J Physiol 2004; 556:315-24. [PMID: 14754992 PMCID: PMC1664895 DOI: 10.1113/jphysiol.2003.057042] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Accepted: 01/23/2004] [Indexed: 01/10/2023] Open
Abstract
Peripheral conduit artery flow-mediated dilatation decreases with ageing in humans. The underlying mechanisms and efficacy of preventive strategies are unknown. Brachial artery flow-mediated dilatation was determined at baseline and after ascorbic acid (vitamin C) intravenous infusion and chronic supplementation (500 mg day(-1) for 30 days) in three groups of healthy men: young sedentary (n= 11; 25 +/- 1 years, mean +/-s.e.m.), older sedentary (n= 9; 64 +/- 2), and older endurance-exercise trained (n= 9; 64 +/- 2). At baseline, flow-mediated dilatation (normalized for the hyperaemic stimulus) was approximately 45% lower in the older (0.015 +/- 0.001) versus young (0.028 +/- 0.004) sedentary men (P < 0.01), but was preserved in older exercising men (0.028 +/- 0.004). Ascorbic acid infusion increased plasma concentrations > 15-fold in all groups and restored flow-mediated dilatation in the sedentary older men (to 0.023 +/- 0.002; P > 0.1 versus other groups), with no effects in the other two groups. Oral ascorbic acid supplementation did not affect flow-mediated dilatation in any group. Brachial artery endothelium-independent dilatation (sublingual nitroglycerin) did not differ among the groups at baseline nor change with ascorbic acid administration. These results provide the first evidence for an important role of oxidative stress in both the impairment in peripheral conduit artery flow-mediated dilatation with sedentary human ageing and the preservation of flow-mediated dilatation with physically active ageing.
Collapse
Affiliation(s)
- Iratxe Eskurza
- Department of Integrative Physiology, University of Colorado at Boulder, UCB 354, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
466
|
Mitsumizo S, Nakashima M, Hamada T, Totoki T. NOS II Inhibition Restores Attenuation of Endothelium-Dependent Hyperpolarization in Rat Mesenteric Artery Exposed to Lipopolysaccharide. J Cardiovasc Pharmacol 2004; 43:589-94. [PMID: 15085071 DOI: 10.1097/00005344-200404000-00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to assess the effects of lipopolysaccharide (LPS) exposure on the endothelium-dependent hyperpolarization in the rat mesenteric artery using isometric tension recordings and electrophysiological studies. Mesenteric arterial rings of male Sprague-Dawley rats were incubated with LPS for 6 hours. All experiments were performed in the presence of indomethacin to inhibit the formation of vasoactive prostanoids. Contraction to phenylephrine was significantly reduced in rings incubated with LPS, which was restored in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME). L-NAME resistant relaxation to acetylcholine was attenuated in LPS-treated rings. LPS exposure hyperpolarized resting membrane potentials of arterial smooth muscle cells, which was repolarized by incubation with either L-NAME or 1400W, a selective inhibitor of nitric oxide synthase II (NOS II). Endothelium-dependent hyperpolarization to acetylcholine was attenuated in arteries incubated with LPS, while incubation with LPS and 1400W restored EDHF-mediated hyperpolarization. LPS-induced membrane potential change was mimicked by incubation with either SIN-1 or diethylamine NONOate, a donor of nitric oxide. These data suggest that LPS exposure attenuates EDHF-mediated both relaxation and hyperpolarization in the rat mesenteric artery. The possible mechanisms underlying decreased EDHF-mediated responses might be due to, at least in some part, massive nitric oxide induced by NOS II.
Collapse
Affiliation(s)
- Shinji Mitsumizo
- Department of Anesthesiology and Critical Care Medicine, Surgical Center, Saga Medical School, Saga, Japan
| | | | | | | |
Collapse
|
467
|
Abe K, Shimokawa H, Morikawa K, Uwatoku T, Oi K, Matsumoto Y, Hattori T, Nakashima Y, Kaibuchi K, Sueishi K, Takeshit A. Long-Term Treatment With a Rho-Kinase Inhibitor Improves Monocrotaline-Induced Fatal Pulmonary Hypertension in Rats. Circ Res 2004; 94:385-93. [PMID: 14670839 DOI: 10.1161/01.res.0000111804.34509.94] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary pulmonary hypertension is a fatal disease characterized by endothelial dysfunction, hypercontraction and proliferation of vascular smooth muscle cells (VSMCs), and migration of inflammatory cells, for which no satisfactory treatment has yet been developed. We have recently demonstrated that intracellular signaling pathway mediated by Rho-kinase, an effector of the small GTPase Rho, is involved in the pathogenesis of arteriosclerosis. In the present study, we examined whether the Rho-kinase–mediated pathway is also involved in the pathogenesis of fatal pulmonary hypertension in rats. Animals received a subcutaneous injection of monocrotaline, which resulted in the development of severe pulmonary hypertension, right ventricular hypertrophy, and pulmonary vascular lesions in 3 weeks associated with subsequent high mortality rate. The long-term blockade of Rho-kinase with fasudil, which is metabolized to a specific Rho-kinase inhibitor hydroxyfasudil after oral administration, markedly improved survival when started concomitantly with monocrotaline and even when started after development of pulmonary hypertension. The fasudil treatment improved pulmonary hypertension, right ventricular hypertrophy, and pulmonary vascular lesions with suppression of VSMC proliferation and macrophage infiltration, enhanced VSMC apoptosis, and amelioration of endothelial dysfunction and VSMC hypercontraction. These results indicate that Rho-kinase–mediated pathway is substantially involved in the pathogenesis of pulmonary hypertension, suggesting that the molecule could be a novel therapeutic target for the fatal disorder.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/blood
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/metabolism
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use
- Animals
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/mortality
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Intracellular Signaling Peptides and Proteins
- Male
- Monocrotaline
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Rats
- Rats, Sprague-Dawley
- Survival Rate
- Time Factors
- rho-Associated Kinases
Collapse
Affiliation(s)
- Kohtaro Abe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
468
|
Sandow SL, Goto K, Rummery NM, Hill CE. Developmental changes in myoendothelial gap junction mediated vasodilator activity in the rat saphenous artery. J Physiol 2004; 556:875-86. [PMID: 14766938 PMCID: PMC1665009 DOI: 10.1113/jphysiol.2003.058669] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A role for myoendothelial gap junctions (MEGJs) has been proposed in the action of the vasodilator endothelium-derived hyperpolarizing factor (EDHF). EDHF activity varies in disease and during ageing, but little is known of the role of EDHF during development when, in many organ systems, gap junctions are up-regulated. The aims of the present study were therefore to determine whether an up-regulation of heterocellular gap junctional coupling occurs during arterial development and whether this change is reflected functionally through an increased action of EDHF. Results demonstrated that in the saphenous artery of juvenile WKY rats, MEGJs were abundant and application of acetylcholine (ACh) evoked EDHF-mediated hyperpolarization and relaxation in the presence of N(omega)-nitro-l-arginine methyl ester (L-NAME) and indomethacin to inhibit nitric oxide and prostaglandins, respectively. Responses were blocked by a combination of charybdotoxin plus apamin, or 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) plus apamin, or by blockade of gap junctions with the connexin (Cx)-mimetic peptides, (43)Gap26, (40)Gap27 and (37,43)Gap27. On the other hand, we found no evidence for the involvement of the putative chemical mediators of EDHF, eicosanoids, L-NAME-insensitive nitric oxide, hydrogen peroxide or potassium ions, since 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), hydroxocobalamin, catalase or barium and ouabain were without effect. In contrast, in the adult saphenous artery, MEGJs were rare, EDHF-mediated relaxation was absent and hyperpolarizations were small and unstable. The present study demonstrates that MEGJs and EDHF are up-regulated during arterial development. Furthermore, the data show for the first time that this developmentally regulated EDHF is dependent on direct electrotonic coupling via MEGJs.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Acetylcholine/pharmacology
- Animals
- Apamin/pharmacology
- Arteries/drug effects
- Arteries/physiology
- Barium/pharmacology
- Biological Factors/physiology
- Catalase/pharmacology
- Charybdotoxin/pharmacology
- Connexin 26
- Connexins/chemistry
- Connexins/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Femoral Artery/drug effects
- Femoral Artery/physiology
- Gap Junctions/physiology
- Gap Junctions/ultrastructure
- Hydroxocobalamin/pharmacology
- Immunohistochemistry
- In Vitro Techniques
- Indomethacin/pharmacology
- Male
- Membrane Potentials/drug effects
- Microscopy, Electron
- Models, Biological
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Oligopeptides
- Ouabain/pharmacology
- Patch-Clamp Techniques
- Peptide Fragments/pharmacology
- Phenylephrine/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Inbred WKY
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Shaun L Sandow
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
469
|
Abstract
During muscle contraction, several mechanisms regulate blood flow to ensure a close coupling between muscle oxygen delivery and metabolic demand. No single factor has been identified to constitute the primary metabolic regulator, yet there are signal transduction pathways between skeletal muscle and the vasculature that induce vasodilation. A link between muscle metabolic events and microvascular control of blood flow is illustrated by local dilation of terminal arterioles during contraction of muscle fibers and conduction of vasodilation upstream. Endothelial-derived vasodilator mechanisms are known to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow is reduced under nonselective adenosine-receptor blockade. No clear role has been demonstrated for either NO or PGI2(2), based on studies employing selective inhibition of these substances individually, suggesting a redundancy of vasodilator mechanisms. This is supported by recent work demonstrating that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked by muscle contraction to vasodilatory signals in the local vascular bed remains an important area of study.
Collapse
Affiliation(s)
- Robert Boushel
- Dept. of Exercise Science, Concordia University DA-215, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6
| |
Collapse
|
470
|
Affiliation(s)
- H Hurairah
- Department of Clinical Pharmacology, GKT School of Medicine (Cardiovascular Division), King's College London, London, UK
| | | |
Collapse
|
471
|
Gauthier KM, Spitzbarth N, Edwards EM, Campbell WB. Apamin-Sensitive K
+
Currents Mediate Arachidonic Acid-Induced Relaxations of Rabbit Aorta. Hypertension 2004; 43:413-9. [PMID: 14691199 DOI: 10.1161/01.hyp.0000110945.84443.d2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arachidonic acid induces an endothelium-dependent relaxation of the rabbit aorta that is blocked by lipoxygenase inhibitors. The cellular vasodilatory mechanisms activated by arachidonic acid metabolites remain undefined. In rabbit thoracic aortic rings pretreated with indomethacin (10 μmol/L) and contracted with phenylephrine, arachidonic acid (0.1 to 100 μmol/L) induced concentration-dependent relaxations. Maximal relaxations averaged 45±3% and were inhibited by increasing extracellular K
+
(30 mmol/L, 15±5%;
P
<0.001) or incubation with apamin (100 nmol/L, 26±7%;
P
<0.05) but not incubation with charybdotoxin (100 nmol/L, 41±5%). In aortic strips with an intact endothelium that were treated with phenylephrine, arachidonic acid (10 μmol/L) increased the membrane potential from −28.7±1.3 to −37.8±3.0 mV (
P
<0.01). Preincubation with apamin did not alter basal membrane potential but inhibited arachidonic acid-induced hyperpolarization (−31.5±1.5 mV). Incubation of rabbit aortic segments with apamin or charybdotoxin did not alter [
14
C]arachidonic acid metabolism. Whole-cell outward K
+
currents from isolated rabbit aortic smooth muscle cells averaged 43.0±4.8 pA/pF at 60 mV and were significantly decreased to 35.7±4.2 pA/pF by apamin (
P
<0.001). Subsequent addition of charybdotoxin further decreased maximal currents to 14.4±2.3 pA/pF. Addition of 11,12,15-trihydroxyeicosatrienoic acid increased the outward whole-cell K
+
current. In inside-out patches of aortic smooth muscle, apamin inhibited the calcium activation (100 to 300 nmol/L;
P
<0.001) of a small-conductance K
+
channel (≈24 pS). These results suggest that arachidonic acid induces endothelium-dependent hyperpolarization and relaxation of rabbit aorta through activation of smooth muscle, apamin-sensitive K
+
currents.
Collapse
Affiliation(s)
- Kathryn M Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
472
|
Luksha L, Nisell H, Kublickiene K. The mechanism of EDHF-mediated responses in subcutaneous small arteries from healthy pregnant women. Am J Physiol Regul Integr Comp Physiol 2004; 286:R1102-9. [PMID: 14751845 DOI: 10.1152/ajpregu.00550.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the importance of endothelium-derived hyperpolarizing factor (EDHF) vs. nitric oxide (NO) and prostacyclin (PGI(2)) in bradykinin (BK)-induced relaxation in isolated small subcutaneous arteries from normal pregnant women. We also explored the contribution of cytochrome P-450 (CYP450) product of arachidonic acid (AA) metabolism, hydrogen peroxide (H(2)O(2)), and gap junctions that have been suggested to be involved in EDHF-mediated responses. Isolated arteries obtained from subcutaneous fat biopsies of normal pregnant women (n = 30) undergoing planned cesarean section were mounted in a wire-myography system. In norepinephrine-constricted vessels, incubation with N(G)-nitro-L-arginine methyl ester (L-NAME) resulted in a significant reduction in relaxation to BK. Simultaneous incubation with L-NAME and indomethacin failed to modify this response further. BK-mediated dilatation in the presence of K(+)-modified solution was decreased to similar level as obtained after incubation with L-NAME. Incubation with L-NAME abolished BK-induced responses in K(+)-modified solution. Sulfaphenazole, a specific inhibitor of CYP450 epoxygenase, and catalase (an enzyme that decomposes H(2)O(2)) did not affect the EDHF-mediated relaxation because concentration-response curves to BK were similar in arteries after incubation with L-NAME vs. L-NAME + sulfaphenazole and L-NAME + catalase. The inhibitor of gap junctions, 18 alpha-glycyrrhetinic acid, significantly reduced BK-mediated relaxation both without and with incubation with L-NAME. We found that both NO and EDHF, but not PGI(2), are involved in the endothelium-dependent dilatation to BK. BK-induced relaxation is almost equally mediated by NO and EDHF. CYP450 epoxygenase metabolites of AA or H(2)O(2) do not account for EDHF-mediated response; however, gap junctions are involved in the EDHF-mediated responses to BK in subcutaneous small arteries in normal pregnancy.
Collapse
Affiliation(s)
- Leonid Luksha
- Department of Obstetrics and Gynecology, Karolinska Institutet, Huddinge University Hospital, 14186 Stockholm, Sweden
| | | | | |
Collapse
|
473
|
Morikawa K, Shimokawa H, Matoba T, Kubota H, Akaike T, Talukder MAH, Hatanaka M, Fujiki T, Maeda H, Takahashi S, Takeshita A. Pivotal role of Cu,Zn-superoxide dismutase in endothelium-dependent hyperpolarization. J Clin Invest 2004; 112:1871-9. [PMID: 14679182 PMCID: PMC296996 DOI: 10.1172/jci19351] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several vasodilating factors, including prostacyclin, NO, and endothelium-derived hyperpolarizing factor (EDHF). We have recently identified that endothelium-derived H2O2 is an EDHF in mesenteric arteries of mice and humans and in porcine coronary microvessels. However, the mechanism for the endothelial production of H2O2 as an EDHF remains to be elucidated. In this study, we tested our hypothesis that Cu,Zn-superoxide dismutase (Cu,Zn-SOD) plays a pivotal role in endothelium-dependent hyperpolarization, using control and Cu,Zn-SOD-/- mice. In mesenteric arteries, EDHF-mediated relaxations and hyperpolarizations were significantly reduced in Cu,Zn-SOD-/- mice with no inhibitory effect of catalase, while endothelium-independent relaxations and hyperpolarizations were preserved. Endothelial H2O2 production also was significantly reduced in Cu,Zn-SOD-/- mice. In Langendorff isolated heart, bradykinin-induced increase in coronary flow was significantly reduced in Cu,Zn-SOD-/- mice, again with no inhibitory effect of catalase. The exogenous SOD mimetic tempol significantly improved EDHF-mediated relaxations and hyperpolarizations and coronary flow response in Cu,Zn-SOD-/- mice. These results prove the novel concept that endothelial Cu,Zn-SOD plays an important role as an "EDHF synthase" in mice, in addition to its classical role to scavenge superoxide anions.
Collapse
Affiliation(s)
- Keiko Morikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
474
|
Breyne J, Vanheel BJ. Role of Ba2+-resistant K+ channels in endothelium-dependent hyperpolarization of rat small mesenteric arteries. Can J Physiol Pharmacol 2004; 82:65-71. [PMID: 15052307 DOI: 10.1139/y03-132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rat small mesenteric arteries, the influence of modulation of basal smooth muscle K+ efflux on the mechanism of endothelium-dependent hyperpolarization was investigated. The membrane potentials of the vascular smooth muscle cells were measured using conventional microelectrode techniques. Incubation of resting arteries with the gap junction uncoupler carbenoxolone (20 µM) decreased the endothelium-dependent hyperpolarization elicited by a submaximal concentration of acetylcholine (3 µM) to about 65% of the control. In the presence of Ba2+ (200 µM), which depolarized the membrane potential by 10 mV, the acetylcholine-induced membrane potential response was doubled in magnitude, reaching values not different from control. Moreover, the hyperpolarization was more resistant to carbenoxolone in these conditions. Finally, both in the absence and in the presence of carbenoxolone, the combined application of Ba2+ and ouabain (0.5 mM) did not abolish the acetylcholine response. These results suggest that gap junctional coupling plays a role in endothelium-dependent hyperpolarization of smooth muscle cells of resting rat small mesenteric arteries. Additionally, these findings show that the hyperpolarization does not rely on activation of inward rectifying K+ channels. Although a minor contribution of Na–K pumping cannot be excluded, the Ba2+ experiments show that the membrane electrical response is mediated by activation of a Ba2+-resistant K+ conductance.Key words: EDHF, carbenoxolone, potassium channels, vascular smooth muscle cell membrane potential, vasodilation.
Collapse
Affiliation(s)
- Joke Breyne
- Department of Physiology and Physiopathology, Ghent University, U.G.-UZ, Blok B, De Pintelaan 185, B-9000 Ghent, Belgium
| | | |
Collapse
|
475
|
Abstract
Under physiologic conditions, epicardial arteries contribute minimally to coronary vascular resistance. However, in the presence of endothelial dysfunction, stimuli that normally produce vasodilation may instead cause constriction. Examples include neural release of acetylcholine or norepinephrine, platelet activation and production of serotonin and thrombin, and release of local factors such as bradykinin. This shift from a primary endothelial-mediated vasodilator influence to one of endothelial dysfunction and unchecked vasoconstriction is precisely the milieu in which coronary vasospasm is observed. This condition, which typically occurs during periods of relatively sedentary activity, is associated with focal and transient obstruction of an epicardial arterial segment resulting in characteristic echocardiographic changes and symptoms of myocardial ischemia. This review highlights the current understanding of mechanisms regulating the coronary circulation during health and examines the pathophysiologic changes that occur with coronary spasm. Genetic and other predisposing conditions are addressed, as well as novel therapies based on recent mechanistic insights of the coronary contractile dysfunction associated with coronary spasm.
Collapse
Affiliation(s)
- Srilakshmi Konidala
- Department of Medicine, Cardiovascular Center, General Clinical Research Center, Milwaukee, WI 53226, USA
| | | |
Collapse
|
476
|
Thengchaisri N, Kuo L. Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol Heart Circ Physiol 2003; 285:H2255-63. [PMID: 14613908 DOI: 10.1152/ajpheart.00487.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogen peroxide, a relatively stable reactive oxygen species, is known to elicit vasodilation, but its underlying mechanism remains elusive. Here, we examined the role of endothelial nitric oxide (NO), prostaglandin, cytochrome P-450-derived metabolites, and smooth muscle potassium channels in coronary arteriolar dilation to abluminal H2O2. Pig subepicardial coronary arterioles (50-100 microm) were isolated and pressurized without flow for in vitro study. Arterioles developed basal tone and dilated dose dependently to H2O2 (1-100 microM). Disruption of th endothelium and inhibition of cyclooxygenase (COX) by indomethacin produced identical attenuation of vasodilation to H2O2. Conversely, the vasodilation to H2O2 was not affected by either the NO synthase inhibitor NG-nitro-l-arginine methyl ester or the cytochrome P-450 enzyme blocker miconazole. Inhibition of the COX-1, but not the COX-2 pathway, attenuated H2O2-induced dilation similarly to indomethacin. The production of prostaglandin E2 (PGE2), but not prostaglandin I2, from coronary arterioles was significantly increased by H2O2. Furthermore, inhibition of PGE2 receptors with AH-6809 attenuated vasodilation to H2O2 similar to that produced by indomethacin. In the absence of a functional endothelium, H2O2-induced dilation was attenuated, in an identical manner, by a depolarizing agent KCl and a calcium-activated potassium (KCa) channel inhibitor iberiotoxin. However, PGE2-induced dilation was not affected by iberiotoxin. The endothelium-independent dilation to H2O2 was also insensitive to the inhibition of guanylyl cyclase, lipoxygenase, ATP-sensitive potassium channels, and inward rectifier potassium channels. These results suggest that H2O2 induces endothelium-dependent vasodilation through COX-1-mediated release of PGE2 and also directly relaxes smooth muscle by hyperpolarization through KCa channel activation.
Collapse
Affiliation(s)
- Naris Thengchaisri
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M Univ. System Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
477
|
Morikawa K, Shimokawa H, Matoba T, Kubota H, Akaike T, Talukder MH, Hatanaka M, Fujiki T, Maeda H, Takahashi S, Takeshita A. Pivotal role of Cu,Zn-superoxide dismutase in endothelium-dependent hyperpolarization. J Clin Invest 2003. [DOI: 10.1172/jci200319351] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
478
|
Chaytor AT, Edwards DH, Bakker LM, Griffith TM. Distinct hyperpolarizing and relaxant roles for gap junctions and endothelium-derived H2O2 in NO-independent relaxations of rabbit arteries. Proc Natl Acad Sci U S A 2003; 100:15212-7. [PMID: 14645719 PMCID: PMC299961 DOI: 10.1073/pnas.2435030100] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 10/07/2003] [Indexed: 12/21/2022] Open
Abstract
We have compared the contributions of gap junctional communication and chemical signaling via H2O2 to NO-independent relaxations evoked by the Ca2+ ionophore A23187 and acetylcholine (ACh) in rabbit ilio-femoral arteries. Immunostaining confirmed the presence of connexins (Cxs) 37 and 40 in the endothelium and Cxs 40 and 43 in smooth muscle. Maximal endothelium-dependent subintimal smooth muscle hyperpolarizations evoked by A23187 and ACh were equivalent (approximately 20 mV) and almost abolished by an inhibitory peptide combination targeted against Cxs 37, 40, and 43. However, maximal NO-independent relaxations evoked by A23187 were unaffected by such peptides, whereas those evoked by ACh were depressed by approximately 70%. By contrast, the enzyme catalase, which destroys H2O2, attenuated A23187-induced relaxations over a broad range of concentrations, but only minimally depressed the maximum response to ACh. Catalase did not affect A23187- or ACh-evoked hyperpolarizations. After loading with an H2O2-sensitive probe, A23187 caused a marked increase in endothelial fluorescence that correlated temporally with relaxation, whereas only a weak delayed increase was observed with ACh. In arteries without endothelium, the H2O2-generating system xanthine/xanthine oxidase induced a catalase-sensitive relaxation that mimicked the gap junction-independent response to A23187 as it was maximally equivalent to approximately 80% of induced tone, but associated with a smooth muscle hyperpolarization <5 mV. We conclude that myoendothelial gap junctions underpin smooth muscle hyperpolarizations evoked by A23187 and ACh, but that A23187-induced relaxation is dominated by extracellular release of H2O2. Endothelium-derived H2O2 may thus be regarded as a relaxing factor, but not a hyperpolarizing factor, in rabbit arteries.
Collapse
Affiliation(s)
- Andrew T Chaytor
- Department of Diagnostic Radiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | | | | | | |
Collapse
|
479
|
|
480
|
Ellis A, Pannirselvam M, Anderson TJ, Triggle CR. Catalase has negligible inhibitory effects on endothelium-dependent relaxations in mouse isolated aorta and small mesenteric artery. Br J Pharmacol 2003; 140:1193-200. [PMID: 14597598 PMCID: PMC1574136 DOI: 10.1038/sj.bjp.0705549] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 09/05/2003] [Accepted: 09/23/2003] [Indexed: 11/09/2022] Open
Abstract
1. The current study examined the hypothesis that endothelial production of hydrogen peroxide (H2O2) mediates relaxations to acetylcholine (ACh) in aorta and small mesenteric arteries (SMA) from mice. 2. Relaxations to ACh (0.01-10 microM) and H2O2 (0.1-1000 microM) were produced in aorta and SMA isolated from wild-type C57BL/6 mice and type II diabetic mice (db/db). In SMA, relaxations to ACh were produced in the presence of N omega-nitro-L-arginine methyl ester (100 microM) and indomethacin (Indo, 10 microM). 3. 1-H[1,2,4]oxadiazolo[4,3-]quinoxalin-1-one (10 microM) significantly reduced ACh-induced relaxations in SMA, abolished responses in aorta, but had no effect on relaxations induced by H2O2. Catalase (2500 U ml-1) abolished responses to H2O2, but did not alter relaxations to ACh in the SMA and only caused a small rightward shift in responses to ACh in the aorta. 4. ACh-, but not H2O2-, mediated relaxations were significantly reduced by tetraethylammonium (10 mM), the combination of apamin (1 microM) and charybdotoxin (100 nM), and 25 mm potassium chloride (KCl). Higher KCl (60 mM) abolished relaxations to both ACh and H2O2. Polyethylene glycolated superoxide dismutase (100 U ml-1), the catalase inhibitor 3-amino-1,2,4-triazole (3-AT, 50 mM) and treatment with the copper chelator diethyldithiolcarbamate (3 mM) did not affect relaxations to ACh. 5. H2O2-induced relaxations were endothelium-independent and were not affected by ethylene diamine tetraacetic acid (EDTA 0.067 mM), 4-aminopyridine (1 mM), ouabain (100 microM) and barium (30 microM), 3-AT or Indo. 6. Although the data from this study show that H2O2 dilates vessels, they do not support the notion that H2O2 mediates endothelium-dependent relaxations to ACh in either aorta or SMA from mice.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Aorta, Thoracic/physiopathology
- Apamin/pharmacology
- Cardiovascular Agents/pharmacology
- Catalase/pharmacology
- Charybdotoxin/pharmacology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Hydrogen Peroxide/pharmacology
- Indomethacin/pharmacology
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Muscle Relaxation/drug effects
- Muscle Relaxation/physiology
- Muscle, Smooth, Vascular/drug effects
- NG-Nitroarginine Methyl Ester/pharmacology
- Potassium Channel Blockers/pharmacology
- Potassium Chloride/pharmacology
- Quinoxalines/pharmacology
- Tetraethylammonium/pharmacology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Anthie Ellis
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1
| | - Malarvannan Pannirselvam
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1
| | - Todd J Anderson
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1
- Division of Cardiology, Foothills Hospital, Calgary, AB, Canada
| | - Chris R Triggle
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
481
|
Oltman CL, Kane NL, Miller FJ, Spector AA, Weintraub NL, Dellsperger KC. Reactive oxygen species mediate arachidonic acid-induced dilation in porcine coronary microvessels. Am J Physiol Heart Circ Physiol 2003; 285:H2309-15. [PMID: 12869369 DOI: 10.1152/ajpheart.00456.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) have been proposed to mediate vasodilation in the microcirculation. We investigated the role of ROS in arachidonic acid (AA)-induced coronary microvascular dilation. Porcine epicardial coronary arterioles (110 +/- 4 microm diameter) were mounted onto pipettes in oxygenated Krebs buffer. Vessels were incubated with vehicle or 1 mM Tiron (a nonselective ROS scavenger), 250 U/ml polyethylene-glycolated (PEG)-superoxide dismutase (SOD; an O2- scavenger), 250 U/ml PEG-catalase (a H2O2 scavenger), or the cyclooxygenase (COX) inhibitors indomethacin (10 microM) or diclofenac (10 microM) for 30 min. After endothelin constriction (30-60% of resting diameter), cumulative concentrations of AA (10(-10)-10(-5)M) were added and internal diameters measured by video microscopy. AA (10-7 M) produced 37 +/- 6% dilation, which was eliminated by the administration of indomethacin (4 +/- 7%, P < 0.05) or diclofenac (-8 +/- 8%, P < 0.05), as well as by Tiron (-4 +/- 5%, P < 0.05), PEG-SOD (-10 +/- 6%, P < 0.05), or PEG-catalase (1 +/- 4%, P < 0.05). Incubation of small coronary arteries with [3H]AA resulted in the formation of prostaglandins, which was blocked by indomethacin. In separate studies in microvessels, AA induced concentration-dependent increases in fluorescence of the oxidant-sensitive probe dichlorodihydrofluorescein diacetate, which was inhibited by pretreatment with indomethacin or by SOD + catalase. We conclude that in porcine coronary microvessels, COX-derived ROS contribute to AA-induced vasodilation.
Collapse
Affiliation(s)
- Christine L Oltman
- Department of Internal Medicine and the Cardiovascular Research Center, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, 52246, USA.
| | | | | | | | | | | |
Collapse
|
482
|
Sato A, Sakuma I, Gutterman DD. Mechanism of dilation to reactive oxygen species in human coronary arterioles. Am J Physiol Heart Circ Physiol 2003; 285:H2345-54. [PMID: 14613909 DOI: 10.1152/ajpheart.00458.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested whether reactive oxygen species (ROS) generated from treatment with xanthine (XA) and xanthine oxidase (XO) alter vascular tone of human coronary arterioles (HCA). Fresh human coronary arterioles (HCA) from right atrial appendages were cannulated for video microscopy. ROS generated by XA (10–4 M) + XO (10 mU/ml) dilated HCA (99 ± 1%, 20 min after application of XA/XO). This dilation was not affected by denudation or superoxide dismutase (150 U/ml). Catalase (500 U/ml or 5,000 U/ml) attenuated the dilation early on, but a significant latent vasodilation appeared after 5 min peaking at 20 min (51 ± 1%, 20 min after application of XA/XO + 500 U/ml catalase, P < 0.01 vs. control). KCl (40 mM) reduced the early and sustained vasodilation to XA/XO in the absence of catalase but 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 × 10–5 M), diethyldithiocarbamate trihydrate (DDC, 10–2 M), and deferoxamine (DFX, 10–3 M) had no effect. In contrast, the catalase-resistant vasodilation was significantly attenuated by DDC, ODQ, and DFX as well as polyethylene-glycolated catalase (5,000 U/ml), but KCl had no effect. Confocal microscopy revealed that even in the presence of catalase, 2′,7′-dichlorodihydrofluoresein diacetate fluorescence was observed in the vascular smooth muscle, but this was abolished by DDC. These data indicate that the exogenously generated superoxide anion ([Formula: see text]) by XA/XO is spontaneously converted to H2O2, which dilates HCA through vascular smooth muscle hyperpolarization. [Formula: see text] is also converted to H2O2 likely by superoxide dismustase within vascular cells and dilates HCA through a different pathway involving the activation of guanylate cyclase. These findings suggest that exogenously and endogenously produced H2O2 may elicit vasodilation by different mechanisms.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Internal Medicine, Cardiovascular Center, and Veterans Affair Medical Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
483
|
Yang Q, Zhang RZ, Yim APC, He GW. Effect of 11,12-epoxyeicosatrienoic acid as an additive to St. Thomas' cardioplegia and University of Wisconsin solutions on endothelium-derived hyperpolarizing factor-mediated function in coronary microarteries: influence of temperature and time. Ann Thorac Surg 2003; 76:1623-1630. [PMID: 14602298 DOI: 10.1016/s0003-4975(03)00735-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND We examined the effect of 11,12-epoxyeicosatrienoic acid (EET(11,12)) added to St. Thomas' Hospital (ST) solution or University of Wisconsin (UW) solution on endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation under clinically relevant temperature and exposure time. METHODS Porcine coronary microarteries (200 to 450 microm) were incubated with Krebs' solution (control), ST with or without EET(11,12) (300 nmol/L) at 22 degrees C for 1 hour as well as at 4 degrees C for 1 or 4 hours, and UW with or without EET(11,12) at 4 degrees C for 4 hours. The EDHF-mediated relaxation was induced by bradykinin (-10 to approximately -6.5 log M) in the precontraction evoked by U(46619) (10 nmol/L) or U(46619) (1 nmol/L) plus endothelin-1 (6 nmol/L). RESULTS The EDHF-mediated relaxation was reduced after exposure to UW (79.7% +/- 4.6% versus 93.6% +/- 2.8%, p = 0.01) at 4 degrees C for 4 hours. One-hour exposure to ST under 22 degrees C or 4 degrees C decreased the relaxation (75.2% +/- 7.6% versus 96.7% +/- 1.6%, p < 0.05) or the sensitivity to bradykinin (-8.04 +/- 0.15 versus -8.50 +/- 0.20 log M, p < 0.05). The relaxation increased to 86.8% +/- 5.3% by addition of EET(11,12) to ST (1 hour at 22 degrees C, p < 0.05) but was unchanged when added to either ST or UW at 4 degrees C for 1 or 4 hours. CONCLUSIONS As an additive to ST solution, EET(11,12) may partially restore EDHF-mediated endothelial function under moderate hypothermia but had no significant effect under profound hypothermia when added to either ST or UW solution. Further investigation is necessary to improve the effect.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Division of Cardiothoracic Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
484
|
Inokuchi K, Hirooka Y, Shimokawa H, Sakai K, Kishi T, Ito K, Kimura Y, Takeshita A. Role of Endothelium-Derived Hyperpolarizing Factor in Human Forearm Circulation. Hypertension 2003; 42:919-24. [PMID: 14557280 DOI: 10.1161/01.hyp.0000097548.92665.16] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF) contributes to endothelium-dependent relaxation of isolated arteries, but it is not known whether this also occurs in the case of humans in vivo. The present study examined the role of EDHF in human forearm circulation. Forearm blood flow (FBF) was measured by strain-gauge plethysmography in 31 healthy, normal subjects (mean±SE age, 23±2 years; 24 men and 7 women). After oral administration of aspirin (486 mg), we infused
N
G
-monomethyl-
l
-arginine (8 μmol/min for 5 minutes) into the brachial artery. We used tetraethylammonium chloride (TEA, 1 mg/min for 20 minutes), a K
Ca
channel blocker, as an EDHF inhibitor, and nicorandil as a direct K
+
channel opener. TEA significantly reduced FBF (
P
<0.05) but did not change systemic arterial blood pressure. Furthermore, TEA significantly inhibited the FBF increase in response to substance P (0.8, 1.6, 3.2, and 6.4 ng/min, n=8) and bradykinin (12.5, 25, 50, and 100 ng/min, n=8; both
P
<0.001), whereas it did not affect the FBF increase in response to acetylcholine (4, 8, 16, and 32 μg/min, n=8), sodium nitroprusside (0.4, 0.8, 1.6, and 3.2 μg/min, n=8), or nicorandil (0.128, 0.256, 0.512, and 1.024 mg/min, n=8). These results suggest that EDHF contributes substantially to basal forearm vascular resistance, as well as to forearm vasodilatation evoked by substance P and bradykinin in humans in vivo.
Collapse
Affiliation(s)
- Kosuke Inokuchi
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
485
|
Tanaka M, Kanatsuka H, Ong BH, Tanikawa T, Uruno A, Komaru T, Koshida R, Shirato K. Cytochrome P-450 metabolites but not NO, PGI2, and H2O2 contribute to ACh-induced hyperpolarization of pressurized canine coronary microvessels. Am J Physiol Heart Circ Physiol 2003; 285:H1939-48. [PMID: 12881219 DOI: 10.1152/ajpheart.00190.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endothelium-dependent hyperpolarization of cells has a crucial role in regulating vascular tone, especially in microvessels. Nitric oxide (NO) and prostacyclin (PGI2), in addition to endothelium-derived hyperpolarizing factor (EDHF), have been reported to hyperpolarize vascular smooth muscle in several organs. Studies have reported the hyperpolarizing effects of these factors are increased by a stretch in large coronary arteries. EDHF has not yet been identified and cytochrome P-450 metabolites and H2O2 are candidates for EDHF. With the use of the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylbarbituric acid)trimethione oxonol [DiBAC4(3)], we examined whether NO, PGI2, cytochrome P-450 metabolites, and H2O2 contribute to ACh-induced hyperpolarization in pressurized coronary microvessels. Canine coronary arterial microvessels (60-356 mum internal diameter) were cannulated and pressurized at 60 cmH2O in a vessel chamber perfused with physiological salt solution containing DiBAC4(3). Fluorescence intensity and diameter were measured on a computer. There was a linear correlation between changes in the fluorescence intensity and membrane potential. ACh significantly decreased the fluorescence intensity (hyperpolarization) of the microvessels without any inhibitors. Endothelial damage caused by air perfusion abolished the ACh-induced decrease in fluorescence intensity. The inhibitors of NO synthase and cyclooxygenase did not affect the ACh-induced decreases in the fluorescence intensity. The addition of 17-octadecynoic acid, a cytochrome P-450 monooxygenase inhibitor, to those inhibitors significantly attenuated the ACh-induced decreases in fluorescence intensity, whereas catalase, an enzyme that dismutates H2O2 to form water and oxygen, did not. Furthermore, catalase did not affect the vasodilation produced by ACh. These results indicate that NO and PGI2 do not contribute to the ACh-induced hyperpolarization and that the cytochrome P-450 metabolites but not H2O2 are involved in EDHF-mediated hyperpolarization in canine coronary arterial microvessels.
Collapse
Affiliation(s)
- Mitsuaki Tanaka
- Department of Comprehensive Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | |
Collapse
|
486
|
Abstract
Accumulating evidence indicates that reactive oxygen species (ROS) play major roles in the initiation and progression of cardiovascular dysfunction associated with diseases such as hyperlipidemia, diabetes mellitus, hypertension, ischemic heart disease, and chronic heart failure. ROS produced by migrating inflammatory cells as well as vascular cells (endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts) have distinct functional effects on each cell type. These include cell growth, apoptosis, migration, inflammatory gene expression, and matrix regulation. ROS, by regulating vascular cell function, can play a central role in normal vascular physiology, and can contribute substantially to the development of vascular disease.
Collapse
Affiliation(s)
- Yoshihiro Taniyama
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Ga 30322, USA
| | | |
Collapse
|
487
|
Vidrio H. Semicarbazide-sensitive amine oxidase: role in the vasculature and vasodilation after in situ inhibition. ACTA ACUST UNITED AC 2003; 23:275-83. [PMID: 15255812 DOI: 10.1111/j.1474-8673.2004.00296.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The characteristics of semicarbazide-sensitive amine oxidase (SSAO) are reviewed and the unknown physiological or pathological role of this enzyme emphasized. 2. The various mechanisms of action proposed for the vasodilator drug hydralazine are considered. In particular, the inhibitory action on various enzymes, related or not to cardiovascular function, are discussed. 3. Studies linking inhibition of SSAO to hydralazine hypotension are reviewed and a general hypothesis relating both actions is presented. The hypothesis postulates that (a). vascular SSAO is involved in the regulation of vascular tone, and (b). hydralazine vasodilation is the consequence of vascular SSAO inhibition. 4. Evidence supporting these postulates is presented and vascular SSAO inhibition is proposed as a novel mechanism of vasodilation.
Collapse
Affiliation(s)
- H Vidrio
- Department of Pharmacology, School of Medicine, Universidad Nacional Autonoma de México, Apartado Postal 70297, 04510 México, D F, México
| |
Collapse
|
488
|
Gauthier KM, Jagadeesh SG, Falck JR, Campbell WB. 14,15-epoxyeicosa-5(Z)-enoic-mSI: a 14,15- and 5,6-EET antagonist in bovine coronary arteries. Hypertension 2003; 42:555-61. [PMID: 12953017 DOI: 10.1161/01.hyp.0000091265.94045.c7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelium-dependent hyperpolarizations and relaxation of vascular smooth muscle induced by acetylcholine and bradykinin are mediated by endothelium-derived hyperpolarizing factors (EDHFs). In bovine coronary arteries, arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs), function as EDHFs. The 14,15-EET analog 14,15-epoxyeicosa-5(Z)-enoic-methylsulfonylimide (14,15-EEZE-mSI) was synthesized and tested for agonist and antagonist activity. In U46619-preconstricted bovine coronary arterial rings, 14,15-, 11,12-, 8,9-, and 5,6-EET induced maximal concentration-related relaxation averaging 75% to 87% at 10 micromol/L, whereas, 14,15-EEZE-mSI induced maximal relaxation averaging only 7%. 14,15-EEZE-mSI (10 micromol/L) preincubation inhibited relaxation to 14,15- and 5,6- EET but not 11,12- or 8,9- EET. 14,15-EEZE-mSI also inhibited indomethacin-resistant relaxation to arachidonic acid and indomethacin-resistant and l-nitroarginine-resistant relaxation to bradykinin and methacholine. It did not alter the relaxation to sodium nitroprusside, iloprost, or the K+ channel openers bimakalim or NS1619. In cell-attached patches of isolated bovine coronary arterial smooth muscle cells, 14,15-EEZE-mSI (100 nmol/L) blocked the 14,15-EET-induced (100 nmol/L) activation of large-conductance, calcium-activated K+ channels. Mass spectrometric analysis of rat renal cortical microsomes incubated with arachidonic acid showed that 14,15-EEZE-mSI (10 micromol/L) increased EET concentrations while decreasing the concentrations of the corresponding dihydroxyeicosatrienoic acids. Therefore, 14,15-EEZE-mSI inhibits relaxation to 5,6- and 14,15- EET and the K+ channel activation by 14,15-EET. It also inhibits the EDHF component of bradykinin-induced, methacholine-induced, and arachidonic acid-induced relaxation. These results suggest that 14,15- or 5,6 -EET act as an EDHF in bovine coronary arteries.
Collapse
Affiliation(s)
- Kathryn M Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
489
|
Martinez-León JB, Segarra G, Medina P, Vila JM, Lluch P, Peiró M, Otero E, Lluch S. Ca2+-activated K+ channels mediate relaxation of forearm veins in chronic renal failure. J Hypertens 2003; 21:1927-34. [PMID: 14508200 DOI: 10.1097/00004872-200310000-00021] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND In arteries, agonists such as acetylcholine release an endothelium-derived hyperpolarizing factor (EDHF) that is neither nitric oxide nor prostacyclin. OBJECTIVES To examine the responses to acetylcholine in segments of forearm veins from patients with chronic renal failure who either had never received dialysis or had undergone long-term dialysis, and to determine the contribution of nitric oxide and EDHF to endothelium-dependent relaxation in veins from patients with chronic renal failure. METHODS Isometric tension was recorded in rings of forearm vein from 34 non-dialysed patients, 27 dialysed patients and 14 multiorgan donors (controls). RESULTS Relaxation in response to acetylcholine was reduced in veins of non-dialysed and dialysed patients. The inhibitors of nitric oxide synthase NG-monomethyl-l-arginine (l-NMMA) and NG,NG-dimethyl-l-arginine (ADMA) reduced by 50% the maximum relaxation in response to acetylcholine in veins from controls and non-dialysed patients; the remaining relaxation was inhibited by 20 mmol/l KCl or by the K+ channel blockers tetraethylammonium chloride, iberiotoxin, charybdotoxin and the combination of barium plus ouabain, but not by apamin or glibenclamide. Relaxation in veins from dialysed patients was inhibited by K+ channel blockade but not by l-NMMA or ADMA. CONCLUSIONS The results demonstrate that the endothelium-dependent relaxation in forearm veins from controls and non-dialysed patients is mediated by release of nitric oxide and EDHF. In contrast, the relaxation in veins from dialysed patients is mediated mainly by EDHF. EDHF-induced relaxation involves activation of large-conductance Ca2+-activated K+ channels.
Collapse
Affiliation(s)
- Juan B Martinez-León
- Department of Surgery, Research Unit, Hospital Clínico Universitario, University of Valencia, School of Medicine, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
490
|
Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD. Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res 2003; 93:573-80. [PMID: 12919951 DOI: 10.1161/01.res.0000091261.19387.ae] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We previously showed that hydrogen peroxide (H2O2) contributes to flow-induced dilation in human coronary resistance arteries (HCRAs); however, the source of this H2O2 is not known. We hypothesized that the H2O2 is derived from superoxide (O2*-) generated by mitochondrial respiration. HCRAs were dissected from right atrial appendages obtained from patients during cardiac surgery and cannulated with micropipettes. H2O2-derived radicals and O2*- were detected by electron spin resonance (ESR) using BMPO as the spin trap and by histofluorescence using hydroethidine (HE, 5 micromol/L) and dichlorodihydrofluorescein (DCFH, 5 micromol/L). Diameter changes to increases in pressure gradients (20 and 100 cm H2O) were examined in the absence and the presence of rotenone (1 micromol/L), myxothiazol (100 nmol/L), cyanide (1 micromol/L), mitochondrial complex I, III, and IV inhibitors, respectively, and apocynin (3 mmol/L), a NADPH oxidase inhibitor. At a pressure gradient of 100 cm H2O, ubisemiquinone and hydroxyl radicals were detected from effluents of vessels. Including superoxide dismutase and catalase in the perfusate reduced the ESR signals. Relative ethidium and DCFH fluorescence intensities in HCRAs exposed to flow were enhanced (1.45+/-0.15 and 1.57+/-0.12, respectively compared with no-flow) and were inhibited by rotenone (0.87+/-0.17 and 0.95+/-0.07). Videomicroscopic studies showed that rotenone and myxothiazol blocked flow-induced dilation (% max. dilation at 100 cm H2O: rotenone, 74+/-3% versus 3+/-13%; myxothiazol, 67+/-3% versus 28+/-4%; P<0.05). Neither cyanide nor apocynin altered flow-induced dilation. These results suggest that shear stress induced H2O2 formation, and flow-induced dilation is derived from O2*- originating from mitochondrial respiration.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Internal Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, Wis 53226, USA.
| | | | | | | | | | | |
Collapse
|
491
|
Matz RL, Andriantsitohaina R. Age-related endothelial dysfunction : potential implications for pharmacotherapy. Drugs Aging 2003; 20:527-50. [PMID: 12749750 DOI: 10.2165/00002512-200320070-00005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging per se is associated with abnormalities of the vascular wall linked to both structural and functional changes that can take place at the level of the extracellular matrix, the vascular smooth muscle and the endothelium of blood vessels. Endothelial dysfunction is generally defined as a decrease in the capacity of the endothelium to dilate blood vessels in response to physical and chemical stimuli. It is one of the characteristic changes that occur with age, independently of other known cardiovascular risk factors. This may account in part for the increased incidence of cardiovascular events in elderly people that can be reversed by restoring endothelial function. A better understanding of the mechanisms involved and the aetiopathogenesis of this process will help in the search for new therapeutic agents.Age-dependent alteration of endothelium-dependent relaxation seems to be a widespread phenomenon both in conductance and resistance arteries from several species. In the course of aging, there is an alteration in the equilibrium between relaxing and contracting factors released by the endothelium. Hence, there is a progressive reduction in the participation of nitric oxide and endothelium-derived hyperpolarising factor associated with increased participation of oxygen-derived free radicals and cyclo-oxygenase-derived prostanoids. Also, the endothelin-1 and angiotensin II pathways may play a role in age-related endothelial dysfunction. The use of drugs acting at different levels of these signalling cascades, including antioxidant therapy, lipid-lowering drugs and estrogens, seems to be promising.
Collapse
Affiliation(s)
- Rachel L Matz
- Biochemisches Institut, Fachbereich Humanmedizin, Justus Liebig Universität, Giessen, Germany
| | | |
Collapse
|
492
|
Zhou MS, Raij L. Cross-talk between nitric oxide and endothelium-derived hyperpolarizing factor: synergistic interaction? J Hypertens 2003; 21:1449-51. [PMID: 12872034 DOI: 10.1097/00004872-200308000-00004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
493
|
Freitas MR, Schott C, Corriu C, Sassard J, Stoclet JC, Andriantsitohaina R. Heterogeneity of endothelium-dependent vasorelaxation in conductance and resistance arteries from Lyon normotensive and hypertensive rats. J Hypertens 2003; 21:1505-12. [PMID: 12872044 DOI: 10.1097/00004872-200308000-00014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The nature of endothelial factors in response to acetylcholine (ACh) was investigated in conductance and resistance arteries from Lyon normotensive (LN) and Lyon hypertensive (LH) rats. Differences in endothelial function between the two strains were evaluated. METHODS AND DESIGN Relaxations to ACh were studied in the aorta and small mesenteric arteries (SMA). The relative contribution of nitric oxide (NO), prostanoids and endothelial-derived hyperpolarizing factor (EDHF) was assessed using appropriate inhibitors. Western blot of endothelial NO synthase was achieved. The membrane potential of smooth muscle cells was assessed using microelectrodes. RESULTS In LN rats, endothelium-dependent relaxation to ACh involved exclusively NO in the aorta, whereas both NO and EDHF were implicated in SMA. In the latter, relaxation was almost entirely prevented by blockade of either the NO or EDHF pathway, although ACh was still able to produce hyperpolarization in the presence of NO synthase and cyclooxygenase inhibitors. In LH rats, relaxation to ACh was unchanged in SMA but moderately depressed in the aorta, despite unchanged endothelial NO synthase protein expression and sensitivity to NO. In addition, indomethacin, but not a selective cyclooxygenase-2 inhibitor, significantly reduced ACh relaxations in the aorta from LH rats but not from LN rats. CONCLUSIONS These results document differential endothelial function in a conductance and in resistance arteries from LN rats and LH rats. They show that simultaneous participation of NO and EDHF is required to promote relaxation in SMA from both strains, whereas NO alone accounts for relaxation in aorta from LN rats. In LH rats, aortic relaxation induced by ACh is slightly decreased despite the involvement of vasodilator products from cyclooxygenase-1.
Collapse
Affiliation(s)
- Maria Regina Freitas
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, Université Louis Pasteur de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | | | | | | | | | | |
Collapse
|
494
|
Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT. Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ Res 2003; 93:124-31. [PMID: 12805243 DOI: 10.1161/01.res.0000081980.63146.69] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endothelium is a critical regulator of vascular tone, and dysfunction of the endothelium contributes to numerous cardiovascular pathologies. Recent studies suggest that apamin-sensitive, small-conductance, Ca2+-activated K+ channels may play an important role in active endothelium-dependent vasodilations, and expression of these channels may be altered in disease states characterized by vascular dysfunction. Here, we used a transgenic mouse (SK3T/T) in which SK3 expression levels can be manipulated with dietary doxycycline (DOX) to test the hypothesis that the level of expression of the SK subunit, SK3, in endothelial cells alters arterial function and blood pressure. SK3 protein was elevated in small mesenteric arteries from SK3T/T mice compared with wild-type mice and was greatly suppressed by dietary DOX. SK3 was detected in the endothelium and not in the smooth muscle by immunohistochemistry. In whole-cell patch-clamp experiments, SK currents in endothelial cells from SK3T/T mice were almost completely suppressed by dietary DOX. In intact arteries, SK3 channels contributed to sustained hyperpolarization of the endothelial membrane potential, which was communicated to the arterial smooth muscle. Pressure- and phenylephrine-induced constrictions of SK3T/T arteries were substantially enhanced by treatment with apamin, suppression of SK3 expression with DOX, or removal of the endothelium. In addition, suppression of SK3 expression caused a pronounced and reversible elevation of blood pressure. These results indicate that endothelial SK3 channels exert a profound, tonic, hyperpolarizing influence in resistance arteries and suggest that the level of SK3 channel expression in endothelial cells is a fundamental determinant of vascular tone and blood pressure.
Collapse
Affiliation(s)
- Mark S Taylor
- Department of Pharmacology, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|
495
|
Pi J, Horiguchi S, Sun Y, Nikaido M, Shimojo N, Hayashi T, Yamauchi H, Itoh K, Yamamoto M, Sun G, Waalkes MP, Kumagai Y. A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate in rabbits. Free Radic Biol Med 2003; 35:102-13. [PMID: 12826260 DOI: 10.1016/s0891-5849(03)00269-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have recently found evidence for impairment of nitric oxide (NO) formation and induction of oxidative stress in residents of an endemic area of chronic arsenic poisoning in Inner Mongolia, China. To investigate the underlying mechanisms responsible for these phenomena, a subchronic animal experiment was conducted using male New Zealand White rabbits. After 18 weeks of continuous exposure of rabbits to 5 mg/l of arsenate in drinking water, a significant decrease in systemic NO production occurred, as shown by significantly reduced plasma NO metabolites levels (76% of control) and a tendency towards decreased serum cGMP levels (81.4% of control). On the other hand, increased oxidative stress, as shown by significantly increased urinary hydrogen peroxide (H(2)O(2)) (120% of control), was observed in arsenate-exposed rabbits. In additional experiments measuring aortic tension, the addition of either the calcium ionophore A23187 or acethylcholine (ACh) induced a transient vasoconstriction of aortic rings prepared from arsenate-exposed rabbits, but not in those prepared from control animals. This calcium-dependent contractility action observed in aorta rings from arsenate-exposed rabbits was markedly attenuated by the superoxide (O2(.-)) scavenging enzyme Cu, Zn-SOD, as well as diphenyleneiodonium (DPI) or N(G)-nitro-L-arginine methyl ester (L-NAME), which are inhibitors for nitric oxide synthase (NOS). However, the cyclooxygenase inhibitor indomethacin or the xanthine oxidase blocker allopurinol had no effect on this vasoconstriction. These results suggest that arsenate-mediated reduction of systemic NO may be associated with the enzymatic uncoupling reaction of NOS with a subsequent enhancement of reactive oxygen species such as O2(.-), an endothelium-derived vasoconstricting factor. Furthermore, hepatic levels of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH(4)), a cofactor for NOS, were markedly reduced in arsenate-exposed rabbits to 62% of control, while no significant change occurred in cardiac L-arginine levels. These results suggest that prolonged exposure of rabbits to oral arsenate may impair the bioavailability of BH(4) in endothelial cells and, as a consequence, disrupt the balance between NO and O2(.-) produced from endothelial NOS, such that enhanced free radicals are produced at the expense of NO.
Collapse
Affiliation(s)
- Jingbo Pi
- Graduate School Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
496
|
Abstract
We have recently reported that exaggerated oxidative stress in the renal medulla due to superoxide dismutase inhibition resulted in a reduction of renal medullary blood flow and sustained hypertension. The present study tested the hypothesis that selective scavenging of O2*- in the renal medulla would prevent hypertension associated with this exaggerated oxidative stress. An indwelling, aortic catheter was implanted in nonnephrectomized Sprague-Dawley rats for daily measurement of arterial blood pressure, and a renal medullary interstitial catheter was implanted for continuous delivery of the superoxide dismutase inhibitor diethyldithiocarbamic acid (DETC, 7.5 mg x kg(-1) x d(-1)) and a chemical superoxide dismutase mimetic, 4-hydroxytetramethyl piperidine-1-oxyl (TEMPOL, 10 mg. kg-1. d-1). Renal medullary interstitial infusion of TEMPOL completely blocked DETC-induced accumulation of O2*- in the renal medulla, as measured by the conversion rate of dihydroethidium to ethidium in the dialysate and by urinary excretion of 8-isoprostanes. However, TEMPOL infusion failed to prevent DETC-induced hypertension, unless catalase (5 mg x kg(-1) d(-1)) was coinfused. Direct infusion of H2O2 into the renal medulla resulted in increases of mean arterial pressure from 115+/-2.5 to 131+/-2.1 mm Hg, which was similar to that observed in rats receiving the medullary infusion of both TEMPOL and DETC. The results indicate that sufficient catalase activity in the renal medulla is a prerequisite for the antihypertensive action of TEMPOL and that accumulated H2O2 in the renal medulla associated with exaggerated oxidative stress might have a hypertensive consequence.
Collapse
Affiliation(s)
- Ayako Makino
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
497
|
Mukai Y, Shimokawa H, Matoba T, Hiroki J, Kunihiro I, Fujiki T, Takeshita A. Acute vasodilator effects of HMG-CoA reductase inhibitors: involvement of PI3-kinase/Akt pathway and Kv channels. J Cardiovasc Pharmacol 2003; 42:118-24. [PMID: 12827036 DOI: 10.1097/00005344-200307000-00018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase inhibitors (statins) have several non-lipid-lowering actions; however, characteristics of their acute vasodilator effects remain to be elucidated. In this study, acute vasodilator effects of statins were examined in isolated rat blood vessels. After incubation with cerivastatin (1 microM) for 2 hours, acetylcholine-induced endothelium-dependent relaxations were enhanced in the rat aorta. This effect was abolished by a nitric oxide synthase (NOS) inhibitor, L-NNA, and by a PI3 kinase inhibitor, LY294002. Western blot analysis showed that the extent of phosphorylation of Akt, an active form of Akt, was increased by cerivastatin while it was reduced by LY294002, suggesting an involvement of PI3 kinase/Akt-dependent activation of endothelial NOS. At higher concentrations (1-300 microM), both cerivastatin and fluvastatin, but not pravastatin, directly relaxed the blood vessels, regardless of the presence or absence of the endothelium. These relaxations were abolished by KCl and were significantly inhibited by an inhibitor of Kv channel, 4-aminopyridine. These results indicate that multiple mechanisms are involved in the acute vasodilator effects of statins, including augmentation of nitric oxide-mediated endothelium-dependent relaxations through the PI3 kinase/Akt pathway and endothelium-independent relaxations via Kv channel-mediated smooth muscle hyperpolarizations. These acute vasodilator effects of statins may account, at least in part, for their beneficial effects on cardiovascular diseases associated with impaired organ blood flow.
Collapse
Affiliation(s)
- Yasushi Mukai
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
498
|
Matoba T, Shimokawa H, Morikawa K, Kubota H, Kunihiro I, Urakami-Harasawa L, Mukai Y, Hirakawa Y, Akaike T, Takeshita A. Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler Thromb Vasc Biol 2003; 23:1224-30. [PMID: 12763764 DOI: 10.1161/01.atv.0000078601.79536.6c] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelium-derived hyperpolarizing factor (EDHF) plays an important role in modulating vascular tone, especially in microvessels, although its nature has yet to be elucidated. This study was designed to examine whether hydrogen peroxide (H2O2) is an EDHF in porcine coronary microvessels with use of an electron spin resonance (ESR) method to directly detect H2O2 production from the endothelium. METHODS AND RESULTS Isometric tension and membrane-potential recordings demonstrated that bradykinin and substance P caused EDHF-mediated relaxations and hyperpolarizations of porcine coronary microvessels in the presence of indomethacin and Nomega-nitro-L-arginine. The contribution of H2O2 to the EDHF-mediated responses was demonstrated by the inhibitory effect of catalase and by the relaxing and hyperpolarizing effects of exogenous H2O2. Endothelial production of H2O2 was quantified in bradykinin- or substance P-stimulated intact blood vessels by ESR spectroscopy. Tiron, a superoxide scavenger that facilitates H2O2 formation, enhanced bradykinin-induced production of H2O2, as well as the EDHF-mediated relaxations and hyperpolarizations. By contrast, cytochrome P-450 inhibitors (sulfaphenazole or 17-octadecynoic acid) or a gap junction inhibitor (18alpha-glycyrrhetinic acid) failed to inhibit the EDHF-mediated relaxations. Involvement of endothelium-derived K+ was not evident in experiments with ouabain plus Ba2+ or exogenous K+. CONCLUSIONS These results provide ESR evidence that H2O2 is an EDHF in porcine coronary microvessels.
Collapse
Affiliation(s)
- Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Abe M, Sata M, Nishimatsu H, Nagata D, Suzuki E, Terauchi Y, Kadowaki T, Minamino N, Kangawa K, Matsuo H, Hirata Y, Nagai R. Adrenomedullin augments collateral development in response to acute ischemia. Biochem Biophys Res Commun 2003; 306:10-5. [PMID: 12788059 DOI: 10.1016/s0006-291x(03)00903-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expression of adrenomedullin, discovered as a vasodilatory peptide, is markedly up-regulated under pathological conditions such as tissue ischemia and inflammation, which are associated with neovascularization. Here, we tested the hypothesis that overly expressed adrenomedullin may augment collateral flow to ischemic tissues. We induced hindlimb ischemia in wild-type mice and injected a naked plasmid expressing human adrenomedullin or an empty vector into the ischemic muscle, followed by in vivo electroporation. Adrenomedullin markedly enhanced blood flow recovery as determined by Laser Doppler imaging. The mice treated with an empty vector suffered frequent autoamputation of the ischemic toe, which was completely prevented by adrenomedullin. Anti-CD31 immunostaining revealed that adrenomedullin significantly increased capillary density. The angiogenic effect of adrenomedullin was abrogated in endothelial nitric oxide synthase (eNOS)-deficient mice. These results indicate that adrenomedullin may promote collateral growth in response to ischemia through activation of eNOS.
Collapse
Affiliation(s)
- Minami Abe
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
500
|
Zhang Y, Tazzeo T, Hirota S, Janssen LJ. Vasodilatory and electrophysiological actions of 8-iso-prostaglandin E2 in porcine coronary artery. J Pharmacol Exp Ther 2003; 305:1054-60. [PMID: 12626646 DOI: 10.1124/jpet.103.049353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effects of several E-ring and F-ring isoprostanes on mechanical and electrophysiological activity in porcine coronary artery. Several isoprostanes evoked concentration-dependent contractions, with 8-iso-PGE2 being the most potent (-log EC50 of 6.9 +/- 0.1); this excitatory effect has been described in detail elsewhere and was not examined further here. 8-iso-PGE2 evoked dose-dependent relaxations in tissues preconstricted with the thromboxane A2-agonist U46619 (10(-6) M), with a negative log EC50 of 6.0 +/- 0.1 (n = 5). 8-iso-PGE1 and 8-iso-PGF2 beta also evoked relaxations (albeit with lower potency), whereas the other F-ring isoprostanes (8-iso-PGF1 alpha, 8-iso-PGF1 beta, and 8-iso-PGF2 alpha) were largely ineffective in this respect. The potency and efficacy of 8-iso-PGE2 in reversing tone were not dependent upon the concentration of U46619 used to preconstrict the tissues (10(-8) to 10(-6) M), indicating a lack of U46619-induced functional antagonism of these responses. 8-iso-PGE2 was able to completely relax tissues that had been denuded of endothelium (as indicated by loss of responsiveness to bradykinin). 8-iso-PGE2-evoked relaxations were markedly reduced by elevating the K+ equilibrium potential using 30 mM KCl and abolished by 60 mM KCl; they were also sensitive to charybdotoxin (10(-7) M) but not to 4-aminopyridine (1 mM). 8-iso-PGE2 also caused membrane hyperpolarization and augmentation of outward K+ current. We conclude that 8-iso-prostaglandin E2 acts directly on the smooth muscle to increase K+ conductance, leading to membrane hyperpolarization and vasodilation.
Collapse
Affiliation(s)
- Y Zhang
- Firestone Institute for Respiratory Health, Father Sean O'Sullivan Research Centre, and Department of Medicine, McMaster University, St. Joseph's Healthcare, Hamilton, Ontario, L8N 4A6, Canada
| | | | | | | |
Collapse
|