451
|
Huang Y, Wang Q, Du Y, Bai L, Jin F, Zhang J, Fan S, Wang H, Song L, Gao Y, Wang X, Tang J. Inhibition of annexin A7 gene and protein induces the apotosis and decreases the invasion, migration of the hepatocarcinoma cell line. Biomed Pharmacother 2014; 68:819-24. [PMID: 25070395 DOI: 10.1016/j.biopha.2014.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/02/2014] [Indexed: 01/11/2023] Open
Abstract
Our previous studies have shown that annexin A7 (ANXA7) gives different expressions in the mouse hepatocarcinoma cell lines with low or high lymphatic metastatic potential in both gene and protein levels. In this study, whether by using RNA interference (RNAi) technique downregulating ANXA7 in the gene level or by using antibody against ANXA7 in the protein level, the depressed expression of ANXA7 could induce apotosis and decrease the invasion, migration capacities of the Hca-P cell, a hepatocarcinoma cell line with low lymphatic metastatic potential in vitro. The results indicate that ANXA7 is an important factor in tumors with the lymphatic metastasis.
Collapse
Affiliation(s)
- Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China.
| | - Qing Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China
| | - Yue Du
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China
| | - Lulu Bai
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China
| | - Fen Jin
- Dalian Maternity Hospital, Dalian, Liaoning Province, PR China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China
| | - Huaxin Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China
| | - Lin Song
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China
| | - Yue Gao
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China
| | - Xianyan Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis of Liaoning Province, Dalian, Liaoning Province, PR China.
| |
Collapse
|
452
|
van Geemen D, Smeets MWJ, van Stalborch AMD, Woerdeman LAE, Daemen MJAP, Hordijk PL, Huveneers S. F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries and veins. Arterioscler Thromb Vasc Biol 2014; 34:2059-67. [PMID: 25012130 DOI: 10.1161/atvbaha.114.304180] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Vascular endothelial-cadherin- and integrin-based cell adhesions are crucial for endothelial barrier function. Formation and disassembly of these adhesions controls endothelial remodeling during vascular repair, angiogenesis, and inflammation. In vitro studies indicate that vascular cytokines control adhesion through regulation of the actin cytoskeleton, but it remains unknown whether such regulation occurs in human vessels. We aimed to investigate regulation of the actin cytoskeleton and cell adhesions within the endothelium of human arteries and veins. APPROACH AND RESULTS We used an ex vivo protocol for immunofluorescence in human vessels, allowing detailed en face microscopy of endothelial monolayers. We compared arteries and veins of the umbilical cord and mesenteric, epigastric, and breast tissues and find that the presence of central F-actin fibers distinguishes the endothelial phenotype of adult arteries from veins. F-actin in endothelium of adult veins as well as in umbilical vasculature predominantly localizes cortically at the cell boundaries. By contrast, prominent endothelial F-actin fibers in adult arteries anchor mostly to focal adhesions containing integrin-binding proteins paxillin and focal adhesion kinase and follow the orientation of the extracellular matrix protein fibronectin. Other arterial F-actin fibers end in vascular endothelial-cadherin-based endothelial focal adherens junctions. In vitro adhesion experiments on compliant substrates demonstrate that formation of focal adhesions is strongly induced by extracellular matrix rigidity, irrespective of arterial or venous origin of endothelial cells. CONCLUSIONS Our data show that F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries from veins. We conclude that the biomechanical properties of the vascular extracellular matrix determine this endothelial characteristic.
Collapse
Affiliation(s)
- Daphne van Geemen
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Michel W J Smeets
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Anne-Marieke D van Stalborch
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Leonie A E Woerdeman
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Mat J A P Daemen
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Peter L Hordijk
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Stephan Huveneers
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.).
| |
Collapse
|
453
|
Oakes PW, Gardel ML. Stressing the limits of focal adhesion mechanosensitivity. Curr Opin Cell Biol 2014; 30:68-73. [PMID: 24998185 DOI: 10.1016/j.ceb.2014.06.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 01/09/2023]
Abstract
Focal adhesion assembly and maturation often occurs concomitantly with changes in force generated within the cytoskeleton or extracellular matrix. To coordinate focal adhesion dynamics with force, it has been suggested that focal adhesion dynamics are mechanosensitive. This review discusses current understanding of the regulation of focal adhesion assembly and force transmission, and the limits to which we can consider focal adhesion plaques as mechanosensitive entities.
Collapse
Affiliation(s)
- Patrick W Oakes
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Margaret L Gardel
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
454
|
Sreenivasappa H, Chaki SP, Lim SM, Trzeciakowski JP, Davidson MW, Rivera GM, Trache A. Selective regulation of cytoskeletal tension and cell–matrix adhesion by RhoA and Src. Integr Biol (Camb) 2014; 6:743-54. [DOI: 10.1039/c4ib00019f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
455
|
Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials 2014; 35:5749-59. [DOI: 10.1016/j.biomaterials.2014.03.058] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022]
|
456
|
The serine/threonine kinase Ndr2 controls integrin trafficking and integrin-dependent neurite growth. J Neurosci 2014; 34:5342-54. [PMID: 24719112 DOI: 10.1523/jneurosci.2728-13.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Integrins have been implicated in various processes of nervous system development, including proliferation, migration, and differentiation of neuronal cells. In this study, we show that the serine/threonine kinase Ndr2 controls integrin-dependent dendritic and axonal growth in mouse hippocampal neurons. We further demonstrate that Ndr2 is able to induce phosphorylation at the activity- and trafficking-relevant site Thr(788/789) of β1-integrin to stimulate the PKC- and CaMKII-dependent activation of β1-integrins, as well as their exocytosis. Accordingly, Ndr2 associates with integrin-positive early and recycling endosomes in primary hippocampal neurons and the surface expression of activated β1-integrins is reduced on dendrites of Ndr2-deficient neurons. The role of Ndr2 in dendritic differentiation is also evident in vivo, because Ndr2-null mutant mice show arbor-specific alterations of dendritic complexity in the hippocampus. This indicates a role of Ndr2 in the fine regulation of dendritic growth; in fact, treatment of primary neurons with Semaphorin 3A rescues Ndr2 knock-down-induced dendritic growth deficits but fails to enhance growth beyond control level. Correspondingly, Ndr2-null mutant mice show a Semaphorin 3A(-/-)-like phenotype of premature dendritic branching in the hippocampus. The results of this study show that Ndr2-mediated integrin trafficking and activation are crucial for neurite growth and guidance signals during neuronal development.
Collapse
|
457
|
Yoo TH, Pedigo CE, Guzman J, Correa-Medina M, Wei C, Villarreal R, Mitrofanova A, Leclercq F, Faul C, Li J, Kretzler M, Nelson RG, Lehto M, Forsblom C, Groop PH, Reiser J, Burke GW, Fornoni A, Merscher S. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol 2014; 26:133-47. [PMID: 24925721 DOI: 10.1681/asn.2013111213] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of ESRD in the United States. Podocyte injury is an important feature of DKD that is likely to be caused by circulating factors other than glucose. Soluble urokinase plasminogen activator receptor (suPAR) is a circulating factor found to be elevated in the serum of patients with FSGS and causes podocyte αVβ3 integrin-dependent migration in vitro. Furthermore, αVβ3 integrin activation occurs in association with decreased podocyte-specific expression of acid sphingomyelinase-like phosphodiesterase 3b (SMPDL3b) in kidney biopsy specimens from patients with FSGS. However, whether suPAR-dependent αVβ3 integrin activation occurs in diseases other than FSGS and whether there is a direct link between circulating suPAR levels and SMPDL3b expression in podocytes remain to be established. Our data indicate that serum suPAR levels are also elevated in patients with DKD. However, unlike in FSGS, SMPDL3b expression was increased in glomeruli from patients with DKD and DKD sera-treated human podocytes, where it prevented αVβ3 integrin activation by its interaction with suPAR and led to increased RhoA activity, rendering podocytes more susceptible to apoptosis. In vivo, inhibition of acid sphingomyelinase reduced proteinuria in experimental DKD but not FSGS, indicating that SMPDL3b expression levels determined the podocyte injury phenotype. These observations suggest that SMPDL3b may be an important modulator of podocyte function by shifting suPAR-mediated podocyte injury from a migratory phenotype to an apoptotic phenotype and that it represents a novel therapeutic glomerular disease target.
Collapse
Affiliation(s)
- Tae-Hyun Yoo
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and Department of Internal Medicine, Division of Nephrology, Yonsei University College of Medicine, Seoul, Korea
| | - Christopher E Pedigo
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Johanna Guzman
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mayrin Correa-Medina
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Changli Wei
- Department of Internal Medicine, Division of Nephrology, Rush University, Chicago, Illinois
| | - Rodrigo Villarreal
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Alla Mitrofanova
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Farah Leclercq
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Christian Faul
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and
| | - Jing Li
- Department of Internal Medicine, Division of Nephrology, Rush University, Chicago, Illinois
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Robert G Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, Diabetes Epidemiology and Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, Arizona
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland; and
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland; and
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; Diabetes and Obesity Research Program, Research Program's Unit, University of Helsinki, Helsinki, Finland; and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jochen Reiser
- Department of Internal Medicine, Division of Nephrology, Rush University, Chicago, Illinois
| | - George William Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida;
| | - Sandra Merscher
- Department of Medicine, Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida;
| |
Collapse
|
458
|
Inhibitory role of polyunsaturated fatty acids on lysophosphatidic acid-induced cancer cell migration and adhesion. FEBS Lett 2014; 588:2971-7. [PMID: 24911199 DOI: 10.1016/j.febslet.2014.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/23/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have important pharmacological effects on mammalian cells. Here, we show that carboxyl group-containing PUFAs inhibit lysophosphatidic acid (LPA)-induced focal adhesion formation, thereby inhibiting migration and adhesion. Carboxyl group-containing PUFAs inhibit LPA-induced calcium mobilization, whereas ethyl ester-group containing PUFAs have no effect. In addition, carboxyl group-containing PUFAs functionally inhibit LPA-dependent RhoA activation. Given these results, we suggest that PUFAs may inhibit LPA-induced calcium/RhoA signaling pathways leading to focal adhesion formation. Carboxyl group-containing PUFAs may have a functional role in this regulatory mechanism.
Collapse
|
459
|
Jang KW, Ding L, Seol D, Lim TH, Buckwalter JA, Martin JA. Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1177-86. [PMID: 24612644 PMCID: PMC4034572 DOI: 10.1016/j.ultrasmedbio.2013.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 10/21/2013] [Accepted: 12/09/2013] [Indexed: 05/14/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been studied frequently for its beneficial effects on the repair of injured articular cartilage. We hypothesized that these effects are due to stimulation of chondrogenic progenitor cell (CPC) migration toward injured areas of cartilage through focal adhesion kinase (FAK) activation. CPC chemotaxis in bluntly injured osteochondral explants was examined by confocal microscopy, and migratory activity of cultured CPCs was measured in transwell and monolayer scratch assays. FAK activation by LIPUS was analyzed in cultured CPCs by Western blot. LIPUS effects were compared with the effects of two known chemotactic factors: N-formyl-methionyl-leucyl-phenylalanine (fMLF) and high-mobility group box 1 (HMGB1) protein. LIPUS significantly enhanced CPC migration on explants and in cell culture assays. Phosphorylation of FAK at the kinase domain (Tyr 576/577) was maximized by 5 min of exposure to LIPUS at a dose of 27.5 mW/cm(2) and frequency of 3.5 MHz. Treatment with fMLF, but not HMBG1, enhanced FAK activation to a degree similar to that of LIPUS, but neither fMLF nor HMGB1 enhanced the LIPUS effect. LIPUS-induced CPC migration was blocked by suppressing FAK phosphorylation with a Src family kinase inhibitor that blocks FAK phosphorylation. Our results imply that LIPUS might be used to promote cartilage healing by inducing the migration of CPCs to injured sites, which could delay or prevent the onset of post-traumatic osteoarthritis.
Collapse
Affiliation(s)
- Kee W Jang
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Lei Ding
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA
| | - Dongrim Seol
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA
| | - Tae-Hong Lim
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Joseph A Buckwalter
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA; Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - James A Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
460
|
Wong MC, Kennedy WP, Schwarzbauer JE. Transcriptionally regulated cell adhesion network dictates distal tip cell directionality. Dev Dyn 2014; 243:999-1010. [PMID: 24811939 DOI: 10.1002/dvdy.24146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The mechanisms that govern directional changes in cell migration are poorly understood. The migratory paths of two distal tip cells (DTC) determine the U-shape of the C. elegans hermaphroditic gonad. The morphogenesis of this organ provides a model system to identify genes necessary for the DTCs to execute two stereotyped turns. RESULTS Using candidate genes for RNAi knockdown in a DTC-specific strain, we identified two transcriptional regulators required for DTC turning: cbp-1, the CBP/p300 transcriptional coactivator homologue, and let-607, a CREBH transcription factor homologue. Further screening of potential target genes uncovered a network of integrin adhesion-related genes that have roles in turning and are dependent on cbp-1 and let-607 for expression. These genes include src-1/Src kinase, tln-1/talin, pat-2/α integrin and nmy-2, a nonmuscle myosin heavy chain. CONCLUSIONS Transcriptional regulation by means of cbp-1 and let-607 is crucial for determining directional changes during DTC migration. These regulators coordinate a gene network that is necessary for integrin-mediated adhesion. Overall, these results suggest that directional changes in cell migration rely on the precise gene regulation of adhesion.
Collapse
Affiliation(s)
- Ming-Ching Wong
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | | | | |
Collapse
|
461
|
Frijhoff J, Dagnell M, Godfrey R, Ostman A. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration. Antioxid Redox Signal 2014; 20:1994-2010. [PMID: 24111825 DOI: 10.1089/ars.2013.5643] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Redox-regulated control of protein tyrosine phosphatases (PTPs) through inhibitory reversible oxidation of their active site is emerging as a novel and general mechanism for control of cell surface receptor-activated signaling. This mechanism allows for a previously unrecognized crosstalk between redox regulators and signaling pathways, governed by, for example, receptor tyrosine kinases and integrins, which control cell proliferation and migration. RECENT ADVANCES A large number of different molecules, in addition to hydrogen peroxide, have been found to induce PTP inactivation, including lipid peroxides, reactive nitrogen species, and hydrogen sulfide. Characterization of oxidized PTPs has identified different types of oxidative modifications that are likely to display differential sensitivity to various reducing systems. Accumulating evidence demonstrates that PTP oxidation occurs in a temporally and spatially restricted manner. Studies in cell and animal models indicate altered PTP oxidation in models of common diseases, such as cancer and metabolic/cardiovascular disease. Novel methods have appeared that allow characterization of global PTP oxidation. CRITICAL ISSUES As the understanding of the molecular and cellular biology of PTP oxidation is developing, it will be important to establish experimental procedures that allow analyses of PTP oxidation, and its regulation, in physiological and pathophysiological settings. Future studies should also aim to establish specific connections between various oxidants, specific PTPs, and defined signaling contexts. FUTURE DIRECTIONS Modulation of PTP activity still appears as a valid strategy for correction or inhibition of dys-regulated cell signaling. Continued studies on PTP oxidation might present yet unrecognized means to exploit this regulatory mechanism for pharmacological purposes.
Collapse
Affiliation(s)
- Jeroen Frijhoff
- 1 Department of Oncology-Pathology, Karolinska Institutet , Stockholm, Sweden
| | | | | | | |
Collapse
|
462
|
Rajashekhar G, Shivanna M, Kompella UB, Wang Y, Srinivas SP. Role of MMP-9 in the breakdown of barrier integrity of the corneal endothelium in response to TNF-α. Exp Eye Res 2014; 122:77-85. [DOI: 10.1016/j.exer.2014.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/11/2023]
|
463
|
Guo AK, Hou YY, Hirata H, Yamauchi S, Yip AK, Chiam KH, Tanaka N, Sawada Y, Kawauchi K. Loss of p53 enhances NF-κB-dependent lamellipodia formation. J Cell Physiol 2014; 229:696-704. [PMID: 24647813 DOI: 10.1002/jcp.24505] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/30/2013] [Accepted: 10/23/2013] [Indexed: 12/29/2022]
Abstract
Tumor suppressor p53 prevents tumorigenesis and tumor growth by suppressing the activation of several transcription factors, including nuclear factor-κB (NF-κB) and STAT3. On the other hand, p53 stimulates actin cytoskeleton remodeling and integrin-related signaling cascades. Here, we examined the p53-mediated link between regulation of the actin cytoskeleton and activation of NF-κB and STAT3 in MCF-7 cells and mouse embryonic fibroblasts (MEFs). In the absence of p53, STAT3 was constitutively activated. This activation was attenuated by depleting the expression of p65, a component of NF-κB. Integrin β3 expression and lamellipodia formation were also downregulated by NF-κB depletion. Inhibition of integrin αvβ3, Rac1 or Arp2/3, which diminished lamellipodia formation, suppressed STAT3 activation induced by p53 depletion. These results suggest that loss of p53 leads to STAT3 activation via NF-κB-dependent lamellipodia formation. Our study proposes a novel role for p53 in modulating the actin cytoskeleton through suppression of NF-κB, which restricts STAT3 activation.
Collapse
|
464
|
Xia M, Zhu Y. Fibronectin enhances spinal cord astrocyte proliferation by elevating P2Y1 receptor expression. J Neurosci Res 2014; 92:1078-90. [PMID: 24687862 DOI: 10.1002/jnr.23384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 02/16/2014] [Accepted: 02/19/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Maosheng Xia
- Department of Orthopaedics; The First Hospital of China Medical University; Shengyang People's Republic of China
| | - Yue Zhu
- Department of Orthopaedics; The First Hospital of China Medical University; Shengyang People's Republic of China
| |
Collapse
|
465
|
Chen X, Corbin JM, Tipton GJ, Yang LV, Asch AS, Ruiz-Echevarría MJ. The TMEFF2 tumor suppressor modulates integrin expression, RhoA activation and migration of prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1216-24. [PMID: 24632071 DOI: 10.1016/j.bbamcr.2014.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/11/2014] [Accepted: 03/05/2014] [Indexed: 01/01/2023]
Abstract
Cell adhesion and migration play important roles in physiological and pathological states, including embryonic development and cancer invasion and metastasis. The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed mainly in brain and prostate and its expression is deregulated in prostate cancer. We have previously shown that TMEFF2 can function as a tumor suppressor by inhibiting cell migration and invasion of prostate cells. However, the molecular mechanisms involved in this inhibition are not clear. In this study we demonstrate that TMEFF2 affects cell adhesion and migration of prostate cancer cells and that this effect correlates with changes in integrin expression and RhoA activation. Deletion of a 13 basic-rich amino acid region in the cytoplasmic domain of TMEFF2 prevented these effects. Overexpression of TMEFF2 reduced cell attachment and migration on vitronectin and caused a concomitant decrease in RhoA activation, stress fiber formation and expression of αv, β1 and β3 integrin subunits. Conversely, TMEFF2 interference in 22Rv1 prostate cancer cells resulted in an increased integrin expression. Results obtained with a double TRAMP/TMEFF2 transgenic mouse also indicated that TMEFF2 expression reduced integrin expression in the mouse prostate. In summary, the data presented here indicate an important role of TMEFF2 in regulating cell adhesion and migration that involves integrin signaling and is mediated by its cytoplasmic domain.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Joshua M Corbin
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Greg J Tipton
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Adam S Asch
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maria J Ruiz-Echevarría
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
466
|
Blood brain barrier and neuroinflammation are critical targets of IGF-1-mediated neuroprotection in stroke for middle-aged female rats. PLoS One 2014; 9:e91427. [PMID: 24618563 PMCID: PMC3949985 DOI: 10.1371/journal.pone.0091427] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023] Open
Abstract
Ischemia-induced cerebral infarction is more severe in older animals as compared to younger animals, and is associated with reduced availability of insulin-like growth factor (IGF)-1. This study determined the effect of post-stroke IGF-1 treatment, and used microRNA profiling to identify mechanisms underlying IGF-1’s neuroprotective actions. Post-stroke ICV administration of IGF-1 to middle-aged female rats reduced infarct volume by 39% when measured 24h later. MicroRNA analyses of ischemic tissue collected at the early post-stroke phase (4h) indicated that 8 out of 168 disease-related miRNA were significantly downregulated by IGF-1. KEGG pathway analysis implicated these miRNA in PI3K-Akt signaling, cell adhesion/ECM receptor pathways and T-and B-cell signaling. Specific components of these pathways were subsequently analyzed in vehicle and IGF-1 treated middle-aged females. Phospho-Akt was reduced by ischemia at 4h, but elevated by IGF-1 treatment at 24h. IGF-1 induced Akt activation was preceded by a reduction of blood brain barrier permeability at 4h post-stroke and global suppression of cytokines including IL-6, IL-10 and TNF-α. A subset of these cytokines including IL-6 was also suppressed by IGF-1 at 24h post-stroke. These data are the first to show that the temporal and mechanistic components of post-stroke IGF-1 treatment in older animals, and that cellular components of the blood brain barrier may serve as critical targets of IGF-1 in the aging brain.
Collapse
|
467
|
Lawson CD, Burridge K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 2014; 5:e27958. [PMID: 24607953 DOI: 10.4161/sgtp.27958] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rho GTPases play an essential role in regulating cell spreading, adhesion, and migration downstream of integrin engagement with the extracellular matrix. In this review, we focus on RhoA and Rac1--2 Rho GTPases that are required for efficient adhesion and migration--and describe how specific guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate the extensive crosstalk that exists between them. In particular, we assess the role of GEFs and GAPs in light of recent, unexpected evidence concerning the spatiotemporal relationship between RhoA and Rac1 at the leading edge of migrating cells. Force is increasingly recognized as a key regulator of cell adhesion and we highlight the role of GEFs and GAPs in mechanotransduction, before debating the controversial role of tension in focal adhesion maturation.
Collapse
Affiliation(s)
- Campbell D Lawson
- Department of Cell Biology and Physiology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Keith Burridge
- Department of Cell Biology and Physiology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
468
|
Yoder SM, Dineen SL, Wang Z, Thurmond DC. YES, a Src family kinase, is a proximal glucose-specific activator of cell division cycle control protein 42 (Cdc42) in pancreatic islet β cells. J Biol Chem 2014; 289:11476-11487. [PMID: 24610809 DOI: 10.1074/jbc.m114.559328] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Second-phase insulin secretion sustains insulin release in the face of hyperglycemia associated with insulin resistance, requiring the continued mobilization of insulin secretory granules to the plasma membrane. Cdc42, the small Rho family GTPase recognized as the proximal glucose-specific trigger to elicit second-phase insulin secretion, signals downstream to activate the p21-activated kinase (PAK1), which then signals to Raf-1/MEK/ERK to induce filamentous actin (F-actin) remodeling, to ultimately mobilize insulin granules to the plasma membrane. However, the steps required to initiate Cdc42 activation in a glucose-specific manner in β cells have remained elusive. Toward this, we identified the involvement of the Src family kinases (SFKs), based upon the ability of SFK inhibitors to block glucose-stimulated Cdc42 and PAK1 activation events as well as the amplifying pathway of glucose-stimulated insulin release, in MIN6 β cells. Indeed, subsequent studies performed in human islets revealed that SFK phosphorylation was induced only by glucose and within 1 min of stimulation before the activation of Cdc42 at 3 min. Furthermore, pervanadate treatment validated the phosphorylation event to be tyrosine-specific. Although RT-PCR showed β cells to express five different SFK proteins, only two of these, YES and Fyn kinases, were found localized to the plasma membrane, and of these two, only YES kinase underwent glucose-stimulated tyrosine phosphorylation. Immunodetection and RNAi analyses further established YES kinase as a proximal glucose-specific signal in the Cdc42-signaling cascade. Identification of YES kinase provides new insight into the mechanisms underlying the sustainment of insulin secretion via granule mobilization/replenishment and F-actin remodeling.
Collapse
Affiliation(s)
- Stephanie M Yoder
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Stacey L Dineen
- Department of Cellular and Integrative Physiology, and Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Zhanxiang Wang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Debbie C Thurmond
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Cellular and Integrative Physiology, and Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
469
|
Rajakylä EK, Vartiainen MK. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases 2014; 5:e27539. [PMID: 24603113 DOI: 10.4161/sgtp.27539] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin.
Collapse
Affiliation(s)
- Eeva Kaisa Rajakylä
- Program in Cell and Molecular Biology; Institute of Biotechnology; University of Helsinki; Helsinki, Finland
| | - Maria K Vartiainen
- Program in Cell and Molecular Biology; Institute of Biotechnology; University of Helsinki; Helsinki, Finland
| |
Collapse
|
470
|
Hopkinson SB, Hamill KJ, Wu Y, Eisenberg JL, Hiroyasu S, Jones JC. Focal Contact and Hemidesmosomal Proteins in Keratinocyte Migration and Wound Repair. Adv Wound Care (New Rochelle) 2014; 3:247-263. [PMID: 24669360 DOI: 10.1089/wound.2013.0489] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/03/2013] [Indexed: 12/12/2022] Open
Abstract
Significance: During wound healing of the skin, keratinocytes should move over while still adhering to their underlying matrix. Thus, mechanistic insights into the wound-healing process require an understanding of the forms and functions of keratinocyte matrix adhesions, specifically focal contacts and hemidesmosomes, and their components. Recent Advances: Although the structure and composition of focal contacts and hemidesmosomes are relatively well defined, the functions of their components are only now being delineated using mouse genetic models and knockdown approaches in cell culture systems. Remarkably, both focal contact and hemidesmosomal proteins appear involved in determining the speed and directional migration of epidermal cells by modulating several signal transduction pathways. Critical Issues: Although many publications are centered on focal contacts, their existence in tissues such as the skin is controversial. Nonetheless, focal contact proteins are central to mechanisms that regulate skin cell motility. Conversely, hemidesmosomes have been identified in intact skin but whether hemidesmosomal components play a positive regulatory function in keratinocyte motility remains debated in the field. Future Directions: Defective wound healing is a developing problem in the aged, hospitalized and diabetic populations. Hence, deriving new insights into the molecular roles of matrix adhesion proteins in wound healing is a prerequisite to the development of novel therapeutics to enhance tissue repair and regeneration.
Collapse
Affiliation(s)
- Susan B. Hopkinson
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| | - Kevin J. Hamill
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| | - Yvonne Wu
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| | - Jessica L. Eisenberg
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| | - Sho Hiroyasu
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| | - Jonathan C.R. Jones
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois
| |
Collapse
|
471
|
Jang KW, Buckwalter JA, Martin JA. Inhibition of cell-matrix adhesions prevents cartilage chondrocyte death following impact injury. J Orthop Res 2014; 32:448-54. [PMID: 24249698 PMCID: PMC4034578 DOI: 10.1002/jor.22523] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/21/2013] [Indexed: 02/04/2023]
Abstract
Focal adhesions are transmembrane protein complexes that attach chondrocytes to the pericellular cartilage matrix and in turn, are linked to intracellular organelles via cytoskeleton. We previously found that excessive compression of articular cartilage leads to cytoskeleton-dependent chondrocyte death. Here we tested the hypothesis that this process also requires integrin activation and signaling via focal adhesion kinase (FAK) and Src family kinase (SFK). Osteochondral explants were treated with FAK and SFK inhibitors (FAKi, SFKi, respectively) for 2 h and then subjected to a death-inducing impact load. Chondrocyte viability was assessed by confocal microscopy immediately and at 24 h post-impact. With no treatment immediate post-impact viability was 59%. Treatment with 10 µM SFKi, 10 μM, or 100 µM FAKi improved viability to 80%, 77%, and 82%, respectively (p < 0.05). After 24 h viability declined to 34% in controls, 48% with 10 µM SFKi, 45% with 10 µM FAKi, and 56% with 100 µM FAKi (p < 0.01) treatment. These results confirmed that most of the acute chondrocyte mortality was FAK- and SFK-dependent, which implicates integrin-cytoskeleton interactions in the death signaling pathway. Together with previous findings, these data support the hypothesis that the excessive tissue strains accompanying impact loading induce death via a pathway initiated by strain on cell adhesion receptors.
Collapse
Affiliation(s)
- Kee W. Jang
- Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA,Department of Biomedical Engineering, The University of Iowa, Iowa City, IA
| | - Joseph A. Buckwalter
- Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA,Veterans Affairs Medical Center, Iowa City, IA
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA
| |
Collapse
|
472
|
Iskratsch T, Yu CH, Mathur A, Liu S, Stévenin V, Dwyer J, Hone J, Ehler E, Sheetz M. FHOD1 is needed for directed forces and adhesion maturation during cell spreading and migration. Dev Cell 2014; 27:545-59. [PMID: 24331927 DOI: 10.1016/j.devcel.2013.11.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/19/2013] [Accepted: 11/04/2013] [Indexed: 01/13/2023]
Abstract
Matrix adhesions provide critical signals for cell growth or differentiation. They form through a number of distinct steps that follow integrin binding to matrix ligands. In an early step, integrins form clusters that support actin polymerization by an unknown mechanism. This raises the question of how actin polymerization occurs at the integrin clusters. We report here that a major formin in mouse fibroblasts, FHOD1, is recruited to integrin clusters, resulting in actin assembly. Using cell-spreading assays on lipid bilayers, solid substrates, and high-resolution force-sensing pillar arrays, we find that knockdown of FHOD1 impairs spreading, coordinated application of adhesive force, and adhesion maturation. Finally, we show that targeting of FHOD1 to the integrin sites depends on the direct interaction with Src family kinases and is upstream of the activation by Rho kinase. Thus, our findings provide insights into the mechanisms of cell migration with implications for development and disease.
Collapse
Affiliation(s)
- Thomas Iskratsch
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Cheng-Han Yu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Anurag Mathur
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Shuaimin Liu
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Virginie Stévenin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Joseph Dwyer
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, King's College London, London SE1 1UL, UK
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, King's College London, London SE1 1UL, UK
| | - Michael Sheetz
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
473
|
Chung KM, Hsu SC, Chu YR, Lin MY, Jiaang WT, Chen RH, Chen X. Fibroblast activation protein (FAP) is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation. PLoS One 2014; 9:e88772. [PMID: 24551161 PMCID: PMC3923824 DOI: 10.1371/journal.pone.0088772] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/15/2014] [Indexed: 01/08/2023] Open
Abstract
Background The ability of human bone marrow mesenchymal stem cells (BM-MSCs) to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP) is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. Principal Findings We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β) and transforming growth factor-beta (TGF-β) upregulated FAP expression, which coincided with better BM-MSC migration. Conclusions Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.
Collapse
Affiliation(s)
- Kuei-Min Chung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China
- * E-mail: (K-MC); (XC)
| | - Shu-Ching Hsu
- Vaccine Research and Development Center, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | - Yue-Ru Chu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | - Mei-Yao Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Weir-Tong Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Xin Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China
- * E-mail: (K-MC); (XC)
| |
Collapse
|
474
|
Truong HH, Xiong J, Ghotra VPS, Nirmala E, Haazen L, Le Dévédec SE, Balcioğlu HE, He S, Snaar-Jagalska BE, Vreugdenhil E, Meerman JHN, van de Water B, Danen EHJ. β1 integrin inhibition elicits a prometastatic switch through the TGFβ-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer. Sci Signal 2014; 7:ra15. [PMID: 24518294 DOI: 10.1126/scisignal.2004751] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interactions with the extracellular matrix (ECM) through integrin adhesion receptors provide cancer cells with physical and chemical cues that act together with growth factors to support survival and proliferation. Antagonists that target integrins containing the β1 subunit inhibit tumor growth and sensitize cells to irradiation or cytotoxic chemotherapy in preclinical breast cancer models and are under clinical investigation. We found that the loss of β1 integrins attenuated breast tumor growth but markedly enhanced tumor cell dissemination to the lungs. When cultured in three-dimensional ECM scaffolds, antibodies that blocked β1 integrin function or knockdown of β1 switched the migratory behavior of human and mouse E-cadherin-positive triple-negative breast cancer (TNBC) cells from collective to single cell movement. This switch involved activation of the transforming growth factor-β (TGFβ) signaling network that led to a shift in the balance between miR-200 microRNAs and the transcription factor zinc finger E-box-binding homeobox 2 (ZEB2), resulting in suppressed transcription of the gene encoding E-cadherin. Reducing the abundance of a TGFβ receptor, restoring the ZEB/miR-200 balance, or increasing the abundance of E-cadherin reestablished cohesion in β1 integrin-deficient cells and reduced dissemination to the lungs without affecting growth of the primary tumor. These findings reveal that β1 integrins control a signaling network that promotes an epithelial phenotype and suppresses dissemination and indicate that targeting β1 integrins may have undesirable effects in TNBC.
Collapse
Affiliation(s)
- Hoa H Truong
- 1Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333CC, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Zha R, Guo W, Zhang Z, Qiu Z, Wang Q, Ding J, Huang S, Chen T, Gu J, Yao M, He X. Genome-wide screening identified that miR-134 acts as a metastasis suppressor by targeting integrin β1 in hepatocellular carcinoma. PLoS One 2014; 9:e87665. [PMID: 24498348 PMCID: PMC3912066 DOI: 10.1371/journal.pone.0087665] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/28/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, single-stranded, non-coding RNAs that play pivotal roles in human cancer development and progression, such as tumor metastasis. Here, we identified the miRNAs that regulate hepatocellular carcinoma (HCC) cell migration by a high-throughput screening method using the classical wound-healing assay with time-lapse video microscopy and validation with a transwell migration assay. Eleven miRNAs (miR-134, -146b-3p, -188-3p, -525-3p, -661, -767-5p, -891a, -891b, -1244, -1247 and miR-1471) were found to promote or inhibit HCC cell migration. Further investigation revealed that miR-134 suppressed the invasion and metastasis of HCC cells in vitro and in vivo, and integrin beta 1 (ITGB1) was a direct and functional target gene of miR-134. Moreover, miR-134 inhibited the phosphorylation of focal adhesion kinase (FAK) and the activation of RhoA downstream of the ITGB1 pathway, thereby decreasing stress fiber formation and cell adhesion in HCC cells. In conclusion, we demonstrated that miR-134 is a novel metastasis suppressor in HCC and could be a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Ruopeng Zha
- Shanghai Medical College, Fudan University, Shanghai, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijie Guo
- Shanghai Medical College, Fudan University, Shanghai, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoping Qiu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Wang
- Shanghai Cancer Hospital, Fudan University, Shanghai, China
| | - Jie Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenglin Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taoyang Chen
- Qi Dong Liver Cancer Institute, Qi Dong, Jiangsu, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianghuo He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
476
|
Reinecke JB, Katafiasz D, Naslavsky N, Caplan S. Regulation of Src trafficking and activation by the endocytic regulatory proteins MICAL-L1 and EHD1. J Cell Sci 2014; 127:1684-98. [PMID: 24481818 DOI: 10.1242/jcs.133892] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Localization of the non-receptor tyrosine kinase Src to the cell periphery is required for its activation and to mediate focal adhesion turnover, cell spreading and migration. Inactive Src localizes to a perinuclear compartment and the movement of Src to the plasma membrane is mediated by endocytic transport. However, the precise pathways and regulatory proteins that are responsible for SRC transport are incompletely understood. Here, we demonstrate that Src partially colocalizes with the endocytic regulatory protein MICAL-L1 (molecule interacting with CasL-like protein 1) in mammalian cells. Furthermore, MICAL-L1 is required for growth-factor- and integrin-induced Src activation and transport to the cell periphery in HeLa cells and human fibroblasts. Accordingly, MICAL-L1 depletion impairs focal adhesion turnover, cell spreading and cell migration. Interestingly, we find that the MICAL-L1 interaction partner EHD1 (EH domain-containing protein 1) is also required for Src activation and transport. Moreover, the MICAL-L1-mediated recruitment of EHD1 to Src-containing recycling endosomes is required for the release of Src from the perinuclear endocytic recycling compartment in response to growth factor stimulation. Our study sheds new light on the mechanism by which Src is transported to the plasma membrane and activated, and provides a new function for MICAL-L1 and EHD1 in the regulation of intracellular non-receptor tyrosine kinases.
Collapse
Affiliation(s)
- James B Reinecke
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
477
|
Abstract
Integrins are heterodimeric cell surface adhesion receptors essential for multicellular life. They connect cells to the extracellular environment and transduce chemical and mechanical signals to and from the cell. Intracellular proteins that bind the integrin cytoplasmic tail regulate integrin engagement of extracellular ligands as well as integrin localization and trafficking. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating links to the cytoskeleton and to signaling cascades that impact cell motility, growth, and survival. Here, we review key integrin-interacting proteins and their roles in regulating integrin activity, localization, and signaling.
Collapse
Affiliation(s)
- Elizabeth M Morse
- Department of Cell Biology and ‡Department of Pharmacology, Yale University School of Medicine , 333 Cedar Street, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
478
|
Bordeleau F, Alcoser TA, Reinhart-King CA. Physical biology in cancer. 5. The rocky road of metastasis: the role of cytoskeletal mechanics in cell migratory response to 3D matrix topography. Am J Physiol Cell Physiol 2014; 306:C110-20. [PMID: 24196535 PMCID: PMC3919983 DOI: 10.1152/ajpcell.00283.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/30/2013] [Indexed: 01/22/2023]
Abstract
The tumor microenvironment is a milieu of heterogeneous architectural features that affect tumor growth and metastatic invasion. Pore size, density, stiffness, and fiber architecture change dramatically from location to location throughout the tumor matrix. While many studies have addressed the effects of two-dimensional extracellular matrix structure and composition on cell migration, less is known about how cancer cells navigate complex, heterogeneous three-dimensional (3D) microenvironments. Mechanical structures such as actin and keratin, part of the cytoskeletal framework, and lamins, part of the nucleoskeletal framework, play a key role in migration and are altered during cancer progression. Recent evidence suggests that these changes in cytoskeletal and nucleoskeletal structures may enable cancer cells to efficiently respond to features such as pore size and stiffness to invade and migrate. Here we discuss the role of cell mechanics and the cytoskeleton in the ability of cells to navigate and respond to 3D matrix features and heterogeneities.
Collapse
Affiliation(s)
- Francois Bordeleau
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | | |
Collapse
|
479
|
Hartwell R, Lai A, Ghahary A. Modulation of extracellular matrix through keratinocyte–fibroblast crosstalk. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
480
|
Jahed Z, Shams H, Mehrbod M, Mofrad MRK. Mechanotransduction pathways linking the extracellular matrix to the nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:171-220. [PMID: 24725427 DOI: 10.1016/b978-0-12-800180-6.00005-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells contain several mechanosensing components that transduce mechanical signals into biochemical cascades. During cell-ECM adhesion, a complex network of molecules mechanically couples the extracellular matrix (ECM), cytoskeleton, and nucleoskeleton. The network comprises transmembrane receptor proteins and focal adhesions, which link the ECM and cytoskeleton. Additionally, recently identified protein complexes extend this linkage to the nucleus by linking the cytoskeleton and the nucleoskeleton. Despite numerous studies in this field, due to the complexity of this network, our knowledge of the mechanisms of cell-ECM adhesion at the molecular level remains remarkably incomplete. Herein, we present a review of the structures of key molecules involved in cell-ECM adhesion, along with an evaluation of their predicted roles in mechanical sensing. Additionally, specific binding events prompted by force-induced conformational changes of each molecule are discussed. Finally, we propose a model for the biomechanical events prominent in cell-ECM adhesion.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mehrdad Mehrbod
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA.
| |
Collapse
|
481
|
Bijnsdorp IV, Geldof AA, Lavaei M, Piersma SR, van Moorselaar RJA, Jimenez CR. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles 2013; 2:22097. [PMID: 24371517 PMCID: PMC3873120 DOI: 10.3402/jev.v2i0.22097] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/30/2022] Open
Abstract
Background Cancer cells are able to change the protein expression and behavior of non-cancerous surrounding cells. Exosomes, secreted by prostate cancer (PCa) cells, may have a functional role in cancer metastasis and present a promising source for protein biomarkers. The aim of the present study was to identify which proteins in exosomes can influence non-cancerous cells, and to determine whether we can use urine exosomal proteins to identify high-risk PCa patients. Method Exosomes were isolated by ultracentrifugation. Migration and invasion were studied by the transwell (invasion) assay. Proteomics was performed by LC-MS/MS and identified proteins were validated by Western blotting. Cellular uptake of fluorescent labeled PKH67-exosomes was measured by FACS. Results Based on comparative protein profiling by mass spectrometry-based proteomics of LNCaP- and PC3-exosomes, we selected ITGA3 and ITGB1, involved in migration/invasion, for further analyses. Inhibition of exosomal ITGA3 reduced the migration and invasion of non-cancerous prostate epithelial cells (prEC) almost completely. Cellular uptake of exosomes by prEC was higher with PC3-exosomes compared to LNCaP exosomes. Finally, ITGA3 and ITGB1 were more abundant in urine exosomes of metastatic patients (p<0.05), compared to benign prostate hyperplasia or PCa. Conclusion These data indicate exosomal ITGA3 and ITGB1 may play a role in manipulating non-cancerous surrounding cells and that measurement of ITGA3 and ITGB1 in urine exosomes has the potential to identify patients with metastatic PCa in a non-invasive manner.
Collapse
Affiliation(s)
- Irene V Bijnsdorp
- Department of Urology, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert A Geldof
- Department of Urology, VU University Medical Center, Amsterdam, The Netherlands
| | - Mehrdad Lavaei
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
482
|
The effects of artificial E-cadherin matrix-induced embryonic stem cell scattering on paxillin and RhoA activation via α-catenin. Biomaterials 2013; 35:1797-806. [PMID: 24321709 DOI: 10.1016/j.biomaterials.2013.11.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/15/2013] [Indexed: 12/28/2022]
Abstract
Mechanical forces have been shown to affect stem cell behavior in a large array of ways. However, our understanding of how these mechanical cues may regulate the behavior of embryonic stem cells (ESCs) remains in its infancy. Here, we aim to clarify the effect of cell scattering on the regulation of Rho family GTPases Rac1 and RhoA as well as paxillin. Allowing ESCs to spread and scatter on a synthetically designed E-cadherin substratum causes phosphorylation of paxillin on consensus phosphorylation sites leading to activation of Rac1 and inactivation of RhoA. By culturing cells in presence of RhoA activator or growing cells to a highly confluent state reverses the effect of cell scattering phenotype. Knockdown of E-cadherin-adapter protein α-catenin revealed that it negatively affects paxillin phosphorylation and up-regulates RhoA activity in compact cellular aggregates. Collectively these results indicate that cell scattering might cause a conformational change of α-catenin limiting its capacity to inhibit paxillin phosphorylation that causes an increase in Rac1 activation and RhoA deactivation. Understanding how synthetically designed extracellular matrix affect ESC signaling through mechanical cues brings a new aspect for stem cell engineers to develop technologies for controlling cell function.
Collapse
|
483
|
Missirlis D, Spatz JP. Combined effects of PEG hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration. Biomacromolecules 2013; 15:195-205. [PMID: 24274760 DOI: 10.1021/bm4014827] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development and use of synthetic, cross-linked, macromolecular substrates with tunable elasticity has been instrumental in revealing the mechanisms by which cells sense and respond to their mechanical microenvironment. We here describe a hydrogel based on radical-free, cross-linked poly(ethylene glycol) to study the effects of both substrate elasticity and type of adhesive coating on fibroblast adhesion and migration. Hydrogel elasticity was controlled through the structure and concentration of branched precursors, which efficiently react via Michael-type addition to produce the polymer network. We found that cell spreading and focal adhesion characteristics are dependent on elasticity for all types of coatings (RGD peptide, fibronectin, vitronectin), albeit with significant differences in magnitude. Importantly, fibroblasts migrated slower but more persistently on stiffer hydrogels, with the effects being more pronounced on fibronectin-coated substrates. Therefore, our results validate the hydrogels presented in this study as suitable for future mechanosensing studies and indicate that cell adhesion, polarity, and associated migration persistence are tuned by substrate elasticity and biochemical properties.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems , Heisenbergstr. 3, 70569 Stuttgart, Germany
| | | |
Collapse
|
484
|
Li NF, Gemenetzidis E, Marshall FJ, Davies D, Yu Y, Frese K, Froeling FEM, Woolf AK, Feakins RM, Naito Y, Iacobuzio-Donahue C, Tuveson DA, Hart IR, Kocher HM. RhoC interacts with integrin α5β1 and enhances its trafficking in migrating pancreatic carcinoma cells. PLoS One 2013; 8:e81575. [PMID: 24312560 PMCID: PMC3849283 DOI: 10.1371/journal.pone.0081575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/15/2013] [Indexed: 02/08/2023] Open
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) is characterized by early systemic dissemination. Although RhoC has been implicated in cancer cell migration, the relevant underlying molecular mechanisms remain unknown. RhoC has been implicated in the enhancement of cancer cell migration and invasion, with actions which are distinct from RhoA (84% homology), and are possibly attributed to the divergent C-terminus domain. Here, we confirm that RhoC significantly enhances the migratory and invasive properties of pancreatic carcinoma cells. In addition, we show that RhoC over-expression decreases cancer cell adhesion and, in turn, accelerates cellular body movement and focal adhesion turnover, especially, on fibronectin-coated surfaces. Whilst RhoC over-expression did not alter integrin expression patterns, we show that it enhanced integrin α5β1 internalization and re-cycling (trafficking), an effect that was dependent specifically on the C-terminus (180-193 amino acids) of RhoC protein. We also report that RhoC and integrin α5β1 co-localize within the peri-nuclear region of pancreatic tumor cells, and by masking the CAAX motif at the C-terminal of RhoC protein, we were able to abolish this interaction in vitro and in vivo. Co-localization of integrin α5β1 and RhoC was demonstrable in invading cancer cells in 3D-organotypic cultures, and further mimicked in vivo analyses of, spontaneous human, (two distinct sources: operated patients and rapid autopsy programme) and transgenic murine (LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre), pancreatic cancers. In both cases, co-localization of integrin α5β1 and RhoC correlated with poor differentiation status and metastatic potential. We propose that RhoC facilitates tumor cell invasion and promotes subsequent metastasis, in part, by enhancing integrin α5β1 trafficking. Thus, RhoC may serve as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Ningfeng Fiona Li
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Emilios Gemenetzidis
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Francis J. Marshall
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Derek Davies
- Cancer Research United Kingdom London Research Institute, London, United Kingdom
| | - Yongwei Yu
- Changhai Hospital of Shanghai Second Military Medical University, Pathology Department, Shanghai, China
| | - Kristopher Frese
- Cancer Research United Kingdom Cambridge Research Institute, Cambridge, United Kingdom
| | - Fieke E. M. Froeling
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Adam K. Woolf
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Roger M. Feakins
- Barts and the London HPB Centre, The Royal London Hospital, London, United Kingdom
| | - Yoshiki Naito
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christine Iacobuzio-Donahue
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Tuveson
- Cancer Research United Kingdom Cambridge Research Institute, Cambridge, United Kingdom
| | - Ian R. Hart
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Hemant M. Kocher
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
- Barts and the London HPB Centre, The Royal London Hospital, London, United Kingdom
| |
Collapse
|
485
|
George MD, Wine RN, Lackford B, Kissling GE, Akiyama SK, Olden K, Roberts JD. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion. Biochem Cell Biol 2013; 91:404-18. [PMID: 24219282 PMCID: PMC3935246 DOI: 10.1139/bcb-2013-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to the spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV, as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia, whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading, and that this association can be regulated by factors in the tumor microenvironment.
Collapse
Affiliation(s)
- Margaret D George
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
486
|
Faurobert E, Rome C, Lisowska J, Manet-Dupé S, Boulday G, Malbouyres M, Balland M, Bouin AP, Kéramidas M, Bouvard D, Coll JL, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C. CCM1-ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodeling. ACTA ACUST UNITED AC 2013; 202:545-61. [PMID: 23918940 PMCID: PMC3734079 DOI: 10.1083/jcb.201303044] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of CCM1/2 leads to destabilization of ICAP-1 and up-regulation of β1 integrin, resulting in the destabilization of intercellular junctions due to increased cell contractility and aberrant extracellular matrix remodeling. The endothelial CCM complex regulates blood vessel stability and permeability. Loss-of-function mutations in CCM genes are responsible for human cerebral cavernous malformations (CCMs), which are characterized by clusters of hemorrhagic dilated capillaries composed of endothelium lacking mural cells and altered sub-endothelial extracellular matrix (ECM). Association of the CCM1/2 complex with ICAP-1, an inhibitor of β1 integrin, prompted us to investigate whether the CCM complex interferes with integrin signaling. We demonstrate that CCM1/2 loss resulted in ICAP-1 destabilization, which increased β1 integrin activation and led to increased RhoA-dependent contractility. The resulting abnormal distribution of forces led to aberrant ECM remodeling around lesions of CCM1- and CCM2-deficient mice. ICAP-1–deficient vessels displayed similar defects. We demonstrate that a positive feedback loop between the aberrant ECM and internal cellular tension led to decreased endothelial barrier function. Our data support that up-regulation of β1 integrin activation participates in the progression of CCM lesions by destabilizing intercellular junctions through increased cell contractility and aberrant ECM remodeling.
Collapse
Affiliation(s)
- Eva Faurobert
- INSERM U823, Institut Albert Bonniot, Grenoble F-38042, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
487
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
488
|
Schlienger S, Campbell S, Claing A. ARF1 regulates the Rho/MLC pathway to control EGF-dependent breast cancer cell invasion. Mol Biol Cell 2013; 25:17-29. [PMID: 24196838 PMCID: PMC3873888 DOI: 10.1091/mbc.e13-06-0335] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The small GTPase ARF1 is overexpressed in invasive breast cancer cells. This ARF isoform controls MMP-9 activity to degrade the extracellular matrix by regulating invadopodia maturation and microvesicle shedding. The molecular mechanisms by which ARF1 controls invasiveness involve regulation of the Rho/MLC pathway. Invasion of tumor cells is a key step in metastasis that depends largely on the ability of these cells to degrade the extracellular matrix. Although we have showed that the GTPase ADP-ribosylation factor 1 (ARF1) is overexpressed in highly invasive breast cancer cell lines and that epidermal growth factor stimulation can activate this ARF isoform to regulate migration as well as proliferation, the role of this small GTP-binding protein has not been addressed in the context of invasiveness. Here we report that modulation of ARF1 expression and activity markedly impaired the ability of M.D. Anderson-metastatic breast-231 cells, a prototypical highly invasive breast cancer cell line, to degrade the extracellular matrix by controlling metalloproteinase-9 activity. In addition, we demonstrate that this occurs through inhibition of invadopodia maturation and shedding of membrane-derived microvesicles, the two key structures involved in invasion. To further define the molecular mechanisms by which ARF1 controls invasiveness, we show that ARF1 acts to modulate RhoA and RhoC activity, which in turn affects myosin light-chain (MLC) phosphorylation. Together our findings underscore for the first time a key role for ARF1 in invasion of breast cancer cells and suggest that targeting the ARF/Rho/MLC signaling axis might be a promising strategy to inhibit invasiveness and metastasis.
Collapse
Affiliation(s)
- Sabrina Schlienger
- Department of Pharmacology and Membrane Protein Research Group (GEPROM), Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | |
Collapse
|
489
|
Charpentier MS, Taylor JM, Conlon FL. The CASZ1/Egfl7 transcriptional pathway is required for RhoA expression in vascular endothelial cells. Small GTPases 2013; 4:231-5. [PMID: 24150064 DOI: 10.4161/sgtp.26849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vertebrate development depends on the formation of a closed circulatory loop consisting of intricate networks of veins, arteries, and lymphatic vessels. The coordinated participation of multiple molecules including growth factors, transcription factors, extracellular matrix proteins, and regulators of signaling such as small GTPases is essential for eliciting the desired cellular behaviors associated with vascular assembly and morphogenesis. We have recently demonstrated that a novel transcriptional pathway involving activation of the Epidermal Growth Factor-like Domain 7 (Egfl7) gene by the transcription factor CASTOR (CASZ1) is required for blood vessel assembly and lumen morphogenesis. Furthermore, this transcriptional network promotes RhoA expression and subsequent GTPase activity linking transcriptional regulation of endothelial gene expression to direct physiological outputs associated with Rho GTPase signaling, i.e., cell adhesion and cytoskeletal dynamics. Here we will discuss our studies with respect to our current understanding of the mechanisms underlying regulation of RhoA transcription, protein synthesis, and activity.
Collapse
Affiliation(s)
- Marta S Charpentier
- McAllister Heart Institute; University of North Carolina at Chapel Hill; Chapel Hill, NC USA; Department of Genetics; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Joan M Taylor
- McAllister Heart Institute; University of North Carolina at Chapel Hill; Chapel Hill, NC USA; Departments of Pathology and Laboratory Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Frank L Conlon
- McAllister Heart Institute; University of North Carolina at Chapel Hill; Chapel Hill, NC USA; Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA; Department of Genetics; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
490
|
Odenthal T, Smeets B, Van Liedekerke P, Tijskens E, Van Oosterwyck H, Ramon H. Analysis of initial cell spreading using mechanistic contact formulations for a deformable cell model. PLoS Comput Biol 2013; 9:e1003267. [PMID: 24146605 PMCID: PMC3798278 DOI: 10.1371/journal.pcbi.1003267] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/23/2013] [Indexed: 11/30/2022] Open
Abstract
Adhesion governs to a large extent the mechanical interaction between a cell and its microenvironment. As initial cell spreading is purely adhesion driven, understanding this phenomenon leads to profound insight in both cell adhesion and cell-substrate interaction. It has been found that across a wide variety of cell types, initial spreading behavior universally follows the same power laws. The simplest cell type providing this scaling of the radius of the spreading area with time are modified red blood cells (RBCs), whose elastic responses are well characterized. Using a mechanistic description of the contact interaction between a cell and its substrate in combination with a deformable RBC model, we are now able to investigate in detail the mechanisms behind this universal power law. The presented model suggests that the initial slope of the spreading curve with time results from a purely geometrical effect facilitated mainly by dissipation upon contact. Later on, the spreading rate decreases due to increasing tension and dissipation in the cell's cortex as the cell spreads more and more. To reproduce this observed initial spreading, no irreversible deformations are required. Since the model created in this effort is extensible to more complex cell types and can cope with arbitrarily shaped, smooth mechanical microenvironments of the cells, it can be useful for a wide range of investigations where forces at the cell boundary play a decisive role. How cells spread on a newly encountered surface is an important issue, since it hints at how cells interact physically with the specific material in general. It has been shown before that many cell types have very similar early spreading behavior. This observation has been linked to the mechanical nature of the phenomenon, during which a cell cannot yet react by changing its structure and behavior. Understanding in detail how this passive spreading occurs, and what clues a cell may later respond to is the goal of this work. At the same time, the model we develop here should be very valuable for more complex situations of interacting cells, since it is able to reproduce the purely mechanical response in detail. We find that spreading is limited mainly by energy dissipation upon contact and later dissipation in the cell's cortex and that no irreversible deformation occurs during the spreading of red blood cells on an adhesive surface.
Collapse
|
491
|
Schernthaner M, Leitinger G, Wolinski H, Kohlwein SD, Reisinger B, Barb RA, Graier WF, Heitz J, Groschner K. Enhanced Ca 2+Entry and Tyrosine Phosphorylation Mediate Nanostructure-Induced Endothelial Proliferation. JOURNAL OF NANOMATERIALS 2013; 2013:251063. [PMID: 24729782 PMCID: PMC3982206 DOI: 10.1155/2013/251063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanostructured substrates have been recognized to initiate transcriptional programs promoting cell proliferation. Specifically β-catenin has been identified as transcriptional regulator, activated by adhesion to nanostructures. We set out to identify processes responsible for nanostructure-induced endothelial β-catenin signaling. Transmission electron microscopy (TEM) of cell contacts to differently sized polyethylene terephthalate (PET) surface structures (ripples with 250 to 300 nm and walls with 1.5 μm periodicity) revealed different patterns of cell-substrate interactions. Cell adhesion to ripples occurred exclusively on ripple peaks, while cells were attached to walls continuously. The Src kinase inhibitor PP2 was active only in cells grown on ripples, while the Abl inhibitors dasatinib and imatinib suppressed β-catenin translocation on both structures. Moreover, Gd3+ sensitive Ca2+ entry was observed in response to mechanical stimulation or Ca2+ store depletion exclusively in cells grown on ripples. Both PP2 and Gd3+ suppressed β-catenin nuclear translocation along with proliferation in cells grown on ripples but not on walls. Our results suggest that adhesion of endothelial cells to ripple structured PET induces highly specific, interface topology-dependent changes in cellular signalling, characterized by promotion of Gd3+ -sensitive Ca2+ entry and Src/Abl activation. We propose that these signaling events are crucially involved in nanostructure-induced promotion of cell proliferation.
Collapse
Affiliation(s)
| | - Gerd Leitinger
- Department of Cell Biology, Histology and Embryology, Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University Graz, 8010 Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Sepp D. Kohlwein
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Bettina Reisinger
- Institute of Applied Physics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Ruxandra-A. Barb
- Institute of Applied Physics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Medical University Graz, 8010 Graz, Austria
| | - Johannes Heitz
- Institute of Applied Physics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Klaus Groschner
- Institute of Biophysics, Medical University Graz, 8010 Graz, Austria
| |
Collapse
|
492
|
Cagnet S, Faraldo MM, Kreft M, Sonnenberg A, Raymond K, Glukhova MA. Signaling events mediated by α3β1 integrin are essential for mammary tumorigenesis. Oncogene 2013; 33:4286-95. [PMID: 24077284 DOI: 10.1038/onc.2013.391] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022]
Abstract
The constitutive activation of β-catenin signaling in the mammary basal epithelial cell layer in transgenic K5ΔNβcat mice leads to basal-type tumor development. Integrins of the β1 family and integrin-mediated signaling events have an important role in breast tumor growth and progression. We show here that the deletion of α3β1 integrin, a major laminin receptor, from the basal layer of the mammary epithelium of K5ΔNβcat mice completely prevented the tumorigenesis induced by β-catenin signaling. Moreover, the depletion of α3β1 integrin from a spontaneously transformed mouse mammary basal epithelial cell line (MEC) prevented the cells from forming colonies in soft agar and greatly reduced tumor development in orthotopic grafts. Inhibition of the integrin signaling intermediates Rac1 or PAK1 (P21-activated Kinase 1) in MEC affected tumor cell growth in soft agar, whereas the expression of activated forms of these effectors in α3-depleted cells rescued the capacity of these cells to grow in non-adherent conditions. Similarly, the tumorigenic potential of α3-depleted cells was restored by the expression of activated PAK1, as assessed by orthotopic transplantation assay. In three-dimensional Matrigel culture, MEC survival and proliferation were affected by the depletion of α3β1 integrin, which also significantly decreased the activation of focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK). Our data suggest that the activation of signaling cascades downstream from α3β1 and involving the Rac1/PAK1 pathway, MAPK and JNK, promotes prosurvival and proproliferative signals required for the malignant growth of basal mammary epithelial cells, providing further insight into the molecular mechanisms underlying breast cancer initiation and progression.
Collapse
Affiliation(s)
- S Cagnet
- 1] Institut Curie, Centre de Recherche, Paris, France [2] Section de Recherche, UMR144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| | - M M Faraldo
- 1] Institut Curie, Centre de Recherche, Paris, France [2] Section de Recherche, UMR144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| | - M Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - K Raymond
- 1] Institut Curie, Centre de Recherche, Paris, France [2] Section de Recherche, UMR144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| | - M A Glukhova
- 1] Institut Curie, Centre de Recherche, Paris, France [2] Section de Recherche, UMR144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| |
Collapse
|
493
|
Mao Y, Kunapuli SP. Trypsin causes platelet activation independently of known protease-activated receptors. Thromb Haemost 2013; 110:1241-9. [PMID: 24030758 DOI: 10.1160/th13-03-0189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 08/09/2013] [Indexed: 11/05/2022]
Abstract
To identify a physiological agonist of PAR3, we used PAR4 null murine platelets, which were known to express only PAR3. In this study, we tested several proteases and found that trypsin, but not heat-inactivated trypsin, activated PAR4 null murine platelets. Even at high concentrations, trypsin caused shape change without increasing intracellular calcium levels in PAR4 null murine platelets. Consistent with this result, the Gq inhibitor YM-254890 had no effect on trypsin-induced shape change. However, trypsin-induced platelet shape change was abolished by either p160ROCK inhibitor, Y27632 or H1152. Furthermore, trypsin caused phosphorylation of myosin light chain (Thr18), but not Akt or Erk. Surprisingly, trypsin caused a similar shape change in PAR4-desensitised PAR3 null murine platelets as in PAR4null murine platelets, indicating that trypsin did not activate PAR3 to cause shape change. More interestingly, the Src family kinase (SFK) inhibitor PP2 abolished trypsin-induced, but not AYPGKF-induced, shape change. Hence, trypsin activated a novel signalling pathway through RhoA/p160ROCK and was regulated by SFKs. In conclusion, our study demonstrates a novel protease signalling pathway in platelets that is independent of PARs. This protease-induced novel signalling pathway regulates platelet shape change through SFKs and p160ROCK.
Collapse
Affiliation(s)
- Yingying Mao
- Satya P. Kunapuli, PhD, Department of Physiology, Temple University, 217MRS, 3420 N. Broad Street, Philadelphia, Pennsylvania 19140, USA, Tel.: +1 215 707 4615, Fax: +1 215 707 4003, E-mail:
| | | |
Collapse
|
494
|
Cheng C, Ansari MM, Cooper JA, Gong X. EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development 2013; 140:4237-45. [PMID: 24026120 DOI: 10.1242/dev.100727] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High refractive index and transparency of the eye lens require uniformly shaped and precisely aligned lens fiber cells. During lens development, equatorial epithelial cells undergo cell-to-cell alignment to form meridional rows of hexagonal cells. The mechanism that controls this morphogenesis from randomly packed cuboidal epithelial cells to highly organized hexagonal fiber cells remains unknown. In Epha2(-/-) mouse lenses, equatorial epithelial cells fail to form precisely aligned meridional rows; moreover, the lens fulcrum, where the apical tips of elongating epithelial cells constrict to form an anchor point before fiber cell differentiation and elongation at the equator, is disrupted. Phosphorylated Src-Y424 and cortactin-Y466, actin and EphA2 cluster at the vertices of wild-type hexagonal epithelial cells in organized meridional rows. However, phosphorylated Src and phosphorylated cortactin are not detected in disorganized Epha2(-/-) cells with altered F-actin distribution. E-cadherin junctions, which are normally located at the basal-lateral ends of equatorial epithelial cells and are diminished in newly differentiating fiber cells, become widely distributed in the apical, lateral and basal sides of epithelial cells and persist in differentiating fiber cells in Epha2(-/-) lenses. Src(-/-) equatorial epithelial cells also fail to form precisely aligned meridional rows and lens fulcrum. These results indicate that EphA2/Src signaling is essential for the formation of the lens fulcrum. EphA2 also regulates Src/cortactin/F-actin complexes at the vertices of hexagonal equatorial cells for cell-to-cell alignment. This mechanistic information explains how EphA2 mutations lead to disorganized lens cells that subsequently contribute to altered refractive index and cataracts in humans and mice.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
495
|
Jacquemet G, Green DM, Bridgewater RE, von Kriegsheim A, Humphries MJ, Norman JC, Caswell PT. RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex. ACTA ACUST UNITED AC 2013; 202:917-35. [PMID: 24019536 PMCID: PMC3776348 DOI: 10.1083/jcb.201302041] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)-dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT Manchester, England, UK
| | | | | | | | | | | | | |
Collapse
|
496
|
Costa P, Scales TME, Ivaska J, Parsons M. Integrin-specific control of focal adhesion kinase and RhoA regulates membrane protrusion and invasion. PLoS One 2013; 8:e74659. [PMID: 24040310 PMCID: PMC3767638 DOI: 10.1371/journal.pone.0074659] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/05/2013] [Indexed: 01/17/2023] Open
Abstract
Cell invasion through extracellular matrix (ECM) is a hallmark of the metastatic cascade. Cancer cells require adhesion to surrounding tissues for efficient migration to occur, which is mediated through the integrin family of receptors. Alterations in expression levels of β1 and β3 integrins have previously been reported in a number of human cancers. However, whether there are specific roles for these ubiquitous receptors in mediating cell invasion remains unclear. Here we demonstrate that loss of β1 but not β3 integrins leads to increased spread cell area and focal adhesion number in cells on 2D immobilized fibronectin. Increased adhesion numbers in β1 knockdown cells correlated with decreased cell migration on 2D surfaces. Conversely, cells depleted of β1 integrins showed increased migration speed on 3D cell-derived matrix as well as in 3D organotypic cultures and inverted invasion assays. This increased invasive potential was also seen in cells lacking β3 integrin but only in 3D cultures containing fibroblasts. Mechanistically, in situ analysis using FRET biosensors revealed that enhanced invasion in cells lacking β1 integrins was directly coupled with reduced activation of focal adhesion kinase (FAK) and the small GTPase RhoA resulting in formation of enhanced dynamic protrusions and increased invasion. These reductions in FAK-RhoA signal activationwere not detected in β3 knockdown cells under the same conditions. This data demonstrates a specific role for β1 integrins in the modulation of a FAK-RhoA-actomyosin signaling axis to regulate cell invasion through complex ECM environments.
Collapse
Affiliation(s)
- Patricia Costa
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Tim M. E. Scales
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
497
|
Miller NLG, Lawson C, Kleinschmidt EG, Tancioni I, Uryu S, Schlaepfer DD. A non-canonical role for Rgnef in promoting integrin-stimulated focal adhesion kinase activation. J Cell Sci 2013; 126:5074-85. [PMID: 24006257 DOI: 10.1242/jcs.135509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rgnef (also known as p190RhoGEF or ARHGEF28) is a Rho guanine-nucleotide-exchange factor (GEF) that binds focal adhesion kinase (FAK). FAK is recruited to adhesions and activated by integrin receptors binding to matrix proteins, such as fibronectin (FN). Canonical models place Rgnef downstream of integrin-FAK signaling in regulating Rho GTPase activity and cell movement. Herein, we establish a new, upstream role for Rgnef in enhancing FAK localization to early peripheral adhesions and promoting FAK activation upon FN binding. Rgnef-null mouse embryo fibroblasts (MEFs) exhibit defects in adhesion formation, levels of FAK phosphotyrosine (pY)-397 and FAK localization to peripheral adhesions upon re-plating on FN. Rgnef re-expression rescues these defects, but requires Rgnef-FAK binding. A mutation in the Rgnef pleckstrin homology (PH) domain inhibits adhesion formation, FAK localization, and FAK-Y397 and paxillin-Y118 phosphorylation without disrupting the Rgnef-FAK interaction. A GEF-inactive Rgnef mutant rescues FAK-Y397 phosphorylation and early adhesion localization, but not paxillin-Y118 phosphorylation. This suggests that, downstream of FN binding, paxillin-pY118 requires Rgnef GEF activity through a mechanism distinct from adhesion formation and FAK activation. These results support a scaffolding role for Rgnef in FAK localization and activation at early adhesions in a PH-domain-dependent but GEF-activity-independent manner.
Collapse
|
498
|
Dumaual CM, Steere BA, Walls CD, Wang M, Zhang ZY, Randall SK. Integrated analysis of global mRNA and protein expression data in HEK293 cells overexpressing PRL-1. PLoS One 2013; 8:e72977. [PMID: 24019887 PMCID: PMC3760866 DOI: 10.1371/journal.pone.0072977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The protein tyrosine phosphatase PRL-1 represents a putative oncogene with wide-ranging cellular effects. Overexpression of PRL-1 can promote cell proliferation, survival, migration, invasion, and metastasis, but the underlying mechanisms by which it influences these processes remain poorly understood. METHODOLOGY To increase our comprehension of PRL-1 mediated signaling events, we employed transcriptional profiling (DNA microarray) and proteomics (mass spectrometry) to perform a thorough characterization of the global molecular changes in gene expression that occur in response to stable PRL-1 overexpression in a relevant model system (HEK293). PRINCIPAL FINDINGS Overexpression of PRL-1 led to several significant changes in the mRNA and protein expression profiles of HEK293 cells. The differentially expressed gene set was highly enriched in genes involved in cytoskeletal remodeling, integrin-mediated cell-matrix adhesion, and RNA recognition and splicing. In particular, members of the Rho signaling pathway and molecules that converge on this pathway were heavily influenced by PRL-1 overexpression, supporting observations from previous studies that link PRL-1 to the Rho GTPase signaling network. In addition, several genes not previously associated with PRL-1 were found to be significantly altered by its expression. Most notable among these were Filamin A, RhoGDIα, SPARC, hnRNPH2, and PRDX2. CONCLUSIONS AND SIGNIFICANCE This systems-level approach sheds new light on the molecular networks underlying PRL-1 action and presents several novel directions for future, hypothesis-based studies.
Collapse
Affiliation(s)
- Carmen M. Dumaual
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Boyd A. Steere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Chad D. Walls
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephen K. Randall
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
499
|
Mukai A, Hashimoto N. Regulation of pre-fusion events: recruitment of M-cadherin to microrafts organized at fusion-competent sites of myogenic cells. BMC Cell Biol 2013; 14:37. [PMID: 23978243 PMCID: PMC3846853 DOI: 10.1186/1471-2121-14-37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/22/2013] [Indexed: 01/16/2023] Open
Abstract
Background Previous research indicates that the membrane ruffles and leading edge of lamellipodia of myogenic cells contain presumptive fusion sites. A micrometer-sized lipid raft (microraft) is organized at the presumptive fusion site of mouse myogenic cells in a cell-contact independent way and serves as a platform tethering adhesion proteins that are relevant to cell fusion. However, the mechanisms underlying recruitment of adhesion proteins to lipid rafts and microraft organization remain unknown. Results Here we show that small G-protein Rac1 was required for microraft organization and subsequent cell fusion. However, Rac1 activity was unnecessary for recruitment of M-cadherin to lipid rafts. We found that p120 catenin (p120) binds to M-cadherin exclusively in lipid rafts of differentiating myogenic cells. The Src kinase inhibitor SU6656 prevented p120 binding to M-cadherin and their recruitment to lipid rafts, then suppressed microraft organization, membrane ruffling, and myogenic cell fusion. Suppression of membrane ruffling in SU6656-treated cells was partially restored by pretreatment with the protein tyrosine phosphatase inhibitor vanadate. The present analyses using an antibody to tyrosine phosphorylated p120 suggest that Src family kinases play a role in binding of p120 to M-cadherin and the recruitment of M-cadherin to lipid rafts through phosphorylation of putative substrates other than p120. Conclusions The present study showed that the procedure establishing fusion-competent sites consists of two sequential events: recruitment of adhesion complexes to lipid rafts and organization of microrafts. The recruitment of M-cadherin to lipid rafts depended on interaction with p120 catenin, whereas the organization of microrafts was controlled by a small G protein, Rac1.
Collapse
Affiliation(s)
- Atsushi Mukai
- Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522, Japan.
| | | |
Collapse
|
500
|
Yentrapalli R, Azimzadeh O, Sriharshan A, Malinowsky K, Merl J, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Becker KF, Haghdoost S, Tapio S. The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS One 2013; 8:e70024. [PMID: 23936371 PMCID: PMC3731291 DOI: 10.1371/journal.pone.0070024] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/20/2013] [Indexed: 11/18/2022] Open
Abstract
The etiology of radiation-induced cardiovascular disease (CVD) after chronic exposure to low doses of ionizing radiation is only marginally understood. We have previously shown that a chronic low-dose rate exposure (4.1 mGy/h) causes human umbilical vein endothelial cells (HUVECs) to prematurely senesce. We now show that a dose rate of 2.4 mGy/h is also able to trigger premature senescence in HUVECs, primarily indicated by a loss of growth potential and the appearance of the senescence-associated markers ß-galactosidase (SA-ß-gal) and p21. In contrast, a lower dose rate of 1.4 mGy/h was not sufficient to inhibit cellular growth or increase SA-ß-gal-staining despite an increased expression of p21. We used reverse phase protein arrays and triplex Isotope Coded Protein Labeling with LC-ESI-MS/MS to study the proteomic changes associated with chronic radiation-induced senescence. Both technologies identified inactivation of the PI3K/Akt/mTOR pathway accompanying premature senescence. In addition, expression of proteins involved in cytoskeletal structure and EIF2 signaling was reduced. Age-related diseases such as CVD have been previously associated with increased endothelial cell senescence. We postulate that a similar endothelial aging may contribute to the increased rate of CVD seen in populations chronically exposed to low-dose-rate radiation.
Collapse
Affiliation(s)
- Ramesh Yentrapalli
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Arundhathi Sriharshan
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | | | - Juliane Merl
- Research Unit Protein Science, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mats Harms-Ringdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michael J. Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- * E-mail:
| |
Collapse
|