451
|
Dong G, Wang L, Du X, Potenza MN. Gender-related differences in neural responses to gaming cues before and after gaming: implications for gender-specific vulnerabilities to Internet gaming disorder. Soc Cogn Affect Neurosci 2019; 13:1203-1214. [PMID: 30272247 PMCID: PMC6234325 DOI: 10.1093/scan/nsy084] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
Backgrounds More males than females play video games and develop problems with gaming. However, little is known regarding how males and females who game on the Internet may differ with respect to neural responses to gaming cues. Methods Behavioral and functional magnetic resonance imaging (fMRI) data were recorded from 40 female and 68 male Internet gamers. This study included three components including participation in a pre-gaming cue-craving task, 30 min of online gaming and a post-gaming cue-elicited-craving task. Group differences were examined at pre-gaming, post-gaming and post- vs pre-gaming times. Correlations between brain responses and behavioral performance were calculated. Results Gaming-related cues elicited higher cravings in male vs female subjects. Prior to gaming, males demonstrated greater activations in the striatum, orbitofrontal cortex (OFC), inferior frontal cortex and bilateral declive. Following gaming, male subjects demonstrated greater activations in the medial frontal gyrus and bilateral middle temporal gyri. In a post–pre comparison, male subjects demonstrated greater thalamic activation than did female subjects. Conclusions Short-term gaming elicited in males vs females more craving-related activations to gaming cues. These results suggest neural mechanisms for why males may be more vulnerable than females in developing Internet gaming disorder.
Collapse
Affiliation(s)
- Guangheng Dong
- School of Psychology, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Lingxiao Wang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Marc N Potenza
- Department of Psychiatry, Department of Neuroscience, Child Study Center, and National Center on Addiction and Substance Abuse, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
452
|
ELP1 Splicing Correction Reverses Proprioceptive Sensory Loss in Familial Dysautonomia. Am J Hum Genet 2019; 104:638-650. [PMID: 30905397 DOI: 10.1016/j.ajhg.2019.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a splice mutation in Elongator complex protein 1 (ELP1, also known as IKBKAP); this mutation leads to variable skipping of exon 20 and to a drastic reduction of ELP1 in the nervous system. Clinically, many of the debilitating aspects of the disease are related to a progressive loss of proprioception; this loss leads to severe gait ataxia, spinal deformities, and respiratory insufficiency due to neuromuscular incoordination. There is currently no effective treatment for FD, and the disease is ultimately fatal. The development of a drug that targets the underlying molecular defect provides hope that the drastic peripheral neurodegeneration characteristic of FD can be halted. We demonstrate herein that the FD mouse TgFD9;IkbkapΔ20/flox recapitulates the proprioceptive impairment observed in individuals with FD, and we provide the in vivo evidence that postnatal correction, promoted by the small molecule kinetin, of the mutant ELP1 splicing can rescue neurological phenotypes in FD. Daily administration of kinetin starting at birth improves sensory-motor coordination and prevents the onset of spinal abnormalities by stopping the loss of proprioceptive neurons. These phenotypic improvements correlate with increased amounts of full-length ELP1 mRNA and protein in multiple tissues, including in the peripheral nervous system (PNS). Our results show that postnatal correction of the underlying ELP1 splicing defect can rescue devastating disease phenotypes and is therefore a viable therapeutic approach for persons with FD.
Collapse
|
453
|
Expression of aggressiveness modulates mesencephalic c-fos activation during a social interaction test in Japanese quail (Coturnix japonica). Behav Brain Res 2019; 367:221-229. [PMID: 30951752 DOI: 10.1016/j.bbr.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/13/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023]
Abstract
It is well known that during a social conflict, interactions are dependent on the animal's propensity to behave aggressively as well as the behavior of the opponent. However, discriminating between these two confounding factors was difficult. Recently, a Social Interaction (SI) test using photocastrated males as non-aggressive stimuli was proposed as a useful tool to evaluate aggressiveness. The avian Intercollicular- Griseum centralis complex (comparable to mammalian periaqueductal gray) has been reported as a crucial node in the descending pathways that organize behavioral and autonomic aspects of defensive responses and aggressiveness. Herein, using the SI test, we evaluated whether mesencephalic areas are activated (expressed c-fos) when photostimulated adult males are confronted with non-responsive (non-aggressive) opponents. Furthermore, we also examined whether mesencephalic activation is related to male performance during the SI test (i.e., aggressive vs. non-aggressive males) in birds reared in enriched or in standard environments. Five mesencephalic areas at two anatomic levels (intermediate and rostral) and locomotion during SI testing were studied. Aggressive males showed increased c-fos expression in all areas studied, and moved at faster speeds in comparison to their non-aggressive and control counterparts. Non-aggressive males and the test controls showed similar c-fos labeling. In general, rearing condition did not appear to influence c-fos expression nor behavior during the SI test. Findings suggest that mesencephalic activation is involved when males are actively expressing aggressive behaviors. This overall phenomenon is shown regardless of both the environmental stimuli provided during the birds´ rearing and the potentially stressful stimuli during the SI trial.
Collapse
|
454
|
|
455
|
Structure and function of the mesencephalic locomotor region in normal and parkinsonian primates. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
456
|
Teixeira-Machado L, DeSantana JM. Effect of dance on lower-limb range of motion in young people with cerebral palsy: a blinded randomized controlled clinical trial. ADOLESCENT HEALTH MEDICINE AND THERAPEUTICS 2019; 10:21-28. [PMID: 30988649 PMCID: PMC6441460 DOI: 10.2147/ahmt.s177867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose One of the most limiting conditions in cerebral palsy (CP) is the impairment in musculoskeletal mobility. CP may impair the ability to perform efficient movements. The aim of this trial was to investigate the effect of dance on the range of motion (ROM) of lower limbs in young people with CP. Patients and methods the randomized clinical trial consisted of two groups: dance group (DG) and control group (CG). Both of them underwent a 1-hour treatment, twice a week, for 2 months. Sanny® pendulum fleximeter was used to measure ROM in pre- and posttreatment. The applied procedures in both groups were conducted at suitable locations. Twenty-six participants were allocated to these two groups of study. Results In DG, the sampling variances showed improvements in all lower limb joints and axes of movements (P<0.05). In CG, there was increase in passive ROM in some lower limb joints (P≤0.05). Conclusion Physical intervention is imperative to improve ROM. It seems dance practice can contribute to CP corporal mobility in a positive way. Clinical trial number Nº CAAE-06154012.4.0000.0058-12, number 98.993.
Collapse
Affiliation(s)
| | - Josimari M DeSantana
- Department of Physical Therapy, Graduate Program Physiological Sciences, Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, SE, Brasil
| |
Collapse
|
457
|
de Carvalho Cartágenes S, Fernandes LMP, Carvalheiro TCVS, de Sousa TM, Gomes ARQ, Monteiro MC, de Oliveira Paraense RS, Crespo-López ME, Lima RR, Fontes-Júnior EA, Prediger RD, Maia CSF. "Special K" Drug on Adolescent Rats: Oxidative Damage and Neurobehavioral Impairments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5452727. [PMID: 31001375 PMCID: PMC6437740 DOI: 10.1155/2019/5452727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/19/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Ketamine is used in clinical practice as an anesthetic that pharmacologically modulates neurotransmission in postsynaptic receptors, such as NMDA receptors. However, widespread recreational use of ketamine in "party drug" worldwide since the 1990s quickly spread to the Asian orient region. Thus, this study aimed at investigating the behavioral and oxidative effects after immediate withdrawal of intermittent administration of ketamine in adolescent female rats. For this, twenty female Wistar rats were randomly divided into two groups: control and ketamine group (n = 10/group). Animals received ketamine (10 mg/kg/day) or saline intraperitoneally for three consecutive days. Three hours after the last administration, animals were submitted to open field, elevated plus-maze, forced swim tests, and inhibitory avoidance paradigm. Twenty-four hours after behavioral tests, the blood and hippocampus were collected for the biochemical analyses. Superoxide dismutase, catalase, nitrite, and lipid peroxidation (LPO) were measured in the blood samples. Nitrite and LPO were measured in the hippocampus. The present findings demonstrate that the early hours of ketamine withdrawal induced oxidative biochemistry unbalance in the blood samples, with elevated levels of nitrite and LPO. In addition, we showed for the first time that ketamine withdrawal induced depressive- and anxiety-like profile, as well as short-term memory impairment in adolescent rodents. The neurobehavioral deficits were accompanied by the hippocampal nitrite and LPO-elevated levels.
Collapse
Affiliation(s)
- Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - Thais Miranda de Sousa
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Antônio Rafael Quadros Gomes
- Laboratory of Microbiology and Immunology of Teaching and Research, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Marta Chagas Monteiro
- Laboratory of Microbiology and Immunology of Teaching and Research, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | | | - Maria Elena Crespo-López
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rui Daniel Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
458
|
Purcell NL, Goldman JG, Ouyang B, Bernard B, O'Keefe JA. The Effects of Dual-Task Cognitive Interference and Environmental Challenges on Balance in Huntington's Disease. Mov Disord Clin Pract 2019; 6:202-212. [PMID: 30949551 PMCID: PMC6417749 DOI: 10.1002/mdc3.12720] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is characterized by chorea, balance and gait impairments, and cognitive deficits, which increase fall risk. Dual task (DT) and environmentally challenging paradigms reflect balance related to everyday life. Furthermore, the impact of cognitive deficits on balance dysfunction and falls in HD is unknown. OBJECTIVE To determine the impact of DT interference, sensory feedback, and cognitive performance on balance and falls in HD. METHODS Seventeen participants with HD (55 ± 9.7 years) and 17 age-matched controls (56.5 ± 9.3 years) underwent quantitative balance testing with APDM inertial sensors. Postural sway was assessed during conditions of manipulated stance, vision, proprioception, and cognitive demand. The DT was a concurrent verbal fluency task. Neuropsychological assessments testing multiple cognitive domains were also administered. RESULTS HD participants exhibited significantly greater total sway area, jerk, and variability under single-task (ST) and DT conditions compared to controls (P = 0.0002 - < 0.0001). They also demonstrated greater DT interference with vision removed for total sway area (P = 0.01) and variability (P = 0.02). Significantly worse postural control was observed in HD with vision removed and reduced proprioception (P = 0.001 - 0.01). Decreased visuospatial performance correlated with greater total sway and jerk (P = 0.01; 0.009). No balance parameters correlated with retrospective falls in HD. CONCLUSIONS HD participants have worse postural control under DT, limited proprioception/vision, and greater DT interference with a narrowed base and no visual input. These findings may have implications for designing motor and cognitive strategies to improve balance in HD.
Collapse
Affiliation(s)
| | - Jennifer G. Goldman
- Department of Neurological Sciences, Section of Parkinson Disease and Movement DisordersRush University Medical CenterChicagoILUSA
| | - Bichun Ouyang
- Department of Neurological Sciences, Section of Parkinson Disease and Movement DisordersRush University Medical CenterChicagoILUSA
| | - Bryan Bernard
- Department of Neurological Sciences, Section of Parkinson Disease and Movement DisordersRush University Medical CenterChicagoILUSA
| | - Joan A. O'Keefe
- Department of Cell and Molecular MedicineRush University Medical CenterChicagoILUSA
- Department of Neurological Sciences, Section of Parkinson Disease and Movement DisordersRush University Medical CenterChicagoILUSA
| |
Collapse
|
459
|
Haruyama K, Kasai K, Makino R, Hoshi F, Nishihara K. Quantification of trunk segmental coordination and head stability in laterally unstable sitting identifies aging and cerebellar ataxia. Clin Biomech (Bristol, Avon) 2019; 63:127-133. [PMID: 30889431 DOI: 10.1016/j.clinbiomech.2019.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 11/05/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND We quantified trunk segmental coordination and head stability in unstable sitting and investigated whether it can discriminate postural control, age-related differences and presence of coordination disorder. METHODS Subjects were a healthy younger group (n = 7), a healthy elderly group (n = 7), and a cerebellar ataxia group (n = 8). The motion sensors and surface electrodes were located on the trunk and/or head segments to measure angle displacements, acceleration and electromyograms in unstable sitting during a lateral tilt task. Trunk lateral angle cross-correlation and electromyogram cross-correlation for the trunk segmental coordination, head root mean square (RMS) for the head stability, clinical performance scales, and gait parameters (velocity, coefficient of variation, and RMS ratio) were analyzed. FINDINGS Trunk lateral angle cross-correlation showed a significantly negative correlation in the healthy younger group compared with the two other groups (p < 0.01). Head RMS showed a significantly larger value in the cerebellar ataxia group compared with the two other groups (p < 0.01). Trunk lateral angle cross-correlation had moderate correlation with the clinical performance scale of ataxia and gait parameters; however, it was not correlated with head RMS. Classification using trunk lateral angle cross-correlation and head RMS was validated by discriminant analysis and hierarchical cluster analysis. INTERPRETATION We found that trunk lateral angle cross-correlation reflected age-related differences and head RMS characterized the pathology of cerebellar ataxia. Trunk segmental coordination and head stability, as two aspects of sitting postural control, can be used to discriminate the degree of aging and cerebellar ataxia.
Collapse
Affiliation(s)
- Koshiro Haruyama
- Department of Rehabilitation Medicine, Higashisaitama National Hospital, Saitama, Japan; Department of Physical Therapy, Saitama Prefectural University, Saitama, Japan.
| | - Kenji Kasai
- Department of Physical Therapy, Saitama Prefectural Rehabilitation Center, Saitama, Japan; Department of Physical Therapy, Saitama Prefectural University, Saitama, Japan
| | - Ryohei Makino
- Department of Physical Therapy, Saitama Prefectural Rehabilitation Center, Saitama, Japan; Department of Physical Therapy, Saitama Prefectural University, Saitama, Japan
| | - Fumihiko Hoshi
- Department of Physical Therapy, Saitama Prefectural University, Saitama, Japan
| | - Ken Nishihara
- Department of Physical Therapy, Saitama Prefectural University, Saitama, Japan
| |
Collapse
|
460
|
Parrell B, Lammert AC, Ciccarelli G, Quatieri TF. Current models of speech motor control: A control-theoretic overview of architectures and properties. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1456. [PMID: 31067944 DOI: 10.1121/1.5092807] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
This paper reviews the current state of several formal models of speech motor control, with particular focus on the low-level control of the speech articulators. Further development of speech motor control models may be aided by a comparison of model attributes. The review builds an understanding of existing models from first principles, before moving into a discussion of several models, showing how each is constructed out of the same basic domain-general ideas and components-e.g., generalized feedforward, feedback, and model predictive components. This approach allows for direct comparisons to be made in terms of where the models differ, and their points of agreement. Substantial differences among models can be observed in their use of feedforward control, process of estimating system state, and method of incorporating feedback signals into control. However, many commonalities exist among the models in terms of their reliance on higher-level motor planning, use of feedback signals, lack of time-variant adaptation, and focus on kinematic aspects of control and biomechanics. Ongoing research bridging hybrid feedforward/feedback pathways with forward dynamic control, as well as feedback/internal model-based state estimation, is discussed.
Collapse
Affiliation(s)
- Benjamin Parrell
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Adam C Lammert
- Bioengineering Systems & Technologies, MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA
| | - Gregory Ciccarelli
- Bioengineering Systems & Technologies, MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA
| | - Thomas F Quatieri
- Bioengineering Systems & Technologies, MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA
| |
Collapse
|
461
|
Ward BK, Zee DS, Roberts DC, Schubert MC, Pérez-Fernández N, Otero-Millan J. Visual Fixation and Continuous Head Rotations Have Minimal Effect on Set-Point Adaptation to Magnetic Vestibular Stimulation. Front Neurol 2019; 9:1197. [PMID: 30723456 PMCID: PMC6349782 DOI: 10.3389/fneur.2018.01197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Strong static magnetic fields such as those in an MRI machine can induce sensations of self-motion and nystagmus. The proposed mechanism is a Lorentz force resulting from the interaction between strong static magnetic fields and ionic currents in the inner ear endolymph that causes displacement of the semicircular canal cupulae. Nystagmus persists throughout an individual's exposure to the magnetic field, though its slow-phase velocity partially declines due to adaptation. After leaving the magnetic field an after effect occurs in which the nystagmus and sensations of rotation reverse direction, reflecting the adaptation that occurred while inside the MRI. However, the effects of visual fixation and of head shaking on this early type of vestibular adaptation are unknown. Methods: Three-dimensional infrared video-oculography was performed in six individuals just before, during (5, 20, or 60 min) and after (4, 15, or 20 min) lying supine inside a 7T MRI scanner. Trials began by entering the magnetic field in darkness followed 60 s later, either by light with visual fixation and head still, or by continuous yaw head rotations (2 Hz) in either darkness or light with visual fixation. Subjects were always placed in darkness 10 or 30 s before exiting the bore. In control conditions subjects remained in the dark with the head still for the entire duration. Results: In darkness with head still all subjects developed horizontal nystagmus inside the magnetic field, with slow-phase velocity partially decreasing over time. An after effect followed on exiting the magnet, with nystagmus in the opposite direction. Nystagmus was suppressed during visual fixation; however, after resuming darkness just before exiting the magnet, nystagmus returned with velocity close to the control condition and with a comparable after effect. Similar after effects occurred with continuous yaw head rotations while in the scanner whether in darkness or light. Conclusions: Visual fixation and sustained head shaking either in the dark or with fixation inside a strong static magnetic field have minimal impact on the short-term mechanisms that attempt to null unwanted spontaneous nystagmus when the head is still, so called VOR set-point adaptation. This contrasts with the critical influence of vision and slippage of images on the retina on the dynamic (gain and direction) components of VOR adaptation.
Collapse
Affiliation(s)
- Bryan K Ward
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, MD, United States
| | - David S Zee
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Ophthalmology, The Johns Hopkins University, Baltimore, MD, United States
| | - Dale C Roberts
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States
| | - Michael C Schubert
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, MD, United States.,Department of Physical Medicine and Rehabilitation, The Johns Hopkins University, Baltimore, MD, United States
| | | | - Jorge Otero-Millan
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
462
|
Acupuncture Enhances Communication between Cortices with Damaged White Matters in Poststroke Motor Impairment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4245753. [PMID: 30719060 PMCID: PMC6334314 DOI: 10.1155/2019/4245753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022]
Abstract
Stroke is a leading cause of motor disability. Acupuncture is an effective therapeutic strategy for poststroke motor impairment. However, its mechanism is still elusive. Twenty-two stroke patients having a right-hemispheric subcortical infarct and 22 matched healthy controls were recruited to undergo diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) scanning. The resting-state fMRI was implemented before and after needling at GB34 (Yanglingquan). The stroke patients presented a substantially reduced fractional anisotropy value in the right superior longitudinal fasciculus (SLF), corticospinal tract, and corpus callosum. The structural integrity of the frontoparietal part of the SLF (SLF-FP) correlated with the motor scores of lower limbs in stroke patients. This corticocortical association bundle originated from the premotor cortex (PM) and the adjacent supplementary motor area (SMA), known as secondary motor areas, and terminated in the supramarginal gyrus (SMG). After acupuncture intervention, the corresponding functional connectivity between the PM/SMA and SMG was enhanced in stroke patients compared with healthy controls. These findings suggested that the integrity of the SLF is a potential neuroimaging biomarker for motor disability of lower limbs following a stroke. Acupuncture could increase the communication between the cortices connected by the impaired white matter tracts, implying the neural mechanism underlying the acupuncture intervention.
Collapse
|
463
|
Ausborn J, Shevtsova NA, Caggiano V, Danner SM, Rybak IA. Computational modeling of brainstem circuits controlling locomotor frequency and gait. eLife 2019; 8:43587. [PMID: 30663578 PMCID: PMC6355193 DOI: 10.7554/elife.43587] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/19/2019] [Indexed: 01/05/2023] Open
Abstract
A series of recent studies identified key structures in the mesencephalic locomotor region and the caudal brainstem of mice involved in the initiation and control of slow (exploratory) and fast (escape-type) locomotion and gait. However, the interactions of these brainstem centers with each other and with the spinal locomotor circuits are poorly understood. Previously we suggested that commissural and long propriospinal interneurons are the main targets for brainstem inputs adjusting gait (Danner et al., 2017). Here, by extending our previous model, we propose a connectome of the brainstem-spinal circuitry and suggest a mechanistic explanation of the operation of brainstem structures and their roles in controlling speed and gait. We suggest that brainstem control of locomotion is mediated by two pathways, one controlling locomotor speed via connections to rhythm generating circuits in the spinal cord and the other providing gait control by targeting commissural and long propriospinal interneurons.
Collapse
Affiliation(s)
- Jessica Ausborn
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, United States
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, United States
| | | | - Simon M Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, United States
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, United States
| |
Collapse
|
464
|
Di Scala G, Dupuy M, Guillaud E, Doat E, Barse E, Dillhareguy B, Jean FAM, Audiffren M, Cazalets JR, Chanraud S. Efficiency of Sensorimotor Networks: Posture and Gait in Young and Older Adults. Exp Aging Res 2019; 45:41-56. [PMID: 30633644 DOI: 10.1080/0361073x.2018.1560108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background/Study context: Posture and gait are complex sensorimotor functions affected by age. These difficulties are particularly apparent when performing cognitively demanding tasks. Characterizing the functional organization of brain networks involved in these associations remains a challenge because of the incompatibility of brain imagery techniques with gross body movements. The present study aimed at testing whether resting-state functional connectivity of sensorimotor networks is associated with posture and gait performance recorded offline, in young and older adults. METHODS Young (n = 12, mean = 24.1 y/o) and older (n = 14, mean = 65.6 y/o) healthy adults were tested for stability of their posture and gait. Four hours later, anatomical and functional brain imaging data were collected with Magnetic Resonance Imaging (MRI). Bilateral precentral and postcentral gyri were used as seeds in a graph theory analysis focused on global and local efficiency. The possible association between these data and posture and gait performance was examined. RESULTS Both samples presented similar sensorimotor graphs, but with different global and local efficiencies (small world properties). The association between the networks' graph measures and posture and gait performance also differed across groups: local efficiency was correlated with gait stability in challenging conditions in older adults, but not in young adults. CONCLUSION This exploratory study suggests that combining analyses of functional networks and offline body movement may provide important information about motor function. In older adults, the association between graph properties of the sensorimotor network and gait performance in challenging conditions may be indicative of compensatory processes. Prospective studies involving more subjects with a larger age range are warranted.
Collapse
Affiliation(s)
- G Di Scala
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - M Dupuy
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - E Guillaud
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - E Doat
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - E Barse
- b École Pratique des Hautes Études (EPHE), PSL Research University , Paris , France
| | - B Dillhareguy
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - F A M Jean
- c Centre Hospitalier Charles Perrens , Bordeaux , France
| | - M Audiffren
- d Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA), CNRS-UMR 7295, Université de Poitiers, Université François Rabelais de Tours , Poitiers , France
| | - J R Cazalets
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - S Chanraud
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France.,b École Pratique des Hautes Études (EPHE), PSL Research University , Paris , France
| |
Collapse
|
465
|
Al-Yahya E, Mahmoud W, Meester D, Esser P, Dawes H. Neural Substrates of Cognitive Motor Interference During Walking; Peripheral and Central Mechanisms. Front Hum Neurosci 2019; 12:536. [PMID: 30687049 PMCID: PMC6333849 DOI: 10.3389/fnhum.2018.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
Current gait control models suggest that independent locomotion depends on central and peripheral mechanisms. However, less information is available on the integration of these mechanisms for adaptive walking. In this cross-sectional study, we investigated gait control mechanisms in people with Parkinson’s disease (PD) and healthy older (HO) adults: at self-selected walking speed (SSWS) and at fast walking speed (FWS). We measured effect of additional cognitive task (DT) and increased speed on prefrontal (PFC) and motor cortex (M1) activation, and Soleus H-reflex gain. Under DT-conditions we observed increased activation in PFC and M1. Whilst H-reflex gain decreased with additional cognitive load for both groups and speeds, H-reflex gain was lower in PD compared to HO while walking under ST condition at SSWS. Attentional load in PFC excites M1, which in turn increases inhibition on H-reflex activity during walking and reduces activity and sensitivity of peripheral reflex during the stance phase of gait. Importantly this effect on sensitivity was greater in HO. We have previously observed that the PFC copes with increased attentional load in young adults with no impact on peripheral reflexes and we suggest that gait instability in PD may in part be due to altered sensorimotor functioning reducing the sensitivity of peripheral reflexes.
Collapse
Affiliation(s)
- Emad Al-Yahya
- School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan.,Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Wala' Mahmoud
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Institute for Clinical Psychology and Behavioural Neurobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Daan Meester
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Patrick Esser
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Faculty of Health and Life Sciences, Centre for Movement, Occupational and Rehabilitation Sciences, OxINMAHR, Oxford Brookes University, Oxford, United Kingdom
| | - Helen Dawes
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Faculty of Health and Life Sciences, Centre for Movement, Occupational and Rehabilitation Sciences, OxINMAHR, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
466
|
Ghosh S. Improvement of gait and balance by non-invasive brain stimulation: its use in rehabilitation. Expert Rev Neurother 2019; 19:133-144. [DOI: 10.1080/14737175.2019.1564042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Soumya Ghosh
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Australia
| |
Collapse
|
467
|
Matias Júnior I, Medeiros P, de Freita RL, Vicente-César H, Ferreira Junior JR, Machado HR, Menezes-Reis R. Effective Parameters for Gait Analysis in Experimental Models for Evaluating Peripheral Nerve Injuries in Rats. Neurospine 2019; 16:305-316. [PMID: 30653907 PMCID: PMC6603843 DOI: 10.14245/ns.1836080.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022] Open
Abstract
Objective Chronic constriction injury (CCI) of the sciatic nerve is a peripheral nerve injury widely used to induce mononeuropathy. This study used machine learning methods to identify the best gait analysis parameters for evaluating peripheral nerve injuries.
Methods Twenty-eight male Wistar rats (weighing 270±10 g), were used in the present study and divided into the following 4 groups: CCI with 4 ligatures around the sciatic nerve (CCI-4L; n=7), a modified CCI model with 1 ligature (CCI-1L; n=7), a sham group (n=7), and a healthy control group (n=7). All rats underwent gait analysis 7 and 28 days postinjury. The data were evaluated using Kinovea and WeKa software (machine learning and neural networks).
Results In the machine learning analysis of the experimental groups, the pre-swing (PS) angle showed the highest ranking in all 3 analyses (sensitivity, specificity, and area under the receiver operating characteristics curve using the Naive Bayes, k-nearest neighbors, radial basis function classifiers). Initial contact (IC), step length, and stride length also performed well. Between 7 and 28 days after injury, there was an increase in the total course time, step length, stride length, stride speed, and IC, and a reduction in PS and IC-PS. Statistically significant differences were found between the control group and experimental groups for all parameters except speed. Interactions between time after injury and nerve injury type were only observed for IC, PS, and IC-PS.
Conclusion PS angle of the ankle was the best gait parameter for differentiating nonlesions from nerve injuries and different levels of injury.
Collapse
Affiliation(s)
- Ivair Matias Júnior
- Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Priscila Medeiros
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavioural Sciences, Neurology Division, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Renato Leonardo de Freita
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, Brazil.,Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, Minas Gerais, Brazil
| | - Hilton Vicente-César
- Center of Imaging Sciences and Medical Physics, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - José Raniery Ferreira Junior
- Center of Imaging Sciences and Medical Physics, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Hélio Rubens Machado
- Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael Menezes-Reis
- Center of Imaging Sciences and Medical Physics, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Department of Biomechanics, Medicine, and Rehabilitation of Locomotor Apparatus, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
468
|
El Shemy SA. Effect of Treadmill Training With Eyes Open and Closed on Knee Proprioception, Functional Balance and Mobility in Children With Spastic Diplegia. Ann Rehabil Med 2018; 42:854-862. [PMID: 30613079 PMCID: PMC6325311 DOI: 10.5535/arm.2018.42.6.854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/15/2018] [Indexed: 01/14/2023] Open
Abstract
Objective To investigate the effect of treadmill training with eyes open (TEO) and closed (TEC) on the knee joint position sense (JPS), functional balance and mobility in children with spastic diplegia. Methods Forty-five children with spastic diplegia aged 11–13 years participated in this study. They were randomly assigned to three groups of equal number. The control group (CON) underwent designed physical therapy program whereas, the study groups (TEO and TEC) underwent the same program, in addition to treadmill gait training with eyes open and closed, respectively. Outcome measures were the degree of knee joint position error, functional balance and mobility. Measurements were taken before and after 12 weeks of intervention. Results After training, the three groups showed statistically significant improvement in all measured outcomes, compared to the baseline with non-significant change in the knee JPS in the CON group. When comparing posttreatment results, the TEC group showed greater significant improvement in all measured outcomes, than the TEO and CON groups. Conclusion Treadmill training with eyes open and closed is effective in rehabilitation of children with diplegia, but blocked vision treadmill training has more beneficial effect.
Collapse
Affiliation(s)
- Samah Attia El Shemy
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
469
|
Raffegeau TE, Krehbiel LM, Kang N, Thijs FJ, Altmann LJP, Cauraugh JH, Hass CJ. A meta-analysis: Parkinson's disease and dual-task walking. Parkinsonism Relat Disord 2018; 62:28-35. [PMID: 30594454 DOI: 10.1016/j.parkreldis.2018.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
A growing body of literature has reported the effects of dual tasks on gait performance in people with Parkinson's disease (PD). The purpose of this meta-analysis was to synthesize the existing literature and quantify the overall influence of dual tasks on gait performance in PD. A thorough literature search was conducted, and 19 studies met the stringent inclusion criteria. Two moderator variable analyses examined the dual-task effect by: (a) mean single-task gait speed for each study (≥1.1 m/s or < 1.1 m/s), and (b) the type of dual task (arithmetic, language, memory, and motor). Three main findings were revealed by a random effects model analysis. First, a strong negative effect of dual tasks on walking performance (SMD = -0.68) confirmed that gait performance is adversely affected by dual tasks in people with PD. Second, the significant negative effect of dual tasks is present regardless of the mean level of single-task gait speed in a study. Third, dual-task walking speed deteriorates regardless of the type of dual task. Together, these results confirm that dual tasks severely affect walking performances in people with PD.
Collapse
Affiliation(s)
- Tiphanie E Raffegeau
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Lisa M Krehbiel
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Nyeonju Kang
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA; Division of Sport Science & Sport Science Institute, Incheon National University, Seoul, South Korea
| | - Frency J Thijs
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Lori J P Altmann
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - James H Cauraugh
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Applied Physiology and Kinesiology Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
470
|
Stem Cell Transplantation and Physical Exercise in Parkinson's Disease, a Literature Review of Human and Animal Studies. Stem Cell Rev Rep 2018; 14:166-176. [PMID: 29270820 DOI: 10.1007/s12015-017-9798-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The absence of effective and satisfactory treatments that contribute to repairing the dopaminergic damage caused by Parkinson's Disease (PD) and the limited recovery capacity of the nervous system are troubling issues and the focus of many research and clinical domains. Recent advances in the treatment of PD through stem cell (SC) therapy have recognized their promising restorative and neuroprotective effects that are implicated in the potentiation of endogenous mechanisms of repair and contribute to functional locomotor improvement. Physical exercise (PE) has been considered an adjuvant intervention that by itself induces beneficial effects in patients and animal models with Parkinsonism. In this sense, the combination of both therapies could provide synergic or superior effects for motor recovery, in contrast with their individual use. This review aims to provide an update on recent progress and the potential effectiveness of SC transplantation and PE for the treatment of locomotor deficits in PD. It has reviewed the neuropathological pathways involved in the classical motor symptoms of this condition and the mechanisms of action described in experimental studies that are associated with locomotor enhancement through exercise, cellular transplantation, and their union in some neurodegenerative conditions.
Collapse
|
471
|
Albin RL, Surmeier DJ, Tubert C, Sarter M, Müller ML, Bohnen NI, Dauer WT. Targeting the pedunculopontine nucleus in Parkinson's disease: Time to go back to the drawing board. Mov Disord 2018; 33:1871-1875. [PMID: 30398673 PMCID: PMC6448144 DOI: 10.1002/mds.27540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Roger L. Albin
- Neurology Service & GRECC, VAAAHS GRECC, Ann Arbor, MI, 48105, USA
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, 48109, USA
| | - D. James Surmeier
- Dept. of Physiology, Northwestern University, Chicago, IL, 60611, USA
- Northwestern University Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Chicago, IL, 60611, USA
| | - Cecilia Tubert
- Dept. of Physiology, Northwestern University, Chicago, IL, 60611, USA
| | - Martin Sarter
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, 48109, USA
- Dept. of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Martijn L.T.M. Müller
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, 48109, USA
- Dept of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolaas I. Bohnen
- Neurology Service & GRECC, VAAAHS GRECC, Ann Arbor, MI, 48105, USA
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, 48109, USA
- Dept of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - William T. Dauer
- Neurology Service & GRECC, VAAAHS GRECC, Ann Arbor, MI, 48105, USA
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, 48109, USA
- Dept of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
472
|
Abstract
Detection of the state of self-motion, such as the instantaneous heading direction, the traveled trajectory and traveled distance or time, is critical for efficient spatial navigation. Numerous psychophysical studies have indicated that the vestibular system, originating from the otolith and semicircular canals in our inner ears, provides robust signals for different aspects of self-motion perception. In addition, vestibular signals interact with other sensory signals such as visual optic flow to facilitate natural navigation. These behavioral results are consistent with recent findings in neurophysiological studies. In particular, vestibular activity in response to the translation or rotation of the head/body in darkness is revealed in a growing number of cortical regions, many of which are also sensitive to visual motion stimuli. The temporal dynamics of the vestibular activity in the central nervous system can vary widely, ranging from acceleration-dominant to velocity-dominant. Different temporal dynamic signals may be decoded by higher level areas for different functions. For example, the acceleration signals during the translation of body in the horizontal plane may be used by the brain to estimate the heading directions. Although translation and rotation signals arise from independent peripheral organs, that is, otolith and canals, respectively, they frequently converge onto single neurons in the central nervous system including both the brainstem and the cerebral cortex. The convergent neurons typically exhibit stronger responses during a combined curved motion trajectory which may serve as the neural correlate for complex path perception. During spatial navigation, traveled distance or time may be encoded by different population of neurons in multiple regions including hippocampal-entorhinal system, posterior parietal cortex, or frontal cortex.
Collapse
Affiliation(s)
- Zhixian Cheng
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Yong Gu
- Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
473
|
Umemura GS, Pinho JP, Forner-Cordero A. Daytime sleepiness affects gait auditory synchronization ability. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:4877-4880. [PMID: 30441436 DOI: 10.1109/embc.2018.8513186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sleep disturbances in modern life lead to cognitive and motor performance impairments in everyday tasks such as gait. The most common symptom of these disturbances is daytime sleepiness, which can be assessed by questionnaires such as the Epworth Sleep Scale (ESS). The ESS evaluates sleep health and daytime dysfunction. The goal of this study is to assess the influence of sleepiness on a motorauditory synchrony task, rhythmed gait. High and low sleepiness clusters were formed based on the participants ESS scores. Walking on a treadmill, two different rhythmic auditory stimulus conditions were set with a metronome: isochronous and non-isochronous. Reflective markers on both heels with seven infrared cameras were used to assess the difference between footfall and metronome beep, what is named synchronization error (SE). There was a tendency to anticipate the beep in the HS group when compared to the LS group only in the non-isochronous stimulus condition that was statistically significant. Sleep disturbances that generate daytime sleepiness may bring detrimental effects on brain areas that could be responsible for the real-time adjustment of gait and sustained attention. These impairments may be responsible for the larger synchronization error with larger relative phase of the group with high sleepiness. More studies are necessary involving other parameters of sleep and gait to identify sleep disturbances through gait analysis.
Collapse
|
474
|
Gu Y. Vestibular signals in primate cortex for self-motion perception. Curr Opin Neurobiol 2018; 52:10-17. [DOI: 10.1016/j.conb.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/12/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
|
475
|
Influence of the intensity of galvanic vestibular stimulation and cutaneous stimulation on the soleus H-reflex in healthy individuals. Neuroreport 2018; 29:1135-1139. [DOI: 10.1097/wnr.0000000000001086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
476
|
Bekkers EMJ, Dijkstra BW, Heremans E, Verschueren SMP, Bloem BR, Nieuwboer A. Balancing between the two: Are freezing of gait and postural instability in Parkinson's disease connected? Neurosci Biobehav Rev 2018; 94:113-125. [PMID: 30125601 DOI: 10.1016/j.neubiorev.2018.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 01/11/2023]
Abstract
Postural instability and freezing of gait (FoG) are key features of Parkinson's disease (PD) closely related to falls. Growing evidence suggests that co-existing postural deficits could influence the occurrence and severity of FoG. To date, the exact nature of this interrelationship remains largely unknown. We analyzed the complex interaction between postural instability and gait disturbance by comparing the findings available in the posturographic literature between patients with and without FoG. Results showed that FoG and postural instability are intertwined, can influence each other behaviorally and may coincide neurologically. The most common FoG-related postural deficits included weight-shifting impairments, and inadequate scaling and timing of postural responses most apparent at forthcoming postural changes under time constraints. Most likely, a negative cycle of combined and more severe postural deficits in people with FoG will enhance postural stability breakdown. As such, the wide brain network deficiencies involved in FoG may also concurrently influence postural stability. Future work needs to examine whether training interventions targeting both symptoms will have extra clinical benefits on fall frequency.
Collapse
Affiliation(s)
- E M J Bekkers
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Belgium; Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Center Nijmegen (ParC), Reinier Postlaan 4, 6525 GC Nijmegen, The Netherlands.
| | - B W Dijkstra
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Belgium.
| | - E Heremans
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Belgium.
| | - S M P Verschueren
- Research Group for Musculoskeletal Research, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Belgium.
| | - B R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Center Nijmegen (ParC), Reinier Postlaan 4, 6525 GC Nijmegen, The Netherlands.
| | - A Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, B-3001, Leuven, Belgium.
| |
Collapse
|
477
|
de Lima-Pardini AC, Coelho DB, Souza CP, Souza CO, Ghilardi MGDS, Garcia T, Voos M, Milosevic M, Hamani C, Teixeira LA, Fonoff ET. Effects of spinal cord stimulation on postural control in Parkinson's disease patients with freezing of gait. eLife 2018; 7:37727. [PMID: 30070204 PMCID: PMC6092115 DOI: 10.7554/elife.37727] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/28/2018] [Indexed: 12/12/2022] Open
Abstract
Freezing of gait (FoG) in Parkinson’s disease (PD) is an incapacitating transient phenomenon, followed by continuous postural disorders. Spinal cord stimulation (SCS) is a promising intervention for FoG in patients with PD, however, its effects on distinct domains of postural control is not well known. The aim of this study is to assess the effects of SCS on FoG and distinct domains of postural control. Four patients with FoG were implanted with SCS systems in the upper thoracic spine. Anticipatory postural adjustment (APA), reactive postural responses, gait and FoG were biomechanically assessed. In general, the results showed that SCS improved FoG and APA. However, SCS failed to improve reactive postural responses. SCS seems to influence cortical motor circuits, involving the supplementary motor area. On the other hand, reactive posture control to external perturbation that mainly relies on neuronal circuitries involving the brainstem and spinal cord, is less influenced by SCS.
Collapse
Affiliation(s)
| | - Daniel Boari Coelho
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,Biomedical Engineering, Federal University of ABC, São Paulo, Brazil
| | - Carolina Pinto Souza
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Tiago Garcia
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Mariana Voos
- Department of Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matija Milosevic
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Research Institute, Harquail Centre for Neuromodulation, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Luis Augusto Teixeira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
478
|
Wang M, Dong G, Wang L, Zheng H, Potenza MN. Brain responses during strategic online gaming of varying proficiencies: Implications for better gaming. Brain Behav 2018; 8:e01076. [PMID: 30020566 PMCID: PMC6085917 DOI: 10.1002/brb3.1076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Online gaming is a complex and competitive activity. However, little attention has been paid to brain activities relating to gaming proficiency. METHODS In the current study, fMRI data were obtained from 70 subjects while they were playing online games. Based on their playing, we selected 24 clips from each subject for three levels of gaming proficiency (good, poor, and average), with each clip lasting for 8 seconds. RESULTS When comparing the brain responses during the three conditions, good-play trials, relative to poor- or average-play trials, were associated with greater activation of the declive, postcentral gyrus, and striatum. In post-hoc analyses taking the identified clusters as regions of interest to calculate their functional connectivity, activation of the declive during good-play conditions was associated with that in the precentral gyrus and thalamus, and activation in the striatum was associated with that in the inferior frontal gyrus and middle frontal cortex. CONCLUSIONS Taken together, findings suggest specific regional brain activations and functional connectivity patterns involving brain regions and circuits involved in sensory, motor, automatic and executive functioning and their coordination are associated with better gaming. Specifically, for basic functions, such as simple reaction, motor control, and motor coordination, people need to perform them automatically; for highly cognitive functions, such as plan and strategic playing, people need to engage more executive functions in finishing these works. The automatically processed basic functions spare cognitive resources for the highly cognitive functions, which facilitates their gaming behaviors.
Collapse
Affiliation(s)
- Min Wang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Guangheng Dong
- Department of Psychology, Zhejiang Normal University, Jinhua, China.,Institute of Psychological and Brain Sciences, Zhejiang Normal University, Jinhua, China
| | - Lingxiao Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Hui Zheng
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Marc N Potenza
- Department of Psychiatry, Department of Neurobiology, Child Study Center, and National Center on Addiction and Substance Abuse, Yale University School of Medicine, New Haven, Connecticut.,Connecticut Mental Health Center, New Haven, Connecticut
| |
Collapse
|
479
|
Bekkers EMJ, Van Rossom S, Heremans E, Dockx K, Devan S, Verschueren SMP, Nieuwboer A. Adaptations to Postural Perturbations in Patients With Freezing of Gait. Front Neurol 2018; 9:540. [PMID: 30065694 PMCID: PMC6056632 DOI: 10.3389/fneur.2018.00540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Freezing of gait (FOG) is a powerful determinant of falls in Parkinson's disease (PD). Automatic postural reactions serve as a protective strategy to prevent falling after perturbations. However, differences in automatic postural reactions between patients with and without FOG in response to perturbation are at present unclear. Therefore, the present study aimed to compare the response patterns and neuromuscular control between PD patients with and without FOG and healthy controls (HCs) after postural perturbations. Methods: 28 PD patients (15 FOG+, 13 FOG−) and 22 HCs were included. Participants stood on a moveable platform while random perturbations were imposed. The first anterior platform translation was retained for analysis. Center of pressure (CoP) and center of mass (CoM) trajectories and trunk, knee and ankle angles were compared between the three groups using the Statistical Parametric Mapping technique, allowing to capture changes in time. In addition, muscle activation of lower leg muscles was measured using EMG. Results: At baseline, FOG+ stood with more trunk flexion than HCs (p = 0.005), a result not found in FOG−. Following a perturbation, FOG+ reacted with increased trunk extension (p = 0.004) in comparison to HCs, a pattern not observed in FOG−. The CoM showed greater backward displacement in FOG− and FOG+ (p = 0.008, p = 0.027). Both FOG+ and FOG− showed increased co-activation of agonist and antagonist muscles compared to HCs (p = 0.010), with no differences between FOG+ and FOG−. Conclusions: Automatic postural reactions after a sudden perturbation are similar between PD subgroups with and without FOG but different from HCs. Reactive postural control, largely regulated by brain stem centers, seems to be modulated by different mechanisms than those governing freezing of gait. Greater differences in initial stance position, enhanced by joint stiffening, could however underlie maladaptive postural responses and increase susceptibility for balance loss in FOG+ compared to FOG−.
Collapse
Affiliation(s)
- Esther M J Bekkers
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Sam Van Rossom
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Elke Heremans
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Kim Dockx
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Surendar Devan
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Sabine M P Verschueren
- Musculoskeletal Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
480
|
Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. J Neurol 2018; 265:2125-2136. [DOI: 10.1007/s00415-018-8964-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/23/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022]
|
481
|
Su N, Liang X, Zhai FF, Zhou LX, Ni J, Yao M, Tian F, Zhang SY, Jin ZY, Cui LY, Gong G, Zhu YC. The consequence of cerebral small vessel disease: Linking brain atrophy to motor impairment in the elderly. Hum Brain Mapp 2018; 39:4452-4461. [PMID: 29956412 DOI: 10.1002/hbm.24284] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 11/08/2022] Open
Abstract
In the elderly, brain structural deficits and gait disturbances due to cerebral small vessel disease (CSVD) have been well demonstrated. The relationships among CSVD, brain atrophy, and motor impairment, however, are far from conclusive. Particularly, the effect of CSVD on subcortical nuclear atrophy, motor performance of upper extremities, and associating patterns between brain atrophy and motor impairment remains largely unknown. To address these gaps, this study recruited 770 community-dwelling subjects (35-82 years of age), including both CSVD and non-CSVD individuals. For each subject, four motor tests involving upper and lower extremities were completed. High-resolution structural MRI was applied to extract gray matter (GM) volume, white matter volume, cortical thickness, surface area, and subcortical nuclear (caudate, putamen, pallidum, and thalamus) volumes. The results showed worse motor performance of lower extremities but relatively preserved performance of upper extremities in the CSVD group. Intriguingly, there was a significant association between the worse performance of upper extremities and atrophy of whole-brain GM and pallidum in the CSVD group but not in the non-CSVD group. In addition, mediation analysis confirmed a functional CSVD-to-"brain atrophy"-to-"motor impairment" pathway, that is, a mediating role of thalamic atrophy in the CSVD effect on walking speed in the elderly, indicating that CSVD impairs walking performance through damaging the integrity of the thalamus in aging populations. These findings provide important insight into the functional consequences of CSVD and highlight the importance of evaluating upper extremities functions and exploring their brain mechanisms in CSVD populations during aging.
Collapse
Affiliation(s)
- Ning Su
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Fei-Fei Zhai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Xin Zhou
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Ni
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Tian
- State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
482
|
Umemura GS, Pinho JP, da Silva Brandão Gonçalves B, Furtado F, Forner-Cordero A. Social jetlag impairs balance control. Sci Rep 2018; 8:9406. [PMID: 29925863 PMCID: PMC6010412 DOI: 10.1038/s41598-018-27730-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/08/2018] [Indexed: 11/09/2022] Open
Abstract
We assessed the impact of a common sleep disturbance, the social jetlag, on postural control during a period involving workdays and free days. The sleep habits of 30 healthy subjects were registered with a wrist actimeter for nine days (starting on Friday) and they participated in a set of four postural control tests carried out on Friday and on Monday. In addition, the subjects filled questionnaires about their sleep conditions and preferences. Actimetry measurements were used to calculate the Mid Sleep Phase (MSP). The difference between the MSP values on the workdays and free days measures the social jetlag. There were significant differences in sleep variables between workdays and free days. Postural control performance improved on Monday, after free sleep over the weekend, when compared with the tests performed on Friday. It seems that social jetlag affects brain areas involved in the control of posture, such as thalamus and the prefrontal cortex as well as the cerebellum, resulting in a worse performance in postural control. The performance improvement in the posture tests after the free days could be attributed to a lower sleep debt.
Collapse
Affiliation(s)
- Guilherme Silva Umemura
- Biomechatronics Laboratory, Department of Mechatronics. Escola Politécnica, University of São Paulo, São Paulo, Brazil
| | - João Pedro Pinho
- Biomechatronics Laboratory, Department of Mechatronics. Escola Politécnica, University of São Paulo, São Paulo, Brazil
| | | | - Fabianne Furtado
- Biomechatronics Laboratory, Department of Mechatronics. Escola Politécnica, University of São Paulo, São Paulo, Brazil
- Federal Institute of Education, Science and Technology of Southeast of Minas Gerais, Barbacena, Brazil
| | - Arturo Forner-Cordero
- Biomechatronics Laboratory, Department of Mechatronics. Escola Politécnica, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
483
|
Arnulfo G, Pozzi NG, Palmisano C, Leporini A, Canessa A, Brumberg J, Pezzoli G, Matthies C, Volkmann J, Isaias IU. Phase matters: A role for the subthalamic network during gait. PLoS One 2018; 13:e0198691. [PMID: 29874298 PMCID: PMC5991417 DOI: 10.1371/journal.pone.0198691] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
The role of the subthalamic nucleus in human locomotion is unclear although relevant, given the troublesome management of gait disturbances with subthalamic deep brain stimulation in patients with Parkinson’s disease. We investigated the subthalamic activity and inter-hemispheric connectivity during walking in eight freely-moving subjects with Parkinson’s disease and bilateral deep brain stimulation. In particular, we compared the subthalamic power spectral densities and coherence, amplitude cross-correlation and phase locking value between resting state, upright standing, and steady forward walking. We observed a phase locking value drop in the β-frequency band (≈13-35Hz) during walking with respect to resting and standing. This modulation was not accompanied by specific changes in subthalamic power spectral densities, which was not related to gait phases or to striatal dopamine loss measured with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane and single-photon computed tomography. We speculate that the subthalamic inter-hemispheric desynchronization in the β-frequency band reflects the information processing of each body side separately, which may support linear walking. This study also suggests that in some cases (i.e. gait) the brain signal, which could allow feedback-controlled stimulation, might derive from network activity.
Collapse
Affiliation(s)
- Gabriele Arnulfo
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Nicolò Gabriele Pozzi
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
- Department of Electronics, Information and Bioengineering, MBMC Lab, Politecnico di Milano, Milan, Italy
| | - Alice Leporini
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | - Andrea Canessa
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
- Fondazione Europea di Ricerca Biomedica (FERB Onlus), Cernusco s/N (Milan), Italy
| | - Joachim Brumberg
- Department of Nuclear Medicine, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | | | - Cordula Matthies
- Department of Neurosurgery, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | - Ioannis Ugo Isaias
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
484
|
Jacobs JV, Henry SM, Horak FB. What If Low Back Pain Is the Most Prevalent Parkinsonism in the World? Front Neurol 2018; 9:313. [PMID: 29770123 PMCID: PMC5940750 DOI: 10.3389/fneur.2018.00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/19/2018] [Indexed: 01/28/2023] Open
Abstract
Low back pain (LBP) has a point prevalence of nearly 10% and ranks highest in global disease burden for years lived with disability; Parkinson’s disease (PD) ranks in the top 100 most disabling health conditions for years lost and years lived with disability (1). Recent evidence suggests that people with chronic, recurrent LBP exhibit many postural impairments reminiscent of a neurological postural disorder such as PD. We compare and contrast postural impairments associated with LBP and PD in order to inform treatment strategies for both conditions. The literature suggests that both LBP and PD associate with impaired proprioceptive function, sensory orientation during standing balance, anticipatory postural adjustments, automatic postural responses, and striatal-cortical function. Although postural impairments are similar in nature for LBP and PD, the postural impairments with LBP appear more specific to the trunk than for PD. Likewise, although both health conditions associate with altered striatal-cortical function, the nature of the altered neural structure or function differ for PD and LBP. Due to the high prevalence of LBP associated with PD, focused treatment of LBP in people with PD may render benefit to their postural impairments and disabilities. In addition, LBP would likely benefit from being considered more than just a musculoskeletal injury; as such, clinicians should consider including approaches that address impairments of postural motor control.
Collapse
Affiliation(s)
- Jesse V Jacobs
- Department of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, United States
| | - Sharon M Henry
- Department of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, United States.,Department of Rehabilitation Therapy, University of Vermont Medical Center, Burlington, VT, United States
| | - Fay B Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, Veterans Affairs Portland Health Care System, Portland, OR, United States
| |
Collapse
|
485
|
Anders P, Lehmann T, Müller H, Grønvik KB, Skjæret-Maroni N, Baumeister J, Vereijken B. Exergames Inherently Contain Cognitive Elements as Indicated by Cortical Processing. Front Behav Neurosci 2018; 12:102. [PMID: 29867400 PMCID: PMC5968085 DOI: 10.3389/fnbeh.2018.00102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023] Open
Abstract
Exergames are increasingly used to train both physical and cognitive functioning, but direct evidence whether and how exergames affect cortical activity is lacking. Although portable electroencephalography (EEG) can be used while exergaming, it is unknown whether brain activity will be obscured by movement artifacts. The aims of this study were to assess whether electrophysiological measurements during exergaming are feasible and if so, whether cortical activity changes with additional cognitive elements. Twenty-four young adults performed self-paced sideways leaning movements, followed by two blocks of exergaming in which participants completed a puzzle by leaning left or right to select the correct piece. At the easy level, only the correct piece was shown, while two pieces were presented at the choice level. Brain activity was recorded using a 64-channel passive EEG system. After filtering, an adaptive mixture independent component analysis identified the spatio-temporal sources of brain activity. Results showed that it is feasible to record brain activity in young adults while playing exergames. Furthermore, five spatially different clusters were identified located frontal, bilateral central, and bilateral parietal. The frontal cluster had significantly higher theta power in the exergaming condition with choice compared to self-paced leaning movements and exergaming without choice, while both central clusters showed a significant increase in absolute alpha-2 power in the exergaming conditions compared to the self-paced movements. This is the first study to show that it is feasible to record brain activity while exergaming. Furthermore, results indicated that even a simple exergame without explicit cognitive demands inherently requires cognitive processing. These results pave the way for studying brain activity during various exergames in different populations to help improve their effective use in rehabilitation settings.
Collapse
Affiliation(s)
- Phillipp Anders
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tim Lehmann
- Exercise Neuroscience & Health Lab, Institute of Health, Nutrition and Sport Sciences, University of Flensburg, Flensburg, Germany.,Exercise Science and Neuroscience, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Helen Müller
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Exercise Science and Neuroscience, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Karoline B Grønvik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nina Skjæret-Maroni
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jochen Baumeister
- Exercise Neuroscience & Health Lab, Institute of Health, Nutrition and Sport Sciences, University of Flensburg, Flensburg, Germany.,Exercise Science and Neuroscience, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
486
|
Attwell CL, van Zwieten M, Verhaagen J, Mason MRJ. The Dorsal Column Lesion Model of Spinal Cord Injury and Its Use in Deciphering the Neuron-Intrinsic Injury Response. Dev Neurobiol 2018; 78:926-951. [PMID: 29717546 PMCID: PMC6221129 DOI: 10.1002/dneu.22601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/13/2022]
Abstract
The neuron‐intrinsic response to axonal injury differs markedly between neurons of the peripheral and central nervous system. Following a peripheral lesion, a robust axonal growth program is initiated, whereas neurons of the central nervous system do not mount an effective regenerative response. Increasing the neuron‐intrinsic regenerative response would therefore be one way to promote axonal regeneration in the injured central nervous system. The large‐diameter sensory neurons located in the dorsal root ganglia are pseudo‐unipolar neurons that project one axon branch into the spinal cord, and, via the dorsal column to the brain stem, and a peripheral process to the muscles and skin. Dorsal root ganglion neurons are ideally suited to study the neuron‐intrinsic injury response because they exhibit a successful growth response following peripheral axotomy, while they fail to do so after a lesion of the central branch in the dorsal column. The dorsal column injury model allows the neuron‐intrinsic regeneration response to be studied in the context of a spinal cord injury. Here we will discuss the advantages and disadvantages of this model. We describe the surgical methods used to implement a lesion of the ascending fibers, the anatomy of the sensory afferent pathways and anatomical, electrophysiological, and behavioral techniques to quantify regeneration and functional recovery. Subsequently we review the results of experimental interventions in the dorsal column lesion model, with an emphasis on the molecular mechanisms that govern the neuron‐intrinsic injury response and manipulations of these after central axotomy. Finally, we highlight a number of recent advances that will have an impact on the design of future studies in this spinal cord injury model, including the continued development of adeno‐associated viral vectors likely to improve the genetic manipulation of dorsal root ganglion neurons and the use of tissue clearing techniques enabling 3D reconstruction of regenerating axon tracts. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 00: 000–000, 2018
Collapse
Affiliation(s)
- Callan L Attwell
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, Amsterdam, 1105BA, The Netherlands
| | - Mike van Zwieten
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, Amsterdam, 1105BA, The Netherlands
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, Amsterdam, 1105BA, The Netherlands.,Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, The Netherlands
| | - Matthew R J Mason
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, Amsterdam, 1105BA, The Netherlands
| |
Collapse
|
487
|
Elkholy WB, Al-Gholam MA. Role of medical ozone in attenuating age-related changes in the rat cerebellum. Microscopy (Oxf) 2018; 67:4964816. [PMID: 29635467 DOI: 10.1093/jmicro/dfy017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/24/2018] [Indexed: 11/12/2022] Open
Abstract
Aging is an inevitable biological process characterized by motor in coordination and decline in the ability to learn new motor skills. The purpose of this study is to investigate, for the first time, the beneficial antiaging effects of medical ozone (O3) on the age-related structural damage of the rat cerebellum. We have examined the cerebellum of albino rats at the ages of 6, 20 and 22, and the effect of intraperitoneal medical O3 administration (0.7 g/kg) by histological, immunohistochemical and morphometric studies. Age-related changes in the cerebellum were in the form of a significant reduction in the number of Purkinje cells (PCs), which appeared shrunken with a darkly stained cytoplasm and vacuolated spaces in all layers. The decrease in Nissl granule content of the PCs was also observed. A significant reduction in Mab2, Ki67 immunoreactivity associated with significant increase in glial fibrillary acidic protein, Caspase-3 and iNos immunoreactivity were also detected. Medical O3 administration reversed all these histopathological and immunohistochemical changes. This protective effect was mediated by reducing oxidative stress, apoptosis, astrocyte activation and improving both neuritogenesis and neurogenesis. We can conclude from the results of the present study that medical O3 can prevent the retardation of age-related changes in rat cerebellum.
Collapse
Affiliation(s)
- Wael B Elkholy
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebin el Kom, 32511 Menoufia, Egypt
| | - Marwa A Al-Gholam
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebin el Kom, 32511 Menoufia, Egypt
| |
Collapse
|
488
|
Debû B, De Oliveira Godeiro C, Lino JC, Moro E. Managing Gait, Balance, and Posture in Parkinson's Disease. Curr Neurol Neurosci Rep 2018; 18:23. [PMID: 29623455 DOI: 10.1007/s11910-018-0828-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Postural instability and gait difficulties inexorably worsen with Parkinson's disease (PD) progression and become treatment resistant, with a severe impact on autonomy and quality of life. We review the main characteristics of balance instability, gait disabilities, and static postural alterations in advanced PD, and the available treatment strategies. RECENT FINDINGS It remains very difficult to satisfactorily alleviate gait and postural disturbances in advanced PD. Medical and surgical interventions often fail to provide satisfactory or durable alleviation of these axial symptoms, that may actually call for differential treatments. Exercise and adapted physical activity programs can contribute to improving the patients' condition. Gait, balance, and postural disabilities are often lumped together under the Postural Instability and Gait Difficulties umbrella term. This may lead to sub-optimal patients' management as data suggest that postural, balance, and gait problems might depend on distinct underlying mechanisms. We advocate for a multidisciplinary approach from the day of diagnosis.
Collapse
Affiliation(s)
- Bettina Debû
- University Grenoble Alpes, Grenoble, France.
- INSERM U1216, Grenoble, France.
| | - Clecio De Oliveira Godeiro
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
- Division of Neurology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jarbas Correa Lino
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
- Division of Neurology, CHU Amiens, Amiens, France
| | - Elena Moro
- University Grenoble Alpes, Grenoble, France
- INSERM U1216, Grenoble, France
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
489
|
Tonelli LC, Wöhr M, Schwarting R, Melo-Thomas L. Paradoxical kinesia induced by appetitive 50-kHz ultrasonic vocalizations in rats depends on glutamatergic mechanisms in the inferior colliculus. Neuropharmacology 2018; 135:172-179. [PMID: 29550392 DOI: 10.1016/j.neuropharm.2018.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Paradoxical kinesia is a sudden transient ability of akinetic patients to perform motor tasks they are otherwise unable to perform. This phenomenon is known to depend on the patient's emotional state and external stimuli. Paradoxical kinesia can be induced by appetitive 50-kHz ultrasonic vocalizations (USV) in rats displaying catalepsy following systemic haloperidol. We investigated the role of the inferior colliculus (IC) in paradoxical kinesia induced by 50-kHz USV, since the IC modulates haloperidol-induced catalepsy. We focused on glutamatergic and GABAergic neurotransmission, with male rats receiving intracollicular NMDA or the GABA receptor agonist diazepam 10 min before systemic haloperidol. Catalepsy time was assessed by means of the bar test, during which rats were exposed to playback of 50-kHz USV, white noise, and background noise. Our results show that playback of 50-kHz USV induced paradoxical kinesia by reducing haloperidol-induced catalepsy in rats which had received saline intracollicular microinjection. This paradoxical kinesia effect of 50-kHz USV playback on haloperidol-induced catalepsy was prevented by intracollicular NMDA administration. Although intracollicular diazepam microinjection potentiated haloperidol-induced catalepsy, it did not affect the response to 50-kHz USV playback. Together, NMDA receptor agonist suppressed the effectiveness of 50-kHz USV playback, whereas diazepam did not. These findings suggest that the IC is a key structure involved in paradoxical kinesia, with relevant processes being glutamatergic rather than GABAergic. Our approach thus appears useful for uncovering neural mechanisms of paradoxical kinesia and it might help identifying novel therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Luan Castro Tonelli
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
| | - Markus Wöhr
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Rainer Schwarting
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Liana Melo-Thomas
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany; Behavioral Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil.
| |
Collapse
|
490
|
Iwasaki S, Fujimoto C, Egami N, Kinoshita M, Togo F, Yamamoto Y, Yamasoba T. Noisy vestibular stimulation increases gait speed in normals and in bilateral vestibulopathy. Brain Stimul 2018; 11:709-715. [PMID: 29563049 DOI: 10.1016/j.brs.2018.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Galvanic vestibular stimulation delivered as zero-mean current noise (noisy GVS) has been shown to improve static and dynamic postural stability probably by enhancing vestibular information. OBJECTIVE /Hypothesis: To examine the effect of an imperceptible level of noisy GVS on dynamic locomotion in normal subjects as well as in patients with bilateral vestibulopathy. METHODS Walking performance of 19 healthy subjects and 12 patients with bilateral vestibulopathy at their preferred speed was examined during application of noisy GVS with an amplitude ranging from 0 to 1000 μA. The gait velocity, stride length and stride time were analyzed. RESULTS Noisy GVS had significant effects on gait velocity, stride length and stride time in healthy subjects as well as in patients with bilateral vestibulopathy (p < 0.05). The optimal amplitude of noisy GVS improved gait velocity by 10.9 ± 1.2%, stride length by 5.7 ± 1.2% and stride time by 4.6 ± 7% (p < 0.0001) compared to the control session in healthy subjects. The optimal stimulus improved gait velocity by 12.8 ± 1.3%, stride length by 8.3 ± 1.1% and stride time by 3.7 ± 7% (p < 0.0001) in patients with bilateral vestibulopathy. The improved values of these parameters of locomotion by noisy GVS in the patients were not significantly different from those in healthy subjects in the control condition (p > 0.4). CONCLUSION Noisy GVS is effective in improving gait performance in healthy subjects as well as in patients with bilateral vestibulopathy.
Collapse
Affiliation(s)
- Shinichi Iwasaki
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Chisato Fujimoto
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Naoya Egami
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Kinoshita
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Fumiharu Togo
- Educational Physiological Laboratory, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiharu Yamamoto
- Educational Physiological Laboratory, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
491
|
Postural control and the relation with cervical sensorimotor control in patients with idiopathic adult-onset cervical dystonia. Exp Brain Res 2018; 236:803-811. [PMID: 29340715 DOI: 10.1007/s00221-018-5174-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Cervical dystonia (CD) is a movement disorder characterized by involuntary muscle contractions leading to an abnormal head posture or movements of the neck. Dysfunctions in somatosensory integration are present and previous data showed enlarged postural sway in stance. Postural control during quiet sitting and the correlation with cervical sensorimotor control were investigated. Postural control during quiet sitting was measured via body sway parameters in 23 patients with CD, regularly receiving botulinum toxin treatment and compared with 36 healthy controls. Amplitude and velocity of displacements of the center of pressure (CoP) were measured by two embedded force plates at 1000 Hz. Three samples of 30 s were recorded with the eyes open and closed. Disease-specific characteristics were obtained in all patients by the Tsui scale, Cervical Dystonia Impact Profile (CDIP-58) and Toronto Western Spasmodic Rating Scale (TWSTRS). Cervical sensorimotor control was assessed with an infrared Vicon system during a head repositioning task. Body sway amplitude and velocity were increased in patients with CD compared to healthy controls. CoP displacements were doubled in patients without head tremor and tripled in patients with a dystonic head tremor. Impairments in cervical sensorimotor control were correlated with larger CoP displacements (rs ranged from 0.608 to 0.748). Postural control is impaired and correlates with dysfunction in cervical sensorimotor control in patients with CD. Treatment is currently focused on the cervical area. Further research towards the potential value of postural control exercises is recommended.
Collapse
|
492
|
Dharmadasa T, Matamala JM, Huynh W, Zoing MC, Kiernan MC. Motor neurone disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 159:345-357. [PMID: 30482326 DOI: 10.1016/b978-0-444-63916-5.00022-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Motor neurone disease (MND) patients exhibit poor gait, balance, and postural control, all of which significantly increases their risk of falling. Falls are frequent in the MND population, and are associated with an increased burden of disease. The complex interplay of both motor and extramotor manifestations in this disease contributes to the heterogeneous and multifactorial causes of such dysfunction. This review highlights the pathophysiologic influence of motor degeneration in gait disturbance, but also the additional influence on postural instability from other inputs such as cognitive impairment, autonomic dysregulation, cerebellar dysfunction, sensory impairment, and extrapyramidal involvement. In various combinations, these impairments are responsible for reduced gait speed and alteration in gait cycle, as well as structurally more variable and disorganized gait patterns. Based on these features, this chapter will also provide disease-specific interventions to assess, manage, and prevent falls in the MND cohort.
Collapse
Affiliation(s)
| | | | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Margaret C Zoing
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
493
|
Abstract
The review demonstrates that control of posture and locomotion is provided by systems across the caudal-to-rostral extent of the neuraxis. A common feature of the neuroanatomic organization of the postural and locomotor control systems is the presence of key nodes for convergent input of multisensory feedback in conjunction with efferent copies of the motor command. These nodes include the vestibular and reticular nuclei and interneurons in the intermediate zone of the spinal cord (Rexed's laminae VI-VIII). This organization provides both spatial and temporal coordination of the various goals of the system and ensures that the large repertoire of voluntary movements is appropriately coupled to either anticipatory or reactive postural adjustments that ensure stability and provide the framework to support the intended action. Redundancies in the system allow adaptation and compensation when sensory modalities are impaired. These alterations in behavior are learned through reward- and error-based learning processes implemented through basal ganglia and cerebellar pathways respectively. However, neurodegenerative processes or lesions of these systems can greatly compromise the capacity to sufficiently adapt and sometimes leads to maladaptive changes that impair movement control. When these impairments occur, the risk of falls can be significantly increased and interventions are required to reduce morbidity.
Collapse
Affiliation(s)
- Colum D MacKinnon
- Department of Neurology and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
494
|
Abstract
Gait is one of the keys to functional independence. For a long-time, walking was considered an automatic process involving minimal higher-level cognitive input. Indeed, walking does not take place without muscles that move the limbs and the "lower-level" control that regulates the timely activation of the muscles. However, a growing body of literature suggests that walking can be viewed as a cognitive process that requires "higher-level" cognitive control, especially during challenging walking conditions that require executive function and attention. Two main locomotor pathways have been identified involving multiple brain areas for the control of posture and gait: the dorsal pathway of cognitive locomotor control and the ventral pathway for emotional locomotor control. These pathways may be distinctly affected in different pathologies that have important implications for rehabilitation and therapy. The clinical assessment of gait should be a focused, simple, and cost-effective process that provides both quantifiable and qualitative information on performance. In the last two decades, gait analysis has gradually shifted from analysis of a few steps in a restricted space to long-term monitoring of gait using body fixed sensors, capturing real-life and routine behavior in the home and community environment. The chapter also describes this evolution and its implications.
Collapse
Affiliation(s)
- Anat Mirelman
- Center for the Study of Movement, Cognition, and Mobility, Neurology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Laboratory of Early Markers of Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shirley Shema
- Center for the Study of Movement, Cognition, and Mobility, Neurology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Inbal Maidan
- Center for the Study of Movement, Cognition, and Mobility, Neurology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Laboratory of Early Markers of Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jeffery M Hausdorff
- Center for the Study of Movement, Cognition, and Mobility, Neurology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel; Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, United States.
| |
Collapse
|
495
|
Abstract
Impairments of balance and gait leading to loss of mobility, falls, and disability are common occurrences in many neurologic conditions and with older age. Much of our current understanding about posture and balance control and its impairments has come from investigations of how healthy individuals and those with neurologic disorders respond to situations that perturb standing balance during instructed voluntary tasks or in reaction to externally imposed challenges to stability. Knowledge obtained from these investigations has come from documenting the physical and physiologic characteristics of the perturbations together with the body's electrophysiologic, structural, kinetic, kinematic, and behavioral responses. From these findings, basic mechanisms, diagnostic and pathologic criteria, and targets for clinical care have been identified while continued gaps in understanding have been exposed. In this chapter, we synthesize and discuss current concepts and understanding concerning the sensorimotor control of posture and balance while standing. We draw insights gained from perturbation studies investigating these functions in healthy adults, and those with neurologic pathologies.
Collapse
Affiliation(s)
- Mark W Rogers
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Marie-Laure Mille
- Faculty of Sciences and Techniques of Physical Activities and Sport, Université de Toulon, La Garde, France; Institute of Movement Sciences ISM UMR7287, Aix-Marseille Université & CNRS, Marseille, France; Department of Physical Therapy and Human Movement Sciences, Northwestern University Medical School, Chicago IL, United States
| |
Collapse
|
496
|
Vastik M, Hok P, Valosek J, Hlustik P, Mensikova K, Kanovsky P. Freezing of gait is associated with cortical thinning in mesial frontal cortex. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:389-396. [DOI: 10.5507/bp.2017.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 11/23/2022] Open
|
497
|
Wang Y, Zhou FM. Striatal But Not Extrastriatal Dopamine Receptors Are Critical to Dopaminergic Motor Stimulation. Front Pharmacol 2017; 8:935. [PMID: 29311936 PMCID: PMC5742616 DOI: 10.3389/fphar.2017.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/11/2017] [Indexed: 11/19/2022] Open
Abstract
Dopamine (DA) is required for motor function in vertebrate animals including humans. The striatum, a key motor control center, receives a dense DA innervation and express high levels of DA D1 receptors (D1Rs) and D2 receptors (D2Rs). Other brain areas involved in motor function such as the globus pallidus external segment (GPe) and the substantia nigra pars reticulata (SNr) and the motor cortex (MC) also receive DA innervation and express DA receptors. Thus, the relative contribution of the striatal and extrastriatal DA systems to the motor function has been an important question critical for understanding the functional operation of the motor control circuits and also for therapeutic targeting. We have now experimentally addressed this question in the transcription factor Pitx3 null mutant (Pitx3Null) mice that have an autogenic and parkinsonian-like striatal DA denervation and hence supersensitive motor response to DA stimulation. Using DA agonist unilateral microinjection-induced rotation as a reliable readout of motor stimulation, our results show that L-dopa microinjection into the dorsal striatum (DS) induced 5–10 times more rotations than that induced by L-dopa microinjection into GPe and SNr, while L-dopa microinjection into the primary MC induced the least number of rotations. Furthermore, our results show that separate microinjection of the D1R-like agonist SKF81297 and the D2R-like agonist ropinirole into the DS each induced only modest numbers of rotation, whereas concurrent injection of the two agonists triggered more rotations than the sum of the rotations induced by each of these two agonists separately, indicating D1R–D2R synergy. These results suggest that the striatum, not GPe, SNr or MC, is the primary site for D1Rs and D2Rs to synergistically stimulate motor function in L-dopa treatment of Parkinson’s disease (PD). Our results also predict that non-selective, broad spectrum DA agonists activating both D1Rs and D2Rs are more efficacious anti-PD drugs than the current D2R agonists.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
498
|
Lawerman TF, Brandsma R, Verbeek RJ, van der Hoeven JH, Lunsing RJ, Kremer HPH, Sival DA. Construct Validity and Reliability of the SARA Gait and Posture Sub-scale in Early Onset Ataxia. Front Hum Neurosci 2017; 11:605. [PMID: 29326569 PMCID: PMC5733344 DOI: 10.3389/fnhum.2017.00605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Aim: In children, gait and posture assessment provides a crucial marker for the early characterization, surveillance and treatment evaluation of early onset ataxia (EOA). For reliable data entry of studies targeting at gait and posture improvement, uniform quantitative biomarkers are necessary. Until now, the pediatric test construct of gait and posture scores of the Scale for Assessment and Rating of Ataxia sub-scale (SARA) is still unclear. In the present study, we aimed to validate the construct validity and reliability of the pediatric (SARAGAIT/POSTURE) sub-scale. Methods: We included 28 EOA patients [15.5 (6-34) years; median (range)]. For inter-observer reliability, we determined the ICC on EOA SARAGAIT/POSTURE sub-scores by three independent pediatric neurologists. For convergent validity, we associated SARAGAIT/POSTURE sub-scores with: (1) Ataxic gait Severity Measurement by Klockgether (ASMK; dynamic balance), (2) Pediatric Balance Scale (PBS; static balance), (3) Gross Motor Function Classification Scale -extended and revised version (GMFCS-E&R), (4) SARA-kinetic scores (SARAKINETIC; kinetic function of the upper and lower limbs), (5) Archimedes Spiral (AS; kinetic function of the upper limbs), and (6) total SARA scores (SARATOTAL; i.e., summed SARAGAIT/POSTURE, SARAKINETIC, and SARASPEECH sub-scores). For discriminant validity, we investigated whether EOA co-morbidity factors (myopathy and myoclonus) could influence SARAGAIT/POSTURE sub-scores. Results: The inter-observer agreement (ICC) on EOA SARAGAIT/POSTURE sub-scores was high (0.97). SARAGAIT/POSTURE was strongly correlated with the other ataxia and functional scales [ASMK (rs = -0.819; p < 0.001); PBS (rs = -0.943; p < 0.001); GMFCS-E&R (rs = -0.862; p < 0.001); SARAKINETIC (rs = 0.726; p < 0.001); AS (rs = 0.609; p = 0.002); and SARATOTAL (rs = 0.935; p < 0.001)]. Comorbid myopathy influenced SARAGAIT/POSTURE scores by concurrent muscle weakness, whereas comorbid myoclonus predominantly influenced SARAKINETIC scores. Conclusion: In young EOA patients, separate SARAGAIT/POSTURE parameters reveal a good inter-observer agreement and convergent validity, implicating the reliability of the scale. In perspective of incomplete discriminant validity, it is advisable to interpret SARAGAIT/POSTURE scores for comorbid muscle weakness.
Collapse
Affiliation(s)
- Tjitske F Lawerman
- Departments of Pediatrics and Neurology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Rick Brandsma
- Departments of Pediatrics and Neurology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Renate J Verbeek
- Departments of Pediatrics and Neurology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Johannes H van der Hoeven
- Departments of Pediatrics and Neurology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Roelineke J Lunsing
- Departments of Pediatrics and Neurology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Hubertus P H Kremer
- Departments of Pediatrics and Neurology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Deborah A Sival
- Departments of Pediatrics and Neurology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
499
|
Alam U, Riley DR, Jugdey RS, Azmi S, Rajbhandari S, D'Août K, Malik RA. Diabetic Neuropathy and Gait: A Review. Diabetes Ther 2017; 8:1253-1264. [PMID: 28864841 PMCID: PMC5688977 DOI: 10.1007/s13300-017-0295-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 01/08/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a major sequela of diabetes mellitus and may have a detrimental effect on the gait of people with this complication. DPN causes a disruption in the body's sensorimotor system and is believed to affect up to 50% of patients with diabetes mellitus, dependent on the duration of diabetes. It has a major effect on morbidity and mortality. The peripheral nervous system controls the complex series of events in gait through somatic and autonomic functions, careful balancing of eccentric and concentric muscle contractions and a reliance on the sensory information received from the plantar surface. In this literature review focussing on kinetics, kinematics and posture during gait in DPN patients, we have identified an intimate link between DPN and abnormalities in gait and demonstrated an increased risk in falls for older patients with diabetes. As such, we have identified a need for further research on the role of gait abnormalities in the development of diabetic foot ulceration and subsequent amputations.
Collapse
Affiliation(s)
- Uazman Alam
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, UK.
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, UK.
| | | | | | - Shazli Azmi
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, UK
| | | | - Kristiaan D'Août
- Evolutionary Morphology and Biomechanics Group, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Rayaz A Malik
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, UK
- Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
500
|
Manji A, Amimoto K, Matsuda T, Wada Y, Inaba A, Ko S. Effects of transcranial direct current stimulation over the supplementary motor area body weight-supported treadmill gait training in hemiparetic patients after stroke. Neurosci Lett 2017; 662:302-305. [PMID: 29107706 DOI: 10.1016/j.neulet.2017.10.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is used in a variety of disorders after stroke including upper limb motor dysfunctions, hemispatial neglect, aphasia, and apraxia, and its effectiveness has been demonstrated. Although gait ability is important for daily living, there were few reports of the use of tDCS to improve balance and gait ability. The supplementary motor area (SMA) was reported to play a potentially important role in balance recovery after stroke. We aimed to investigate the effect of combined therapy body weight-supported treadmill training (BWSTT) and tDCS on gait function recovery of stroke patients. Thirty stroke inpatients participated in this study. The two BWSTT periods of 1weeks each, with real tDCS (anode: front of Cz, cathode: inion, 1mA, 20min) on SMA and sham stimulation, were randomized in a double-blind crossover design. We measured the time required for the 10m Walk Test (10MWT) and Timed Up and Go (TUG) test before and after each period. We found that the real tDCS with BWSTT significantly improved gait speed (10MWT) and applicative walking ability (TUG), compared with BWSTT+sham stimulation periods (p<0.05). Our findings demonstrated the feasibility and efficacy of tDCS in gait training after stroke. The facilitative effects of tDCS on SMA possibly improved postural control during BWSTT. The results indicated the implications for the use of tDCS in balance and gait training rehabilitation after stroke.
Collapse
Affiliation(s)
- Atsushi Manji
- Department of Human Health Science, Tokyo Metropolitan University, 7-2-2-10 Higashi-Ogu, Arakawa-ku, Tokyo 116-0012, Japan; Department of Rehabilitation, Saitama Misato Sogo Rehabilitation Hospital, Japan.
| | - Kazu Amimoto
- Department of Human Health Science, Tokyo Metropolitan University, 7-2-2-10 Higashi-Ogu, Arakawa-ku, Tokyo 116-0012, Japan
| | - Tadamitsu Matsuda
- Department of Physical Therapy, Faculty of Health Sciences, Josai International University, Japan
| | - Yoshiaki Wada
- Nissan Tamagawa Hospital Rehabilitation Center, Japan
| | - Akira Inaba
- Department of Neurology, Kanto Central Hospital, Japan
| | - Sangkyun Ko
- Department of internal medicine, Saitama Misato Sogo Rehabilitation Hospital, Japan
| |
Collapse
|