451
|
García I, Gallo J, Genicio N, Padro D, Penadés S. Magnetic glyconanoparticles as a versatile platform for selective immunolabeling and imaging of cells. Bioconjug Chem 2011; 22:264-73. [PMID: 21247095 DOI: 10.1021/bc1003923] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A versatile nanoplatform based on magnetic glyconanoparticles (glyco-ferrites) to attach well-oriented antibodies is described. An efficient ligand exchange process has been used to prepare water-soluble 6-nm-sized core-shell Fe(3)O(4)@Au nanoparticles bearing amphiphilic carbohydrates and aliphatic ethylene glycol chains ended in a carboxyl group. The covalent immobilization through the carboxyl group of an Fc receptor (protein G) enables successful well-oriented capture of immunoglobulins G onto the magnetic glyconanoparticle. A thorough characterization of structure and biofunctionality of the constructs is carried out by different techniques. The selective immunolabeling of cells by the antibody-magnetic glyconanoparticle conjugates is demonstrated by magnetic resonance imaging (MRI), as well as by fluorescence techniques.
Collapse
Affiliation(s)
- Isabel García
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterials Unit, CICbiomaGUNE and CIBER-BBN, P° de Miramón 182, 20009 San Sebastian, Spain
| | | | | | | | | |
Collapse
|
452
|
Meledandri CJ, Ninjbadgar T, Brougham DF. Size-controlled magnetoliposomes with tunable magnetic resonance relaxation enhancements. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm01061h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
453
|
Sulek S, Mammadov B, Mahcicek DI, Sozeri H, Atalar E, Tekinay AB, Guler MO. Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11387a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
454
|
Yang H, Zhou H, Zhang C, Li X, Hu H, Wu H, Yang S. Water-soluble magnetic CoO nanocrystals functionalized with surfactants as T2-weighed MRI contrast agents in vitro. Dalton Trans 2011; 40:3616-21. [DOI: 10.1039/c1dt10107b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
455
|
Chanyaputhipong J, Low SCA, Chow PKH. Gadoxetate Acid-Enhanced MR Imaging for HCC: A Review for Clinicians. Int J Hepatol 2011; 2011:489342. [PMID: 21994860 PMCID: PMC3170825 DOI: 10.4061/2011/489342] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 02/28/2011] [Accepted: 03/31/2011] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is increasingly being detected at an earlier stage, owing to the screening programs and regular imaging follow-up in high-risk populations. Small HCCs still pose diagnostic challenges on imaging due to decreased sensitivity and increased frequency of atypical features. Differentiating early HCC from premalignant or benign nodules is important as management differs and has implications on both the quality of life and the overall survival for the patients. Gadoxetate acid (Gd-EOB-DTPA, Primovist(®), Bayer Schering Pharma) is a relatively new, safe and well-tolerated liver-specific contrast agent for magnetic resonance (MR) imaging of the liver that has combined perfusion- and hepatocyte-specific properties, allowing for the acquisition of both dynamic and hepatobiliary phase images. Its high biliary uptake and excretion improves lesion detection and characterization by increasing liver-to-lesion conspicuity in the added hepatobiliary phase imaging. To date, gadoxetate acid-enhanced MRI has been mostly shown to be superior to unenhanced MRI, computed tomography, and other types of contrast agents in the detection and characterization of liver lesions. This review article focuses on the evolving role of gadoxetate acid in the characterization of HCC, differentiating it from other mimickers of HCC.
Collapse
Affiliation(s)
| | - Su-Chong Albert Low
- Department of Diagnostic Radiology, Singapore General Hospital, Outram Road, 169608, Singapore,*Su-Chong Albert Low:
| | - Pierce K. H. Chow
- Department of General Surgery, Singapore General Hospital, 169608, Singapore ,Duke-NUS Graduate Medical School, 169857, Singapore
| |
Collapse
|
456
|
Puppi J, Mitry RR, Modo M, Dhawan A, Raja K, Hughes RD. Use of a clinically approved iron oxide MRI contrast agent to label human hepatocytes. Cell Transplant 2010; 20:963-75. [PMID: 21092412 DOI: 10.3727/096368910x543367] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Reliable noninvasive methods are needed to monitor cell engraftment and graft survival after hepatocyte transplantation. Superparamagnetic iron oxide nanoparticles (SPIOs) have been shown to accumulate in various types of cells, and are currently the labeling agent of choice for cellular magnetic resonance imaging (MRI). However, for successful clinical translation to hepatocyte transplantation, it is important that hepatocytes maintain their viability and synthetic function after labeling. In this study, primary human hepatocytes were incubated with increasing concentrations of clinical grade SPIOs for different time intervals. SPIOs uptake was confirmed by light and fluorescence microscopy, and intracellular iron content quantified by a colorimetric ferrozine-based assay. Studies were performed to determine if labeling affected cell viability and function. Intracellular iron concentrations increased in a time- and dose-dependent manner after incubation with SPIOs. Labeling had minimal short-term effects on cell attachment and mitochondrial function. However, exposure of hepatocytes to SPIOs resulted in a dose- and time-dependent reduction in protein synthesis. Cell labeling for 16 h had no significant effect on hepatocyte-specific function, but longer periods of incubation resulted in a dose-dependent decrease in albumin production. Hepatocytes incorporated SPIOs at sufficient levels for in vitro detection on a 7-T MRI imaging system, with a minimum of 2,000 SPIO-labeled cells/μl detected by a decreased T2 relaxivity compared to controls. Intrasplenic transplantation of human hepatocytes labeled with 50 μg Fe/ml of SPIOs was performed in nonobese diabetic/severe combined immune deficiency (NOD-Scid) mice. Recipient livers showed a clear decrease in signal intensity on T2*-weighted MR images when compared to controls, allowing detection of hepatocytes. With further experiments to optimize the conditions for labeling human hepatocytes, it should be possible to apply this technique to track hepatocyte transplantation in patients with liver disease.
Collapse
Affiliation(s)
- Juliana Puppi
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
457
|
Tong S, Hou S, Zheng Z, Zhou J, Bao G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. NANO LETTERS 2010; 10:4607-13. [PMID: 20939602 PMCID: PMC3170660 DOI: 10.1021/nl102623x] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We describe a new method for coating superparamagnetic iron oxide nanoparticles (SPIOs) and demonstrate that, by fine-tuning the core size and PEG coating of SPIOs, the T2 relaxivity per particle can be increased by >200-fold. With 14 nm core and PEG1000 coating, SPIOs can have T2 relaxivity of 385 s-1 mM-1, which is among the highest per-Fe atom relaxivities. In vivo tumor imaging results demonstrated the potential of the SPIOs for clinical applications.
Collapse
Affiliation(s)
| | | | - Zhilan Zheng
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jun Zhou
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
458
|
Jozwiak S, Habich A, Kotulska K, Sarnowska A, Kropiwnicki T, Janowski M, Jurkiewicz E, Lukomska B, Kmiec T, Walecki J, Roszkowski M, Litwin M, Oldak T, Boruczkowski D, Domanska-Janik K. Intracerebroventricular Transplantation of Cord Blood-Derived Neural Progenitors in a Child With Severe Global Brain Ischemic Injury. CELL MEDICINE 2010; 1:71-80. [PMID: 26966631 PMCID: PMC4776166 DOI: 10.3727/215517910x536618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transplantation of neural stem/precursor cells has recently been proposed as a promising, albeit still controversial, approach to brain repair. Human umbilical cord blood could be a source of such therapeutic cells, proven beneficial in several preclinical models of stroke. Intracerebroventricular infusion of neutrally committed cord blood-derived cells allows their broad distribution in the CNS, whereas additional labeling with iron oxide nanoparticles (SPIO) enables to follow the fate of engrafted cells by MRI. A 16-month-old child at 7 months after the onset of cardiac arrest-induced global hypoxic/ischemic brain injury, resulting in a permanent vegetative state, was subjected to intracerebroventricular transplantation of the autologous neutrally committed cord blood cells. These cells obtained by 10-day culture in vitro in neurogenic conditions were tagged with SPIO nanoparticles and grafted monthly by three serial injections (12 × 10(6) cells/0.5 ml) into lateral ventricle of the brain. Neural conversion of cord blood cells and superparamagnetic labeling efficiency was confirmed by gene expression, immunocytochemistry, and phantom study. MRI examination revealed the discrete hypointense areas appearing immediately after transplantation in the vicinity of lateral ventricles wall with subsequent lowering of the signal during entire period of observation. The child was followed up for 6 months after the last transplantation and his neurological status slightly but significantly improved. No clinically significant adverse events were noted. This report indicates that intracerebroventricular transplantation of autologous, neutrally committed cord blood cells is a feasible, well tolerated, and safe procedure, at least during 6 months of our observation period. Moreover, a cell-related MRI signal persisted at a wall of lateral ventricle for more than 4 months and could be monitored in transplanted brain hemisphere.
Collapse
Affiliation(s)
- Sergiusz Jozwiak
- *Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Habich
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kotulska
- *Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Anna Sarnowska
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Kropiwnicki
- ‡Department of Neurosurgery, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Miroslaw Janowski
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Jurkiewicz
- §Department of Radiology, MR Unit, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Barbara Lukomska
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Kmiec
- *Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Jerzy Walecki
- ¶Department of Radiology and Diagnostic Imaging, Postgraduate Medical Centre and Experimental Pharmacology Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Roszkowski
- ‡Department of Neurosurgery, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Mieczyslaw Litwin
- #Department of Nephrology, The Children’s Memorial Health Institute, Warsaw, Poland
| | | | | | - Krystyna Domanska-Janik
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
459
|
Hou Y, Liu Y, Chen Z, Gu N, Wang J. Manufacture of IRDye800CW-coupled Fe3O4 nanoparticles and their applications in cell labeling and in vivo imaging. J Nanobiotechnology 2010; 8:25. [PMID: 21034487 PMCID: PMC2984479 DOI: 10.1186/1477-3155-8-25] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, near-infrared fluorescence (NIRF)-labeled iron nanoparticles have been synthesized and applied in a number of applications, including the labeling of human cells for monitoring the engraftment process, imaging tumors, sensoring the in vivo molecular environment surrounding nanoparticles and tracing their in vivo biodistribution. These studies demonstrate that NIRF-labeled iron nanoparticles provide an efficient probe for cell labeling. Furthermore, the in vivo imaging studies show excellent performance of the NIR fluorophores. However, there is a limited selection of NIRF-labeled iron nanoparticles with an optimal wavelength for imaging around 800 nm, where tissue autofluorescence is minimal. Therefore, it is necessary to develop additional alternative NIRF-labeled iron nanoparticles for application in this area. RESULTS This study manufactured 12-nm DMSA-coated Fe3O4 nanoparticles labeled with a near-infrared fluorophore, IRDye800CW (excitation/emission, 774/789 nm), to investigate their applicability in cell labeling and in vivo imaging. The mouse macrophage RAW264.7 was labeled with IRDye800CW-labeled Fe3O4 nanoparticles at concentrations of 20, 30, 40, 50, 60, 80 and 100 μg/ml for 24 h. The results revealed that the cells were efficiently labeled by the nanoparticles, without any significant effect on cell viability. The nanoparticles were injected into the mouse via the tail vein, at dosages of 2 or 5 mg/kg body weight, and the mouse was discontinuously imaged for 24 h. The results demonstrated that the nanoparticles gradually accumulated in liver and kidney regions following injection, reaching maximum concentrations at 6 h post-injection, following which they were gradually removed from these regions. After tracing the nanoparticles throughout the body it was revealed that they mainly distributed in three organs, the liver, spleen and kidney. Real-time live-body imaging effectively reported the dynamic process of the biodistribution and clearance of the nanoparticles in vivo. CONCLUSION IRDye800CW-labeled Fe3O4 nanoparticles provide an effective probe for cell-labeling and in vivo imaging.
Collapse
Affiliation(s)
- Yong Hou
- State key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | | | | | | | | |
Collapse
|
460
|
Antell H, Numminen J, Abo-Ramadan U, Niemelä MR, Hernesniemi JA, Kangasniemi M. Optimization of high-resolution USPIO magnetic resonance imaging at 4.7 T using novel phantom with minimal structural interference. J Magn Reson Imaging 2010; 32:1184-96. [DOI: 10.1002/jmri.22181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
461
|
Kamat M, El-Boubbou K, Zhu DC, Lansdell T, Lu X, Li W, Huang X. Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjug Chem 2010; 21:2128-35. [PMID: 20977242 DOI: 10.1021/bc100354m] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Imaging and targeted delivery to macrophages are promising new approaches to study and treat a variety of inflammatory diseases such as atherosclerosis. In this manuscript, we have designed and synthesized iron oxide based magnetic nanoparticles bearing hyaluronic acid (HA) on the surface to target activated macrophages. The HA-coated nanoparticles were prepared through a co-precipitation procedure followed by postsynthetic functionalization with HA and fluorescein. The nanoparticles were characterized by transmission electron microscopy, thermogravimetric analysis, elemental analysis, dynamic light scattering, and high-resolution magic angle spinning NMR and were biocompatible with cells and colloidally stable in the presence of serum. The HA immobilized on the nanoparticles retained their specific biological recognition with the HA receptor CD44, which is present on activated macrophages in high-affinity forms. Cell uptake studies demonstrated significant uptake of HA nanoparticles by activated macrophage cell line THP-1, which enabled magnetic resonance imaging of THP-1 cells. The uptake of nanoparticles was found to be both HA and CD44 dependent. Interestingly, Prussian blue staining showed that the magnetite cores of the HA-coated nanoparticles were only transiently present inside the cells, thus reducing the potential concerns of nanotoxicity. Furthermore, fluorescein on the nanoparticle was found to be delivered to the cell nucleus. Therefore, with further development, these HA functionalized magnetic nanoparticles can potentially become a useful carrier system for molecular imaging and targeted drug delivery to activated macrophages.
Collapse
Affiliation(s)
- Medha Kamat
- Department of Chemistry, Michigan State University, East Lansing, 48824, United States
| | | | | | | | | | | | | |
Collapse
|
462
|
Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, Aikawa M. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation 2010; 122:1707-15. [PMID: 20937980 DOI: 10.1161/circulationaha.109.891804] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Macrophages contribute to the progression and acute complications of atherosclerosis. Macrophage imaging may serve as a biomarker to identify subclinical inflamed lesions, to predict future risk, and to aid in the assessment of novel therapies. METHODS AND RESULTS To test the hypothesis that nanoparticle-enhanced, high-resolution magnetic resonance imaging (MRI) can measure plaque macrophage accumulation, we used 3-T MRI with a macrophage-targeted superparamagnetic nanoparticle preparation (monocrystalline iron oxide nanoparticles-47 [MION-47]) in cholesterol-fed New Zealand White rabbits 6 months after balloon injury. In vivo MRI visualized thickened abdominal aortas on both T1- and T2-weighted spin-echo images (T1 spin echo, 20 axial slices per animal; T2 spin echo, 28 slices per animal). Seventy-two hours after MION-47 injection, aortas exhibited lower T2 signal intensity compared with before contrast imaging (signal intensity ratio, aortic wall/muscle: before, 1.44 ± 0.26 versus after, 0.95 ± 0.22; 164 slices; P<0.01), whereas T1 spin echo images showed no significant change. MRI on ex vivo specimens provided similar results. Histological studies colocalized iron accumulation with immunoreactive macrophages in atheromata. The magnitude of signal intensity reduction on T2 spin echo in vivo images further correlated with macrophage areas in situ (150 slices; r=0.73). Treatment with rosuvastatin for 3 months yielded diminished macrophage content (P<0.05) and reversed T2 signal intensity changes (P<0.005). Signal changes in rosuvastatin-treated rabbits correlated with reduced macrophage burden (r=0.73). In vitro validation studies showed concentration-dependent MION-47 uptake by human primary macrophages. CONCLUSION The magnitude of T2 signal intensity reduction in high-resolution MRI after administration of superparamagnetic phagocytosable nanoparticles can assess macrophage burden in atheromata, providing a clinically translatable tool to identify inflamed plaques and to monitor therapy-mediated changes in plaque inflammation.
Collapse
Affiliation(s)
- Kunio Morishige
- Donald W. Reynolds Cardiovascular Clinical Research Center at Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
463
|
High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation 2010. [PMID: 20937980 DOI: 10.1016/circulationaha.109.891804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Macrophages contribute to the progression and acute complications of atherosclerosis. Macrophage imaging may serve as a biomarker to identify subclinical inflamed lesions, to predict future risk, and to aid in the assessment of novel therapies. METHODS AND RESULTS To test the hypothesis that nanoparticle-enhanced, high-resolution magnetic resonance imaging (MRI) can measure plaque macrophage accumulation, we used 3-T MRI with a macrophage-targeted superparamagnetic nanoparticle preparation (monocrystalline iron oxide nanoparticles-47 [MION-47]) in cholesterol-fed New Zealand White rabbits 6 months after balloon injury. In vivo MRI visualized thickened abdominal aortas on both T1- and T2-weighted spin-echo images (T1 spin echo, 20 axial slices per animal; T2 spin echo, 28 slices per animal). Seventy-two hours after MION-47 injection, aortas exhibited lower T2 signal intensity compared with before contrast imaging (signal intensity ratio, aortic wall/muscle: before, 1.44 ± 0.26 versus after, 0.95 ± 0.22; 164 slices; P<0.01), whereas T1 spin echo images showed no significant change. MRI on ex vivo specimens provided similar results. Histological studies colocalized iron accumulation with immunoreactive macrophages in atheromata. The magnitude of signal intensity reduction on T2 spin echo in vivo images further correlated with macrophage areas in situ (150 slices; r=0.73). Treatment with rosuvastatin for 3 months yielded diminished macrophage content (P<0.05) and reversed T2 signal intensity changes (P<0.005). Signal changes in rosuvastatin-treated rabbits correlated with reduced macrophage burden (r=0.73). In vitro validation studies showed concentration-dependent MION-47 uptake by human primary macrophages. CONCLUSION The magnitude of T2 signal intensity reduction in high-resolution MRI after administration of superparamagnetic phagocytosable nanoparticles can assess macrophage burden in atheromata, providing a clinically translatable tool to identify inflamed plaques and to monitor therapy-mediated changes in plaque inflammation.
Collapse
|
464
|
Lévy M, Lagarde F, Maraloiu VA, Blanchin MG, Gendron F, Wilhelm C, Gazeau F. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. NANOTECHNOLOGY 2010; 21:395103. [PMID: 20820094 DOI: 10.1088/0957-4484/21/39/395103] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The unique magnetic properties of iron oxide nanoparticles have paved the way for various biomedical applications, such as magnetic resonance cellular imaging or magnetically induced therapeutic hyperthermia. Living cells interact with nanoparticles by internalizing them within intracellular acidic compartments. Although no acute toxicity of iron oxide nanoparticles has been reported up to now, the mechanisms of nanoparticle degradation by the cellular environment are still unknown. In the organism, the long term integrity and physical state of iron-based nanoparticles are challenged by iron homeostasis. In this study, we monitored the degradation of 7 nm sized maghemite nanoparticles in a medium mimicking the intracellular environment. Magnetic nanoparticles with three distinct surface coatings, currently evaluated as MRI contrast agents, were shown to exhibit different kinetics of dissolution at an acidic pH in the presence of a citrate chelating agent. Our assessment of the physical state of the nanoparticles during degradation revealed that the magnetic properties, size distribution and structure of the remaining nanocrystals were identical to those of the initial suspension. This result suggests a model for nanoparticle degradation with rapidly dissolved nanocrystals and a reservoir of intact nanoparticles.
Collapse
Affiliation(s)
- Michael Lévy
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Diderot, Paris, France
| | | | | | | | | | | | | |
Collapse
|
465
|
Pulmonary responses to printer toner particles in mice after intratracheal instillation. Toxicol Lett 2010; 199:288-300. [PMID: 20883754 DOI: 10.1016/j.toxlet.2010.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/15/2010] [Accepted: 09/18/2010] [Indexed: 12/19/2022]
Abstract
The release of ultrafine particles from office equipment is currently receiving great concerns due to its potential threat to human health when inhaled. Printer toner is one of the largest consumables in daily office work, and the particles released from printers and photocopiers may pose damage to respiratory system. In this study, we found the particles can be released into the surrounding environment during the printing process and the concentrations of PM(2.5) and PM(10) particles increased obviously. To evaluate the time-course pulmonary responses caused by toner particles, the toner suspension was instilled into the lungs of the male mice through intratracheally instillation every other day for four times and the pulmonary responses of the lung were monitored at days 9, 28, 56 and 84. Indeed, mice treated with toner particles displayed a slower body weight growth rate during the recovery phase. The total cell number in bronchoalveolar lavage fluids (BALF) of toner-exposed groups was much higher than the saline-treated groups. The total protein, lactate dehydrogenase and acid phosphatase in BALF exhibited significant changes (p<0.05 or p<0.01) at different time points. The nitric oxide synthase, interleukin 1-beta, and interleukin 6 in the lung tissue of the toner-exposed groups also exhibited significant changes (p<0.05 or p<0.01). The pathological examination showed that toner particles can adhere to the alveolar septal walls, then enter into the alveoli and cause pulmonary lesion. During the experimental period, particles phagocytosed by alveolar macrophages (AMs) led to an increase of both AMs number and apoptosis. The pulmonary stress still remained over time even with a clearance period for 12 weeks. These results indicate that exposure to toner particles can inhibit the normal growth of the mice and induce significant inflammatory responses and lesion in the lung tissues. The health and safety effects from working indoors in offices with fumes and particles released from photocopiers and printers need to be paid more attention.
Collapse
|
466
|
Lunov O, Syrovets T, Röcker C, Tron K, Nienhaus GU, Rasche V, Mailänder V, Landfester K, Simmet T. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 2010; 31:9015-22. [PMID: 20739059 DOI: 10.1016/j.biomaterials.2010.08.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
Contrast agents based on dextran-coated superparamagnetic iron oxide nanoparticles (SPIO) are internalized by professional phagocytes such as hepatic Kupffer cells, yet their role in phagocyte biology remains largely unknown. Here we investigated the effects of the SPIO ferucarbotran on murine Kupffer cells and human macrophages. Intravenous injection of ferucarbotran into mice led to rapid accumulation of the particles in phagocytes and to long-lasting increased iron deposition in liver and kidneys. Macrophages incorporate ferucarbotran in lysosomal vesicles containing α-glucosidase, which is capable of degrading the carboxydextran shell of the ferucarbotran particles. Intravenous injection of ferucarbotran into mice followed by incorporation of the nanoparticles into Kupffer cells triggered apoptosis and the subsequent depletion of Kupffer cells. In macrophages, the proinflammatory cytokine TNF-α increased the apoptosis rate, the reactive oxygen species production and the activation of c-Jun N-terminal kinase elicited by ferucarbotran, which might be mediated by the induction of cytoplasmic phospholipase A2 by TNF-α. Notably, the nanoparticle-induced apoptosis of murine Kupffer cells could be prevented by treatment of the mice with the radical scavenger edaravone. Thus, nanosized carboxydextran-coated SPIO-based contrast agents are retained for extended time periods by liver macrophages, where they elicit delayed cell death, which can be antagonized by a therapeutic radical scavenger.
Collapse
Affiliation(s)
- Oleg Lunov
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Helmholtzstr 20, Ulm University, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
467
|
Abstract
Clinical neurology and neurosurgery are two fields that face some of the most challenging and exciting problems remaining in medicine. Brain tumors, paralysis after trauma or stroke, and neurodegerative diseases are some of the many disorders for which effective therapies remain elusive. Nanotechnology seems poised to offer promising new solutions to some of these difficult problems. The latest advances in materials engineered at the nanoscale for applications relevant to the clinical neurosciences, such as medical imaging, nanotherapies for neurologic disease, nerve tissue engineering, and nanotechnological contributions to neuroelectrodes and brain-machine interface technology are reviewed. The primary classes of materials discussed include superparamagnetic iron oxide nanoparticles, gold nanoparticles, liposomes, carbon fullerenes, and carbon nanotubes. The potential of the field and the challenges that must be overcome for the current technology to become available clinically are highlighted.
Collapse
Affiliation(s)
- Kelly L. Collins
- University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0338
| | - Daniel A. Orringer
- University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0338
| | - Parag G. Patil
- University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0338
| |
Collapse
|
468
|
Ahmad MZ, Akhter S, Jain GK, Rahman M, Pathan SA, Ahmad FJ, Khar RK. Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert Opin Drug Deliv 2010; 7:927-42. [DOI: 10.1517/17425247.2010.498473] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
469
|
Raphael MP, Christodoulides JA, Qadri SN, Simpkins BS, Byers JM. Magnetic moment degradation of nanowires in biological media: real-time monitoring with SQUID magnetometry. NANOTECHNOLOGY 2010; 21:285101. [PMID: 20562492 DOI: 10.1088/0957-4484/21/28/285101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic nanoparticles are used throughout biology for applications from targeted drug and gene delivery to the labeling of cells. These nanoparticles typically react with the biological medium to which they are introduced, resulting in a diminished magnetic moment. The rate at which their magnetic moment is diminished limits their utility for targeting and can signal the unintended release of surface-functionalized biomolecules. A foreknowledge of the time-dependent degradation of the magnetic moment in a given medium can aid in the selection of the optimal buffering solution and in the prediction of a reasonable experimental time frame. With this goal in mind, we have developed a SQUID magnetometer based methodology for measuring the saturation magnetic moment of nanoparticles in real time while immersed in a biological medium. Measurements on Co and Ni nanowires in a variety of commonly used buffered salines demonstrated that the technique has the dynamic range and sensitivity to detect the rapid reduction in moment due to active corrosion as well as much more subtle changes from the formation of a passivating surface oxide layer. In order to correlate the magnetic moment reductions to these specific chemical processes, samples were additionally characterized using x-ray photoelectron spectroscopy, inductively coupled plasma spectroscopy and scanning electron microscopy. The most reactive buffers studied were found to be phosphate and carbonate based, which caused active corrosion of the Co nanowires but only a comparatively slow passivation of the Ni nanowires by oxidation.
Collapse
Affiliation(s)
- Marc P Raphael
- Nanoscience, Naval Research Laboratory, Washington, DC 20375-5320, USA.
| | | | | | | | | |
Collapse
|
470
|
Kedziorek DA, Muja N, Walczak P, Ruiz-Cabello J, Gilad AA, Jie CC, Bulte JWM. Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn Reson Med 2010; 63:1031-43. [PMID: 20373404 DOI: 10.1002/mrm.22290] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With MRI (stem) cell tracking having entered the clinic, studies on the cellular genomic response toward labeling are warranted. Gene expression profiling was applied to C17.2 neural stem cells following superparamagnetic iron oxide/PLL (poly-L-lysine) labeling over the course of 1 week. Relative to unlabeled cells, less than 1% of genes (49 total) exhibited greater than 2-fold difference in expression in response to superparamagnetic iron oxide/PLL labeling. In particular, transferrin receptor 1 (Tfrc) and heme oxygenase 1 (Hmox1) expression was downregulated early, whereas genes involved in lysosomal function (Sulf1) and detoxification (Clu, Cp, Gstm2, Mgst1) were upregulated at later time points. Relative to cells treated with PLL only, cells labeled with superparamagnetic iron oxide/PLL complexes exhibited differential expression of 1399 genes. Though these differentially expressed genes exhibited altered expression over time, the overall extent was limited. Gene ontology analysis of differentially expressed genes showed that genes encoding zinc-binding proteins are enriched after superparamagnetic iron oxide/PLL labeling relative to PLL only treatment, whereas members of the apoptosis/programmed cell death pathway did not display increased expression. Overexpression of the differentially expressed genes Rnf138 and Abcc4 were confirmed by quantitative real-time polymerase chain reaction. These results demonstrate that, although early reactions responsible for iron homeostasis are induced, overall neural stem cell gene expression remains largely unaltered following superparamagnetic iron oxide/PLL labeling.
Collapse
Affiliation(s)
- Dorota A Kedziorek
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
471
|
Krishnan KM. Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE TRANSACTIONS ON MAGNETICS 2010; 46:2523-2558. [PMID: 20930943 PMCID: PMC2949969 DOI: 10.1109/tmag.2010.2046907] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biomedical nanomagnetics is a multidisciplinary area of research in science, engineering and medicine with broad applications in imaging, diagnostics and therapy. Recent developments offer exciting possibilities in personalized medicine provided a truly integrated approach, combining chemistry, materials science, physics, engineering, biology and medicine, is implemented. Emphasizing this perspective, here we address important issues for the rapid development of the field, i.e., magnetic behavior at the nanoscale with emphasis on the relaxation dynamics, synthesis and surface functionalization of nanoparticles and core-shell structures, biocompatibility and toxicity studies, biological constraints and opportunities, and in vivo and in vitro applications. Specifically, we discuss targeted drug delivery and triggered release, novel contrast agents for magnetic resonance imaging, cancer therapy using magnetic fluid hyperthermia, in vitro diagnostics and the emerging magnetic particle imaging technique, that is quantitative and sensitive enough to compete with established imaging methods. In addition, the physics of self-assembly, which is fundamental to both biology and the future development of nanoscience, is illustrated with magnetic nanoparticles. It is shown that various competing energies associated with self-assembly converge on the nanometer length scale and different assemblies can be tailored by varying particle size and size distribution. Throughout this paper, while we discuss our recent research in the broad context of the multidisciplinary literature, we hope to bridge the gap between related work in physics/chemistry/engineering and biology/medicine and, at the same time, present the essential concepts in the individual disciplines. This approach is essential as biomedical nanomagnetics moves into the next phase of innovative translational research with emphasis on development of quantitative in vivo imaging, targeted and triggered drug release, and image guided therapy including validation of delivery and therapy response.
Collapse
Affiliation(s)
- Kannan M Krishnan
- Department of Materials Science, University of Washington, Seattle, WA 98195-2120 USA
| |
Collapse
|
472
|
Lunov O, Syrovets T, Büchele B, Jiang X, Röcker C, Tron K, Nienhaus GU, Walther P, Mailänder V, Landfester K, Simmet T. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 2010; 31:5063-71. [DOI: 10.1016/j.biomaterials.2010.03.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/04/2010] [Indexed: 01/18/2023]
|
473
|
Chertok B, Cole AJ, David AE, Yang VC. Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Mol Pharm 2010; 7:375-85. [PMID: 20039679 DOI: 10.1021/mp900161h] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Magnetic nanoparticles (MNP) have been widely studied for use in targeted drug delivery. Analysis of MNP biodistribution is essential to evaluating the success of targeting strategies and the potential for off-target toxicity. This work compared the applicability of inductively coupled plasma optical emission spectroscopy (ICP-OES) and electron spin resonance (ESR) spectroscopy in assessing MNP biodistribution. Biodistribution was evaluated in 9L-glioma bearing rats administered with MNP (12-25 mg Fe/kg) under magnetic targeting. Ex vivo analysis of MNP in animal tissues was performed with both ICP-OES and ESR. A cryogenic method was developed to overcome the technical hurdle of loading tissue samples into ESR tubes. Comparison of results from the ICP-OES and ESR measurements revealed two distinct relationships for organs accumulating high or low levels of MNP. In organs with high MNP accumulation such as the liver and spleen, data were strongly correlated (r = 0.97, 0.94 for the liver and spleen, respectively), thus validating the equivalency of the two methods in this high concentration range (>1000 nmol Fe/g tissue). The two sets of measurements, however, differed significantly in organs with lower levels of MNP accumulation such as the brain, kidney, and the tumor. Whereas ESR resolved MNP to 10-55 nmol Fe/g tissue, ICP-OES failed to detect MNP because of masking by endogenous iron. These findings suggest that ESR coupled to cryogenic sample handling is more robust than ICP-OES, attaining better sensitivity in analyses. Such advantages render ESR the method of choice for accurate profiling of MNP biodistribution across tissues with high variability in nanoparticle accumulation.
Collapse
Affiliation(s)
- Beata Chertok
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
474
|
Serda RE, Mack A, Pulikkathara M, Zaske AM, Chiappini C, Fakhoury J, Webb D, Godin B, Conyers JL, Liu X, Bankson JA, Ferrari M. Cellular association and assembly of a multistage delivery system. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1329-40. [PMID: 20517877 PMCID: PMC3045963 DOI: 10.1002/smll.201000126] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The realization that blood-borne delivery systems must overcome a multiplicity of biological barriers has led to the fabrication of a multistage delivery system (MDS) designed to temporally release successive stages of particles or agents to conquer sequential barriers, with the goal of enhancing delivery of therapeutic and diagnostic agents to the target site. In its simplest form, the MDS comprises stage-one porous silicon microparticles that function as carriers of second-stage nanoparticles. Cellular uptake of nontargeted discoidal silicon microparticles by macrophages is confirmed by electron and atomic force microscopy (AFM). Using superparamagnetic iron oxide nanoparticles (SPIONs) as a model of secondary nanoparticles, successful loading of the porous matrix of silicon microparticles is achieved, and retention of the nanoparticles is enhanced by aminosilylation of the loaded microparticles with 3-aminopropyltriethoxysilane. The impact of silane concentration and reaction time on the nature of the silane polymer on porous silicon is investigated by AFM and X-ray photoelectron microscopy. Tissue samples from mice intravenously administered the MDS support co-localization of silicon microparticles and SPIONs across various tissues with enhanced SPION release in spleen, compared to liver and lungs, and enhanced retention of SPIONs following silane capping of the MDS. Phantom models of the SPION-loaded MDS display negative contrast in magnetic resonance images. In addition to forming a cap over the silicon pores, the silane polymer provides free amines for antibody conjugation to the microparticles, with both VEGFR-2- and PECAM-specific antibodies leading to enhanced endothelial association. This study demonstrates the assembly and cellular association of a multiparticle delivery system that is biomolecularly targeted and has potential for applications in biological imaging.
Collapse
Affiliation(s)
- Rita E. Serda
- University of Texas Health Science Center (UTHSC), Department of Nanomedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
| | - Aaron Mack
- University of Texas Health Science Center (UTHSC), Department of Nanomedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
| | - Merlyn Pulikkathara
- University of Texas Health Science Center (UTHSC), Department of Nanomedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
| | - Ana Maria Zaske
- Center for Translational Injury Research, 6431 Fannin St., MSB 5.422, Houston, TX 77030
| | - Ciro Chiappini
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station, C0400, Austin, TX 78712
| | - Jean Fakhoury
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station, C0400, Austin, TX 78712
| | - Douglas Webb
- University of Texas MD Anderson Cancer Center, Department of Imaging Physics, 1515 Holcombe Blvd., Houston, TX 77030
| | - Biana Godin
- University of Texas Health Science Center (UTHSC), Department of Nanomedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
| | - Jodie L. Conyers
- Center for Translational Injury Research, 6431 Fannin St., MSB 5.422, Houston, TX 77030
| | - XueWu Liu
- University of Texas Health Science Center (UTHSC), Department of Nanomedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
| | - James A. Bankson
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station, C0400, Austin, TX 78712
- University of Texas MD Anderson Cancer Center, Department of Imaging Physics, 1515 Holcombe Blvd., Houston, TX 77030
| | - Mauro Ferrari
- University of Texas Health Science Center (UTHSC), Department of Nanomedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
- University of Texas MD Anderson Cancer Center, Department of Experimental Therapeutics, Unit 422, 1515 Holcombe Blvd., Houston, TX 77030
- Rice University, Department of Bioengineering, Houston, TX 77005
| |
Collapse
|
475
|
Wang J, de Keizer A, Fokkink R, Yan Y, Cohen Stuart MA, van der Gucht J. Complex Coacervate Core Micelles from Iron-Based Coordination Polymers. J Phys Chem B 2010; 114:8313-9. [DOI: 10.1021/jp1003209] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junyou Wang
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands, and Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Arie de Keizer
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands, and Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Remco Fokkink
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands, and Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Yan
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands, and Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Martien A. Cohen Stuart
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands, and Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jasper van der Gucht
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands, and Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
476
|
Kim HS, Oh SY, Joo HJ, Son KR, Song IC, Moon WK. The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR IN BIOMEDICINE 2010; 23:514-522. [PMID: 20175151 DOI: 10.1002/nbm.1487] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study was undertaken to compare the labeling efficiencies of three iron-oxide based MRI contrast agents [Feridex, Resovist and monocrystalline iron oxide (MION)] and to evaluate their effects on the biological properties of human mesenchymal stem cells (hMSCs). The hMSCs were cultivated for 1 and 7 days after 24-h labeling with iron oxide nanoparticles (12.5 microg Fe/mL) in the presence of poly-L-lysine (0.75 microg/mL). The hMSCs were labeled more efficiently with use of Feridex, Resovist as compared to MION. No significant differences were observed in terms of viability and proliferation of labeled hMSCs. The level of Oct-4 mRNA increased in labeled hMSCs at day 1 and the cellular phenotype changed from CD45-/CD44+/CD29+ to CD45low/CD44+/CD29+ at day 7, which closely resembles the phenotype of fresh bone marrow-derived hMSCs. Our study has demonstrated that the Feridex or Resovist is the preferred labeling agent for hMSCs. There was a change in Oct-4 and CD45 expression after labeling.
Collapse
Affiliation(s)
- Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
477
|
Villaraza AJL, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 2010; 110:2921-59. [PMID: 20067234 PMCID: PMC2868950 DOI: 10.1021/cr900232t] [Citation(s) in RCA: 474] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aaron Joseph L. Villaraza
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ambika Bumb
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin W. Brechbiel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
478
|
Yang Y, Yang Y, Yanasak N, Schumacher A, Hu TCC. Temporal and noninvasive monitoring of inflammatory-cell infiltration to myocardial infarction sites using micrometer-sized iron oxide particles. Magn Reson Med 2010; 63:33-40. [PMID: 19953508 DOI: 10.1002/mrm.22175] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Micrometer-sized iron oxide particles (MPIO) are a more sensitive MRI contrast agent for tracking cell migration compared to ultrasmall iron oxide particles. This study investigated the temporal relationship between inflammation and tissue remodeling due to myocardial infarction (MI) using MPIO-enhanced MRI. C57Bl/6 mice received an intravenous MPIO injection for cell labeling, followed by a surgically induced MI seven days later (n=7). For controls, two groups underwent either sham-operated surgery without inducing an MI post-MPIO injection (n=7) or MI surgery without MPIO injection (n=6). The MRIs performed post-MI showed significant signal attenuation around the MI site for the mice that received an intravenous MPIO injection for cell labeling, followed by a surgically induced MI seven days later, compared to the two control groups (P<0.01). The findings suggested that the prelabeled inflammatory cells mobilized and infiltrated into the MI site. Furthermore, the linear regression of contrast-to-noise ratio at the MI site and left ventricular ejection function suggested a positive correlation between the labeled inflammatory cell infiltration and cardiac function attenuation during post-MI remodeling (r2=0.98). In conclusion, this study demonstrated an MRI technique for noninvasively and temporally monitoring inflammatory cell migration into the myocardium while potentially providing additional insight concerning the pathologic progression of a myocardial infarction.
Collapse
Affiliation(s)
- Yidong Yang
- Small Animal Imaging, Department of Radiology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
479
|
Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 2010; 62:284-304. [PMID: 19909778 DOI: 10.1016/j.addr.2009.11.002] [Citation(s) in RCA: 1058] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 10/17/2009] [Indexed: 12/13/2022]
Abstract
Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents that have been developed for magnetic resonance (MR) imaging. These MNPs have traditionally been used for disease imaging via passive targeting, but recent advances have opened the door to cellular-specific targeting, drug delivery, and multi-modal imaging by these nanoparticles. As more elaborate MNPs are envisioned, adherence to proper design criteria (e.g. size, coating, molecular functionalization) becomes even more essential. This review summarizes the design parameters that affect MNP performance in vivo, including the physicochemical properties and nanoparticle surface modifications, such as MNP coating and targeting ligand functionalizations that can enhance MNP management of biological barriers. A careful review of the chemistries used to modify the surfaces of MNPs is also given, with attention paid to optimizing the activity of bound ligands while maintaining favorable physicochemical properties.
Collapse
Affiliation(s)
- Omid Veiseh
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
| | | | | |
Collapse
|
480
|
Abstract
Technical advances in nanotechnology are creating novel classes of MRI contrast-enhancing agents. These nanomaterials offer much higher relaxivities than most current clinical contrast agents, which translates into greater MRI contrast enhancement. These nanoscale agents also have the potential to revolutionize in vivo applications of contrast-enhanced MRI since they offer the multiple advantages of low toxicities, extremely high relaxivities and cell internalization capabilities. In this review, we discuss three types of such contrast agents currently in use or under development for medical imaging: small particles of iron oxide, fullerenes encapsulating Gd3+ ions (gadofullerenes) and single-walled carbon nanotube nanocapsules encapsulating Gd3+ ion clusters (gadonanotubes). The latest developments and projected future applications of these nanotechnology-inspired contrast agents in the field of medical imaging are also discussed.
Collapse
|
481
|
Sakamoto JH, van de Ven AL, Godin B, Blanco E, Serda RE, Grattoni A, Ziemys A, Bouamrani A, Hu T, Ranganathan SI, De Rosa E, Martinez JO, Smid CA, Buchanan RM, Lee SY, Srinivasan S, Landry M, Meyn A, Tasciotti E, Liu X, Decuzzi P, Ferrari M. Enabling individualized therapy through nanotechnology. Pharmacol Res 2010; 62:57-89. [PMID: 20045055 DOI: 10.1016/j.phrs.2009.12.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/21/2009] [Indexed: 12/13/2022]
Abstract
Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of 'losing sight of the forest for the trees'. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of "-omic" technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon "-omic" technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology "snapshot" of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to "self-correct" in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success.
Collapse
Affiliation(s)
- Jason H Sakamoto
- The University of Texas Health Science Center, Department of Nanomedicine and Biomedical Engineering, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Liu HL, Wai YY, Hsu PH, Lyu LA, Wu JS, Shen CR, Chen JC, Yen TC, Wang JJ. In vivo assessment of macrophage CNS infiltration during disruption of the blood-brain barrier with focused ultrasound: a magnetic resonance imaging study. J Cereb Blood Flow Metab 2010; 30:177-86. [PMID: 19724289 PMCID: PMC2949101 DOI: 10.1038/jcbfm.2009.179] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Focused ultrasound has been discovered to locally and reversibly increase permeability of the blood-brain barrier (BBB). However, inappropriate sonication of the BBB may cause complications, such as hemorrhage and brain tissue damage. Tissue damage may be controlled by selecting optimal sonication parameters. In this study, we sought to investigate the feasibility of labeling cells with superparamagnetic iron oxide particles to assess the inflammatory response during focused-ultrasound-induced BBB opening. We show that infiltration of phagocytes does not occur using optimal parameters of sonication. Taken together, the results of our study support the usefulness and safety of focused-ultrasound-induced BBB opening for enhancing drug delivery to the brain. These findings may have implications for the optimization of sonication parameters.
Collapse
Affiliation(s)
- Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
483
|
Differential diagnosis between metastatic tumors and nonsolid benign lesions of the liver using ferucarbotran-enhanced MR imaging. Eur J Radiol 2010; 73:125-30. [DOI: 10.1016/j.ejrad.2008.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/01/2008] [Accepted: 09/24/2008] [Indexed: 11/18/2022]
|
484
|
Gallo J, García I, Padro D, Arnáiz B, Penadés S. Water-soluble magnetic glyconanoparticles based on metal-doped ferrites coated with gold: Synthesis and characterization. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01756f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
485
|
Yiu HHP, McBain SC, Lethbridge ZAD, Lees MR, Dobson J. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. J Biomed Mater Res A 2010; 92:386-92. [DOI: 10.1002/jbm.a.32363] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
486
|
Choi SH, Kim KH, Moon WK, Kim HC, Cha JH, Paik JH, Chang KH. Comparison of lymph node metastases assessment With the use of USPIO-enhanced MR imaging at 1.5 T versus 3.0 T in a rabbit model. J Magn Reson Imaging 2009; 31:134-41. [DOI: 10.1002/jmri.22020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
487
|
Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 2009; 6:1417-28. [PMID: 19445482 DOI: 10.1021/mp900083m] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic targeting is useful for intravascular or intracavitary drug delivery, including tumor chemotherapy or intraocular antiangiogenic therapy. For all such in vivo applications, the magnetic drug carrier must be biocompatible and nontoxic. In this work, we investigated the toxic properties of magnetic nanoparticles coated with polyethylenoxide (PEO) triblock copolymers. Such coatings prevent the aggregation of magnetic nanoparticles and guarantee consistent magnetic and nonmagnetic flow properties. It was found that the PEO tail block length inversely correlates with toxicity. The nanoparticles with the shortest 0.75 kDa PEO tails were the most toxic, while particles coated with the 15 kDa PEO tail block copolymers were the least toxic. Toxicity responses of the tested prostate cancer cell lines (PC3 and C4-2), human umbilical vein endothelial cells (HUVECs), and human retinal pigment epithelial cells (HRPEs) were similar. Furthermore, all cell types took up the coated magnetic nanoparticles. It is concluded that magnetite nanoparticles coated with triblock copolymers containing PEO tail lengths of above 2 kDa are biocompatible and appropriate for in vivo application.
Collapse
Affiliation(s)
- Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | | | | | | | | | | | | |
Collapse
|
488
|
Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E. Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. NANO LETTERS 2009; 9:4042-8. [PMID: 19835370 DOI: 10.1021/nl902212q] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We have found catechol-derivative anchor groups which possess irreversible binding affinity to iron oxide and thus can optimally disperse superparamagnetic nanoparticles under physiologic conditions. This not only leads to ultrastable iron oxide nanoparticles but also allows close control over the hydrodynamic diameter and interfacial chemistry. The latter is a crucial breakthrough to assemble functionalized magnetic nanoparticles, e.g., as targeted magnetic resonance contrast agents.
Collapse
Affiliation(s)
- Esther Amstad
- Laboratory of Surface Science and Technology, ETH Zurich, Switzerland
| | | | | | | | | |
Collapse
|
489
|
Bernd H, De Kerviler E, Gaillard S, Bonnemain B. Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol 2009; 44:336-42. [PMID: 19661843 DOI: 10.1097/rli.0b013e3181a0068b] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Because of its cellular uptake pattern, ferumoxtran-10 may be potentially useful for the imaging of a variety of diseases (eg, atheroma, multiple sclerosis, stroke, renal graft rejection, glomerulonephritis and brain tumors, in addition to differentiation of metastatic and nonmetastatic lymph nodes). The aim of this article is to present a comprehensive review of the safety and tolerability of ferumoxtran-10 as reported during clinical development of the compound as an ultrasmall superparamagnetic iron oxide contrast agent for use in magnetic resonance imaging. MATERIALS AND METHODS The safety profile of ferumoxtran-10 was assessed using pooled data from 37 phase I to III clinical studies in 1777 adults (1663 received the contrast agent [1527 patients and 136 healthy volunteers], 75 received placebo, and 39 patients were enrolled but did not receive study medication). RESULTS At least one adverse event was reported in 23.2% of patients who received ferumoxtran-10. Adverse events were of mild-to-moderate severity in 86.3% of patients in the ferumoxtran-10 group. At least 1 event considered by the investigator to be related to study treatment was reported in 18.2% of patients in the ferumoxtran-10 group. The most commonly reported treatment-related adverse events were back pain, pruritus, headache, and urticaria. A total of 44 patients (2.6%) in the ferumoxtran-10 group reported 76 serious adverse event (SAE). Only 7 SAEs (0.42%) were considered to be treatment-related (anaphylactic shock, chest pain, dyspnea, skin rash, oxygen saturation decreased, and 2 cases of hypotension). There were 12 deaths, only one of which (anaphylactic shock) was considered to be related to ferumoxtran-10 which was administered by bolus injection of undiluted product, a mode of administration that is no longer recommended. Results in high-risk groups of patients including the elderly and those with hepatic, renal or cardiovascular disease seemed to show no cause for special clinical concern in these groups. CONCLUSIONS Clinical experience to date therefore shows ferumoxtran-10 to be a well tolerated contrast agent.
Collapse
Affiliation(s)
- Hamm Bernd
- Department of Radiology, Universitätsklinikum Charite, Medizinische Fakultät der Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
490
|
Zhang L, Yu F, Cole AJ, Chertok B, David AE, Wang J, Yang VC. Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging. AAPS JOURNAL 2009; 11:693-9. [PMID: 19842043 DOI: 10.1208/s12248-009-9151-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/30/2009] [Indexed: 11/30/2022]
Abstract
Magnetic iron oxide nanoparticles (MNP) coated with gum arabic (GA), a biocompatible phytochemical glycoprotein widely used in the food industry, were successfully synthesized and characterized. GA-coated MNP (GA-MNP) displayed a narrow hydrodynamic particle size distribution averaging about 100 nm; a GA content of 15.6% by dry weight; a saturation magnetization of 93.1 emu/g Fe; and a superparamagnetic behavior essential for most magnetic-mediated applications. The GA coating offers two major benefits: it both enhances colloidal stability and provides reactive functional groups suitable for coupling of bioactive compounds. In vitro results showed that GA-MNP possessed a superior stability upon storage in aqueous media when compared to commercial MNP products currently used in magnetic resonance imaging (MRI). In addition, significant cellular uptake of GA-MNP was evaluated in 9L glioma cells by electron spin resonance (ESR) spectroscopy, fluorescence microscopy, and MRI analyses. Based on these findings, it was hypothesized that GA-MNP might be utilized as a MRI-visible drug carrier in achieving both magnetic tumor targeting and intracellular drug delivery. Indeed, preliminary in vivo investigations validate this clinical potential. MRI visually confirmed the accumulation of GA-MNP at the tumor site following intravenous administration to rats harboring 9L glioma tumors under the application of an external magnetic field. ESR spectroscopy quantitatively revealed a 12-fold increase in GA-MNP accumulation in excised tumors when compared to contralateral normal brain. Overall, the results presented show promise that GA-MNP could potentially be employed to achieve simultaneous tumor imaging and targeted intra-tumoral drug delivery.
Collapse
Affiliation(s)
- Lei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin, 300072, China
| | | | | | | | | | | | | |
Collapse
|
491
|
Wiegand S, Heinen T, Ramaswamy A, Sesterhenn AM, Bergemann C, Werner JA, Lübbe AS. Evaluation of the tolerance and distribution of intravenously applied ferrofluid particles of 250 and 500 nm size in an animal model. J Drug Target 2009; 17:194-9. [PMID: 19016106 DOI: 10.1080/10611860802582467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Magnetic drug targeting may be a new method for the treatment of malignant tumors. According to the previous investigations, the success of magnetic targeting is generally contingent upon the magnetic properties and size distribution of the magnetic nanoparticles. Therefore, the aim of the present study was to verify the tolerance of two ferrofluid dispersions modified in particle size and density. MATERIALS AND METHODS 8.75 ml ferrofluid with particle sizes of 250 or 500 nm were applied intravenously to two groups of seven New Zealand White rabbits in three doses in a time frame of 2 h. Clinical, serological,and histological evaluations were performed with regard to the tolerance of the ferrofluids. RESULTS All animals tolerated the ferrofluid application without any clinical irregularities; there were no signs of thrombosis or embolism. Histological analysis revealed an accumulation in the liver, spleen, lung, and kidney depending on the particle size; the serological examination did not show significant alterations of the blood parameters. CONCLUSION The ferrofluids of 250 and 500 nm particle sizes were well tolerated as shown by the laboratory and histological data and should be evaluated in further studies regarding their clinical use in magnetic drug targeting.
Collapse
Affiliation(s)
- Susanne Wiegand
- Department of Otolaryngology, Head and Neck Surgery, Philipps-University Marburg, Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
492
|
Abstract
OBJECTIVE The purpose of this review is to describe the principles of MRI cell tracking with superparamagnetic iron oxides and the four clinical trials that have been performed. CONCLUSION Clinical MRI cell tracking is likely to become an important tool at the bedside once (stem) cell therapy becomes mainstream. The most prominent role of this technique probably will be verification of accurate cell delivery with MRI-guided injection, in which interventional radiologists will play a role in the near future. All clinical studies described as of this writing have been performed outside the United States.
Collapse
|
493
|
Sosnovik DE, Nahrendorf M, Panizzi P, Matsui T, Aikawa E, Dai G, Li L, Reynolds F, Dorn GW, Weissleder R, Josephson L, Rosenzweig A. Molecular MRI detects low levels of cardiomyocyte apoptosis in a transgenic model of chronic heart failure. Circ Cardiovasc Imaging 2009; 2:468-75. [PMID: 19920045 DOI: 10.1161/circimaging.109.863779] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The ability to image cardiomyocyte (CM) apoptosis in heart failure could facilitate more accurate diagnostics and optimize targeted therapeutics. We thus aimed to develop a platform to image CM apoptosis quantitatively and specifically in heart failure in vivo. The myocardium in heart failure, however, is characterized by very low levels of CM apoptosis and normal vascular permeability, factors thought to preclude the use of molecular MRI. METHODS AND RESULTS Female mice with overexpression of Gaq were studied. Two weeks postpartum, these mice develop a cardiomyopathy characterized by low levels of CM apoptosis and minimal myocardial necrosis or inflammation. The mice were injected with the annexin-labeled nanoparticle (AnxCLIO-Cy5.5) or a control probe (CLIO-Cy5.5) and imaged in vivo at 9.4 T. Uptake of AnxCLIO-Cy5.5 occurred in isolated clusters, frequently in the subendocardium. Myocardial T2* was significantly lower (7.6+/-1.5 versus 16.8+/-2.7 ms, P<0.05) in the mice injected with AnxCLIO-Cy5.5 versus CLIO-Cy5.5, consistent with the uptake of AnxCLIO-Cy5.5 by apoptotic CMs. A strong correlation (r(2)=0.86, P<0.05) was seen between in vivo T2* (AnxCLIO-Cy5.5 uptake) and myocardial caspase-3 activity. CONCLUSIONS The ability of molecular MRI to image sparsely expressed targets in the myocardium is demonstrated in this study. Moreover, a novel platform for high-resolution and specific imaging of CM apoptosis in heart failure is established. In addition to providing novel insights into the pathogenesis of CM apoptosis, the developed platform could facilitate the development of novel antiapoptotic therapies in heart failure.
Collapse
Affiliation(s)
- David E Sosnovik
- Center for Molecular Imaging Research, the Cardiology Division, and Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Masss, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
494
|
Kato Y, Artemov D. Monitoring of release of cargo from nanocarriers by MRI/MR spectroscopy (MRS): significance of T2/T2* effect of iron particles. Magn Reson Med 2009; 61:1059-65. [PMID: 19253373 DOI: 10.1002/mrm.21939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To monitor the release of cargo molecules from nanocarriers, a novel MRI/MRS technique was developed and tested. This novel approach uses a simultaneous encapsulation of superparamagnetic iron oxide (SPIO) nanoparticles and either a gadolinium (Gd)-based paramagnetic contrast agent, Gd-diethylenetriamine pentaacetic acid bismethylamide(GdDTPA-BMA), for MRI, or an anticancer agent, 5-fluorouracil (5-FU), for MRS. These agents have significantly different diffusion properties due to their different molecular sizes. Strong negative signal enhancement due to the T(2) effects of SPIO dominates the positive T(1) contrast generated by GdDTPA-BMA when SPIO and GdDTPA-BMA are in close proximity (intact form). Positive T(1) contrast becomes evident upon release of GdDTPA-BMA from the carrier once the distance between GdDTPA-BMA and SPIO molecules is beyond the T(2) enhancement range. Similarly, intact nanocarriers loaded with 5-FU and SPIO have a broad (19)F resonance line because line-width is inversely proportional to T*2, while free 5-FU appears as a narrow resonance line once it is released from the liposomes. This technique allowed monitoring of the release of cargo molecules from liposomes encapsulating both SPIO and either GdDTPA-BMA or 5-FU by MRI/MRS in vitro using 2% agarose gel phantoms. Experimental results demonstrate successful demarcation of the released cargo molecules vs. encapsulated molecules.
Collapse
Affiliation(s)
- Yoshinori Kato
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
495
|
Bastús NG, Casals E, Vázquez-Campos S, Puntes V. Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxicology 2009. [DOI: 10.1080/17435390802217830] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
496
|
Bi F, Zhang J, Su Y, Tang YC, Liu JN. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 2009; 30:5125-30. [PMID: 19560812 DOI: 10.1016/j.biomaterials.2009.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/05/2009] [Indexed: 11/27/2022]
Abstract
Thrombolytic therapy is an important treatment for thrombosis, a life-threatening condition in cardiovascular diseases. However, the traditional thrombolytic therapies have often been associated with the risk of severe bleeding. By conjugating urokinase with magnetic nanoparticles (MNPs), we have presented a strategy to control thrombolysis within a specific site. The covalent bioconjugate of urokinase and dextran-coated MNPs was synthesized and isolated. Thrombolysis by the conjugate was studied under a magnetic field in a rat arteriovenous shunt thrombosis model. The magnetic field was generated by two AlNiCo permanent magnets around the site of thrombus. The magnetic field enhanced the thrombolytic efficacy of the conjugate by 5-fold over urokinase with no reduction in plasma fibrinogen and little prolonged bleeding time. It suggested that thrombolysis had been specifically directed to the desired site by the magnetic carrier under the magnetic field. Additionally, the conjugate had a longer half-life than urokinase in circulation.
Collapse
Affiliation(s)
- Feng Bi
- Institute of Molecular Medicine, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
497
|
Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y. Water-SolubleUltra SmallParamagnetic or Superparamagnetic Metal Oxide Nanoparticles for Molecular MR Imaging. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900173] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
498
|
Amstad E, Zurcher S, Mashaghi A, Wong JY, Textor M, Reimhult E. Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1334-1342. [PMID: 19242944 DOI: 10.1002/smll.200801328] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic resonance imaging (MRI), a non-invasive, non-radiative technique, is thought to lead to cellular or even molecular resolution if optimized targeted MR contrast agents are introduced. This would allow diagnosing progressive diseases in early stages. Here, it is shown that the high binding affinity of poly(ethylene glycol)-gallol (PEG-gallol) allows freeze drying and re-dispersion of 9 +/- 2-nm iron oxide cores individually stabilized with approximately 9-nm-thick stealth coatings, yielding particle stability for at least 20 months. Particle size, stability, and magnetic properties of PEGylated particles are compared to Feridex, a commercially available untargeted negative MR contrast agent. Biotin-PEG(3400)-gallol/methoxy-PEG(550)-gallol stabilized nanoparticles are further functionalized with biotinylated human anti-VCAM-1 antibodies using the biotin-neutravidin linkage. Binding kinetics and excellent specificity of these nanoparticles are demonstrated using quartz crystal microbalance with dissipation monitoring (QCM-D). These MR contrast agents can be functionalized with any biotinylated ligand at controlled ligand surface density, rendering them a versatile research tool.
Collapse
Affiliation(s)
- Esther Amstad
- Laboratory for Surface Science and Technology ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
499
|
Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS One 2009; 4:e5663. [PMID: 19461894 PMCID: PMC2680949 DOI: 10.1371/journal.pone.0005663] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 04/27/2009] [Indexed: 12/01/2022] Open
Abstract
Monocytes are circulating macrophage and dendritic cell precursors that populate healthy and diseased tissue. In humans, monocytes consist of at least two subsets whose proportions in the blood fluctuate in response to coronary artery disease, sepsis, and viral infection. Animal studies have shown that specific shifts in the monocyte subset repertoire either exacerbate or attenuate disease, suggesting a role for monocyte subsets as biomarkers and therapeutic targets. Assays are therefore needed that can selectively and rapidly enumerate monocytes and their subsets. This study shows that two major human monocyte subsets express similar levels of the receptor for macrophage colony stimulating factor (MCSFR) but differ in their phagocytic capacity. We exploit these properties and custom-engineer magnetic nanoparticles for ex vivo sensing of monocytes and their subsets. We present a two-dimensional enumerative mathematical model that simultaneously reports number and proportion of monocyte subsets in a small volume of human blood. Using a recently described diagnostic magnetic resonance (DMR) chip with 1 µl sample size and high throughput capabilities, we then show that application of the model accurately quantifies subset fluctuations that occur in patients with atherosclerosis.
Collapse
|
500
|
Polyak B, Friedman G. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Deliv 2009; 6:53-70. [PMID: 19236208 DOI: 10.1517/17425240802662795] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Magnetic vehicles are very attractive for delivery of therapeutic agents as they can be targeted to specific locations in the body through the application of a magnetic field gradient. The magnetic localization of a therapeutic agent results in the concentration of the therapy at the target site consequently reducing or eliminating the systemic drug side effects. OBJECTIVE The aim of this review is to provide an update on the progress made in the development of the magnetic targeting technique addressing characteristics of the magnetic carriers and limitations of the current targeting magnet systems. METHODS This review discusses fundamental requirements for the optimal formulation of the magnetic carrier, current applications and potentially new approaches for the magnetically mediated, site-specific localization of therapeutic agents, including drugs, genes and cells. RESULTS/CONCLUSION More efficient targeting magnetic systems in combination with prolonged circulation lifespan and carriers' surface recognition properties will improve the targeting efficiency of magnetic nanocarriers and enhance therapeutic agent availability at the molecular site of agent action. The main future magnetic targeting applications were categorized emphasizing the most promising directions and possible strategies for improving the magnetic targeting technique.
Collapse
|