5101
|
Li TM, Coan JP, Krajewski K, Zhang L, Elias JE, Strahl BD, Gozani O, Chua KF. Binding to medium and long chain fatty acyls is a common property of HEAT and ARM repeat modules. Sci Rep 2019; 9:14226. [PMID: 31578417 PMCID: PMC6775327 DOI: 10.1038/s41598-019-50817-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/13/2019] [Indexed: 02/01/2023] Open
Abstract
Covalent post-translational modification (PTM) of proteins with acyl groups of various carbon chain-lengths regulates diverse biological processes ranging from chromatin dynamics to subcellular localization. While the YEATS domain has been found to be a prominent reader of acetylation and other short acyl modifications, whether additional acyl-lysine reader domains exist, particularly for longer carbon chains, is unclear. Here, we employed a quantitative proteomic approach using various modified peptide baits to identify reader proteins of various acyl modifications. We discovered that proteins harboring HEAT and ARM repeats bind to lysine myristoylated peptides. Recombinant HEAT and ARM repeats bind to myristoylated peptides independent of the peptide sequence or the position of the myristoyl group. Indeed, HEAT and ARM repeats bind directly to medium- and long-chain free fatty acids (MCFA and LCFA). Lipidomic experiments suggest that MCFAs and LCFAs interact with HEAT and ARM repeat proteins in mammalian cells. Finally, treatment of cells with exogenous MCFAs and inhibitors of MCFA-CoA synthases increase the transactivation activity of the ARM repeat protein β-catenin. Taken together, our results suggest an unappreciated role for fatty acids in the regulation of proteins harboring HEAT or ARM repeats.
Collapse
Affiliation(s)
- Tie-Mei Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - John P Coan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Program in Cancer Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Krzysztof Krajewski
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Lichao Zhang
- Chan Zuckenberg Biohub, Stanford, CA, 94305, USA
| | | | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, 94305, USA. .,Program in Cancer Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA.
| | - Katrin F Chua
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Program in Cancer Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA. .,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
5102
|
Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc Natl Acad Sci U S A 2019; 116:21256-21261. [PMID: 31578252 DOI: 10.1073/pnas.1906768116] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important messenger molecule for diverse cellular processes. H2O2 oxidizes proteinaceous cysteinyl thiols to sulfenic acid, also known as S-sulfenylation, thereby affecting the protein conformation and functionality. Although many proteins have been identified as S-sulfenylation targets in plants, site-specific mapping and quantification remain largely unexplored. By means of a peptide-centric chemoproteomics approach, we mapped 1,537 S-sulfenylated sites on more than 1,000 proteins in Arabidopsis thaliana cells. Proteins involved in RNA homeostasis and metabolism were identified as hotspots for S-sulfenylation. Moreover, S-sulfenylation frequently occurred on cysteines located at catalytic sites of enzymes or on cysteines involved in metal binding, hinting at a direct mode of action for redox regulation. Comparison of human and Arabidopsis S-sulfenylation datasets provided 155 conserved S-sulfenylated cysteines, including Cys181 of the Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE4 (AtMAPK4) that corresponds to Cys161 in the human MAPK1, which has been identified previously as being S-sulfenylated. We show that, by replacing Cys181 of recombinant AtMAPK4 by a redox-insensitive serine residue, the kinase activity decreased, indicating the importance of this noncatalytic cysteine for the kinase mechanism. Altogether, we quantitatively mapped the S-sulfenylated cysteines in Arabidopsis cells under H2O2 stress and thereby generated a comprehensive view on the S-sulfenylation landscape that will facilitate downstream plant redox studies.
Collapse
|
5103
|
Hannich JT, Haribowo AG, Gentina S, Paillard M, Gomez L, Pillot B, Thibault H, Abegg D, Guex N, Zumbuehl A, Adibekian A, Ovize M, Martinou JC, Riezman H. 1-Deoxydihydroceramide causes anoxic death by impairing chaperonin-mediated protein folding. Nat Metab 2019; 1:996-1008. [PMID: 32694842 DOI: 10.1038/s42255-019-0123-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/10/2019] [Indexed: 11/08/2022]
Abstract
Ischaemic heart disease and stroke are the most common causes of death worldwide. Anoxia, defined as the lack of oxygen, is commonly seen in both these pathologies and triggers profound metabolic and cellular changes. Sphingolipids have been implicated in anoxia injury, but the pathomechanism is unknown. Here we show that anoxia-associated injury causes accumulation of the non-canonical sphingolipid 1-deoxydihydroceramide (DoxDHCer). Anoxia causes an imbalance between serine and alanine resulting in a switch from normal serine-derived sphinganine biosynthesis to non-canonical alanine-derived 1-deoxysphinganine. 1-Deoxysphinganine is incorporated into DoxDHCer, which impairs actin folding via the cytosolic chaperonin TRiC, leading to growth arrest in yeast, increased cell death upon anoxia-reoxygenation in worms and ischaemia-reperfusion injury in mouse hearts. Prevention of DoxDHCer accumulation in worms and in mouse hearts resulted in decreased anoxia-induced injury. These findings unravel key metabolic changes during oxygen deprivation and point to novel strategies to avoid tissue damage and death.
Collapse
Affiliation(s)
- J Thomas Hannich
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- Swiss National Center of Competence in Research (NCCR) "Chemical Biology", Geneva, Switzerland
| | - A Galih Haribowo
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- Swiss National Center of Competence in Research (NCCR) "Chemical Biology", Geneva, Switzerland
| | - Sébastien Gentina
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Melanie Paillard
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Ludovic Gomez
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Bruno Pillot
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Hélène Thibault
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Nicolas Guex
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Andreas Zumbuehl
- Swiss National Center of Competence in Research (NCCR) "Chemical Biology", Geneva, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | | | - Michel Ovize
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | | | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
- Swiss National Center of Competence in Research (NCCR) "Chemical Biology", Geneva, Switzerland.
| |
Collapse
|
5104
|
Ebner JN, Ritz D, von Fumetti S. Comparative proteomics of stenotopic caddisfly Crunoecia irrorata identifies acclimation strategies to warming. Mol Ecol 2019; 28:4453-4469. [PMID: 31478292 PMCID: PMC6856850 DOI: 10.1111/mec.15225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Species' ecological preferences are often deduced from habitat characteristics thought to represent more or less optimal conditions for physiological functioning. Evolution has led to stenotopic and eurytopic species, the former having decreased niche breadths and lower tolerances to environmental variability. Species inhabiting freshwater springs are often described as being stenotopic specialists, adapted to the stable thermal conditions found in these habitats. Whether due to past local adaptation these species have evolved or have lost intra-generational adaptive mechanisms to cope with increasing thermal variability has, to our knowledge, never been investigated. By studying how the proteome of a stenotopic species changes as a result of increasing temperatures, we investigate if the absence or attenuation of molecular mechanisms is indicative of local adaptation to freshwater springs. An understanding of compensatory mechanisms is especially relevant as spring specialists will experience thermal conditions beyond their physiological limits due to climate change. In this study, the stenotopic species Crunoecia irrorata (Trichoptera: Lepidostomatidae, Curtis 1834) was acclimated to 10, 15 and 20°C for 168 hr. We constructed a homology-based database and via liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based shotgun proteomics identified 1,358 proteins. Differentially abundant proteins and protein norms of reaction revealed candidate proteins and molecular mechanisms facilitating compensatory responses such as trehalose metabolism, tracheal system alteration and heat-shock protein regulation. A species-specific understanding of compensatory physiologies challenges the characterization of species as having narrow tolerances to environmental variability if that characterization is based on occurrences and habitat characteristics alone.
Collapse
Affiliation(s)
- Joshua N. Ebner
- Geoecology Research GroupDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Danilo Ritz
- Proteomics Core FacilityBiozentrumUniversity of BaselBaselSwitzerland
| | - Stefanie von Fumetti
- Geoecology Research GroupDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
5105
|
Functional recruitment of dynamin requires multimeric interactions for efficient endocytosis. Nat Commun 2019; 10:4462. [PMID: 31575863 PMCID: PMC6773865 DOI: 10.1038/s41467-019-12434-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
During clathrin mediated endocytosis (CME), the concerted action of dynamin and its interacting partners drives membrane scission. Essential interactions occur between the proline/arginine-rich domain of dynamin (dynPRD) and the Src-homology domain 3 (SH3) of various proteins including amphiphysins. Here we show that multiple SH3 domains must bind simultaneously to dynPRD through three adjacent motifs for dynamin’s efficient recruitment and function. First, we show that mutant dynamins modified in a single motif, including the central amphiphysin SH3 (amphSH3) binding motif, partially rescue CME in dynamin triple knock-out cells. However, mutating two motifs largely prevents that ability. Furthermore, we designed divalent dynPRD-derived peptides. These ligands bind multimers of amphSH3 with >100-fold higher affinity than monovalent ones in vitro. Accordingly, dialyzing living cells with these divalent peptides through a patch-clamp pipette blocks CME much more effectively than with monovalent ones. We conclude that dynamin drives vesicle scission via multivalent interactions in cells. During clathrin mediated endocytosis (CME), membrane scission is achieved by the concerted action of dynamin and its interacting partners such as amphiphysins. Here authors show that efficient recruitment and function of dynamin requires simultaneous binding of multiple amphiphysin SH3 domains.
Collapse
|
5106
|
Alugubelly N, Mohammed AN, Edelmann MJ, Nanduri B, Sayed M, Park JW, Carr RL. Adolescent rat social play: Amygdalar proteomic and transcriptomic data. Data Brief 2019; 27:104589. [PMID: 31673590 PMCID: PMC6817652 DOI: 10.1016/j.dib.2019.104589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
This data article contains the proteomic and transcriptomic data of the amygdala of adolescent rats involved in social play compared to non-behavioural animals. Social play was performed on male Sprague Dawley rats on postnatal day 38 and protein and gene expression in the amygdala was determined following behavioural testing. The protein expression was measured by analysing trypsin digested protein samples using a LTQ Orbitrap Velos mass spectrometer equipped with an Advion nanomate ESI source. The obtained tandem mass spectra were extracted by Thermo Proteome Discoverer 1.3 and the data were displayed with Scaffold v 4.5.1. The transcriptomic data were generated by llumina HiSeq 4000 system. Cuffdiff (v2.2.1) program was used to calculate RNA-seq based gene expression levels. For further interpretation of data presented in this article, please see the research article ‘Proteomic and Transcriptional Profiling of Rat Amygdala Following Social Play’ (Alugubelly et al. 2019).
Collapse
Affiliation(s)
- Navatha Alugubelly
- Center for Environmental Health Sciences, USA.,Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Afzaal N Mohammed
- Center for Environmental Health Sciences, USA.,Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, USA.,KBRIN Bioinformatics Core, University of Louisville, KY, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, USA.,Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| |
Collapse
|
5107
|
Okekeogbu IO, Aryal UK, Fernández-Niño SMG, Penning BW, Heazlewood JL, McCann MC, Carpita NC. Differential distributions of trafficking and signaling proteins of the maize ER-Golgi apparatus. PLANT SIGNALING & BEHAVIOR 2019; 14:1672513. [PMID: 31564200 PMCID: PMC6866702 DOI: 10.1080/15592324.2019.1672513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
The Endoplasmic Reticulum (ER)-Golgi apparatus of plants is the site of synthesis of non-cellulosic polysaccharides that then traffic to the cell wall. A two-step protocol of flotation centrifugation followed by free-flow electrophoresis (FFE) resolved ER and Golgi proteins into three profiles: an ER-rich fraction, two Golgi-rich fractions, and an intermediate fraction enriched in cellulose synthases. Nearly three dozen Rab-like proteins of eight different subgroups were distributed differentially in ER- vs. Golgi-rich fractions, whereas seven 14-3-3 proteins co-fractionated with cellulose synthases in the intermediate fraction. FFE offers a powerful means to classify resident and transient proteins in cell-free assays of cellular location.
Collapse
Affiliation(s)
- Ikenna O. Okekeogbu
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Biosciences Center, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | | | - Bryan W. Penning
- USDA-ARS, Corn, Soybean and Wheat Quality Research, Wooster, OH, USA
| | - Joshua L. Heazlewood
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Maureen C. McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Nicholas C. Carpita
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5108
|
Pereira LMC, Bersano PRDO, Moura ADA, Lopes MD. First proteomic analysis of diestrus and anestrus canine oocytes at the germinal vesicle reveals candidate proteins involved in oocyte meiotic competence. Reprod Domest Anim 2019; 54:1532-1542. [PMID: 31484219 DOI: 10.1111/rda.13560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
In domestic dogs, oocyte maturation rates are low and the percentage of oocytes that remain in the stage of germinal vesicle (GV) regardless of culture conditions is high. The present study was conducted to characterize the proteome of canine oocyte at the germinal vesicle stage using label-free mass spectrometry. Ovaries were collected from 415 adult domestic dogs and oocytes were divided anestrus and diestrus group. Protein lysates were subjected to quantitative proteomic analysis to identify differentially expressed proteins in different status reproductive. All runs for each sample were performed on an Easy nLC1000 nano-LC chromatograph system directly connected to a quadrupole-type Orbitrap mass spectrometer. For identification of peptides and proteins, raw data of the spectra were loaded into MaxQuant software version 1.5.2.8. Proteomic data were analysed according to gene ontology and a protein-protein interaction network. 312 proteins were identified and grouped according to their biological processes, molecular functions and cellular component. Forty-six differentially expressed proteins among diestrus and control group were associated with at least one GO term in the biological process database. Several proteins involved in the cell cycle, fertilization, regulation of transcription and signalling pathways that are essential for the full development of oocytes and fertilization were expressed. This study identified proteins that were absent, and more or less expressed in different status reproductive. These differentially expressed proteins revealed a framework of molecular reorganization within a GV that renders its competency. This knowledge will enable the identification of target competence biomarkers and thus the establishment of more adequate means of cultivation to improve the M-I and II indexes in this species and also to better understand the physiology of the domestic dog, promoting the development of new reproduction biotechniques.
Collapse
Affiliation(s)
- Leda Maria Costa Pereira
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.,Faculty of Veterinary/FAVET, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Maria Denise Lopes
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
5109
|
Renu, Gupta SK, Rai AK, Sarim KM, Sharma A, Budhlakoti N, Arora D, Verma DK, Singh DP. Metaproteomic data of maize rhizosphere for deciphering functional diversity. Data Brief 2019; 27:104574. [PMID: 31692741 PMCID: PMC6806416 DOI: 10.1016/j.dib.2019.104574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 09/20/2019] [Indexed: 10/26/2022] Open
Abstract
Metaproteomics is a powerful tool for obtaining data on all proteins recovered directly from environmental samples at a given time. It provides a direct evidence of functional diversity and structure among microbiota present in niches and significant insights into microbial activity together with metabolomics, which is the study of the intermediate and end-products of cellular processes. Metaproteomics is a comparatively new approach which is facing a number of empirical, technical, computational and experimental design challenges that needs to be addressed. Presently only little efforts have been made to have information on microbial proteins in rhizospheric soil of maize through metagemonics approach but there is no direct evidence on functions of microbial community in this very important niche. Since rhizosphere microbiome plays important role in plant growth and development the present study is conducted to optimize the metaproteomic extraction protocol from maize rhizosphere and analyse functionality of microbial communities. We present metaproteome data from maize rhizospheric soil. Isolation of metaproteome from maize rhizosphere collected from ICAR-IISS, Mau experimental Farm was done with the standardized protocol at our laboratory and metaproteome analysis was done with the standardized pipeline. In total 696 proteins with different functions representing 244 genus and 393 species were identified. The proteome data provides direct evidence on the biological processes in soil ecosystem and is the first reported reference data from maize rhizosphere. The LC MS/MS proteomic data are available via ProteomeXchange with identifier PXD014519.
Collapse
Affiliation(s)
- Renu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275 101, India
| | - Sanjay Kumar Gupta
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275 101, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Khan Mohd Sarim
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275 101, India
| | - Anu Sharma
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi, 110012, India
| | - Neeraj Budhlakoti
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi, 110012, India
| | - Devendra Arora
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi, 110012, India
| | - Dhiraj Kumar Verma
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275 101, India
| | - Dhananjaya P Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275 101, India
| |
Collapse
|
5110
|
Castro-Severyn J, Pardo-Esté C, Sulbaran Y, Cabezas C, Gariazzo V, Briones A, Morales N, Séveno M, Decourcelle M, Salvetat N, Remonsellez F, Castro-Nallar E, Molina F, Molina L, Saavedra CP. Arsenic Response of Three Altiplanic Exiguobacterium Strains With Different Tolerance Levels Against the Metalloid Species: A Proteomics Study. Front Microbiol 2019; 10:2161. [PMID: 31611848 PMCID: PMC6775490 DOI: 10.3389/fmicb.2019.02161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Exiguobacterium is a polyextremophile bacterial genus with a physiology that allows it to develop in different adverse environments. The Salar de Huasco is one of these environments due to its altitude, atmospheric pressure, solar radiation, temperature variations, pH, salinity, and the presence of toxic compounds such as arsenic. However, the physiological and/or molecular mechanisms that enable them to prosper in these environments have not yet been described. Our research group has isolated several strains of Exiguobacterium genus from different sites of Salar de Huasco, which show different resistance levels to As(III) and As(V). In this work, we compare the protein expression patterns of the three strains in response to arsenic by a proteomic approach; strains were grown in absence of the metalloid and in presence of As(III) and As(V) sublethal concentrations and the protein separation was carried out in 2D electrophoresis gels (2D-GE). In total, 999 spots were detected, between 77 and 173 of which showed significant changes for As(III) among the three strains, and between 90 and 143 for As(V), respectively, compared to the corresponding control condition. Twenty-seven of those were identified by mass spectrometry (MS). Among these identified proteins, the ArsA [ATPase from the As(III) efflux pump] was found to be up-regulated in response to both arsenic conditions in the three strains, as well as the Co-enzyme A disulfide reductase (Cdr) in the two more resistant strains. Interestingly, in this genus the gene that codifies for Cdr is found within the genic context of the ars operon. We suggest that this protein could be restoring antioxidants molecules, necessary for the As(V) reduction. Additionally, among the proteins that change their expression against As, we found several with functions relevant to stress response, e.g., Hpf, LuxS, GLpX, GlnE, and Fur. This study allowed us to shed light into the physiology necessary for these bacteria to be able to tolerate the toxicity and stress generated by the presence of arsenic in their niche.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Yoelvis Sulbaran
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Valentina Gariazzo
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alan Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Naiyulin Morales
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Mathilde Decourcelle
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, Montpellier, France
| | | | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
5111
|
Purified F-ATP synthase forms a Ca 2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun 2019; 10:4341. [PMID: 31554800 PMCID: PMC6761146 DOI: 10.1038/s41467-019-12331-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. By combining highly purified, fully active bovine F-ATP synthase with preformed liposomes we show that Ca2+ dissipates the H+ gradient generated by ATP hydrolysis. After incorporation of the same preparation into planar lipid bilayers Ca2+ elicits currents matching those of the MMC/PTP. Currents were fully reversible, were stabilized by benzodiazepine 423, a ligand of the OSCP subunit of F-ATP synthase that activates the MMC/PTP, and were inhibited by Mg2+ and adenine nucleotides, which also inhibit the PTP. Channel activity was insensitive to inhibitors of the adenine nucleotide translocase (ANT) and of the voltage-dependent anion channel (VDAC). Native gel-purified oligomers and dimers, but not monomers, gave rise to channel activity. These findings resolve the long-standing mystery of the MMC/PTP and demonstrate that Ca2+ can transform the energy-conserving F-ATP synthase into an energy-dissipating device. The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. Here authors demonstrate that the membrane embedded bovine F-ATP synthase elicits Ca2 + -dependent currents matching those of the MMC/PTP.
Collapse
|
5112
|
Tang Q, Feng M, Xia H, Zhao Y, Hou B, Ye J, Wu H, Zhang H. Differential quantitative proteomics reveals the functional difference of two yigP locus products, UbiJ and EsrE. J Basic Microbiol 2019; 59:1125-1133. [PMID: 31553492 DOI: 10.1002/jobm.201900350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 11/06/2022]
Abstract
The yigP (ubiJ) locus has been shown to be associated with many phenotypic changes in Escherichia coli, while the individual function of its two products, EsrE small RNA and UbiJ protein, is still elusive. In this study, we constructed two single-element mutants, EsrE mutant strain Mut and UbiJ mutant strain Ter, on the basis of the base substitution programs. The variable antibiotics resistance and ubiquinone (UQ, coenzyme Q) yield and the similar cell growth between mutants revealed the division of labor and collaboration of EsrE and UbiJ in JM83. Furthermore, we detected the concentration of intracellular proteins of Mut and Ter by stable isotope-labeled quantitative proteomics. The results demonstrate that both EsrE and UbiJ are involved in the aerobic growth of E. coli, while EsrE preferentially contributes to the amino acid-related pathway, and UbiJ is an indispensable factor in the biosynthesis of UQ. Moreover, we uncovered a potential regulatory circuit of d-cycloserine (DCS) that composed of EsrE, GcvA, and GcvB by proteomic analysis.
Collapse
Affiliation(s)
- Qiongwei Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meilin Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5113
|
Violitzi F, Perivolidi VI, Thireou T, Grivas I, Haralambous S, Samiotaki M, Panayotou G, Douni E. Mapping Interactome Networks of DNAJC11, a Novel Mitochondrial Protein Causing Neuromuscular Pathology in Mice. J Proteome Res 2019; 18:3896-3912. [PMID: 31550165 DOI: 10.1021/acs.jproteome.9b00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Foteini Violitzi
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672, Vari, Greece
| | - Vasiliki-Iris Perivolidi
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672, Vari, Greece
| | - Trias Thireou
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Ioannis Grivas
- Transgenic Technology Lab and Inflammation Research Group, Hellenic Pasteur Institute, Vas. Sofias 127, 11521, Athens, Greece
| | - Sylva Haralambous
- Transgenic Technology Lab and Inflammation Research Group, Hellenic Pasteur Institute, Vas. Sofias 127, 11521, Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672, Vari, Greece
| | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672, Vari, Greece
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 16672, Vari, Greece
| |
Collapse
|
5114
|
Gaetani M, Sabatier P, Saei AA, Beusch CM, Yang Z, Lundström SL, Zubarev RA. Proteome Integral Solubility Alteration: A High-Throughput Proteomics Assay for Target Deconvolution. J Proteome Res 2019; 18:4027-4037. [DOI: 10.1021/acs.jproteome.9b00500] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Massimiliano Gaetani
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- SciLifeLab, SE-17 177 Stockholm, Sweden
| | - Pierre Sabatier
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Amir A. Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Christian M. Beusch
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Zhe Yang
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Susanna L. Lundström
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- SciLifeLab, SE-17 177 Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- SciLifeLab, SE-17 177 Stockholm, Sweden
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| |
Collapse
|
5115
|
Paulo JA, Gygi SP. mTMT: An Alternative, Nonisobaric, Tandem Mass Tag Allowing for Precursor-Based Quantification. Anal Chem 2019; 91:12167-12172. [PMID: 31490667 DOI: 10.1021/acs.analchem.9b03162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stable isotope labeling of peptides is the basis for numerous mass-spectrometry-based quantification strategies. Isobaric tagging and metabolic labeling, namely, tandem mass tagging (TMT) and SILAC, are among the most widely used techniques for relative protein quantification. Here we report an alternative, precursor-based quantification method using nonisobaric TMT variants: TMTzero (TMT0) and superheavy TMT (shTMT). We term this strategy mass difference tandem mass tagging (mTMT). These TMT variants differ by 11 mass units; however, peptides labeled with these reagents coelute, analogous to SILAC-labeled peptide pairs. As a proof-of-concept, we profiled the proteomes of two cell lines that are frequently used in neuroscience studies, SH-SY5Y and SVGp12, using mTMT and standard SILAC-labeling approaches. We show similar quantified proteins and peptides for each method, with highly correlated fold-changes between workflows. We conclude that mTMT is a suitable alternative for precursor-based protein quantification.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Steven P Gygi
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
5116
|
Lexhaller B, Ludwig C, Scherf KA. Comprehensive Detection of Isopeptides between Human Tissue Transglutaminase and Gluten Peptides. Nutrients 2019; 11:nu11102263. [PMID: 31547042 PMCID: PMC6835481 DOI: 10.3390/nu11102263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 01/02/2023] Open
Abstract
Celiac disease (CD) is a chronic inflammation of the small intestine triggered by the ingestion of gluten in genetically predisposed individuals. Tissue transglutaminase (TG2) is a key factor in CD pathogenesis, because it catalyzes both the deamidation of specific glutamine residues and the formation of covalent Nε-(γ-glutamyl)-lysine isopeptide crosslinks resulting in TG2–gluten peptide complexes. These complexes are thought to activate B cells causing the secretion of anti-TG2 autoantibodies that serve as diagnostic markers for CD, although their pathogenic role remains unclear. To gain more insight into the molecular structures of TG2-gluten peptide complexes, we used different proteomics software tools that enable the comprehensive identification of isopeptides. Thus, 34 different isopeptides involving 20 TG2 lysine residues were identified in a model system, only six of which were previously known. Additionally, 36 isopeptides of TG2-TG2 multimers were detected. Experiments with different TG2-gluten peptide molar ratios revealed the most preferred lysine residues involved in isopeptide crosslinking. Expanding the model system to three gluten peptides with more glutamine residues allowed the localization of the preferred glutamine crosslinking sites. These new insights into the structure of TG2-gluten peptide complexes may help clarify the role of extracellular TG2 in CD autoimmunity and in other inflammatory diseases.
Collapse
Affiliation(s)
- Barbara Lexhaller
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany.
| | - Katharina A Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany.
| |
Collapse
|
5117
|
Refinements of LC-MS/MS Spectral Counting Statistics Improve Quantification of Low Abundance Proteins. Sci Rep 2019; 9:13653. [PMID: 31541118 PMCID: PMC6754416 DOI: 10.1038/s41598-019-49665-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022] Open
Abstract
Mass spectrometry-based spectral count has been a common choice of label-free proteome quantification due to the simplicity for the sample preparation and data generation. The discriminatory nature of spectral count in the MS data-dependent acquisition, however, inherently introduces the spectral count variation for low-abundance proteins in multiplicative LC-MS/MS analysis, which hampers sensitive proteome quantification. As many low-abundance proteins play important roles in cellular processes, deducing low-abundance proteins in a quantitatively reliable manner greatly expands the depth of biological insights. Here, we implemented the Moment Adjusted Imputation error model in the spectral count refinement as a post PLGEM-STN for improving sensitivity for quantitation of low-abundance proteins by reducing spectral count variability. The statistical framework, automated spectral count refinement by integrating the two statistical tools, was tested with LC-MS/MS datasets of MDA-MB468 breast cancer cells grown under normal and glucose deprivation conditions. We identified about 30% more quantifiable proteins that were found to be low-abundance proteins, which were initially filtered out by the PLGEM-STN analysis. This newly developed statistical framework provides a reliable abundance measurement of low-abundance proteins in the spectral count-based label-free proteome quantification and enabled us to detect low-abundance proteins that could be functionally important in cellular processes.
Collapse
|
5118
|
Rabalski AJ, Bogdan AR, Baranczak A. Evaluation of Chemically-Cleavable Linkers for Quantitative Mapping of Small Molecule-Cysteinome Reactivity. ACS Chem Biol 2019; 14:1940-1950. [PMID: 31430117 DOI: 10.1021/acschembio.9b00424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Numerous reagents have been developed to enable chemical proteomic analysis of small molecule-protein interactomes. However, the performance of these reagents has not been systematically evaluated and compared. Herein, we report our efforts to conduct a parallel assessment of two widely used chemically cleavable linkers equipped with dialkoxydiphenylsilane (DADPS linker) and azobenzene (AZO linker) moieties. Profiling a cellular cysteinome using the iodoacetamide alkyne probe demonstrated a significant discrepancy between the experimental results obtained through the application of each of the reagents. To better understand the source of observed discrepancy, we evaluated the key sample preparation steps. We also performed a mass tolerant database search strategy using MSFragger software. This resulted in identifying a previously unreported artifactual modification on the residual mass of the azobenzene linker. Furthermore, we conducted a comparative analysis of enrichment modes using both cleavable linkers. This effort determined that enrichment of proteolytic digests yielded a far greater number of identified cysteine residues than the enrichment conducted prior to protein digest. Inspired by recent studies where multiplexed quantitative labeling strategies were applied to cleavable biotin linkers, we combined this further optimized protocol using the DADPS cleavable linker with tandem mass tag (TMT) labeling to profile the FDA-approved covalent EGFR kinase inhibitor dacomitinib against the cysteinome of an epidermoid cancer cell line. Our analysis resulted in the detection and quantification of over 10,000 unique cysteine residues, a nearly 3-fold increase over previous studies that used cleavable biotin linkers for enrichment. Critically, cysteine residues corresponding to proteins directly as well as indirectly modulated by dacomitinib treatment were identified. Overall, our study suggests that the dialkoxydiphenylsilane linker could be broadly applied wherever chemically cleavable linkers are required for chemical proteomic characterization of cellular proteomes.
Collapse
Affiliation(s)
- Adam J. Rabalski
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| | - Andrew R. Bogdan
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| | - Aleksandra Baranczak
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| |
Collapse
|
5119
|
Poel D, Boyd LN, Beekhof R, Schelfhorst T, Pham TV, Piersma SR, Knol JC, Jimenez CR, Verheul HM, Buffart TE. Proteomic Analysis of miR-195 and miR-497 Replacement Reveals Potential Candidates that Increase Sensitivity to Oxaliplatin in MSI/P53wt Colorectal Cancer Cells. Cells 2019; 8:cells8091111. [PMID: 31546954 PMCID: PMC6770888 DOI: 10.3390/cells8091111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022] Open
Abstract
Most patients with advanced colorectal cancer (CRC) eventually develop resistance to systemic combination therapy. miR-195-5p and miR-497-5p are downregulated in CRC tissues and associated with drug resistance. Sensitization to 5-FU, oxaliplatin, and irinotecan by transfection with miR-195-5p and miR-497-5p mimics was studied using cell viability and clonogenic assays in cell lines HCT116, RKO, DLD-1, and SW480. In addition, proteomic analysis of transfected cells was implemented to identify potential targets. Significantly altered proteins were subjected to STRING (protein-protein interaction networks) database analysis to study the potential mechanisms of drug resistance. Cell viability analysis of transfected cells revealed increased sensitivity to oxaliplatin in microsatellite instable (MSI)/P53 wild-type HCT116 and RKO cells. HCT116 transfected cells formed significantly fewer colonies when treated with oxaliplatin. In sensitized cells, proteomic analysis showed 158 and 202 proteins with significantly altered expression after transfection with miR-195-5p and miR-497-5p mimics respectively, of which CHUK and LUZP1 proved to be coinciding downregulated proteins. Resistance mechanisms of these proteins may be associated with nuclear factor kappa-B signaling and G1 cell-cycle arrest. In conclusion, miR-195-5p and miR-497-5p replacement enhanced sensitivity to oxaliplatin in treatment naïve MSI/P53 wild-type CRC cells. Proteomic analysis revealed potential miRNA targets associated with the cell-cycle which possibly bare a relation with chemotherapy sensitivity.
Collapse
Affiliation(s)
- Dennis Poel
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
- Department of Medical Oncology, Radboud University medical center, 6525GA Nijmegen, The Netherlands
| | - Lenka N.C. Boyd
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Robin Beekhof
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Tim Schelfhorst
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Jaco C. Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Connie R. Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Henk M.W. Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
- Department of Medical Oncology, Radboud University medical center, 6525GA Nijmegen, The Netherlands
| | - Tineke E. Buffart
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
- Antoni van Leeuwenhoek, Department of Gastrointestinal Oncology, 1066CX Amsterdam, The Netherlands
- Correspondence: ; Tel.: +20-5122-566
| |
Collapse
|
5120
|
Peptidyl-Prolyl Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in Burkholderia pseudomallei. Infect Immun 2019; 87:IAI.00528-19. [PMID: 31331957 DOI: 10.1128/iai.00528-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to Southeast Asia and northern Australia. Mortality rates in these areas are high even with antimicrobial treatment, and there are few options for effective therapy. Therefore, there is a need to identify antibacterial targets for the development of novel treatments. Cyclophilins are a family of highly conserved enzymes important in multiple cellular processes. Cyclophilins catalyze the cis-trans isomerization of xaa-proline bonds, a rate-limiting step in protein folding which has been shown to be important for bacterial virulence. B. pseudomallei carries a putative cyclophilin B gene, ppiB, the role of which was investigated. A B. pseudomallei ΔppiB (BpsΔppiB) mutant strain demonstrates impaired biofilm formation and reduced motility. Macrophage invasion and survival assays showed that although the BpsΔppiB strain retained the ability to infect macrophages, it had reduced survival and lacked the ability to spread cell to cell, indicating ppiB is essential for B. pseudomallei virulence. This is reflected in the BALB/c mouse infection model, demonstrating the requirement of ppiB for in vivo disease dissemination and progression. Proteomic analysis demonstrates that the loss of PpiB leads to pleiotropic effects, supporting the role of PpiB in maintaining proteome homeostasis. The loss of PpiB leads to decreased abundance of multiple virulence determinants, including flagellar machinery and alterations in type VI secretion system proteins. In addition, the loss of ppiB leads to increased sensitivity toward multiple antibiotics, including meropenem and doxycycline, highlighting ppiB inhibition as a promising antivirulence target to both treat B. pseudomallei infections and increase antibiotic efficacy.
Collapse
|
5121
|
Abstract
Metaproteomics can provide critical information about biological systems, but peptides are found within a complex background of other peptides. This complex background can change across samples, in some cases drastically. Cofragmentation, the coelution of peptides with similar mass to charge ratios, is one factor that influences which peptides are identified in an LC-MS/MS experiment: it is dependent on the nature and complexity of this dynamic background. Metaproteomics applications are particularly susceptible to cofragmentation-induced bias; they have vast protein sequence diversity and the abundance of those proteins can span many orders of magnitude. We have developed a mechanistic model that determines the number of potentially cofragmenting peptides in a given sample (called cobia, https://github.com/bertrand-lab/cobia ). We then used previously published data sets to validate our model, showing that the resulting peptide-specific score reflects the cofragmentation "risk" of peptides. Using an Antarctic sea ice edge metatranscriptome case study, we found that more rare taxonomic and functional groups are associated with higher cofragmentation bias. We also demonstrate how cofragmentation scores can be used to guide the selection of protein- or peptide-based biomarkers. We illustrate potential consequences of cofragmentation for multiple metaproteomic approaches, and suggest practical paths forward to cope with cofragmentation-induced bias.
Collapse
Affiliation(s)
- J Scott P McCain
- Department of Biology , Dalhousie University , Halifax , Nova Scotia B3H 4R2 , Canada
| | - Erin M Bertrand
- Department of Biology , Dalhousie University , Halifax , Nova Scotia B3H 4R2 , Canada
| |
Collapse
|
5122
|
Peerapen P, Thongboonkerd V. Protective Cellular Mechanism of Estrogen Against Kidney Stone Formation: A Proteomics Approach and Functional Validation. Proteomics 2019; 19:e1900095. [DOI: 10.1002/pmic.201900095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/02/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics UnitOffice for Research and DevelopmentFaculty of Medicine Siriraj HospitalMahidol University Bangkok 10700 Thailand
| | - Visith Thongboonkerd
- Medical Proteomics UnitOffice for Research and DevelopmentFaculty of Medicine Siriraj HospitalMahidol University Bangkok 10700 Thailand
| |
Collapse
|
5123
|
Dresler J, Klimentova J, Pajer P, Salovska B, Fucikova AM, Chmel M, Schmoock G, Neubauer H, Mertens-Scholz K. Quantitative Proteome Profiling of Coxiella burnetii Reveals Major Metabolic and Stress Differences Under Axenic and Cell Culture Cultivation. Front Microbiol 2019; 10:2022. [PMID: 31620097 PMCID: PMC6759588 DOI: 10.3389/fmicb.2019.02022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is the causative agent of the zoonotic disease Q fever. To date, the lipopolysaccharide (LPS) is the only defined and characterized virulence determinant of C. burnetii. In this study, proteome profiles of C. burnetii Nine Mile phase I (RSA 493, NMI) and its isogenic Nine Mile phase II (RSA 439 NMII) isolate with a deep rough LPS were compared on L-929 mouse fibroblasts and in complex (ACCM-2), and defined (ACCM-D) media. Whole proteome extracts were analyzed using a label-free quantification approach. Between 659 and 1,046 C. burnetii proteins of the 2,132 annotated coding sequences (CDS) were identified in any particular experiment. Proteome profiles clustered according to the cultivation conditions used, indicating different regulation patterns. NMI proteome profiles compared to NMII in ACCM-D indicate transition from an exponential to a stationary phase. The levels of regulatory proteins such as RpoS, CsrA2, UspA1, and UspA2 were increased. Comparison of the oxidative stress response of NMI and NMII indicated that ACCM-2 represents a high oxidative stress environment. Expression of peroxidases, superoxide dismutases, as well as thioredoxins was increased for NMI. In contrast, in ACCM-D, only osmoregulation seems to be necessary. Proteome profiles of NMII do not differ and indicate that both axenic media represent similar oxidative stress environments. Deep rough LPS causes changes of the outer membrane stability and fluidity. This might be one reason for the observed differences. Proteins associated with the T4SS and Sec translocon as well as several effector proteins were detectable under all three conditions. Interestingly, none of these putatively secreted proteins are upregulated in ACCM-2 compared to ACCM-D, and L-929 mouse fibroblasts. Curiously, a higher similarity of proteomic patterns (overlapping up- and downregulated proteins) of ACCM-D and bacteria grown in cell culture was observed. Particularly, the proteins involved in a better adaptation or homeostasis in response to the harsh environment of the parasitophorous vacuole were demonstrated for NMI. This semi-quantitative proteomic analysis of C. burnetii compared axenically grown bacteria to those propagated in cell culture.
Collapse
Affiliation(s)
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Petr Pajer
- Military Health Institute, Prague, Czechia
| | - Barbora Salovska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | | | - Martin Chmel
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Gernot Schmoock
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
5124
|
Righetto GL, Sriranganadane D, Halabelian L, Chiodi CG, Elkins JM, Massirer KB, Gileadi O, Menossi M, Couñago RM. The C-Terminal Domains SnRK2 Box and ABA Box Have a Role in Sugarcane SnRK2s Auto-Activation and Activity. FRONTIERS IN PLANT SCIENCE 2019; 10:1105. [PMID: 31620147 PMCID: PMC6759772 DOI: 10.3389/fpls.2019.01105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Resistance to drought stress is fundamental to plant survival and development. Abscisic acid (ABA) is one of the major hormones involved in different types of abiotic and biotic stress responses. ABA intracellular signaling has been extensively explored in Arabidopsis thaliana and occurs via a phosphorylation cascade mediated by three related protein kinases, denominated SnRK2s (SNF1-related protein kinases). However, the role of ABA signaling and the biochemistry of SnRK2 in crop plants remains underexplored. Considering the importance of the ABA hormone in abiotic stress tolerance, here we investigated the regulatory mechanism of sugarcane SnRK2s-known as stress/ABA-activated protein kinases (SAPKs). The crystal structure of ScSAPK10 revealed the characteristic SnRK2 family architecture, in which the regulatory SnRK2 box interacts with the kinase domain αC helix. To study sugarcane SnRK2 regulation, we produced a series of mutants for the protein regulatory domains SnRK2 box and ABA box. Mutations in ScSAPK8 SnRK2 box aimed at perturbing its interaction with the protein kinase domain reduced protein kinase activity in vitro. On the other hand, mutations to ScSAPK ABA box did not impact protein kinase activity but did alter the protein autophosphorylation pattern. Taken together, our results demonstrate that both SnRK2 and ABA boxes might play a role in sugarcane SnRK2 function.
Collapse
Affiliation(s)
- Germanna Lima Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution, and Bioagents, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Dev Sriranganadane
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Levon Halabelian
- Structural Genomics Consortium, MaRS Centre, Toronto, ON, Canada
| | - Carla G. Chiodi
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Jonathan M. Elkins
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, Brazil
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katlin B. Massirer
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Opher Gileadi
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution, and Bioagents, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, Brazil
| |
Collapse
|
5125
|
Biopearling of Interconnected Outer Membrane Vesicle Chains by a Marine Flavobacterium. Appl Environ Microbiol 2019; 85:AEM.00829-19. [PMID: 31324630 DOI: 10.1128/aem.00829-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/06/2019] [Indexed: 01/25/2023] Open
Abstract
Large surface-to-volume ratios provide optimal nutrient uptake conditions for small microorganisms in oligotrophic habitats. The surface area can be increased with appendages. Here, we describe chains of interconnecting vesicles protruding from cells of strain Hel3_A1_48, affiliating with Formosa spp. within the Flavobacteriia and originating from coastal free-living bacterioplankton. The chains were up to 10 μm long and had vesicles emanating from the outer membrane with a single membrane and a size of 80 to 100 nm by 50 to 80 nm. Cells extruded membrane tubes in the exponential phase, whereas vesicle chains dominated on cells in the stationary growth phase. This formation is known as pearling, a physical morphogenic process in which membrane tubes protrude from liposomes and transform into chains of interconnected vesicles. Proteomes of whole-cell membranes and of detached vesicles were dominated by outer membrane proteins, including the type IX secretion system and surface-attached peptidases, glycoside hydrolases, and endonucleases. Fluorescein-labeled laminarin stained the cells and the vesicle chains. Thus, the appendages provide binding domains and degradative enzymes on their surfaces and probably storage volume in the vesicle lumen. Both may contribute to the high abundance of these Formosa-affiliated bacteria during laminarin utilization shortly after spring algal blooms.IMPORTANCE Microorganisms produce membrane vesicles. One synthesis pathway seems to be pearling that describes the physical formation of vesicle chains from phospholipid vesicles via extended tubes. Bacteria with vesicle chains had been observed as well as bacteria with tubes, but pearling was so far not observed. Here, we report the observation of, initially, tubes and then vesicle chains during the growth of a flavobacterium, suggesting biopearling of vesicle chains. The flavobacterium is abundant during spring bacterioplankton blooms developing after algal blooms and has a special set of enzymes for laminarin, the major storage polysaccharide of microalgae. We demonstrated with fluorescently labeled laminarin that the vesicle chains bind laminarin or contain laminarin-derived compounds. Proteomic analyses revealed surface-attached degradative enzymes on the outer membrane vesicles. We conclude that the large surface area and the lumen of vesicle chains may contribute to the ecological success of this marine bacterium.
Collapse
|
5126
|
Herreros-Cabello A, Callejas-Hernández F, Fresno M, Gironès N. Comparative proteomic analysis of trypomastigotes from Trypanosoma cruzi strains with different pathogenicity. INFECTION GENETICS AND EVOLUTION 2019; 76:104041. [PMID: 31536808 DOI: 10.1016/j.meegid.2019.104041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 02/02/2023]
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is one of the most neglected diseases in Latin America, being currently a global health problem. Its immunopathogenesis is still quite unknown. Moreover, there are important differences in pathogenicity between some different T. cruzi strains. For example, in mice, Y strain produces a high acute lethality while VFRA remains in the host mostly in a chronic manner. Comparative proteomic studies between T. cruzi strains represent a complement for transcriptomics and may allow the detection of relevant factors or distinctive functions. Here for the first time, we compared the proteome of trypomastigotes from 2 strains, Y and VFRA, analyzed by mass spectrometry. Gene ontology analysis were used to display similarities or differences in cellular components, biological processes and molecular functions. Also, we performed metabolic pathways enrichment analysis to detect the most relevant pathways in each strain. Although in general they have similar profiles in the different ontology groups, there were some particular interesting differences. Moreover, there were around 10% of different proteins between Y and VFRA strains, that were shared by other T. cruzi strains or protozoan species. They displayed many common enriched metabolic pathways but some others were uniquely enriched in one strain. Thus, we detected enriched antioxidant defenses in VFRA that could correlate with its ability to induce a chronic infection in mice controlling ROS production, while the Y strain revealed a great enrichment of pathways related with nucleotides and protein production, that could fit with its high parasite replication and lethality. In summary, Y and VFRA strains displayed comparable proteomes with some particular distinctions that could contribute to understand their different biological behaviors.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain; Instituto Sanitario de Investigación la Princesa, Madrid, Spain.
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain; Instituto Sanitario de Investigación la Princesa, Madrid, Spain.
| |
Collapse
|
5127
|
Wiśniewski JR, Zettl K. Datasets: Sensitivity and protein digestion course of proteomic Filter Aided Sample Preparation. Data Brief 2019; 26:104530. [PMID: 31667293 PMCID: PMC6811893 DOI: 10.1016/j.dib.2019.104530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Sensitivity of FASP was tested using SDS lysates from HeLa cells and mouse brain. Peptides were analyzed using a QExactive HF-X instrument. Whole cell lysates of Hela cells were processed with FASP using single or double, consecutive or successive, digestion with LysC or trypsin. The generated peptides were analyzed using a LTQ-Orbitrap mass spectrometer. These datasets accompany “Filter Aided Sample Preparation – A Tutorial” (Wiśniewski, 2019).
Collapse
Affiliation(s)
| | - Katharina Zettl
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| |
Collapse
|
5128
|
Nassa G, Giurato G, Salvati A, Gigantino V, Pecoraro G, Lamberti J, Rizzo F, Nyman TA, Tarallo R, Weisz A. The RNA-mediated estrogen receptor α interactome of hormone-dependent human breast cancer cell nuclei. Sci Data 2019; 6:173. [PMID: 31527615 PMCID: PMC6746822 DOI: 10.1038/s41597-019-0179-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/25/2019] [Indexed: 01/11/2023] Open
Abstract
Estrogen Receptor alpha (ERα) is a ligand-inducible transcription factor that mediates estrogen signaling in hormone-responsive cells, where it controls key cellular functions by assembling in gene-regulatory multiprotein complexes. For this reason, interaction proteomics has been shown to represent a useful tool to investigate the molecular mechanisms underlying ERα action in target cells. RNAs have emerged as bridging molecules, involved in both assembly and activity of transcription regulatory protein complexes. By applying Tandem Affinity Purification (TAP) coupled to mass spectrometry (MS) before and after RNase digestion in vitro, we generated a dataset of nuclear ERα molecular partners whose association with the receptor involves RNAs. These data provide a useful resource to elucidate the combined role of nuclear RNAs and the proteins identified here in ERα signaling to the genome in breast cancer and other cell types.
Collapse
Affiliation(s)
- Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, 0372, Oslo, Norway
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy.
| |
Collapse
|
5129
|
Theil K, Imami K, Rajewsky N. Identification of proteins and miRNAs that specifically bind an mRNA in vivo. Nat Commun 2019; 10:4205. [PMID: 31527589 PMCID: PMC6746756 DOI: 10.1038/s41467-019-12050-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding regulation of an mRNA requires knowledge of its regulators. However, methods for reliable de-novo identification of proteins binding to a particular RNA are scarce and were thus far only successfully applied to abundant noncoding RNAs in cell culture. Here, we present vIPR, an RNA-protein crosslink, RNA pulldown, and shotgun proteomics approach to identify proteins bound to selected mRNAs in C. elegans. Applying vIPR to the germline-specific transcript gld-1 led to enrichment of known and novel interactors. By comparing enrichment upon gld-1 and lin-41 pulldown, we demonstrate that vIPR recovers both common and specific RNA-binding proteins, and we validate DAZ-1 as a specific gld-1 regulator. Finally, combining vIPR with small RNA sequencing, we recover known and biologically important transcript-specific miRNA interactions, and we identify miR-84 as a specific interactor of the gld-1 transcript. We envision that vIPR will provide a platform for investigating RNA in vivo regulation in diverse biological systems.
Collapse
Affiliation(s)
- Kathrin Theil
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Laboratory of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| |
Collapse
|
5130
|
Li Z, Zhang X, Xue W, Zhang Y, Li C, Song Y, Mei M, Lu L, Wang Y, Zhou Z, Jin M, Bian Y, Zhang L, Wang X, Li L, Li X, Fu X, Sun Z, Wu J, Nan F, Chang Y, Yan J, Yu H, Feng X, Wang G, Zhang D, Fu X, Zhang Y, Young KH, Li W, Zhang M. Recurrent GNAQ mutation encoding T96S in natural killer/T cell lymphoma. Nat Commun 2019; 10:4209. [PMID: 31527657 PMCID: PMC6746819 DOI: 10.1038/s41467-019-12032-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/16/2019] [Indexed: 01/04/2023] Open
Abstract
Natural killer/T cell lymphoma (NKTCL) is a rare and aggressive malignancy with a higher prevalence in Asia and South America. However, the molecular genetic mechanisms underlying NKTCL remain unclear. Here, we identify somatic mutations of GNAQ (encoding the T96S alteration of Gαq protein) in 8.7% (11/127) of NKTCL patients, through whole-exome/targeted deep sequencing. Using conditional knockout mice (Ncr1-Cre-Gnaqfl/fl), we demonstrate that Gαq deficiency leads to enhanced NK cell survival. We also find that Gαq suppresses tumor growth of NKTCL via inhibition of the AKT and MAPK signaling pathways. Moreover, the Gαq T96S mutant may act in a dominant negative manner to promote tumor growth in NKTCL. Clinically, patients with GNAQ T96S mutations have inferior survival. Taken together, we identify recurrent somatic GNAQ T96S mutations that may contribute to the pathogenesis of NKTCL. Our work thus has implications for refining our understanding of the genetic mechanisms of NKTCL and for the development of therapies.
Collapse
Affiliation(s)
- Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Weili Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanjie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Chaoping Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yue Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Mei Mei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lisha Lu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yingjun Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Zhiyuan Zhou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Mengyuan Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yangyang Bian
- Medical Research Centre, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Jingjing Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Feifei Nan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Hui Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Xiaoyan Feng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Xuefei Fu
- Novogene Bioinformatics Technology Co, Ltd, 38 Xueqing Road, 100083, Beijing, China
| | - Yuan Zhang
- The Academy of Medical Science of Zhengzhou University, 450052, Zhengzhou, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
- Lymphoma Diagnosis and Treatment Center of Henan Province, 450000, Zhengzhou, China.
| |
Collapse
|
5131
|
Comparative study of excretory-secretory proteins released by Schistosoma mansoni-resistant, susceptible and naïve Biomphalaria glabrata. Parasit Vectors 2019; 12:452. [PMID: 31521183 PMCID: PMC6744689 DOI: 10.1186/s13071-019-3708-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Schistosomiasis is a harmful neglected tropical disease caused by infection with Schistosoma spp., such as Schistosoma mansoni. Schistosoma must transition within a molluscan host to survive. Chemical analyses of schistosome-molluscan interactions indicate that host identification involves chemosensation, including naïve host preference. Proteomic technique advances enable sophisticated comparative analyses between infected and naïve snail host proteins. This study aimed to compare resistant, susceptible and naïve Biomphalaria glabrata snail-conditioned water (SCW) to identify potential attractants and deterrents. METHODS Behavioural bioassays were performed on S. mansoni miracidia to compare the effects of susceptible, F1 resistant and naïve B. glabrata SCW. The F1 resistant and susceptible B. glabrata SCW excretory-secretory proteins (ESPs) were fractionated using SDS-PAGE, identified with LC-MS/MS and compared to naïve snail ESPs. Protein-protein interaction (PPI) analyses based on published studies (including experiments, co-expression, text-mining and gene fusion) identified S. mansoni and B. glabrata protein interaction. Data are available via ProteomeXchange with identifier PXD015129. RESULTS A total of 291, 410 and 597 ESPs were detected in the susceptible, F1 resistant and naïve SCW, respectively. Less overlap in ESPs was identified between susceptible and naïve snails than F1 resistant and naïve snails. F1 resistant B. glabrata ESPs were predominately associated with anti-pathogen activity and detoxification, such as leukocyte elastase and peroxiredoxin. Susceptible B. glabrata several proteins correlated with immunity and anti-inflammation, such as glutathione S-transferase and zinc metalloproteinase, and S. mansoni sporocyst presence. PPI analyses found that uncharacterised S. mansoni protein Smp_142140.1 potentially interacts with numerous B. glabrata proteins. CONCLUSIONS This study identified ESPs released by F1 resistant, susceptible and naïve B. glabrata to explain S. mansoni miracidia interplay. Susceptible B. glabrata ESPs shed light on potential S. mansoni miracidia deterrents. Further targeted research on specific ESPs identified in this study could help inhibit B. glabrata and S. mansoni interactions and stop human schistosomiasis.
Collapse
|
5132
|
Gallardo-Vara E, Ruiz-Llorente L, Casado-Vela J, Ruiz-Rodríguez MJ, López-Andrés N, Pattnaik AK, Quintanilla M, Bernabeu C. Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells 2019; 8:cells8091082. [PMID: 31540324 PMCID: PMC6769930 DOI: 10.3390/cells8091082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/07/2019] [Accepted: 09/07/2019] [Indexed: 12/15/2022] Open
Abstract
Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-β receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-β receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-β family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
| | - Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
| | - Juan Casado-Vela
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Leganés, 28911 Madrid, Spain;
| | | | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain;
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), and Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Correspondence: (M.Q.); (C.B.)
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
- Correspondence: (M.Q.); (C.B.)
| |
Collapse
|
5133
|
Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, Maurer-Granofszky M, Roka F, Penz T, Bock C, Zhang G, Herlyn M, Glatz K, Läubli H, Mertz KD, Petzelbauer P, Wiesner T, Hartl M, Pickl WF, Somasundaram R, Steinberger P, Wagner SN. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat Commun 2019; 10:4186. [PMID: 31519915 PMCID: PMC6744450 DOI: 10.1038/s41467-019-12160-2] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/22/2019] [Indexed: 01/01/2023] Open
Abstract
Tumor associated inflammation predicts response to immune checkpoint blockade in human melanoma. Current theories on regulation of inflammation center on anti-tumor T cell responses. Here we show that tumor associated B cells are vital to melanoma associated inflammation. Human B cells express pro- and anti-inflammatory factors and differentiate into plasmablast-like cells when exposed to autologous melanoma secretomes in vitro. This plasmablast-like phenotype can be reconciled in human melanomas where plasmablast-like cells also express T cell-recruiting chemokines CCL3, CCL4, CCL5. Depletion of B cells in melanoma patients by anti-CD20 immunotherapy decreases tumor associated inflammation and CD8+ T cell numbers. Plasmablast-like cells also increase PD-1+ T cell activation through anti-PD-1 blockade in vitro and their frequency in pretherapy melanomas predicts response and survival to immune checkpoint blockade. Tumor associated B cells therefore orchestrate and sustain melanoma inflammation and may represent a predictor for survival and response to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Johannes Griss
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD Hinxton, Cambridge, UK.
| | - Wolfgang Bauer
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christine Wagner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Martin Simon
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Minyi Chen
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Margarita Maurer-Granofszky
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
- Children's Cancer Research Institute, 1090, Vienna, Austria
| | - Florian Roka
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Gao Zhang
- Molecular & Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104-4265, USA
- Department of Neurosurgery & The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104-4265, USA
| | - Katharina Glatz
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Heinz Läubli
- Division of Medical Oncology, University Hospital Basel, 4031, Basel, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, 4410, Liestal, Switzerland
| | - Peter Petzelbauer
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Wiesner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Winfried F Pickl
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Rajasekharan Somasundaram
- Molecular & Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104-4265, USA
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Stephan N Wagner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
5134
|
Aguiar WDS, Galizio NDC, Serino-Silva C, Sant’Anna SS, Grego KF, Tashima AK, Nishiduka ES, de Morais-Zani K, Tanaka-Azevedo AM. Comparative compositional and functional analyses of Bothrops moojeni specimens reveal several individual variations. PLoS One 2019; 14:e0222206. [PMID: 31513632 PMCID: PMC6742229 DOI: 10.1371/journal.pone.0222206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/23/2019] [Indexed: 11/21/2022] Open
Abstract
Snake venoms are complex protein mixtures with different biological activities that can act in both their preys and human victims. Many of these proteins play a role in prey capture and in the digestive process of these animals. It is known that some snakes are resistant to the toxicity of their own venom by mechanisms not yet fully elucidated. However, it was observed in the Laboratory of Herpetology of Instituto Butantan that some Bothrops moojeni individuals injured by the same snake species showed mortalities caused by envenoming effects. This study analyzed the biochemical composition of 13 venom and plasma samples from Bothrops moojeni specimens to assess differences in their protein composition. Application of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed distinct venom protein profiles, but very homogeneous plasma profiles. Western Blotting (WB) was performed with plasma samples, which were submitted to incubation with the respective venom. Some individuals showed an immunorecognized band zone around 25 kDa, indicating interaction between the same individual plasma and venom proteins. Crossed-WB assay using non-self-plasma and venom showed that this variability is due to venom protein composition instead of plasma composition. These venoms presented higher caseinolytic, collagenolytic and coagulant activities than the venoms without these regions recognized by WB. Mass spectrometry analyses performed on two individuals revealed that these individuals present, in addition to higher protein concentrations, other exclusive proteins in their composition. When these same two samples were tested in vivo, the results also showed higher lethality in these venoms, but lower hemorrhagic activity than in the venoms without these regions recognized by WB. In conclusion, some Bothrops moojeni specimens differ in venom composition, which may have implications in envenomation. Moreover, the high individual venom variability found in this species demonstrates the importance to work with individual analyses in studies involving intraspecific venom variability and venom evolution.
Collapse
Affiliation(s)
- Weslei da Silva Aguiar
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | - Nathália da Costa Galizio
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | - Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | | | | | | | | | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| |
Collapse
|
5135
|
Mersha FB, Cortes LK, Luck AN, McClung CM, Ruse CI, Taron CH, Foster JM. Computational and experimental analysis of the glycophosphatidylinositol-anchored proteome of the human parasitic nematode Brugia malayi. PLoS One 2019; 14:e0216849. [PMID: 31513600 PMCID: PMC6742230 DOI: 10.1371/journal.pone.0216849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/20/2019] [Indexed: 12/05/2022] Open
Abstract
Further characterization of essential systems in the parasitic filarial nematode Brugia malayi is needed to better understand its biology, its interaction with its hosts, and to identify critical components that can be exploited to develop novel treatments. The production of glycophosphatidylinositol-anchored proteins (GPI-APs) is essential for eukaryotic cellular and physiological function. In addition, GPI-APs perform many important roles for cells. In this study, we characterized the B. malayi GPI-anchored proteome using both computational and experimental approaches. We used bioinformatic strategies to show the presence or absence of B. malayi GPI-AP biosynthetic pathway genes and to compile a putative B. malayi GPI-AP proteome using available prediction programs. We verified these in silico analyses using proteomics to identify GPI-AP candidates prepared from the surface of intact worms and from membrane enriched extracts. Our study represents the first description of the GPI-anchored proteome in B. malayi and lays the groundwork for further exploration of this essential protein modification as a target for novel anthelmintic therapeutic strategies.
Collapse
Affiliation(s)
- Fana B. Mersha
- New England Biolabs, Ipswich MA, United States of America
| | | | - Ashley N. Luck
- New England Biolabs, Ipswich MA, United States of America
| | | | | | | | | |
Collapse
|
5136
|
Abraham JR, Szoko N, Barnard J, Rubin RA, Schlatzer D, Lundberg K, Li X, Natowicz MR. Proteomic Investigations of Autism Brain Identify Known and Novel Pathogenetic Processes. Sci Rep 2019; 9:13118. [PMID: 31511657 PMCID: PMC6739414 DOI: 10.1038/s41598-019-49533-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of heterogeneous neurodevelopmental conditions defined by impairments in social communication and restricted, repetitive behaviors, interests or activities. Only a minority of ASD cases are determined to have a definitive etiology and the pathogenesis of most ASD is poorly understood. We hypothesized that a global analysis of the proteomes of human ASD vs. control brain, heretofore not done, would provide important data with which to better understand the underlying neurobiology of autism. In this study, we characterized the proteomes of two brain regions, Brodmann area 19 (BA19) and posterior inferior cerebellum (CB), from carefully selected idiopathic ASD cases and matched controls using label-free HPLC-tandem mass spectrometry. The data revealed marked differences between ASD and control brain proteomes for both brain regions. Unlike earlier transcriptomic analyses using frontal and temporal cortex, however, our proteomic analysis did not support ASD attenuating regional gene expression differences. Bioinformatic analyses of the differentially expressed proteins between cases and controls highlighted canonical pathways involving glutamate receptor signaling and glutathione-mediated detoxification in both BA19 and CB; other pathways such as Sertoli cell signaling and fatty acid oxidation were specifically enriched in BA19 or CB, respectively. Network analysis of both regions of ASD brain showed up-regulation of multiple pre- and post-synaptic membrane or scaffolding proteins including glutamatergic ion channels and related proteins, up-regulation of proteins involved in intracellular calcium signaling, and down-regulation of neurofilament proteins, with DLG4 and MAPT as major hub proteins in BA19 and CB protein interaction networks, respectively. Upstream regulator analysis suggests neurodegeneration-associated proteins drive the differential protein expression for ASD in both BA19 and CB. Overall, the proteomic data provide support for shared dysregulated pathways and upstream regulators for two brain regions in human ASD brain, suggesting a common ASD pathophysiology that has distinctive regional expression.
Collapse
Affiliation(s)
- Joseph R Abraham
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Nicholas Szoko
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Robert A Rubin
- Department of Mathematics, Whittier College, Whittier, CA, 90602, USA
| | - Daniela Schlatzer
- Center for Proteomics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kathleen Lundberg
- Center for Proteomics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaolin Li
- Center for Proteomics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Marvin R Natowicz
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
- Pathology and Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
5137
|
Lugli F, Di Rocco G, Vazzana A, Genovese F, Pinetti D, Cilli E, Carile MC, Silvestrini S, Gabanini G, Arrighi S, Buti L, Bortolini E, Cipriani A, Figus C, Marciani G, Oxilia G, Romandini M, Sorrentino R, Sola M, Benazzi S. Enamel peptides reveal the sex of the Late Antique 'Lovers of Modena'. Sci Rep 2019; 9:13130. [PMID: 31511583 PMCID: PMC6739468 DOI: 10.1038/s41598-019-49562-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/07/2019] [Indexed: 11/15/2022] Open
Abstract
Recent work has disclosed the critical role played by enamel peptides in sex classification of old skeletal remains. In particular, protein AMELY (amelogenin isoform Y) is present in the enamel dental tissue of male individuals only, while AMELX (isoform X) can be found in both sexes. AMELY can be easily detected by LC-MS/MS in the ion extracted chromatograms of the SM(ox)IRPPY peptide (monoisotopic [M + 2 H]+2 mass = 440.2233 m/z). In this paper, we exploited the dimorphic features of the amelogenin protein to determine the sex of the so-called 'Lovers of Modena', two Late Antique individuals whose skeletons were intentionally buried hand-in-hand. Upon discovery, mass media had immediately assumed they were a male-female couple, even if bad preservation of the bones did not allow an effective sex classification. We were able to extract proteins from the dental enamel of both individuals (~1600 years old) and to confidently classify them as males. Results were compared to 14 modern and archaeological control samples, confirming the reliability of the ion chromatogram method for sex determination. Although we currently have no information on the actual relationship between the 'Lovers of Modena' (affective? Kin-based?), the discovery of two adult males intentionally buried hand-in-hand may have profound implications for our understanding of funerary practices in Late Antique Italy.
Collapse
Affiliation(s)
- Federico Lugli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy.
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Via Campi 213/A, 41125, Modena, Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Via Campi 213/A, 41125, Modena, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Maria Cristina Carile
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Sara Silvestrini
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Gaia Gabanini
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Simona Arrighi
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Laura Buti
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Anna Cipriani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Carla Figus
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Gregorio Oxilia
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Rita Sorrentino
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
5138
|
An Integrated Transcriptome and Proteome Analysis Reveals New Insights into Russeting of Bagging and Non-Bagging "Golden Delicious" Apple. Int J Mol Sci 2019; 20:ijms20184462. [PMID: 31510041 PMCID: PMC6769969 DOI: 10.3390/ijms20184462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Apple skin russeting naturally occurs in many varieties, particularly in “Golden Delicious” and its pedigree, and is regarded as a non-invasive physiological disorder partly caused by excessive deposition of lignin. However, the understanding of its molecular mechanism is still limited. In this study, we used iTRAQ (isobaric tags for relative and absolute quantitation) and RNA-seq to detect the changes in the expression levels of genes and proteins in three developmental stages of russeting formation, in russeted (non-bagging) and non-russeted (bagging) skin of “Golden Delicious” apple. 2856 differentially expressed genes and 942 differentially expressed proteins in the comparison groups were detected at the transcript level and protein level, respectively. A correlation analysis of the transcriptomics and proteomics data revealed that four genes (MD03G1059200, MD08G1009200, MD17G1092400, and MD17G1225100) involved in lignin biosynthesis are significant changed during apple russeting formation. Additionally, 92 transcription factors, including 4 LIM transcription factors, may be involved in apple russeting formation. Among them, one LIM transcription factor (MD15G1068200) was capable of binding to the PAL-box like (CCACTTGAGTAC) element, which indicated it was potentially involved in lignin biosynthesis. This study will provide further views on the molecular mechanisms controlling apple russeting formation.
Collapse
|
5139
|
Lachnit M, Buhmann MT, Klemm J, Kröger N, Poulsen N. Identification of proteins in the adhesive trails of the diatom Amphora coffeaeformis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190196. [PMID: 31495312 DOI: 10.1098/rstb.2019.0196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Throughout all kingdoms of life, a large number of adhesive biomolecules have evolved to allow organisms to adhere to surfaces underwater. Proteins play an important role in the adhesion of numerous marine invertebrates (e.g. mussels, sea stars, sea urchins) whereas much less is known about the biological adhesives from marine plants, including the diatoms. Diatoms are unicellular microalgae that together with bacteria dominate marine biofilms in sunlit habitats. In this study we present the first proteomics analyses of the diatom adhesive material isolated from the tenacious fouling species Amphora coffeaeformis. We identified 21 proteins, of which 13 are diatom-specific. Ten of these proteins share a conserved C-terminal domain, termed GDPH domain, which is widespread yet not ubiquitously present in all diatom classes. Immunofluorescence localization of a GDPH domain bearing protein (Ac629) as well as two other proteins identified in this study (Ac1442, Ac9617) demonstrated that these are components of the adhesive trails that are secreted by cells that glide on surfaces. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Martina Lachnit
- B CUBE, Technical University of Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Matthias T Buhmann
- B CUBE, Technical University of Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Jennifer Klemm
- B CUBE, Technical University of Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Nils Kröger
- B CUBE, Technical University of Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Nicole Poulsen
- B CUBE, Technical University of Dresden, Tatzberg 41, 01307 Dresden, Germany
| |
Collapse
|
5140
|
Elias MS, Wright SC, Nicholson WV, Morrison KD, Prescott AR, Ten Have S, Whitfield PD, Lamond AI, Brown SJ. Proteomic analysis of a filaggrin-deficient skin organoid model shows evidence of increased transcriptional-translational activity, keratinocyte-immune crosstalk and disordered axon guidance. Wellcome Open Res 2019; 4:134. [DOI: 10.12688/wellcomeopenres.15405.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
Background:Atopic eczema is an itchy inflammatory disorder characterised by skin barrier dysfunction. Loss-of-function mutations in the gene encoding filaggrin (FLG) are a major risk factor, but the mechanisms by which filaggrin haploinsufficiency leads to atopic inflammation remain incompletely understood. Skin as an organ that can be modelled using primary cellsin vitroprovides the opportunity for selected genetic effects to be investigated in detail.Methods:Primary human keratinocytes and donor-matched primary fibroblasts from healthy individuals were used to create skin organoid models with and without siRNA-mediated knockdown ofFLG. Biological replicate sets of organoids were assessed using histological, functional and biochemical measurements.Results:FLGknockdown leads to subtle changes in histology and ultrastructure including a reduction in thickness of the stratum corneum and smaller, less numerous keratohyalin granules. Immature organoids showed evidence of barrier impairment withFLGknockdown, but the mature organoids showed no difference in transepidermal water loss, water content or dye penetration. There was no difference in epidermal ceramide content. Mass spectrometry proteomic analysis detected >8000 proteins per sample. Gene ontology and pathway analyses identified an increase in transcriptional and translational activity but a reduction in proteins contributing to terminal differentiation, including caspase 14, dermokine, AKT1 and TGF-beta-1. Aspects of innate and adaptive immunity were represented in both the up-regulated and down-regulated protein groups, as was the term ‘axon guidance’. Conclusions:This work provides further evidence for keratinocyte-specific mechanisms contributing to immune and neurological, as well as structural, aspects of skin barrier dysfunction. Individuals with filaggrin deficiency may derive benefit from future therapies targeting keratinocyte-immune crosstalk and neurogenic pruritus.
Collapse
|
5141
|
Cassotta A, Mikol V, Bertrand T, Pouzieux S, Le Parc J, Ferrari P, Dumas J, Auer M, Deisenhammer F, Gastaldi M, Franciotta D, Silacci-Fregni C, Fernandez Rodriguez B, Giacchetto-Sasselli I, Foglierini M, Jarrossay D, Geiger R, Sallusto F, Lanzavecchia A, Piccoli L. A single T cell epitope drives the neutralizing anti-drug antibody response to natalizumab in multiple sclerosis patients. Nat Med 2019; 25:1402-1407. [PMID: 31501610 PMCID: PMC6795539 DOI: 10.1038/s41591-019-0568-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
Natalizumab (NZM), a humanized monoclonal IgG4 antibody to α4
integrins, is used to treat patients with relapsing-remitting multiple sclerosis
(MS)1,2, but in about 6% of the cases persistent
neutralizing anti-drug antibodies (ADAs) are induced leading to therapy
discontinuation3,4. To understand the basis of the
ADA response and the mechanism of ADA-mediated neutralization, we performed an
in-depth analysis of the B and T cell responses in two patients. By
characterizing a large panel of NZM-specific monoclonal antibodies, we found
that, in both patients, the response was polyclonal and targeted different
epitopes of the NZM idiotype. The neutralizing activity was acquired through
somatic mutations and correlated with a slow dissociation rate, a finding that
was supported by structural data. Interestingly, in both patients, the analysis
of the CD4+ T cell response, combined with mass spectrometry-based
peptidomics, revealed a single immunodominant T cell epitope spanning the
FR2-CDR2 region of the NZM light chain. Moreover, a CDR2-modified version of NZM
was not recognized by T cells, while retaining binding to α4 integrins.
Collectively, our integrated analysis identifies the basis of T-B collaboration
that leads to ADA-mediated therapeutic resistance and delineates an approach to
design novel deimmunized antibodies for autoimmune disease and cancer
treatment.
Collapse
Affiliation(s)
- Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Vincent Mikol
- Research Platform, Sanofi R&D, Vitry-sur-Seine, France
| | | | | | | | - Paul Ferrari
- Research Platform, Sanofi R&D, Vitry-sur-Seine, France
| | - Jacques Dumas
- Research Platform, Sanofi R&D, Vitry-sur-Seine, France
| | - Michael Auer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Matteo Gastaldi
- Laboratory of Neuroimmunology, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Laboratory of Neuroimmunology, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Silacci-Fregni
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | | | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
5142
|
ALDH7A1 inhibits the intracellular transport pathways during hypoxia and starvation to promote cellular energy homeostasis. Nat Commun 2019; 10:4068. [PMID: 31492851 PMCID: PMC6731274 DOI: 10.1038/s41467-019-11932-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/27/2019] [Indexed: 12/13/2022] Open
Abstract
The aldehyde dehydrogenase (ALDH) family of metabolic enzymes converts aldehydes to carboxylates. Here, we find that the reductive consequence of ALDH7A1 activity, which generates NADH (nicotinamide adenine dinucleotide, reduced form) from NAD, underlies how ALDH7A1 coordinates a broad inhibition of the intracellular transport pathways. Studying vesicle formation by the Coat Protein I (COPI) complex, we elucidate that NADH generated by ALDH7A1 targets Brefeldin-A ADP-Ribosylated Substrate (BARS) to inhibit COPI vesicle fission. Moreover, defining a physiologic role for the broad transport inhibition exerted by ALDH7A1, we find that it acts to reduce energy consumption during hypoxia and starvation to promote cellular energy homeostasis. These findings advance the understanding of intracellular transport by revealing how the coordination of multiple pathways can be achieved, and also defining circumstances when such coordination is needed, as well as uncovering an unexpected way that NADH acts in cellular energetics. Intracellular vesicle transport can be regulated by Brefeldin‐A ADP‐Ribosylated Substrate (BARS) during vesicle fission. Here, the authors show that NADH generated by aldehyde dehydrogenase 7A1 (ALDH7A1) inhibits intracellular transport by targeting BARS and inhibiting COPI vesicle fission during situations of energy deprivation
Collapse
|
5143
|
Yang JS, Hsu JW, Park SY, Lee SY, Li J, Bai M, Alves C, Tseng W, Michelet X, Ho IC, Hsu VW. ALDH7A1 inhibits the intracellular transport pathways during hypoxia and starvation to promote cellular energy homeostasis. Nat Commun 2019. [PMID: 31492851 DOI: 10.1038/s41467-019-11932-11930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
The aldehyde dehydrogenase (ALDH) family of metabolic enzymes converts aldehydes to carboxylates. Here, we find that the reductive consequence of ALDH7A1 activity, which generates NADH (nicotinamide adenine dinucleotide, reduced form) from NAD, underlies how ALDH7A1 coordinates a broad inhibition of the intracellular transport pathways. Studying vesicle formation by the Coat Protein I (COPI) complex, we elucidate that NADH generated by ALDH7A1 targets Brefeldin-A ADP-Ribosylated Substrate (BARS) to inhibit COPI vesicle fission. Moreover, defining a physiologic role for the broad transport inhibition exerted by ALDH7A1, we find that it acts to reduce energy consumption during hypoxia and starvation to promote cellular energy homeostasis. These findings advance the understanding of intracellular transport by revealing how the coordination of multiple pathways can be achieved, and also defining circumstances when such coordination is needed, as well as uncovering an unexpected way that NADH acts in cellular energetics.
Collapse
Affiliation(s)
- Jia-Shu Yang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jia-Wei Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Seung-Yeol Park
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Stella Y Lee
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jian Li
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ming Bai
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Claudia Alves
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - William Tseng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Xavier Michelet
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - I-Cheng Ho
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5144
|
Hayoun K, Gouveia D, Grenga L, Pible O, Armengaud J, Alpha-Bazin B. Evaluation of Sample Preparation Methods for Fast Proteotyping of Microorganisms by Tandem Mass Spectrometry. Front Microbiol 2019; 10:1985. [PMID: 31555227 PMCID: PMC6742703 DOI: 10.3389/fmicb.2019.01985] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Tandem mass spectrometry-based proteotyping allows characterizing microorganisms in terms of taxonomy and is becoming an important tool for investigating microbial diversity from several ecosystems. Fast and automatable sample preparation for obtaining peptide pools amenable to tandem mass spectrometry is necessary for enabling proteotyping as a high-throughput method. First, the protocol to increase the yield of lysis of several representative bacterial and eukaryotic microorganisms was optimized by using a long and drastic bead-beating setting with 0.1 mm silica beads, 0.1 and 0.5 mm glass beads, in presence of detergents. Then, three different methods to obtain greater digestion yield from these extracts were tested and optimized for improve efficiency and reduce application time: denaturing electrophoresis of proteins and in-gel proteolysis, suspension-trapping filter-based approach (S-Trap) and, solid-phase-enhanced sample preparation named SP3. The latter method outperforms the other two in terms of speed and delivers also more peptides and proteins than with the in-gel proteolysis (2.2 fold for both) and S-trap approaches (1.3 and 1.2 fold, respectively). Thus, SP3 directly improves tandem mass spectrometry proteotyping.
Collapse
Affiliation(s)
| | | | | | | | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic, Service de Pharmacologie et Immunoanalyse, CEA, INRA, Bagnols-sur-Cèze, France
| | | |
Collapse
|
5145
|
Mechanical Forces Regulate Cardiomyocyte Myofilament Maturation via the VCL-SSH1-CFL Axis. Dev Cell 2019; 51:62-77.e5. [PMID: 31495694 DOI: 10.1016/j.devcel.2019.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Mechanical forces regulate cell behavior and tissue morphogenesis. During cardiac development, mechanical stimuli from the heartbeat are required for cardiomyocyte maturation, but the underlying molecular mechanisms remain unclear. Here, we first show that the forces of the contracting heart regulate the localization and activation of the cytoskeletal protein vinculin (VCL), which we find to be essential for myofilament maturation. To further analyze the role of VCL in this process, we examined its interactome in contracting versus non-contracting cardiomyocytes and, in addition to several known interactors, including actin regulators, identified the slingshot protein phosphatase SSH1. We show how VCL recruits SSH1 and its effector, the actin depolymerizing factor cofilin (CFL), to regulate F-actin rearrangement and promote cardiomyocyte myofilament maturation. Overall, our results reveal that mechanical forces generated by cardiac contractility regulate cardiomyocyte maturation through the VCL-SSH1-CFL axis, providing further insight into how mechanical forces are transmitted intracellularly to regulate myofilament maturation.
Collapse
|
5146
|
Alugubelly N, Mohammad AN, Edelmann MJ, Nanduri B, Sayed M, Park JW, Carr RL. Proteomic and transcriptional profiling of rat amygdala following social play. Behav Brain Res 2019; 376:112210. [PMID: 31493430 DOI: 10.1016/j.bbr.2019.112210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Social play is the most characteristic form of social interaction which is necessary for adolescents to develop proper cognitive, emotional, and social competency. The information available on neural substrates and the mechanism involved in social play is limited. This study characterized social play by proteomic and transcriptional profiling studies. Social play was performed on male Sprague Dawley rats on postnatal day 38 and protein and gene expression in the amygdala was determined following behavioral testing. The proteomic analysis led to the identification of 170 differentially expressed proteins (p ≤ 0.05) with 67 upregulated and 103 downregulated proteins. The transcriptomic analysis led to the identification of 188 genes (FDR ≤ 0.05) with 55 upregulated and 133 downregulated genes. DAVID analysis of gene/protein expression data revealed that social play altered GABAergic signaling, glutamatergic signaling, and G-protein coupled receptor (GPCR) signaling. These data suggest that the synaptic levels of GABA and glutamate increased during play. Ingenuity Pathway Analysis (IPA) confirmed these alterations. IPA also revealed that differentially expressed genes/proteins in our data had significant over representation of neurotransmitter signaling systems, including the opioid, serotonin, and dopamine systems, suggesting that play alters the systems involved in the regulation of reward. In addition, corticotropin-releasing hormone signaling was altered indicating that an increased level of stress occurs during play. Overall, our data suggest that increased inhibitory GPCR signaling in these neurotransmitter pathways occurs following social play as a physiological response to regulate the induced level of reward and stress and to maintain the excitatory-inhibitory balance in the neurotransmitter systems.
Collapse
Affiliation(s)
- Navatha Alugubelly
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Afzaal N Mohammad
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, KY, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, KY, USA; KBRIN Bioinformatics Core, University of Louisville, KY, USA.
| | - Russell L Carr
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA.
| |
Collapse
|
5147
|
Diaz Osterman CJ, Ozmadenci D, Kleinschmidt EG, Taylor KN, Barrie AM, Jiang S, Bean LM, Sulzmaier FJ, Jean C, Tancioni I, Anderson K, Uryu S, Cordasco EA, Li J, Chen XL, Fu G, Ojalill M, Rappu P, Heino J, Mark AM, Xu G, Fisch KM, Kolev VN, Weaver DT, Pachter JA, Győrffy B, McHale MT, Connolly DC, Molinolo A, Stupack DG, Schlaepfer DD. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. eLife 2019; 8:e47327. [PMID: 31478830 PMCID: PMC6721800 DOI: 10.7554/elife.47327] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Gene copy number alterations, tumor cell stemness, and the development of platinum chemotherapy resistance contribute to high-grade serous ovarian cancer (HGSOC) recurrence. Stem phenotypes involving Wnt-β-catenin, aldehyde dehydrogenase activities, intrinsic platinum resistance, and tumorsphere formation are here associated with spontaneous gains in Kras, Myc and FAK (KMF) genes in a new aggressive murine model of ovarian cancer. Adhesion-independent FAK signaling sustained KMF and human tumorsphere proliferation as well as resistance to cisplatin cytotoxicity. Platinum-resistant tumorspheres can acquire a dependence on FAK for growth. Accordingly, increased FAK tyrosine phosphorylation was observed within HGSOC patient tumors surviving neo-adjuvant chemotherapy. Combining a FAK inhibitor with platinum overcame chemoresistance and triggered cell apoptosis. FAK transcriptomic analyses across knockout and reconstituted cells identified 135 targets, elevated in HGSOC, that were regulated by FAK activity and β-catenin including Myc, pluripotency and DNA repair genes. These studies reveal an oncogenic FAK signaling role supporting chemoresistance.
Collapse
Affiliation(s)
- Carlos J Diaz Osterman
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Duygu Ozmadenci
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Elizabeth G Kleinschmidt
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Kristin N Taylor
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Allison M Barrie
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Shulin Jiang
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Lisa M Bean
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Florian J Sulzmaier
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Christine Jean
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Isabelle Tancioni
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Kristen Anderson
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Sean Uryu
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Edward A Cordasco
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | | | - Pekka Rappu
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Jyrki Heino
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Adam M Mark
- Department of MedicineUCSD Center for Computational Biology & BioinformaticsLa JollaUnited States
| | - Guorong Xu
- Department of MedicineUCSD Center for Computational Biology & BioinformaticsLa JollaUnited States
| | - Kathleen M Fisch
- Department of MedicineUCSD Center for Computational Biology & BioinformaticsLa JollaUnited States
| | | | | | | | - Balázs Győrffy
- Institute of EnzymologyHungarian Academy of SciencesBudapestHungary
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Michael T McHale
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | | | - Alfredo Molinolo
- Department of PathologyMoores UCSD Cancer CenterLa JollaUnited States
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - David D Schlaepfer
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| |
Collapse
|
5148
|
Zhao T, Huan Q, Sun J, Liu C, Hou X, Yu X, Silverman IM, Zhang Y, Gregory BD, Liu CM, Qian W, Cao X. Impact of poly(A)-tail G-content on Arabidopsis PAB binding and their role in enhancing translational efficiency. Genome Biol 2019; 20:189. [PMID: 31481099 PMCID: PMC6724284 DOI: 10.1186/s13059-019-1799-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/22/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Polyadenylation plays a key role in producing mature mRNAs in eukaryotes. It is widely believed that the poly(A)-binding proteins (PABs) uniformly bind to poly(A)-tailed mRNAs, regulating their stability and translational efficiency. RESULTS We observe that the homozygous triple mutant of broadly expressed Arabidopsis thaliana PABs, AtPAB2, AtPAB4, and AtPAB8, is embryonic lethal. To understand the molecular basis, we characterize the RNA-binding landscape of these PABs. The AtPAB-binding efficiency varies over one order of magnitude among genes. To identify the sequences accounting for the variation, we perform poly(A)-seq that directly sequences the full-length poly(A) tails. More than 10% of poly(A) tails contain at least one guanosine (G); among them, the G-content varies from 0.8 to 28%. These guanosines frequently divide poly(A) tails into interspersed A-tracts and therefore cause the variation in the AtPAB-binding efficiency among genes. Ribo-seq and genome-wide RNA stability assays show that AtPAB-binding efficiency of a gene is positively correlated with translational efficiency rather than mRNA stability. Consistently, genes with stronger AtPAB binding exhibit a greater reduction in translational efficiency when AtPAB is depleted. CONCLUSIONS Our study provides a new mechanism that translational efficiency of a gene can be regulated through the G-content-dependent PAB binding, paving the way for a better understanding of poly(A) tail-associated regulation of gene expression.
Collapse
Affiliation(s)
- Taolan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Huan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuli Hou
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian M Silverman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Zhang
- Laboratory for Genome Regulation and Human Health and Center for Genome Analysis, ABLife Inc, Wuhan, 430075, Hubei, China
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chun-Ming Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5149
|
Yichie Y, Hasan MT, Tobias PA, Pascovici D, Goold HD, Van Sluyter SC, Roberts TH, Atwell BJ. Salt-Treated Roots of Oryza australiensis Seedlings are Enriched with Proteins Involved in Energetics and Transport. Proteomics 2019; 19:e1900175. [PMID: 31475433 DOI: 10.1002/pmic.201900175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Indexed: 11/08/2022]
Abstract
Salinity is a major constraint on rice productivity worldwide. However, mechanisms of salt tolerance in wild rice relatives are unknown. Root microsomal proteins are extracted from two Oryza australiensis accessions contrasting in salt tolerance. Whole roots of 2-week-old seedlings are treated with 80 mM NaCl for 30 days to induce salt stress. Proteins are quantified by tandem mass tags (TMT) and triple-stage Mass Spectrometry. More than 200 differentially expressed proteins between the salt-treated and control samples in the two accessions (p-value <0.05) are found. Gene Ontology (GO) analysis shows that proteins categorized as "metabolic process," "transport," and "transmembrane transporter" are highly responsive to salt treatment. In particular, mitochondrial ATPases and SNARE proteins are more abundant in roots of the salt-tolerant accession and responded strongly when roots are exposed to salinity. mRNA quantification validated the elevated protein abundances of a monosaccharide transporter and an antiporter observed in the salt-tolerant genotype. The importance of the upregulated monosaccharide transporter and a VAMP-like protein by measuring salinity responses of two yeast knockout mutants for genes homologous to those encoding these proteins in rice are confirmed. Potential new mechanisms of salt tolerance in rice, with implications for breeding of elite cultivars are also discussed.
Collapse
Affiliation(s)
- Yoav Yichie
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Mafruha T Hasan
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Peri A Tobias
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Hugh D Goold
- NSW Department of Primary Industries, Macquarie University, Sydney, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Thomas H Roberts
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
5150
|
Guo J, Li X, Zhang W, Chen Y, Zhu S, Chen L, Xu R, Lv Y, Wu D, Guo M, Liu X, Lu W, Deng H. HSP60-regulated Mitochondrial Proteostasis and Protein Translation Promote Tumor Growth of Ovarian Cancer. Sci Rep 2019; 9:12628. [PMID: 31477750 PMCID: PMC6718431 DOI: 10.1038/s41598-019-48992-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/14/2019] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological carcinoma due to the lack of diagnostic markers and effective drug targets. Discovery of new therapeutic targets in OC to improve the treatment outcome is urgently needed. We performed proteomic analysis of OC specimens and the paired normal tissues and revealed that proteins associated with mitochondrial proteostasis and protein translation were highly expressed in ovarian tumor tissues, indicating that mitochondria are required for tumor progression of OC. Heat shock protein 60 (HSP60), an important mitochondrial chaperone, was upregulated in ovarian tumors. HSP60 silencing significantly attenuated growth of OC cells in both cells and mice xenografts. Proteomic analysis revealed that HSP60 silencing downregulated proteins involved in mitochondrial functions and protein synthesis. Metabolomic analysis revealed that HSP60 silencing resulted in a more than 100-fold increase in cellular adenine levels, leading to increased adenosine monophosphate and an activated AMPK pathway, and consequently reduced mTORC1-mediated S6K and 4EBP1 phosphorylation to inhibit protein synthesis that suppressed the proliferation of OC cells. These results suggest that HSP60 knockdown breaks mitochondrial proteostasis, and inactivates the mTOR pathway to inhibit OC progression, suggesting that HSP60 is a potential therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Jianying Guo
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, No.1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, 100037, PR China
| | - Renhua Xu
- School of Nursing, Binzhou Medical University, Yantai, 264003, China
| | - Yang Lv
- Department of Gastroenterology and Hepatology, and Center of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Di Wu
- Department of Gastroenterology and Hepatology, and Center of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, and Center of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, No.1 Xueshi Road, Hangzhou, Zhejiang, 310006, China.
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|