501
|
Rau R, Brown P. Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity. Hematol Oncol 2009; 27:171-81. [PMID: 19569254 PMCID: PMC3069851 DOI: 10.1002/hon.904] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nucleophosmin (NPM) is a ubiquitously expressed chaperone protein that shuttles rapidly between the nucleus and cytoplasm, but predominantly resides in the nucleolus. It plays key roles in ribosome biogenesis, centrosome duplication, genomic stability, cell cycle progression and apoptosis. Somatic mutations in exon 12 of the NPM gene (NPM1) are the most frequent genetic abnormality in adult acute myeloid leukaemia (AML), found in approximately 35% of all cases and up to 60% of patients with normal karyotype (NK) AML. In children, NPM1 mutations are far less frequent, occurring in 8-10% of all AML cases, and in approximately 25% of those with a NK. NPM1 mutations lead to aberrant localization of the NPM protein into the cytoplasm, thus the designation, NPMc+ AML. NPMc+ AML is seen predominantly in patients with a NK and is essentially mutually exclusive of recurrent chromosomal translocations. Patients with NPM1 mutations are twice as likely as those who lack an NPM1 mutation to also have a FMS-like tyrosine kinase (FLT3) internal tandem duplication (ITD) mutation. NPMc+ AML is also characterized by a unique gene expression signature and microRNA signature. NPMc+ AML has important prognostic significance, as NPMc+ AML, in the absence of a coexisting FLT3-ITD mutation, is associated with a favourable outcome. NPM1 mutations have also shown great stability during disease evolution, and therefore represent a possible marker for minimal residual disease detection. Given its distinctive biologic and clinical features and its clear clinical relevance, NPMc+ AML is included as a provisional entity in the 2008 WHO classifications. There is still much to be learned about this genetic alteration, including its exact role in leukaemogenesis, how it interacts with other mutations and why it confers a more favourable prognosis. Further, it represents a potential therapeutic target warranting research aimed at identifying novel small molecules with activity in NPMc+ AML.
Collapse
Affiliation(s)
- Rachel Rau
- Departments of Oncology and Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
502
|
Costa FF, Seftor EA, Bischof JM, Kirschmann DA, Strizzi L, Arndt K, Bonaldo MDF, Soares MB, Hendrix MJC. Epigenetically reprogramming metastatic tumor cells with an embryonic microenvironment. Epigenomics 2009; 1:387-98. [PMID: 20495621 PMCID: PMC2872497 DOI: 10.2217/epi.09.25] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED We have previously shown that the microenvironment of human embryonic stem cells (hESCs) is able to change and reprogram aggressive cancer cells to a less aggressive state. Some mechanisms implicated in the phenotypic changes observed after this exposure are mainly associated with the Nodal signaling pathway, which plays a key role in tumor cell plasticity. However, several other molecular mechanisms might be related directly and/or indirectly to these changes, including microRNA (miRNA) regulation and DNA methylation. AIM To further explore the epigenetic mechanisms potentially underlying the phenotypic changes that occur after exposing metastatic melanoma cells to a hESC microenvironment. MATERIALS & METHODS A total of 365 miRNAs were screened using the TaqMan® Low Density Arrays. We also evaluated whether DNA methylation could be one of the factors regulating the expression of the inhibitor of Nodal, Lefty, in hESCs (where it is highly expressed) vs melanoma cells (where it is not expressed). RESULTS Using these experimental approaches, we identified miRNAs that are up- and down-regulated in melanoma cells exposed to a hESC microenvironment, such as miR-302a and miR-27b, respectively. We also demonstrate that Notch4 is one of the targets of miR-302a, which is upstream of Nodal. Additionally, one of the mechanisms that might explain the absence of the inhibitor of Nodal, Lefty, in cancer cells is silencing by DNA methylation, which provides new insights into the unregulated expression of Nodal in melanoma. CONCLUSION These findings suggest that epigenetic changes such as DNA methylation and regulation by microRNAs might play a significant role in tumor cell plasticity and the metastatic phenotype.
Collapse
Affiliation(s)
- Fabricio F Costa
- Cancer Biology and Epigenomics Program, Children’s Memorial Research Center and Northwestern University’s Feinberg School of Medicine, 2300 Children’s Plaza, Chicago, IL 60614, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
503
|
Abstract
Obesity is a serious health problem worldwide associated with an increased risk of life-threatening diseases such as type 2 diabetes, atherosclerosis, and certain types of cancer. Fundamental for the development of novel therapeutics for obesity and its associated metabolic syndromes is an understanding of the regulation of fat cell development. Recent computational and experimental studies have shown that microRNAs (miRNAs) play a role in metabolic tissue development, lipid metabolism and glucose homeostasis. In addition, many miRNAs are dysregulated in metabolic tissues from obese animals and humans, which potentially contributes to the pathogenesis of obesity-associated complications. In this review we summarize the current state of understanding of the roles of miRNAs in metabolic tissues under normal development and obese conditions, and discuss the potential use of miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Huangming Xie
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
504
|
Tsang WP, Ng EKO, Ng SSM, Jin H, Yu J, Sung JJY, Kwok TT. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2009; 31:350-8. [PMID: 19926638 DOI: 10.1093/carcin/bgp181] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H19 is an imprinted oncofetal non-coding RNA recently shown to be the precursor of miR-675. The pathophysiological roles of H19 and its mature product miR-675 to carcinogenesis have, however, not been defined. By quantitative reverse transcription-polymerase chain reaction, both H19 and miR-675 were found to be upregulated in human colon cancer cell lines and primary human colorectal cancer (CRC) tissues compared with adjacent non-cancerous tissues. Subsequently, the tumor suppressor retinoblastoma (RB) was confirmed to be a direct target of miR-675 as the microRNA suppressed the activity of the luciferase reporter carrying the 3'-untranslated region of RB messenger RNA that contains the miR-675-binding site. Suppression of miR-675 by transfection with anti-miR-675 increased RB expression and at the same time, decreased cell growth and soft agar colony formation in human colon cancer cells. Reciprocally, enhanced miR-675 expression by transfection with miR-675 precursor decreased RB expression, increased tumor cell growth and soft agar colony formation. Moreover, the inverse relationship between the expressions of RB and H19/miR-675 was also revealed in human CRC tissues and colon cancer cell lines. Our findings demonstrate that H19-derived miR-675, through downregulation of its target RB, regulates the CRC development and thus may serve as a potential target for CRC therapy.
Collapse
Affiliation(s)
- Wing Pui Tsang
- Department of Biochemistry, University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | |
Collapse
|
505
|
Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer 2009; 8:102. [PMID: 19912656 PMCID: PMC2780389 DOI: 10.1186/1476-4598-8-102] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/14/2009] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs 18-25 nucleotides in length that downregulate gene expression during various crucial cell processes such as apoptosis, differentiation and development. Changes in the expression profiles of miRNAs have been observed in a variety of human tumors, including colorectal cancer (CRC). Functional studies indicate that miRNAs act as tumor suppressors and oncogenes. These findings significantly extend Vogelstein's model of CRC pathogenesis and have shown great potential for miRNAs as a novel class of therapeutic targets. Several investigations have also described the ability of miRNA expression profiles to predict prognosis and response to selected treatments in CRC patients, and support diagnosis of CRC among cancer of unknown primary site. miRNAs' occurrence has been repeatedly observed also in serum and plasma, and miRNAs as novel minimally invasive biomarkers have indicated reasonable sensitivity for CRC detection and compare favorably with the fecal occult blood test. In this review, we summarize the knowledge regarding miRNAs' functioning in CRC while emphasizing their significance in pathogenetic signaling pathways and their potential to serve as disease biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Ondrej Slaby
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Brno, Czech Republic.
| | | | | | | |
Collapse
|
506
|
Hofmann MH, Heinrich J, Radziwill G, Radziwil G, Moelling K. A short hairpin DNA analogous to miR-125b inhibits C-Raf expression, proliferation, and survival of breast cancer cells. Mol Cancer Res 2009; 7:1635-44. [PMID: 19825990 DOI: 10.1158/1541-7786.mcr-09-0043] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The noncoding RNA miR-125b has been described to reduce ErbB2 protein expression as well as proliferation and migration of cancer cell lines. As additional target of miR-125b, we identified the c-raf-1 mRNA by sequence analysis. We designed a short hairpin-looped oligodeoxynucleotide (ODN) targeted to the same 3' untranslated region of c-raf-1 mRNA as miR-125b. The fully complementary ODN antisense strand is linked to a second strand constituting a partially double-stranded structure of the ODN. Transfection of the c-raf-1-specific ODN (ODN-Raf) in a breast cancer cell line reduced the protein levels of C-Raf, ErbB2, and their downstream effector cyclin D1 similar to miR-125b. MiR-125b as well as ODN-Raf showed no effect on the c-raf-1 mRNA level in contrast to small interfering RNA. Unlike miR-125b, ODN-Raf induced a cytopathic effect. This may be explained by the structural properties of ODN-Raf, which can form G-tetrads. Thus, the short hairpin-looped ODN-Raf, targeting the same region of c-raf-1 as miR-125b, is a multifunctional molecule reducing the expression of oncoproteins and stimulating cell death. Both features may be useful to interfere with tumor growth.
Collapse
|
507
|
Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG. Lost in translation: an assessment and perspective for computational microRNA target identification. ACTA ACUST UNITED AC 2009; 25:3049-55. [PMID: 19789267 DOI: 10.1093/bioinformatics/btp565] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED MicroRNAs (miRNAs) are a class of short endogenously expressed RNA molecules that regulate gene expression by binding directly to the messenger RNA of protein coding genes. They have been found to confer a novel layer of genetic regulation in a wide range of biological processes. Computational miRNA target prediction remains one of the key means used to decipher the role of miRNAs in development and disease. Here we introduce the basic idea behind the experimental identification of miRNA targets and present some of the most widely used computational miRNA target identification programs. The review includes an assessment of the prediction quality of these programs and their combinations. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Panagiotis Alexiou
- Institute of Molecular Oncology, Biomedical Sciences Research Center Alexander Fleming, 166 72 Varkiza, Greece.
| | | | | | | | | |
Collapse
|
508
|
Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL). PLoS One 2009; 4:e7169. [PMID: 19779621 PMCID: PMC2745703 DOI: 10.1371/journal.pone.0007169] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short, noncoding RNAs that regulate the expression of multiple target genes. Deregulation of miRNAs is common in human tumorigenesis. The miRNAs, MIR-15a/16-1, at chromosome band 13q14 are down-regulated in the majority of patients with chronic lymphocytic leukaemia (CLL). Methodology/Principal Findings We have measured the expression of MIR-15a/16-1, and 92 computationally-predicted MIR-15a/16-1 target genes in CLL patients and in normal controls. We identified 35 genes that are deregulated in CLL patients, 5 of which appear to be specific targets of the MIR-15a/16-1 cluster. These targets included 2 genes (BAZ2A and RNF41) that were significantly up-regulated (p<0.05) and 3 genes (RASSF5, MKK3 and LRIG1) that were significantly down-regulated (p<0.05) in CLL patients with down-regulated MIR-15a/16-1 expression. Significance The genes identified here as being subject to MIR-15a/16-1 regulation could represent direct or indirect targets of these miRNAs. Many of these are good biological candidates for involvement in tumorigenesis and as such, may be important in the aetiology of CLL.
Collapse
|
509
|
Aigner A. Transkingdom RNA interference (tkRNAi) as a new delivery tool for therapeutic RNA. Expert Opin Biol Ther 2009; 9:1533-42. [DOI: 10.1517/14712590903307354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
510
|
Havelange V, Garzon R, Croce CM. MicroRNAs: new players in acute myeloid leukaemia. Br J Cancer 2009; 101:743-748. [PMID: 19672257 PMCID: PMC2736837 DOI: 10.1038/sj.bjc.6605232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/29/2009] [Accepted: 07/13/2009] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that have key functions in a wide array of critical cell processes, including haematopoiesis by regulating the expression of multiple genes. Aberrant miRNA expression has been described in acute myeloid leukaemia suggesting a role in leukaemogenesis. In this review we summarise the current knowledge.
Collapse
Affiliation(s)
- V Havelange
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Hematological Section, The Human Genetic Center, Université catholique de Louvain, Brussels, Belgium
| | - R Garzon
- Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - C M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
511
|
Spisák S, Galamb B, Wichmann B, Sipos F, Galamb O, Solymosi N, Nemes B, Tulassay Z, Molnár B. [Tissue microarray (TMA) validated progression markers in colorectal cancer using antibody microarrays]. Orv Hetil 2009; 150:1607-1613. [PMID: 19648079 DOI: 10.1556/oh.2009.28697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The exact molecular biological background of colorectal cancer development and progression are not hitherto known. Using microarray systems, hundreds or thousands of parameters could be examined simultaneously for answering the mentioned questions. AIM To identify possible protein markers of colorectal cancer development and progression using antibody array, and the validation of these markers on tissue microarrays done with colorectal cancer samples. Furthermore, to determine colorectal cancer diagnostic marker combination in protein level. MATERIALS AND METHODS Surgically resected samples from ten Dukes B and six Dukes D stage patients containing both diseased and un-involved parts of the colon were freshly frozen. The samples were homogenized and the extracted proteins were used for Clontech AB500 arrays. Twelve selected genes were validated on tissue microarrays. RESULTS The expression of 67 proteins was altered (p < 0.05) between the normal colon and cancerous samples. These genes are related to apoptosis (n = 5), cell cycle regulation (n = 7), transcription (n = 4), DNA replication (n = 6) and other cell functions, such as transport and cell adhesion (n = 45). Twelve potential markers were immunohistochemically validated on morphological level by using tissue microarrays (CYCA1, HSP60, TOP1, APC, CBP, ERK, EGFR, C-myc, Cald, DARPP32, MRE11A, AR, EPS8). CONCLUSION Based on these results, validated colorectal cancer development related protein markers are involved in a wide spectrum of cell functions such as apoptosis, cell cycle regulation, and signal transduction. A set of six proteins has been determined, which helps to differentiate between normal specimen, early and late stage colorectal cancer with high sensitivity and specificity.
Collapse
Affiliation(s)
- Sándor Spisák
- Semmelweis Egyetem, Altalános Orvostudományi Kar, II. Belgyógyászati Klinika, Budapest.
| | | | | | | | | | | | | | | | | |
Collapse
|
512
|
He C, Xiong J, Xu X, Lu W, Liu L, Xiao D, Wang D. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun 2009; 388:35-40. [PMID: 19632201 DOI: 10.1016/j.bbrc.2009.07.101] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 07/21/2009] [Indexed: 12/19/2022]
Abstract
MiR-34s have been characterized as direct p53 targets, which induce apoptosis, cell cycle arrest, and senescence. MiR-34s were found to associate with tumorigenesis. Thus far, there is no study on the role of MiR-34s in osteosarcoma. In the current study, we intensively investigated the function of MiR-34s in two osteosarcoma cell lines: U2OS (p53(+/+)) and SAOS-2 (p53(-/-)). We found that MiR-34s affect the expression of its target genes partially in a p53-dependent manner. And p53 also partially contributes to the MiR-34s induced cell cycle arrest and apoptosis. Finally, we examined the expression, genetic and epigenetic alterations of MiR-34 gene in 117 primary osteosarcoma samples. Expression of MiR-34s was decreased in tumor samples, and MiR-34 genes underwent minimal deletions and epigenetic inactivation in osteosarcomas.
Collapse
Affiliation(s)
- Chunlei He
- Guangzhou Medical College, Guangdong Province, China
| | | | | | | | | | | | | |
Collapse
|
513
|
Mishra PJ, Merlino G. MicroRNA reexpression as differentiation therapy in cancer. J Clin Invest 2009; 119:2119-23. [PMID: 19620782 DOI: 10.1172/jci40107] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the early 2000s, microRNAs (miRNAs) and their penchant for RNA interference have taken the scientific community by storm, working their way into virtually every corner of biological inquiry. The very nature of their action, the ability to simultaneously extinguish the expression of a multitude of genes and negate their functions, immediately suggested therapeutic promise. In this issue of the JCI, a step toward the realization of this promise is described. Taulli et al. demonstrate that the miRNAs miR-1/miR-206, which are routinely lost in advanced, poorly differentiated rhabdomyosarcoma (RMS) but characteristically expressed in the mature skeletal muscle from which these tumors arise, restore the myogenic differentiation program and block the tumorigenic phenotype (see the related article beginning on page 2366). Their data support the notion that these small RNAs, effectively functioning as "micro-sheriffs" by restoring myogenic law and order, hold substantial clinical potential as differentiation therapy for RMS and perhaps other solid tumors. miRNA reexpression therapy constitutes a novel approach to handcuff oncogenes and arrest tumor development.
Collapse
Affiliation(s)
- Prasun J Mishra
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland 20892-4264, USA
| | | |
Collapse
|
514
|
Taulli R, Bersani F, Foglizzo V, Linari A, Vigna E, Ladanyi M, Tuschl T, Ponzetto C. The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J Clin Invest 2009; 119:2366-78. [PMID: 19620785 DOI: 10.1172/jci38075] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 05/27/2009] [Indexed: 12/21/2022] Open
Abstract
Many microRNAs (miRNAs), posttranscriptional regulators of numerous cellular processes and developmental events, are downregulated in tumors. However, their role in tumorigenesis remains largely unknown. In this work, we examined the role of the muscle-specific miRNAs miR-1 and miR-206 in human rhabdomyosarcoma (RMS), a soft tissue sarcoma thought to arise from skeletal muscle progenitors. We have shown that miR-1 was barely detectable in primary RMS of both the embryonal and alveolar subtypes and that both miR-1 and miR-206 failed to be induced in RMS cell lines upon serum deprivation. Moreover, reexpression of miR-206 in RMS cells promoted myogenic differentiation and blocked tumor growth in xenografted mice by switching the global mRNA expression profile to one that resembled mature muscle. Finally, we showed that the product of the MET proto-oncogene, the Met tyrosine-kinase receptor, which is overexpressed in RMS and has been implicated in RMS pathogenesis, was downregulated in murine satellite cells by miR-206 at the onset of normal myogenesis. Thus, failure of posttranscriptional modulation may underlie Met overexpression in RMS and other types of cancer. We propose that tissue-specific miRNAs such as miR-1 and miR-206, given their ability to modulate hundreds of transcripts and to act as nontoxic differentiating agents, may override the genomic heterogeneity of solid tumors and ultimately hold greater therapeutic potential than single gene-directed drugs.
Collapse
Affiliation(s)
- Riccardo Taulli
- Department of Anatomy, Pharmacology and Forensic Medicine, and Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
515
|
Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, Beer DG. MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 2009; 69:5776-83. [PMID: 19584273 DOI: 10.1158/0008-5472.can-09-0587] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Non-small cell lung cancer (NSCLC), which is comprised mainly of adenocarcinoma and squamous cell carcinoma (SCC), is the cause of 80% of all lung cancer deaths in the United States. NSCLC is also associated with a high rate of relapse after clinical treatment and, therefore, requires robust prognostic markers to better manage therapy options. The aim of this study was to identify microRNA (miRNA) expression profiles in SCC of the lung that would better predict prognosis. Total RNA from 61 SCC samples and 10 matched normal lung samples was processed for small RNA species and profiled on MirVana miRNA Bioarrays (version 2, Ambion). We identified 15 miRNAs that were differentially expressed between normal lung and SCC, including members of the miR-17-92 cluster and its paralogues. We also identified miRNAs, including miR-155 and let-7, which had previously been shown to have prognostic value in adenocarcinoma. Based on cross-fold validation analyses, miR-146b alone was found to have the strongest prediction accuracy for stratifying prognostic groups at approximately 78%. The miRNA signatures were superior in predicting overall survival than a previously described 50-gene prognostic signature. Whereas there was no overlap between the mRNAs targeted by the prognostic miRNAs and the 50-gene expression signature, there was a significant overlap in the corresponding biological pathways, including fibroblast growth factor and interleukin-6 signaling. Our data indicate that miRNAs may have greater clinical utility in predicting the prognosis of patients with squamous cell lung carcinomas than mRNA-based signatures.
Collapse
Affiliation(s)
- Mitch Raponi
- Centocor Research and Development, Radnor, Pennsylvania 19087, USA.
| | | | | | | | | | | | | |
Collapse
|
516
|
MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J Biomed Biotechnol 2009; 2009:594678. [PMID: 19606257 PMCID: PMC2709726 DOI: 10.1155/2009/594678] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/18/2009] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are often hosted in introns of protein-coding genes. Given that the same transcriptional unit can potentially give rise to both miRNA and mRNA transcripts raises the intriguing question of the level of interaction between these processes. Recent studies from transcription, pre-mRNA splicing, and miRNA-processing perspectives have investigated these relationships and yielded interesting, yet somewhat controversial findings. Here we discuss major studies in the field.
Collapse
|
517
|
Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CEA, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113:6411-8. [PMID: 19211935 PMCID: PMC2710934 DOI: 10.1182/blood-2008-07-170589] [Citation(s) in RCA: 612] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 02/08/2009] [Indexed: 12/31/2022] Open
Abstract
Aberrant DNA hypermethylation contributes to myeloid leukemogenesis by silencing structurally normal genes involved in hematopoiesis. MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression by targeting protein-coding mRNAs. Recently, miRNAs have been shown to play a role as both targets and effectors in gene hypermethylation and silencing in malignant cells. In the current study, we showed that enforced expression of miR-29b in acute myeloid leukemia cells resulted in marked reduction of the expression of DNA methyltransferases DNMT1, DNMT3A, and DNMT3B at both RNA and protein levels. This in turn led to decrease in global DNA methylation and reexpression of p15(INK4b) and ESR1 via promoter DNA hypomethylation. Although down-regulation of DNMT3A and DNMT3B was the result of a direct interaction of miR-29b with the 3' untranslated regions of these genes, no predicted miR-29b interaction sites were found in the DNMT1 3' untranslated regions. Further experiments revealed that miR-29b down-regulates DNMT1 indirectly by targeting Sp1, a transactivator of the DNMT1 gene. Altogether, these data provide novel functional links between miRNAs and aberrant DNA hypermethylation in acute myeloid leukemia and suggest a potentially therapeutic use of synthetic miR-29b oligonucleotides as effective hypomethylating compounds.
Collapse
Affiliation(s)
- Ramiro Garzon
- Department of Medicine, Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
518
|
Lionetti M, Agnelli L, Mosca L, Fabris S, Andronache A, Todoerti K, Ronchetti D, Deliliers GL, Neri A. Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes Chromosomes Cancer 2009; 48:521-31. [DOI: 10.1002/gcc.20660] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
519
|
Wang S, Olson EN. AngiomiRs--key regulators of angiogenesis. Curr Opin Genet Dev 2009; 19:205-11. [PMID: 19446450 PMCID: PMC2696563 DOI: 10.1016/j.gde.2009.04.002] [Citation(s) in RCA: 359] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 12/20/2022]
Abstract
The formation of new blood vessels through the process of angiogenesis is critical in vascular development and homeostasis. Aberrant angiogenesis leads to a variety of diseases, such as ischemia and cancer. Recent studies have revealed important roles for miRNAs in regulating endothelial cell (EC) function, especially angiogenesis. Mice with EC-specific deletion of Dicer, a key enzyme for generating miRNAs, display defective postnatal angiogenesis. Specific miRNAs (angiomiRs) have recently been shown to regulate angiogenesis in vivo. miRNA-126, an EC-restricted miRNA, regulates vascular integrity and developmental angiogenesis. miR-378, miR-296, and the miR-17-92 cluster contribute to tumor angiogenesis. Manipulating angiomiRs in the settings of pathological vascularization represents a new therapeutic approach.
Collapse
Affiliation(s)
- Shusheng Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
520
|
Abstract
Recently, the transcription factor encoded by tumor suppressor gene p53 was shown to regulate the expression of microRNAs. The most significant induction by p53 was observed for the microRNAs miR-34a and miR-34b/c, which turned out to be direct p53 target genes. Ectopic miR-34 expression induces apoptosis, cell-cycle arrest or senescence. In many tumor types the promoters of the miR-34a and the miR-34b/c genes are subject to inactivation by CpG methylation. MiR-34a resides on 1p36 and is commonly deleted in neuroblastomas. Furthermore, the loss of miR-34 expression has been linked to resistance against apoptosis induced by p53 activating agents used in chemotherapy. In this review, the evidence for a role of miR-34a and miR-34b/c in the apoptotic response of normal and tumor cells is surveyed.
Collapse
Affiliation(s)
- H Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Str. 36, D-80337 Munich, Germany.
| |
Collapse
|
521
|
Chen WS. Advances in the relationship between microRNA and mechanism of human primary hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2009; 17:1218-1223. [DOI: 10.11569/wcjd.v17.i12.1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In genetics, microRNAs (miRNAs) are single-stranded RNA molecules of 19-22 nucleotides (nts) in length, which are non-coding RNAs and negatively down-regulate expression of their target genes in post-transcriptional level. Recently, many studies have shown that miRNAs are involved in the regulation of cell proliferation, differentiation, apoptosis and so on. The mutation, depletion or dysfunction of miRNAs was closely associated with occurrence and progression of human cancers. This review mainly discusses the advances in the relationship between miRNAs and hepatocellular carcinoma (HCC) in recent years.
Collapse
|
522
|
Tsang WP, Kwok TT. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis 2009; 30:953-9. [PMID: 19372139 DOI: 10.1093/carcin/bgp094] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Ras proto-oncogene mediates a wide variety of cellular events and is frequently mutated in cancer. MicroRNAs (miRNAs) may regulate the development of cancer through their effect on the target genes. In the search of miRNAs that target on Ras, miR-18a* is the first time confirmed to target on K-Ras and furthermore not on N- and H-Ras. miR-18a* repression by transfection with anti-miR-18a* inhibitor increased the K-Ras expression as well as the luciferase activity of a reporter construct containing the 3'-untranslated region of K-Ras messenger RNA. Furthermore, the miR-18a* repression also increased the cell proliferation and promoted the anchorage-independent growth in soft agar of human squamous carcinoma A431 cells, colon adenocarcinoma HT-29 cells and fetal hepatic WRL-68 cells. On the other hand, ectopic expression of miR-18a* by transfection with miR-18a* precursor suppressed K-Ras expression, cell proliferation and anchorage-independent growth of A431 cells. The increase in cell proliferation and anchorage-independent growth upon miR-18a* repression was, however, rendered by the Ras inhibitor farnesylthiosalicylic acid. In conclusion, miR-18a* may function as a tumor suppressor by targeting on K-Ras. Therefore, the miRNA may also be a potential therapeutic agent or target for cancer therapy.
Collapse
Affiliation(s)
- Wing Pui Tsang
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | |
Collapse
|
523
|
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9:265-73. [PMID: 19262571 DOI: 10.1038/nrc2620] [Citation(s) in RCA: 2562] [Impact Index Per Article: 160.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transitions between epithelial and mesenchymal states have crucial roles in embryonic development. Emerging data suggest a role for these processes in regulating cellular plasticity in normal adult tissues and in tumours, where they can generate multiple, distinct cellular subpopulations contributing to intratumoural heterogeneity. Some of these subpopulations may exhibit more differentiated features, whereas others have characteristics of stem cells. Owing to the importance of these tumour-associated phenotypes in metastasis and cancer-related mortality, targeting the products of such cellular plasticity is an attractive but challenging approach that is likely to lead to improved clinical management of cancer patients.
Collapse
Affiliation(s)
- Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
524
|
Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009; 23:862-876. [PMID: 19293287 PMCID: PMC2666337 DOI: 10.1101/gad.1767609] [Citation(s) in RCA: 527] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 02/20/2009] [Indexed: 01/07/2023]
Abstract
The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3' untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with gamma-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response.
Collapse
Affiliation(s)
- Minh T.N. Le
- Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Genome, Singapore 138672
| | - Cathleen Teh
- Fish Developmental Biology, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Ng Shyh-Chang
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Genome, Singapore 138672
| | - Huangming Xie
- Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Genome, Singapore 138672
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Beiyan Zhou
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Vladimir Korzh
- Fish Developmental Biology, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Harvey F. Lodish
- Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bing Lim
- Computation and Systems Biology, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Genome, Singapore 138672
- CLS 442 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
525
|
Liu X, Sempere LF, Galimberti F, Freemantle SJ, Black C, Dragnev KH, Ma Y, Fiering S, Memoli V, Li H, DiRenzo J, Korc M, Cole CN, Bak M, Kauppinen S, Dmitrovsky E. Uncovering growth-suppressive MicroRNAs in lung cancer. Clin Cancer Res 2009; 15:1177-83. [PMID: 19228723 DOI: 10.1158/1078-0432.ccr-08-1355] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE MicroRNA (miRNA) expression profiles improve classification, diagnosis, and prognostic information of malignancies, including lung cancer. This study uncovered unique growth-suppressive miRNAs in lung cancer. EXPERIMENTAL DESIGN miRNA arrays were done on normal lung tissues and adenocarcinomas from wild-type and proteasome degradation-resistant cyclin E transgenic mice to reveal repressed miRNAs in lung cancer. Real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays validated these findings. Lung cancer cell lines were derived from each transgenic line (designated as ED-1 and ED-2 cells, respectively). Each highlighted miRNA was independently transfected into these cells. Growth-suppressive mechanisms were explored. Expression of a computationally predicted miRNA target was examined. These miRNAs were studied in a paired normal-malignant human lung tissue bank. RESULTS miR-34c, miR-145, and miR-142-5p were repressed in transgenic lung cancers. Findings were confirmed by real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays. Similar miRNA profiles occurred in human normal versus malignant lung tissues. Individual overexpression of miR-34c, miR-145, and miR-142-5p in ED-1 and ED-2 cells markedly repressed cell growth. Anti-miR cotransfections antagonized this inhibition. The miR-34c target, cyclin E, was repressed by miR-34c transfection and provided a mechanism for observed growth suppression. CONCLUSIONS miR-34c, miR-145, and miR-142-5p were repressed in murine and human lung cancers. Transfection of each miRNA significantly repressed lung cancer cell growth. Thus, these miRNAs were growth suppressive and are proposed to exert antineoplastic effects in the lung.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
526
|
Passetti F, Ferreira CG, Costa FF. The impact of microRNAs and alternative splicing in pharmacogenomics. THE PHARMACOGENOMICS JOURNAL 2009; 9:1-13. [PMID: 19156160 DOI: 10.1038/tpj.2008.14] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- F Passetti
- Laboratory of Bioinformatics and Computational Biology, Division of Clinical and Translational Research, Research Coordination (CPQ), Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
527
|
Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 2009; 23:806-12. [PMID: 18952709 PMCID: PMC2653990 DOI: 10.1096/fj.08-121384] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/02/2008] [Indexed: 12/19/2022]
Abstract
Although microRNAs have been investigated extensively in cancer research, little is known regarding their response to noxious agents in apparently healthy tissues. We analyzed the expression of 484 miRNAs in the lungs of rats exposed to environmental cigarette smoke (ECS) for 28 days. ECS down-regulated 126 miRNAs (26.0%) at least 2-fold and 24 miRNAs more than 3-fold. We previously demonstrated that 107 of 4858 genes (2.9%) and 50 of 518 proteins (9.7%) were up-regulated by ECS in the same tissue, which is consistent with the role of microRNAs as negative regulators of gene expression. The most remarkably down-regulated microRNAs belonged to the families of let-7, miR-10, miR-26, miR-30, miR-34, miR-99, miR-122, miR-123, miR-124, miR-125, miR-140, miR-145, miR-146, miR-191, miR-192, miR-219, miR-222, and miR-223, which regulate stress response, apoptosis, proliferation, angiogenesis, and expression of genes. In contrast, miR-294, an inhibitor of transcriptional repressor genes, was up-regulated by ECS. There was a strong parallelism in dysregulation of rodent microRNAs and their human homologues, which are often transcribed from genes localized in fragile sites deleted in lung cancer. Five ECS-down-regulated microRNAs are known to be affected by single nucleotide polymorphisms. Thus, changes in microRNA expression are an early event following exposure to cigarette smoke.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, via A. Pastore 1, I-16132 Genoa, Italy
| | | | | | | | | | | |
Collapse
|
528
|
Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A, He L, Ellison D, Gilbertson RJ, Hannon G, Roussel MF. The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci U S A 2009; 106:2812-7. [PMID: 19196975 PMCID: PMC2636735 DOI: 10.1073/pnas.0809579106] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Indexed: 01/07/2023] Open
Abstract
Medulloblastomas (MBs) are the most common brain tumors in children. Some are thought to originate from cerebellar granule neuron progenitors (GNPs) that fail to undergo normal cell cycle exit and differentiation. Because microRNAs regulate numerous aspects of cellular physiology and development, we reasoned that alterations in miRNA expression might contribute to MB. We tested this hypothesis using 2 spontaneous mouse MB models with specific initiating mutations, Ink4c-/-; Ptch1+/- and Ink4c-/-; p53-/-. We found that 26 miRNAs showed increased expression and 24 miRNAs showed decreased expression in proliferating mouse GNPs and MBs relative to mature mouse cerebellum, regardless of genotype. Among the 26 overexpressed miRNAs, 9 were encoded by the miR-17 approximately 92 cluster family, a group of microRNAs implicated as oncogenes in several tumor types. Analysis of human MBs demonstrated that 3 miR-17 approximately 92 cluster miRNAs (miR-92, miR-19a, and miR-20) were also overexpressed in human MBs with a constitutively activated Sonic Hedgehog (SHH) signaling pathway, but not in other forms of the disease. To test whether the miR-17 approximately 92 cluster could promote MB formation, we enforced expression of these miRNAs in GNPs isolated from cerebella of postnatal (P) day P6 Ink4c-/-; Ptch1+/- mice. These, but not similarly engineered cells from Ink4c-/-; p53-/- mice, formed MBs in orthotopic transplants with complete penetrance. Interestingly, orthotopic mouse tumors ectopically expressing miR-17 approximately 92 lost expression of the wild-type Ptch1 allele. Our findings suggest a functional collaboration between the miR-17 approximately 92 cluster and the SHH signaling pathway in the development of MBs in mouse and man.
Collapse
Affiliation(s)
- Tamar Uziel
- Departments of Genetics and Tumor Cell Biology
| | | | - Suqing Xie
- Departments of Genetics and Tumor Cell Biology
| | - Joel S. Parker
- Expression Analysis, Incorporated, 4324 South Alston Avenue, Durham, NC 27713
| | - Yong-Dong Wang
- Hartwell Center for Bioinformatics and Biotechnology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | | | - Lin He
- Department of Molecular and Cell Biology, Cell and Developmental Biology Division, University of California, Berkeley, CA 94720-3200; and
| | | | | | - Gregory Hannon
- Cold Spring Harbor Laboratory and
- Howard Hughes Medical Institute, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | | |
Collapse
|
529
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs of 19-24 nucleotides in length and involved in gene expression regulation. They are associated with cell proliferation, differentiation, apoptosis, and carcinogenesis. The specific expression profiles of miRNAs have been found in many human cancers, but there are few studies on endometrioid adenocarcinoma. We found the miRNA expression profile in 10 pairs of endometrioid adenocarcinoma and adjacent nontumorous endometrium using human miRNA microarray. Seventeen miRNAs exhibited higher expression and six miRNAs exhibited lower expression in endometrioid adenocarcinoma samples than those in the nontumorous samples in the microarray. Of those, the miR-205, miR-449, and miR-429 were greatly enriched; in contrast the miR-204, miR-99b, and miR-193b were greatly downregulated in adenocarcinoma tissues. The expressions of these six miRNAs were validated using real time reverse transcription-PCR. This information may provide the candidate miRNA genome for further confirming the role of miRNAs in carcinogenesis of endometrioid adenocarcinoma and potentially serving as a diagnostic or therapeutic tool in endometrioid adenocarcinoma.
Collapse
|
530
|
McDaneld TG, Smith TPL, Doumit ME, Miles JR, Coutinho LL, Sonstegard TS, Matukumalli LK, Nonneman DJ, Wiedmann RT. MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics 2009; 10:77. [PMID: 19208255 PMCID: PMC2646747 DOI: 10.1186/1471-2164-10-77] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 02/10/2009] [Indexed: 12/26/2022] Open
Abstract
Background MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult. Results Twelve potential novel miR were detected that did not match previously reported sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle were detected, having a variety of abundance patterns through muscle development. Muscle-specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal and neonate development. Changes in abundance of ubiquitously expressed miR were also observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-old fetus) and decreased throughout development to the adult. Conversely, miR-24 and miR-27 exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-368, miR-376, and miR-423-5p was greatest in the neonate. Conclusion These data present a complete set of transcriptome profiles to evaluate miR abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides an initial group of miR that may play a vital role in muscle development and growth.
Collapse
|
531
|
Agirre X, Jiménez-Velasco A, San José-Enériz E, Garate L, Bandrés E, Cordeu L, Aparicio O, Saez B, Navarro G, Vilas-Zornoza A, Pérez-Roger I, García-Foncillas J, Torres A, Heiniger A, Calasanz MJ, Fortes P, Román-Gómez J, Prósper F. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res 2009; 6:1830-40. [PMID: 19074828 DOI: 10.1158/1541-7786.mcr-08-0167] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNA) are small noncoding, single-stranded RNAs that inhibit gene expression at a posttranscriptional level, whose abnormal expression has been described in different tumors. The aim of our study was to identify miRNAs potentially implicated in chronic myeloid leukemia (CML). We detected an abnormal miRNA expression profile in mononuclear and CD34(+) cells from patients with CML compared with healthy controls. Of 157 miRNAs tested, hsa-miR-10a, hsa-miR-150, and hsa-miR-151 were down-regulated, whereas hsa-miR-96 was up-regulated in CML cells. Down-regulation of hsa-miR-10a was not dependent on BCR-ABL1 activity and contributed to the increased cell growth of CML cells. We identified the upstream stimulatory factor 2 (USF2) as a potential target of hsa-miR-10a and showed that overexpression of USF2 also increases cell growth. The clinical relevance of these findings was shown in a group of 85 newly diagnosed patients with CML in which expression of hsa-miR-10a was down-regulated in 71% of the patients, whereas expression of USF2 was up-regulated in 60% of the CML patients, with overexpression of USF2 being significantly associated with decreased expression of hsa-miR-10a (P = 0.004). Our results indicate that down-regulation of hsa-miR-10a may increase USF2 and contribute to the increase in cell proliferation of CML implicating a miRNA in the abnormal behavior of CML.
Collapse
Affiliation(s)
- Xabier Agirre
- Foundation for Applied Medical Research, Division of Cancer, Clínica Universitaria, University of Navarre, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
532
|
Nuovo G, Lee EJ, Lawler S, Godlewski J, Schmittgen T. In situ detection of mature microRNAs by labeled extension on ultramer templates. Biotechniques 2009; 46:115-26. [PMID: 19317656 PMCID: PMC2693964 DOI: 10.2144/000113068] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We describe a new method for the in situ detection of a mature microRNA (miRNA) in formalin-fixed, paraffin-embedded tissues. The method involves the labeled extension of miRNA hybridized to an approximately 100-nucleotide-long ultramer template containing the complementary sequence of the miRNA at its 3' terminus. Pretreatment of the tissue involves incubation with protease to expose the genomic DNA to DNase digestion, thereby eliminating the ultramer-independent DNA synthesis process inherent in paraffin-embedded tissue. By direct comparison with real-time reverse transcriptase (RT)-PCR, RT in situ PCR, and standard in situ hybridization using a locked nucleic acid (LNA) probe, it was evident that the ultramer extension method detects only the mature miRNA, is easier to optimize, results generally in a stronger signal, and is much less expensive than the LNA probe method currently used.
Collapse
Affiliation(s)
- Gerard Nuovo
- Department of Pathology, Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
533
|
Affiliation(s)
- Ramiro Garzon
- Department of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| | - George A. Calin
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77020
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
534
|
Pizzimenti S, Ferracin M, Sabbioni S, Toaldo C, Pettazzoni P, Dianzani MU, Negrini M, Barrera G. MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation. Free Radic Biol Med 2009; 46:282-8. [PMID: 19022373 DOI: 10.1016/j.freeradbiomed.2008.10.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 01/22/2023]
Abstract
4-Hydroxynonenal (HNE) is one of several lipid oxidation products that may have an impact on human pathophysiology. It is an important second messenger involved in the regulation of various cellular processes and exhibits antiproliferative and differentiative properties in various tumor cell lines. The mechanisms by which HNE affects cell growth and differentiation are only partially clarified. Because microRNAs (miRNAs) have the ability to regulate several cellular processes, we hypothesized that HNE, in addition to other mechanisms, could affect miRNA expression. Here, we present the results of a genome-wide miRNA expression profiling of HNE-treated HL-60 leukemic cells. Among 470 human miRNAs, 10 were found to be differentially expressed between control and HNE-treated cells (at p<0.05). Six miRNAs were down-regulated (miR-181a*, miR-199b, miR-202, miR-378, miR-454-3p, miR-575) and 4 were up-regulated (miR-125a, miR-339, miR-663, miR-660). Three of these regulated miRNAs (miR-202, miR-339, miR-378) were further assayed and validated by quantitative real-time RT-PCR. Moreover, consistent with the down-regulation of miR-378, HNE also induced the expression of the SUFU protein, a tumor suppressor recently identified as a target of miR-378. The finding that HNE could regulate the expression of miRNAs and their targets opens new perspectives on the understanding of HNE-controlled pathways. A functional analysis of 191 putative gene targets of miRNAs modulated by HNE is discussed.
Collapse
Affiliation(s)
- Stefania Pizzimenti
- Dipartimento di Medicina e Oncologia Sperimentale, Sezione di Patologia Generale, Università di Torino, Corso Raffaello 30, 10125 Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
535
|
Nuovo GJ, Elton TS, Nana-Sinkam P, Volinia S, Croce CM, Schmittgen TD. A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets. Nat Protoc 2009; 4:107-15. [PMID: 19131963 PMCID: PMC2709217 DOI: 10.1038/nprot.2008.215] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There are relatively few protocols described for the in situ detection of microRNA (miRNA) and they often use cryostat sections, signal amplification and hybridization or washes of 50-60 degrees C. This protocol describes in situ miRNA detection that can be done in paraffin-embedded, formalin-fixed tissue. Detection of the miRNA precursors can be done by RT in situ PCR, which can theoretically detect one copy per cell. The key variable for the RT in situ PCR protocol is optimal protease digestion, which is then followed by overnight DNase digestion and target specific incorporation of the reported nucleotide into the amplified cDNA. Detection of mature miRNAs is achieved by in situ hybridization with locked nucleic acid probes. This part of the protocol involves a brief protease digestion, followed by an overnight hybridization, short low stringency wash and detection of the labeled probe. The key variables for this method include probe concentration and stringency conditions. Each miRNA in situ method takes 1 d. The final step of the protocol involves colabeling by immunohistochemistry for the putative target of the miRNA, which is done after the in situ hybridization step and takes a few hours.
Collapse
Affiliation(s)
- Gerard J Nuovo
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
536
|
Ullah MF, Aatif M. The footprints of cancer development: Cancer biomarkers. Cancer Treat Rev 2008; 35:193-200. [PMID: 19062197 DOI: 10.1016/j.ctrv.2008.10.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 12/31/2022]
Abstract
Diagnostic detection and measurement of cancer disease progression are essential elements for successful cancer disease management. The early stages of cancer development carry the maximum potential for therapeutic interventions. However, these stages are often asymptomatic, leading to delayed diagnosis at the very advanced stages when effective treatments are unavailing. The application of biomarkers to cancer is leading the way because of the unique association of genomic changes in cancer cells with the disease process. They have the potential to not only help identify who will develop cancer but also to predict as to when the event is most likely to occur. In recent years, there has been an enormous effort to develop specific and sensitive biomarkers for precise and accurate screening, diagnosis, prognosis and monitoring of high risk cancer to assist with therapeutic decisions. The present article is a brief review of the emerging trends in the development of biomarkers for early detection and precise evaluation of cancer disease.
Collapse
Affiliation(s)
- Mohd Fahad Ullah
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | | |
Collapse
|
537
|
Faller M, Guo F. MicroRNA biogenesis: there's more than one way to skin a cat. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:663-7. [PMID: 18778799 PMCID: PMC2633599 DOI: 10.1016/j.bbagrm.2008.08.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 08/06/2008] [Accepted: 08/10/2008] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) are extensively involved in developmental programming. Some miRNAs are highly conserved, while others are lineage specific. All miRNAs maturate through a series of processing steps. Here we review recent progresses in the studies of early steps in miRNA biogenesis, focusing on animal systems. The miRNA maturation pathways are surprisingly diverse, involving transcription by RNA polymerase II or III, cleavage by the Drosha nuclease or the spliceosome, and sometimes modifications by the adenosine deaminase ADAR. The relationship between the diversity in miRNA biogenesis and the apparently rapid evolution of miRNA genes and functions is discussed.
Collapse
Affiliation(s)
- Michael Faller
- Department of Biological Chemistry, David Geffen School of Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Feng Guo
- Department of Biological Chemistry, David Geffen School of Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
538
|
Grassmann R, Jeang KT. The roles of microRNAs in mammalian virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:706-11. [PMID: 18549828 PMCID: PMC2641032 DOI: 10.1016/j.bbagrm.2008.05.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 05/06/2008] [Accepted: 05/08/2008] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that are important for the control of a multitude of critical processes in mammalian cells. Increasing evidence supports that miRNAs also have important functions in viral replication and may be used by host cells to control viral infection. Expression of miRNAs has been reported for various groups of viruses including herpesviruses, small DNA viruses and retroviruses. The recent identification of target genes regulated by some of these viral miRNAs suggests that they may function in the control of lytic and latent viral replication, in the limitation of antiviral responses, in the inhibition of apoptosis, and in the stimulation of cellular growth. In this review, we summarize in brief recent findings on the antiviral activities of cellular miRNAs and the viral counter-responses to the cell's RNAi restriction.
Collapse
Affiliation(s)
- Ralph Grassmann
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| |
Collapse
|
539
|
Nelson PT, Wang WX, Wilfred BR, Tang G. Technical variables in high-throughput miRNA expression profiling: much work remains to be done. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:758-65. [PMID: 18439437 PMCID: PMC2660892 DOI: 10.1016/j.bbagrm.2008.03.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/24/2008] [Accepted: 03/26/2008] [Indexed: 12/11/2022]
Abstract
MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Sanders-Brown Center, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
540
|
Findlay VJ, Turner DP, Moussa O, Watson DK. MicroRNA-mediated inhibition of prostate-derived Ets factor messenger RNA translation affects prostate-derived Ets factor regulatory networks in human breast cancer. Cancer Res 2008; 68:8499-506. [PMID: 18922924 PMCID: PMC2680499 DOI: 10.1158/0008-5472.can-08-0907] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostate-derived Ets factor (PDEF) is an ETS transcription factor expressed in normal tissues with high epithelial cell content and noninvasive breast cancer cells. A putative tumor suppressor PDEF protein expression is often lost during progression to a more invasive phenotype. Interestingly, PDEF mRNA has been found to be retained or even overexpressed in the absence of protein; however, the mechanisms for this remain to be elucidated. This study identifies two microRNAs (miRNA) that directly act on and repress PDEF mRNA translation, leading to the loss of PDEF protein expression and the gain of phenotypes associated with invasive cells. In addition, we show that these miRNAs are elevated in human breast tumor samples. Together, these data describe a mechanism of regulation that explains, for the first time, the lack of correlation between PDEF mRNA and protein levels, providing insight into the underexplored role of posttranscriptional regulation and how this contributes to dysregulated protein expression in cancer. These observations have critical implications for therapeutically targeting miRNAs that contribute to cancer progression.
Collapse
Affiliation(s)
- Victoria J Findlay
- Department of Pathology & Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - David P Turner
- Department of Pathology & Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Omar Moussa
- Department of Pathology & Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Dennis K Watson
- Department of Pathology & Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, 29425
| |
Collapse
|
541
|
de Yébenes VG, Belver L, Pisano DG, González S, Villasante A, Croce C, He L, Ramiro AR. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J Exp Med 2008; 205:2199-206. [PMID: 18762567 PMCID: PMC2556787 DOI: 10.1084/jem.20080579] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/13/2008] [Indexed: 11/20/2022] Open
Abstract
Activated B cells reshape their primary antibody repertoire after antigen encounter by two molecular mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM and CSR are initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues on the immunoglobulin loci, which leads to the generation of DNA mutations or double-strand break intermediates. As a bystander effect, endogenous AID levels can also promote the generation of chromosome translocations, suggesting that the fine tuning of AID expression may be critical to restrict B cell lymphomagenesis. To determine whether microRNAs (miRNAs) play a role in the regulation of AID expression, we performed a functional screening of an miRNA library and identified miRNAs that regulate CSR. One such miRNA, miR-181b, impairs CSR when expressed in activated B cells, and results in the down-regulation of AID mRNA and protein levels. We found that the AID 3' untranslated region contains multiple putative binding sequences for miR-181b and that these sequences can be directly targeted by miR-181b. Overall, our results provide evidence for a new regulatory mechanism that restricts AID activity and can therefore be relevant to prevent B cell malignant transformation.
Collapse
Affiliation(s)
- Virginia G de Yébenes
- DNA Hypermutation and Cancer Group, Spanish National Cancer Research Center, Madrid 28029, Spain
| | | | | | | | | | | | | | | |
Collapse
|
542
|
Ach RA, Wang H, Curry B. Measuring microRNAs: comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnol 2008; 8:69. [PMID: 18783629 PMCID: PMC2547107 DOI: 10.1186/1472-6750-8-69] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 09/11/2008] [Indexed: 12/26/2022] Open
Abstract
Background Determining the expression levels of microRNAs (miRNAs) is of great interest to researchers in many areas of biology, given the significant roles these molecules play in cellular regulation. Two common methods for measuring miRNAs in a total RNA sample are microarrays and quantitative RT-PCR (qPCR). To understand the results of studies that use these two different techniques to measure miRNAs, it is important to understand how well the results of these two analysis methods correlate. Since both methods use total RNA as a starting material, it is also critical to understand how measurement of miRNAs might be affected by the particular method of total RNA preparation used. Results We measured the expression of 470 human miRNAs in nine human tissues using Agilent microarrays, and compared these results to qPCR profiles of 61 miRNAs in the same tissues. Most expressed miRNAs (53/60) correlated well (R > 0.9) between the two methods. Using spiked-in synthetic miRNAs, we further examined the two miRNAs with the lowest correlations, and found the differences cannot be attributed to differential sensitivity of the two methods. We also tested three widely-used total RNA sample prep methods using miRNA microarrays. We found that while almost all miRNA levels correspond between the three methods, there were a few miRNAs whose levels consistently differed between the different prep techniques when measured by microarray analysis. These differences were corroborated by qPCR measurements. Conclusion The correlations between Agilent miRNA microarray results and qPCR results are generally excellent, as are the correlations between different total RNA prep methods. However, there are a few miRNAs whose levels do not correlate between the microarray and qPCR measurements, or between different sample prep methods. Researchers should therefore take care when comparing results obtained using different analysis or sample preparation methods.
Collapse
Affiliation(s)
- Robert A Ach
- Agilent Laboratories, Agilent Technologies, Santa Clara, CA 95051, USA.
| | | | | |
Collapse
|
543
|
Coticchia CM, Yang J, Moses MA. Ovarian cancer biomarkers: current options and future promise. J Natl Compr Canc Netw 2008; 6:795-802. [PMID: 18926090 PMCID: PMC3381792 DOI: 10.6004/jnccn.2008.0059] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/17/2008] [Indexed: 12/17/2022]
Abstract
As more effective, less toxic cancer drugs reach patients, the need for accurate and reliable cancer diagnostics and prognostics has become widely appreciated. Nowhere is this need more dire than in ovarian cancer; here most women are diagnosed late in disease progression. The ability to sensitively and specifically predict the presence of early disease and its status, stage, and associated therapeutic efficacy has the potential to revolutionize ovarian cancer detection and treatment. This article reviews current ovarian cancer diagnostics and prognostics and potential biomarkers that are being studied and validated. Some of the most recent molecular approaches being used to identify genes and proteins are presented, which may represent the next generation of ovarian cancer diagnostics and prognostics.
Collapse
Affiliation(s)
| | | | - Marsha A. Moses
- Program in Vascular Biology and Department of Surgery, Children’s Hospital Boston and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
544
|
Fiore R, Siegel G, Schratt G. MicroRNA function in neuronal development, plasticity and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:471-8. [DOI: 10.1016/j.bbagrm.2007.12.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/22/2007] [Accepted: 12/07/2007] [Indexed: 12/31/2022]
|
545
|
Abstract
The development and function of neuronal circuits within the brain are orchestrated by sophisticated gene regulatory mechanisms. Recently, microRNAs have emerged as a novel class of small RNAs that fine-tune protein synthesis. microRNAs are abundantly expressed in the vertebrate nervous system, where they contribute to the specification of neuronal cell identity. Moreover, microRNAs also play an important role in mature neurons. This review summarizes the current knowledge about the function of microRNAs in the nervous system with special emphasis on synapse formation and plasticity. The second part of this work will discuss the potential involvement of microRNAs in neurologic diseases. The study of brain microRNAs promises to expand our understanding of the mechanisms underlying higher cognitive functions and neurologic diseases.
Collapse
Affiliation(s)
- Silvia Bicker
- Interdisziplinäes Zentrum fü Neurowissenschaften, SFB488 Junior Group, Universitä Heidelberg, and Institut fü Neuroanatomie, Universitäsklinikum Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
546
|
Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 2008; 82:9065-74. [PMID: 18596100 DOI: 10.1128/jvi.00961-08] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human genome encodes over 500 microRNAs (miRNAs), small RNAs (19 to 26 nucleotides [nt]) that regulate the expressions of diverse cellular genes. Many cellular processes are altered through a variety of mechanisms by human cytomegalovirus (HCMV) infection. We asked whether HCMV infection leads to changes in the expression of cellular miRNAs and whether HCMV-regulated miRNAs are important for HCMV replication. Levels of most miRNAs did not change markedly during infection, but some were positively or negatively regulated. Patterns of miRNA expression were linked to the time course of infection. Some similarly reregulated miRNAs share identical or similar seed sequences, suggesting coordinated regulation of miRNA species that have shared targets. miRNAs miR-100 and miR-101 were chosen for further analyses based on their reproducible changes in expression after infection and on the basis of having predicted targets in the 3' untranslated regions (3'-UTR) of genes encoding components of the mammalian target of rapamycin (mTOR) pathway, which is important during HCMV infection. Reporter genes that contain the 3'-UTR of mTOR (predicted targets for miR-100 and miR-101) or raptor (a component of the mTOR pathway; predicted site for miR-100) were constructed. Mimics of miR-100 and miR-101 inhibited expression from the mTOR construct, while only miR-100 inhibited the raptor construct. Together, miR-100 and miR-101 reduced mTOR protein levels. While the miR-100 and miR-101 mimics individually modestly inhibited production of infectious progeny, much greater inhibition was achieved with a combination of both (33-fold). Our key finding is that HCMV selectively manipulates the expression of some cellular miRNAs to help its own replication.
Collapse
|
547
|
Abstract
BACKGROUND MicroRNAs are believed to play an important role in gene expression regulation. They have been shown to be involved in cell cycle regulation and cancer. MicroRNA expression profiling became available owing to recent technology advancement. In some studies, both microRNA expression and mRNA expression are measured, which allows an integrated analysis of microRNA and mRNA expression. RESULTS We demonstrated three aspects of an integrated analysis of microRNA and mRNA expression, through a case study of human cancer data. We showed that (1) microRNA expression efficiently sorts tumors from normal tissues regardless of tumor type, while gene expression does not; (2) many microRNAs are down-regulated in tumors and these microRNAs can be clustered in two ways: microRNAs similarly affected by cancer and microRNAs similarly interacting with genes; (3) taking let-7f as an example, targets genes can be identified and they can be clustered based on their relationship with let-7f expression. DISCUSSION Our findings in this paper were made using novel applications of existing statistical methods: hierarchical clustering was applied with a new distance measure-the co-clustering frequency-to identify sample clusters that are stable; microRNA-gene correlation profiles were subject to hierarchical clustering to identify microRNAs that similarly interact with genes and hence are likely functionally related; the clustering of regression models method was applied to identify microRNAs similarly related to cancer while adjusting for tissue type and genes similarly related to microRNA while adjusting for disease status. These analytic methods are applicable to interrogate multiple types of -omics data in general.
Collapse
Affiliation(s)
- Li-Xuan Qin
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
548
|
Reynolds MA. Molecular alterations in prostate cancer. Cancer Lett 2008; 271:13-24. [PMID: 18554779 DOI: 10.1016/j.canlet.2008.04.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 12/21/2007] [Accepted: 04/24/2008] [Indexed: 01/07/2023]
Abstract
Prostate tumors display a range of clinical phenotypes, from indolent to aggressively metastatic. Numerous gene expression profiling studies have been conducted toward the potential molecular staging of these pathologies, however the identification of genetic markers that predict aggressive disease has not yet been demonstrated in the clinical setting. A recent survey of the literature has shown that molecular alterations in prostate carcinomas can occur through a variety of different mechanisms, ranging from upstream epigenetic changes and genetic polymorphisms to downstream modulations through alternative splicing and other post-translational processes, some of which could involve noncoding RNAs. A summary of these results and recommendations for future work are the subject of this review.
Collapse
|
549
|
Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM, Stein GS. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 2008; 68:2773-80. [PMID: 18413744 DOI: 10.1158/0008-5472.can-07-6754] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNA) have tumor suppressive and oncogenic potential in human cancer, but whether and how miRNAs control cell cycle progression is not understood. To address this question, we carried out a comprehensive analysis of miRNA expression during serum stimulation of quiescent human cells. Time course analyses revealed that four miRNAs are up-regulated and >100 miRNAs are down-regulated, as cells progress beyond the G(1)-S phase transition. We analyzed the function of two up-regulated miRNAs (miR-221 and miR-222) that are both predicted to target the cell growth suppressive cyclin-dependent kinase inhibitors p27 and p57. Our results show that miR-221 and miR-222 both directly target the 3' untranslated regions of p27 and p57 mRNAs to reduce reporter gene expression, as well as diminish p27 and p57 protein levels. Functional studies show that miR-221 and miR-222 prevent quiescence when elevated during growth factor deprivation and induce precocious S-phase entry, thereby triggering cell death. Thus, the physiologic up-regulation of miR-221 and miR-222 is tightly linked to a cell cycle checkpoint that ensures cell survival by coordinating competency for initiation of S phase with growth factor signaling pathways that stimulate cell proliferation.
Collapse
Affiliation(s)
- Ricardo Medina
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|
550
|
DNA copy number changes in high-grade malignant peripheral nerve sheath tumors by array CGH. Mol Cancer 2008; 7:48. [PMID: 18522746 PMCID: PMC2442610 DOI: 10.1186/1476-4598-7-48] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 06/03/2008] [Indexed: 01/18/2023] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNSTs) are rare and highly aggressive soft tissue tumors showing complex chromosomal aberrations. In order to identify recurrent chromosomal regions of gain and loss, and thereby novel gene targets of potential importance for MPNST development and/or progression, we have analyzed DNA copy number changes in seven high-grade MPNSTs using microarray-based comparative genomic hybridization (array CGH). Results Considerable more gains than losses were observed, and the most frequent minimal recurrent regions of gain included 1q24.1-q24.2, 1q24.3-q25.1, 8p23.1-p12, 9q34.11-q34.13 and 17q23.2-q25.3, all gained in five of seven samples. The 17q23.2-q25.3 region was gained in all five patients with poor outcome and not in the two patients with disease-free survival. cDNA microarray analysis and quantitative real-time reverse transcription PCR were used to investigate expression of genes located within these regions. The gene lysyl oxidase-like 2 (LOXL2) was identified as a candidate target for the 8p23.1-p12 gain. Within 17q, the genes topoisomerase II-α (TOP2A), ets variant gene 4 (E1A enhancer binding protein, E1AF) (ETV4) and baculoviral IAP repeat-containing 5 (survivin) (BIRC5) showed increased expression in all samples compared to two benign tumors. Increased expression of these genes has previously been associated with poor survival in other malignancies, and for TOP2A, in MPNSTs as well. In addition, we have analyzed the expression of five micro RNAs located within the 17q23.2-q25.3 region, but none of them showed high expression levels compared to the benign tumors. Conclusion Our study shows the potential of using DNA copy number changes obtained by array CGH to predict the prognosis of MPNST patients. Although no clear correlations between the expression level and patient outcome were observed, the genes TOP2A, ETV4 and BIRC5 are interesting candidate targets for the 17q gain associated with poor survival.
Collapse
|