501
|
Abstract
Recent advances in the understanding of megakaryocyte (MK) function largely have been made through the careful observation of the morphological and structural events underlying MK development. Ultrastructural localization of enzymatic activities has facilitated the specific recognition of their committed diploid precursors. Observation of the sequential features of endomitosis demonstrates that although similar to normal mitosis, cell division aborts at the anaphase stage. The ability of thrombopoietin to induce the full maturation MKs in vitro not only facilitates platelet release but has increased our knowledge of various subcellular aspects of the phenomenon and eventually will improve the in vivo detection of the site of platelet formation and shedding. Finally, the structural and functional consequences of MK molecular dysfunction leading to thrombocytopenia or myelofibrosis can now be investigated because of the development of transgenic animal models. This review aims to incorporate these new findings within the classical knowledge of MK structure related to its function.
Collapse
Affiliation(s)
- E M Cramer
- INSERM U.474, Hôpital Henri Mondor, Créteil, France.
| |
Collapse
|
502
|
C/EBPβ and GATA-1 Synergistically Regulate Activity of the Eosinophil Granule Major Basic Protein Promoter: Implication for C/EBPβ Activity in Eosinophil Gene Expression. Blood 1999. [DOI: 10.1182/blood.v94.4.1429.416k13_1429_1439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eosinophil granule major basic protein (MBP) is expressed exclusively in eosinophils and basophils in hematopoietic cells. In our previous study, we demonstrated a major positive regulatory role for GATA-1 and a negative regulatory role for GATA-2 in MBP gene transcription. Further analysis of the MBP promoter region identified a C/EBP (CCAAT/enhancer-binding protein) consensus binding site 6 bp upstream of the functional GATA-binding site in the MBP gene. In the cell line HT93A, which is capable of differentiating towards both the eosinophil and neutrophil lineages in response to retinoic acid (RA), C/EBP mRNA expression decreased significantly concomitant with eosinophilic and neutrophilic differentiation, whereas C/EBPβ expression was markedly increased. Electrophoretic mobility shift assays (EMSAs) showed that recombinant C/EBPβ protein could bind to the potential C/EBP-binding site (bp −90 to −82) in the MBP promoter. Furthermore, we have demonstrated that both C/EBPβ and GATA-1 can bind simultaneously to the C/EBP- and GATA-binding sites in the MBP promoter. To determine the functionality of both the C/EBP- and GATA-binding sites, we analyzed whether C/EBPβ and GATA-1 can stimulate the MBP promoter in the C/EBPβ and GATA-1 negative Jurkat T-cell line. Cotransfection with C/EBPβ and GATA-1 expression vectors produced a 5-fold increase compared with cotransfection with the C/EBPβ or GATA-1 expression vectors individually. In addition, GST pull-down experiments demonstrated a physical interaction between human GATA-1 and C/EBPβ. Expression of FOG (F̲riendo̲fG̲ATA), which binds to GATA-1 and acts as a cofactor for GATA-binding proteins, decreased transactivation activity of GATA-1 for the MBP promoter in a dose-dependent manner. Our results provide the first evidence that both GATA-1 and C/EBPβ synergistically transactivate the promoter of an eosinophil-specific granule protein gene and that FOG may act as a negative cofactor for the eosinophil lineage, unlike its positively regulatory function for the erythroid and megakaryocyte lineages.
Collapse
|
503
|
C/EBPβ and GATA-1 Synergistically Regulate Activity of the Eosinophil Granule Major Basic Protein Promoter: Implication for C/EBPβ Activity in Eosinophil Gene Expression. Blood 1999. [DOI: 10.1182/blood.v94.4.1429] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEosinophil granule major basic protein (MBP) is expressed exclusively in eosinophils and basophils in hematopoietic cells. In our previous study, we demonstrated a major positive regulatory role for GATA-1 and a negative regulatory role for GATA-2 in MBP gene transcription. Further analysis of the MBP promoter region identified a C/EBP (CCAAT/enhancer-binding protein) consensus binding site 6 bp upstream of the functional GATA-binding site in the MBP gene. In the cell line HT93A, which is capable of differentiating towards both the eosinophil and neutrophil lineages in response to retinoic acid (RA), C/EBP mRNA expression decreased significantly concomitant with eosinophilic and neutrophilic differentiation, whereas C/EBPβ expression was markedly increased. Electrophoretic mobility shift assays (EMSAs) showed that recombinant C/EBPβ protein could bind to the potential C/EBP-binding site (bp −90 to −82) in the MBP promoter. Furthermore, we have demonstrated that both C/EBPβ and GATA-1 can bind simultaneously to the C/EBP- and GATA-binding sites in the MBP promoter. To determine the functionality of both the C/EBP- and GATA-binding sites, we analyzed whether C/EBPβ and GATA-1 can stimulate the MBP promoter in the C/EBPβ and GATA-1 negative Jurkat T-cell line. Cotransfection with C/EBPβ and GATA-1 expression vectors produced a 5-fold increase compared with cotransfection with the C/EBPβ or GATA-1 expression vectors individually. In addition, GST pull-down experiments demonstrated a physical interaction between human GATA-1 and C/EBPβ. Expression of FOG (F̲riendo̲fG̲ATA), which binds to GATA-1 and acts as a cofactor for GATA-binding proteins, decreased transactivation activity of GATA-1 for the MBP promoter in a dose-dependent manner. Our results provide the first evidence that both GATA-1 and C/EBPβ synergistically transactivate the promoter of an eosinophil-specific granule protein gene and that FOG may act as a negative cofactor for the eosinophil lineage, unlike its positively regulatory function for the erythroid and megakaryocyte lineages.
Collapse
|
504
|
Holmes M, Turner J, Fox A, Chisholm O, Crossley M, Chong B. hFOG-2, a novel zinc finger protein, binds the co-repressor mCtBP2 and modulates GATA-mediated activation. J Biol Chem 1999; 274:23491-8. [PMID: 10438528 DOI: 10.1074/jbc.274.33.23491] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel human zinc finger protein, hFOG-2, which is related to but distinct from the murine transcription factor Friend-of-GATA-1 (mFOG-1). The hFOG-2 gene was initially detected in K562 cells using a polymerase chain reaction approach with degenerate primers corresponding to zinc finger regions of mFOG-1. A murine homologue of hFOG-2 was also identified in the mouse expressed sequence tag data banks, indicating that a family of FOG genes exists in mammals. hFOG-2 appears to be widely expressed, while mFOG-1 is expressed primarily in erythroid and megakaryocytic cells and plays a fundamental role in the development of these lineages. Sequencing of the full-length hFOG-2 cDNA indicates that the interaction domains for transcription factors GATA-1 and mCtBP2 are both conserved and we have shown that this new FOG protein also physically interacts with these factors. We have demonstrated that hFOG-2, like mFOG-1, can act in concert with GATA-1 to activate gene expression from the p45 NF-E2 promoter region, but that it can also act to repress GATA-mediated activation of additional reporter constructs. Finally, we have identified a repression domain in hFOG-2 and show that repression is dependent upon the integrity of the mCtBP2 interaction motif Pro-Ile-Asp-Leu-Ser.
Collapse
Affiliation(s)
- M Holmes
- Centre for Thrombosis and Vascular Research, School of Pathology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | |
Collapse
|
505
|
Stegmann K, Boecker J, Kosan C, Ermert A, Kunz J, Koch MC. Human transcription factor SLUG: mutation analysis in patients with neural tube defects and identification of a missense mutation (D119E) in the Slug subfamily-defining region. Mutat Res 1999; 406:63-9. [PMID: 10479723 DOI: 10.1016/s1383-5726(99)00002-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Studies in mouse, chicken and Xenopus have shown that Slug is selectively expressed in the dorsal part of the developing neural tube. Ablation and antisense experiments in chicken suggest that Slug may be an important factor during neural tube closure. We therefore investigated the role of Slug as a possible candidate contributing to the aetiology of neural tube defects (NTD) in humans. We characterised the genomic structure of human SLUG including determination of the exon-intron boundaries. The coding sequence of SLUG was screened for mutations in 150 patients with NTD using single strand conformation analysis (SSCA). In one patient, we identified a missense mutation 1548C-->A in exon 2 causing an exchange of a conserved amino acid (D119E) in the Slug subfamily-defining region preceding the first zinc finger. This is the first description of a human mutation in the SLUG gene. In accordance with the findings in model organisms, the SLUG mutation may be causally related to the development of NTD in our patient and could be considered as a predisposing factor.
Collapse
Affiliation(s)
- K Stegmann
- Medizinisches Zentrum für Humangenetik der Philipps-Universität Marburg, Bahnhofstrasse 7, D-35037, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
506
|
Tremblay JJ, Viger RS. Transcription factor GATA-4 enhances Müllerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol Endocrinol 1999; 13:1388-401. [PMID: 10446911 DOI: 10.1210/mend.13.8.0330] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Secretion of Müllerian-inhibiting substance (MIS) by Sertoli cells of the fetal testis and subsequent regression of the Müllerian ducts in the male embryo is a crucial event that contributes to proper sex differentiation. The zinc finger transcription factor GATA-4 and nuclear receptor SF-1 are early markers of Sertoli cells that have been shown to regulate MIS transcription. The fact that the GATA and SF-1 binding sites are adjacent to one another in the MIS promoter raised the possibility that both factors might transcriptionally cooperate to regulate MIS expression. Indeed, coexpression of both factors resulted in a strong synergistic activation of the MIS promoter. GATA-4/SF-1 synergism was the result of a direct protein-protein interaction mediated through the zinc finger region of GATA-4. Remarkably, synergy between GATA-4 and SF-1 on a variety of different SF-1 targets did not absolutely require GATA binding to DNA. Moreover, synergy with SF-1 was also observed with other GATA family members. Thus, these data not only provide a clearer understanding of the molecular mechanisms that control the sex-specific expression of the MIS gene but also reveal a potentially novel mechanism for the regulation of SF-1-dependent genes in tissues where SF-1 and GATA factors are coexpressed.
Collapse
Affiliation(s)
- J J Tremblay
- Unité de Recherche en Ontogénie et Reproduction Centre Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université Laval, Ste-Foy, Québec, Canada
| | | |
Collapse
|
507
|
Brodu V, Mugat B, Roignant JY, Lepesant JA, Antoniewski C. Dual requirement for the EcR/USP nuclear receptor and the dGATAb factor in an ecdysone response in Drosophila melanogaster. Mol Cell Biol 1999; 19:5732-42. [PMID: 10409761 PMCID: PMC84424 DOI: 10.1128/mcb.19.8.5732] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EcR/USP nuclear receptor controls Drosophila metamorphosis by activating complex cascades of gene transcription in response to pulses of the steroid hormone ecdysone at the end of larval development. Ecdysone release provides a ubiquitous signal for the activation of the receptor, but a number of its target genes are induced in a tissue- and stage-specific manner. Little is known about the molecular mechanisms involved in this developmental modulation of the EcR/USP-mediated pathway. Fbp1 is a good model of primary ecdysone response gene expressed in the fat body for addressing this question. We show here that the dGATAb factor binds to three target sites flanking an EcR/USP binding site in a 70-bp enhancer that controls the tissue and stage specificity of Fbp1 transcription. We demonstrate that one of these sites and proper expression of dGATAb are required for specific activation of the enhancer in the fat body. In addition, we provide further evidence that EcR/USP plays an essential role as a hormonal timer. Our study provides a striking example of the integration of molecular pathways at the level of a tissue-specific hormone response unit.
Collapse
Affiliation(s)
- V Brodu
- Institut Jacques Monod, Laboratoire de Biologie du Développement, CNRS UMR 7592, Université Paris 7 Denis-Diderot, Université Paris 6 P. et M. Curie, 75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
508
|
Wolf I, Rohrschneider LR. Fiz1, a novel zinc finger protein interacting with the receptor tyrosine kinase Flt3. J Biol Chem 1999; 274:21478-84. [PMID: 10409713 DOI: 10.1074/jbc.274.30.21478] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor tyrosine kinase Flt3 has been shown to play a role in proliferation and survival of hematopoietic progenitor cells as well as differentiation of early B lymphoid progenitors. However, the signaling events that control growth or differentiation are not completely understood. In order to identify new signaling molecules interacting with the cytoplasmic domain of Flt3, we performed a yeast two-hybrid screen. In addition to several SH2 domain-containing proteins, we have isolated a novel Flt3 interacting zinc finger protein (Fiz1) with 11 C(2)H(2)-type zinc fingers. Fiz1 binds to the catalytic domain of Flt3 but not to the structurally related receptor tyrosine kinases Kit, Fms, and platelet-derived growth factor receptor. This association is independent of kinase activity. The interaction between Flt3 and Fiz1 detected in yeast was confirmed by in vitro and in vivo coprecipitation assays. Fiz1 mRNA is expressed in all murine cell lines and tissues tested. Anti-Fiz1 antibodies recognize a 60-kDa protein, which is localized in the nucleus as well as in the cytoplasm. Together, these results identified a novel class of interaction between a receptor tyrosine kinase and a signaling molecule which is independent of the well established SH2 domain/phosphotyrosine binding.
Collapse
Affiliation(s)
- I Wolf
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington 98109-1024, USA.
| | | |
Collapse
|
509
|
Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska HS, Auron PE, Tenen DG, Sun Z. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci U S A 1999; 96:8705-10. [PMID: 10411939 PMCID: PMC17580 DOI: 10.1073/pnas.96.15.8705] [Citation(s) in RCA: 354] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The process through which multipotential hematopoietic cells commit to distinct lineages involves the induction of specific transcription factors. PU.1 (also known as Spi-1) and GATA-1 are transcription factors essential for the development of myeloid and erythroid lineages, respectively. Overexpression of PU.1 and GATA-1 can block differentiation in lineages in which they normally are down-regulated, indicating that not only positive but negative regulation of these factors plays a role in normal hematopoietic lineage development. Here we demonstrate that a region of the PU.1 Ets domain (the winged helix-turn-helix wing) interacts with the conserved carboxyl-terminal zinc finger of GATA-1 and GATA-2 and that GATA proteins inhibit PU.1 transactivation of critical myeloid target genes. We demonstrate further that GATA inhibits binding of PU.1 to c-Jun, a critical coactivator of PU.1 transactivation of myeloid promoters. Finally, PU.1 protein can inhibit both GATA-1 and GATA-2 transactivation function. Our results suggest that interactions between PU.1 and GATA proteins play a critical role in the decision of stem cells to commit to erythroid vs. myeloid lineages.
Collapse
Affiliation(s)
- P Zhang
- Hematology/Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
510
|
Sun X, Meyers EN, Lewandoski M, Martin GR. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev 1999; 13:1834-46. [PMID: 10421635 PMCID: PMC316887 DOI: 10.1101/gad.13.14.1834] [Citation(s) in RCA: 493] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fgf8 and Fgf4 encode FGF family members that are coexpressed in the primitive streak of the gastrulating mouse embryo. We have analyzed the phenotype of Fgf8(-/-) embryos and discovered that they fail to express Fgf4 in the streak. In the absence of both FGF8 and FGF4, epiblast cells move into the streak and undergo an epithelial-to-mesenchymal transition, but most cells then fail to move away from the streak. As a consequence, no embryonic mesoderm- or endoderm-derived tissues develop, although extraembryonic tissues form. Patterning of the prospective neuroectoderm is greatly perturbed in the mutant embryos. Anterior neuroectoderm markers are widely expressed, at least in part because the anterior visceral endoderm, which provides signals that regulate their expression, is not displaced proximally in the absence of definitive endoderm. Posterior neuroectoderm markers are not expressed, presumably because there is neither mesendoderm underlying the prospective neuroectoderm nor a morphologically normal node to provide the inductive signals necessary for their expression. This study identifies Fgf8 as a gene essential for gastrulation and shows that signaling via FGF8 and/or FGF4 is required for cell migration away from the primitive streak.
Collapse
Affiliation(s)
- X Sun
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, California 94143-0452 USA
| | | | | | | |
Collapse
|
511
|
Heyworth C, Gale K, Dexter M, May G, Enver T. A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal. Genes Dev 1999; 13:1847-60. [PMID: 10421636 PMCID: PMC316885 DOI: 10.1101/gad.13.14.1847] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transcription factor GATA-2 is expressed in hematopoietic stem and progenitor cells and is functionally implicated in their survival and proliferation. We have used estrogen and tamoxifen-inducible forms of GATA-2 to modulate the levels of GATA-2 in the IL-3-dependent multipotential hematopoietic progenitor cell model FDCP mix. Ligand-dependent induction of exogenous GATA-2 activity did not rescue cells deprived of IL-3 from apoptosis. However, induction of GATA-2 activity in cells cultured in IL-3 blocked factor-dependent self-renewal but not factor-dependent survival: Cells undergo cell cycle arrest and cease proliferating but do not apoptose. This was accompanied by differentiation down the monocytic and granulocytic pathways. Differentiation occurred in the presence of IL-3 and did not require addition of exogenous differentiation growth factors such as G-CSF or GM-CSF normally required to induce granulomonocytic differentiation of FDCP-mix cells. Conversely, EPO-dependent erythroid differentiation was inhibited by GATA-2 activation. These biological effects were obtained with levels of exogenous GATA-2 representing less than twofold increases over endogenous GATA-2 levels and were not observed in cells overexpressing GATA-1/ER. Similar effects on proliferation and differentiation were also observed in primary progenitor cells, freshly isolated from murine bone marrow and transduced with a GATA-2/ER-containing retrovirus. Taken together, these data suggest that threshold activities of GATA-2 in hematopoietic progenitor cells are a critical determinant in influencing self-renewal versus differentiation outcomes.
Collapse
Affiliation(s)
- C Heyworth
- Cancer Research Campaign (CRC) Section of Hematopoietic Cell and Gene Therapeutics, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester M20 4BX, UK
| | | | | | | | | |
Collapse
|
512
|
Karacay B, Chang LS. Induction of erythrocyte protein 4.2 gene expression during differentiation of murine erythroleukemia cells. Genomics 1999; 59:6-17. [PMID: 10395794 DOI: 10.1006/geno.1999.5846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein 4.2 (P4.2) is an important component in the erythrocyte membrane skeletal network that regulates the stability and flexibility of erythrocytes. Recently, we provided the evidence for specific P4.2 expression in erythroid cells during development (L. Zhu et al., 1998, Blood 91, 695-705). Using dimethyl sulfoxide (DMSO)-induced differentiation of murine erythroleukemia (MEL) cells as a model, transcription of the P4.2 gene was found to be induced during erythroid differentiation. To examine the mechanism for this induction, we isolated the mouse P4.2 genomic DNA containing the 5' flanking sequence and defined the location of the P4.2 promoter. Transcription of the mouse P4.2 gene initiates at multiple sites, with the major initiation site mapped at 174 nucleotides upstream of the ATG start codon. The mouse P4.2 promoter is TATA-less and contains multiple potential binding sites for erythroid transcription factors GATA-1, NF-E2, EKLF, and tal-1/SCL. Transient transfection experiments demonstrated that a 1.7-kb mouse P4.2 promoter fused with the luciferase coding regions was induced in DMSO-treated MEL cells. Deletion analysis showed that a 259-bp P4.2 promoter DNA (nucleotide position -88 to +171 relative to the major transcription initiation site designated +1), containing a GATA-binding site at position -29 to -24, could still respond to the induction in differentiated MEL cells. Importantly, mutations in the -29/-24 GATA motif rendered the promoter unresponsive to DMSO induction. Electrophoretic mobility shift assay revealed that GATA-1 could bind to the -29/-24 GATA motif and this was confirmed by the observation that the nuclear protein bound to the motif was supershifted by an anti-GATA-1 monoclonal antibody. Taken together, these results suggest that the erythroid transcription factor GATA-1 plays an important role in the induction of P4.2 gene expression during erythroid cell differentiation.
Collapse
Affiliation(s)
- B Karacay
- Department of Pediatrics, Children's Hospital and The Ohio State University, Columbus, Ohio 43205-2696, USA
| | | |
Collapse
|
513
|
Abstract
The transcription factor GATA-1 is essential for normal erythropoiesis. By examining in vitro–differentiated embryonic stem cells, we showed previously that in the absence of GATA-1, committed erythroid precursors fail to complete maturation and instead undergo apoptosis. The mechanisms by which GATA-1 controls cell survival are unknown. Here we report that in erythroid cells, GATA-1 strongly induces the expression of the anti-apoptotic protein bcl-xL, but not the related proteins bcl-2 and mcl-1. Consistent with a role for bcl-xL in mediating GATA-1–induced erythroid cell survival, in vitro–differentiated bcl-xL−/− embryonic stem cells fail to generate viable mature definitive erythroid cells, a phenotype resembling that of GATA-1 gene disruption. In addition, we show that erythropoietin, which is also required for erythroid cell survival, cooperates with GATA-1 to stimulate bcl-xL gene expression and to maintain erythroid cell viability during terminal maturation. Together, our data show that bcl-xL is essential for normal erythroid development and suggest a regulatory hierarchy in which bcl-xL is a critical downstream effector of GATA-1 and erythropoietin-mediated signals.
Collapse
|
514
|
The Glycoprotein Ib/IX Complex Regulates Cell Proliferation. Blood 1999. [DOI: 10.1182/blood.v93.12.4256.412k33_4256_4263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycoprotein (Gp) Ib/IX complex contains three transmembranous leucine-rich repeat polypeptides (GpIb, GpIbβ, and GpIX) that form the platelet von Willebrand factor (vWF) receptor. GpIb/IX functions to effect platelet adhesion, activation, and aggregation under conditions of high shear stress. GpIb/IX is expressed late in the ontogeny of megakaryocytes, the precursor cell that releases platelets when it reaches its terminal stage of differentiation. Because signal pathways can be reused at different stages of development by integration with different effector pathways and because cellular adhesion through other receptor families often modulates cell growth, the hypothesis that GpIb/IX regulates cell growth was investigated. The surface expression of recombinant GpIb decreases the proliferation of transduced CHO cells. GpIb causes growth arrest in the G1 phase of the cell cycle associated with the induction of the cyclin-dependent kinase inhibitor p21. G1 arrest induced by recombinant GpIb in heterologous cells requires signaling through the 14-3-3ζ binding domain of GpIb and is partially dependent on its engagement by the extracellular ligand vWF. Growth arrest induced by the expression of recombinant GpIb/IX is followed by apoptosis of the transduced cells. The endogenous expression of GpIb in human hematopoietic cells is associated with decreased proliferation. These results suggest that the expression of the GpIb/IX complex regulates megakaryocyte growth.
Collapse
|
515
|
Abstract
AbstractThe glycoprotein (Gp) Ib/IX complex contains three transmembranous leucine-rich repeat polypeptides (GpIb, GpIbβ, and GpIX) that form the platelet von Willebrand factor (vWF) receptor. GpIb/IX functions to effect platelet adhesion, activation, and aggregation under conditions of high shear stress. GpIb/IX is expressed late in the ontogeny of megakaryocytes, the precursor cell that releases platelets when it reaches its terminal stage of differentiation. Because signal pathways can be reused at different stages of development by integration with different effector pathways and because cellular adhesion through other receptor families often modulates cell growth, the hypothesis that GpIb/IX regulates cell growth was investigated. The surface expression of recombinant GpIb decreases the proliferation of transduced CHO cells. GpIb causes growth arrest in the G1 phase of the cell cycle associated with the induction of the cyclin-dependent kinase inhibitor p21. G1 arrest induced by recombinant GpIb in heterologous cells requires signaling through the 14-3-3ζ binding domain of GpIb and is partially dependent on its engagement by the extracellular ligand vWF. Growth arrest induced by the expression of recombinant GpIb/IX is followed by apoptosis of the transduced cells. The endogenous expression of GpIb in human hematopoietic cells is associated with decreased proliferation. These results suggest that the expression of the GpIb/IX complex regulates megakaryocyte growth.
Collapse
|
516
|
Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 1999; 13:1398-411. [PMID: 10364157 PMCID: PMC316770 DOI: 10.1101/gad.13.11.1398] [Citation(s) in RCA: 377] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/1999] [Accepted: 04/19/1999] [Indexed: 11/24/2022]
Abstract
Malignant transformation usually inhibits terminal cell differentiation but the precise mechanisms involved are not understood. PU.1 is a hematopoietic-specific Ets family transcription factor that is required for development of some lymphoid and myeloid lineages. PU.1 can also act as an oncoprotein as activation of its expression in erythroid precursors by proviral insertion or transgenesis causes erythroleukemias in mice. Restoration of terminal differentiation in the mouse erythroleukemia (MEL) cells requires a decline in the level of PU.1, indicating that PU.1 can block erythroid differentiation. Here we investigate the mechanism by which PU.1 interferes with erythroid differentiation. We find that PU.1 interacts directly with GATA-1, a zinc finger transcription factor required for erythroid differentiation. Interaction between PU.1 and GATA-1 requires intact DNA-binding domains in both proteins. PU.1 represses GATA-1-mediated transcriptional activation. Both the DNA binding and transactivation domains of PU.1 are required for repression and both domains are also needed to block terminal differentiation in MEL cells. We also show that ectopic expression of PU.1 in Xenopus embryos is sufficient to block erythropoiesis during normal development. Furthermore, introduction of exogenous GATA-1 in both MEL cells and Xenopus embryos and explants relieves the block to erythroid differentiation imposed by PU.1. Our results indicate that the stoichiometry of directly interacting but opposing transcription factors may be a crucial determinant governing processes of normal differentiation and malignant transformation.
Collapse
Affiliation(s)
- N Rekhtman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
517
|
Lu JR, McKinsey TA, Xu H, Wang DZ, Richardson JA, Olson EN. FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors. Mol Cell Biol 1999; 19:4495-502. [PMID: 10330188 PMCID: PMC104407 DOI: 10.1128/mcb.19.6.4495] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the GATA family of zinc finger transcription factors have been shown to play important roles in the control of gene expression in a variety of cell types. GATA-1, -2, and -3 are expressed primarily in hematopoietic cell lineages and are required for proliferation and differentiation of multiple hematopoietic cell types, whereas GATA-4, -5, and -6 are expressed in the heart, where they activate cardiac muscle structural genes. Friend of GATA-1 (FOG) is a multitype zinc finger protein that interacts with GATA-1 and serves as a cofactor for GATA-1-mediated transcription. FOG is coexpressed with GATA-1 in developing erythroid and megakaryocyte cell lineages and cooperates with GATA-1 to control erythropoiesis. We describe a novel FOG-related factor, FOG-2, that is expressed predominantly in the developing and adult heart, brain, and testis. FOG-2 interacts with GATA factors, and interaction of GATA-4 and FOG-2 results in either synergistic activation or repression of GATA-dependent cardiac promoters, depending on the specific promoter and the cell type in which they are tested. The properties of FOG-2 suggest its involvement in the control of cardiac and neural gene expression by GATA transcription factors.
Collapse
Affiliation(s)
- J R Lu
- Departments of Molecular Biology and Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9148, USA
| | | | | | | | | | | |
Collapse
|
518
|
Dasen JS, O'Connell SM, Flynn SE, Treier M, Gleiberman AS, Szeto DP, Hooshmand F, Aggarwal AK, Rosenfeld MG. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 1999; 97:587-98. [PMID: 10367888 DOI: 10.1016/s0092-8674(00)80770-9] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms by which transient gradients of signaling molecules lead to emergence of specific cell types remain a central question in mammalian organogenesis. Here, we demonstrate that the appearance of four ventral pituitary cell types is mediated via the reciprocal interactions of two transcription factors, Pit1 and GATA2, which are epistatic to the remainder of the cell type-specific transcription programs and serve as the molecular memory of the transient signaling events. Unexpectedly, this program includes a DNA binding-independent function of Pit1, suppressing the ventral GATA2-dependent gonadotrope program by inhibiting GATA2 binding to gonadotrope- but not thyrotrope-specific genes, indicating that both DNA binding-dependent and -independent actions of abundant determining factors contribute to generate distinct cell phenotypes.
Collapse
Affiliation(s)
- J S Dasen
- Howard Hughes Medical Institute, Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla 92093-0648, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
519
|
Fox AH, Liew C, Holmes M, Kowalski K, Mackay J, Crossley M. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J 1999; 18:2812-22. [PMID: 10329627 PMCID: PMC1171362 DOI: 10.1093/emboj/18.10.2812] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Friend of GATA-1 (FOG-1) is a zinc finger protein that has been shown to interact physically with the erythroid DNA-binding protein GATA-1 and modulate its transcriptional activity. Recently, two new members of the FOG family have been identified: a mammalian protein, FOG-2, that also associates with GATA-1 and other mammalian GATA factors; and U-shaped, a Drosophila protein that interacts with the Drosophila GATA protein Pannier. FOG proteins contain multiple zinc fingers and it has been shown previously that the sixth finger of FOG-1 interacts specifically with the N-finger but not the C-finger of GATA-1. Here we show that fingers 1, 5 and 9 of FOG-1 also interact with the N-finger of GATA-1 and that FOG-2 and U-shaped also contain multiple GATA-interacting fingers. We define the key contact residues and show that these residues are highly conserved in GATA-interacting fingers. We examine the effect of selectively mutating the four interacting fingers of FOG-1 and show that each contributes to FOG-1's ability to modulate GATA-1 activity. Finally, we show that FOG-1 can repress GATA-1-mediated activation and present evidence that this ability involves the recently described CtBP co-repressor proteins that recognize all known FOG proteins.
Collapse
Affiliation(s)
- A H Fox
- Department of Biochemistry, G08, University of Sydney, NSW, 2006, Australia
| | | | | | | | | | | |
Collapse
|
520
|
Abstract
In the absence of the hematopoietic transcription factor GATA-1, mice develop thrombocytopenia and an increased number of megakaryocytes characterized by marked ultrastructural abnormalities. These observations establish a critical role for GATA-1 in megakaryopoiesis and raise the question as to how GATA-1 influences megakaryocyte maturation and platelet production. To begin to address this, we have performed a more detailed examination of the megakaryocytes and platelets produced in mice that lack GATA-1 in this lineage. Our analysis demonstrates that compared with their normal counterparts, GATA-1–deficient primary megakaryocytes exhibit significant hyperproliferation in liquid culture, suggesting that the megakaryocytosis seen in animals is nonreactive. Morphologically, these mutant megakaryocytes are small and show evidence of retarded nuclear and cytoplasmic development. A significant proportion of these cells do not undergo endomitosis and express markedly lower levels of mRNA of all megakaryocyte-associated genes tested, including GPIb, GPIbβ, platelet factor 4 (PF4), c-mpl, and p45 NF-E2. These results are consistent with regulation of a program of megakaryocytic differentiation by GATA-1. Bleeding times are significantly prolonged in mutant animals. GATA-1–deficient platelets show abnormal ultrastructure, reminiscent of the megakaryocytes from which they are derived, and exhibit modest but selective defects in platelet activation in response to thrombin or to the combination of adenosine diphosphate (ADP) and epinephrine. Our findings indicate that GATA-1 serves multiple functions in megakaryocyte development, influencing both cellular growth and maturation.
Collapse
|
521
|
Abstract
AbstractIn the absence of the hematopoietic transcription factor GATA-1, mice develop thrombocytopenia and an increased number of megakaryocytes characterized by marked ultrastructural abnormalities. These observations establish a critical role for GATA-1 in megakaryopoiesis and raise the question as to how GATA-1 influences megakaryocyte maturation and platelet production. To begin to address this, we have performed a more detailed examination of the megakaryocytes and platelets produced in mice that lack GATA-1 in this lineage. Our analysis demonstrates that compared with their normal counterparts, GATA-1–deficient primary megakaryocytes exhibit significant hyperproliferation in liquid culture, suggesting that the megakaryocytosis seen in animals is nonreactive. Morphologically, these mutant megakaryocytes are small and show evidence of retarded nuclear and cytoplasmic development. A significant proportion of these cells do not undergo endomitosis and express markedly lower levels of mRNA of all megakaryocyte-associated genes tested, including GPIb, GPIbβ, platelet factor 4 (PF4), c-mpl, and p45 NF-E2. These results are consistent with regulation of a program of megakaryocytic differentiation by GATA-1. Bleeding times are significantly prolonged in mutant animals. GATA-1–deficient platelets show abnormal ultrastructure, reminiscent of the megakaryocytes from which they are derived, and exhibit modest but selective defects in platelet activation in response to thrombin or to the combination of adenosine diphosphate (ADP) and epinephrine. Our findings indicate that GATA-1 serves multiple functions in megakaryocyte development, influencing both cellular growth and maturation.
Collapse
|
522
|
Hung HL, Lau J, Kim AY, Weiss MJ, Blobel GA. CREB-Binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol Cell Biol 1999; 19:3496-505. [PMID: 10207073 PMCID: PMC84142 DOI: 10.1128/mcb.19.5.3496] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor GATA-1 is a key regulator of erythroid-cell differentiation and survival. We have previously shown that the transcriptional cofactor CREB-binding protein (CBP) binds to the zinc finger domain of GATA-1, markedly stimulates the transcriptional activity of GATA-1, and is required for erythroid differentiation. Here we report that CBP, but not p/CAF, acetylates GATA-1 at two highly conserved lysine-rich motifs present at the C-terminal tails of both zinc fingers. Using [3H]acetate labelling experiments and anti-acetyl lysine immunoprecipitations, we show that GATA-1 is acetylated in vivo at the same sites acetylated by CBP in vitro. In addition, we show that CBP stimulates GATA-1 acetylation in vivo in an E1A-sensitive manner, thus establishing a correlation between acetylation and transcriptional activity of GATA-1. Acetylation in vitro did not alter the ability of GATA-1 to bind DNA, and mutations in either motif did not affect DNA binding of GATA-1 expressed in mammalian cells. Since certain functions of GATA-1 are revealed only in an erythroid environment, GATA-1 constructs were examined for their ability to trigger terminal differentiation when introduced into a GATA-1-deficient erythroid cell line. We found that mutations in either acetylation motif partially impaired the ability of GATA-1 to induce differentiation while mutations in both motifs abrogated it completely. Taken together, these data indicate that CBP is an important cofactor for GATA-1 and suggest a novel mechanism in which acetylation by CBP regulates GATA-1 activity in erythroid cells.
Collapse
Affiliation(s)
- H L Hung
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
523
|
Zaret K. Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins. Dev Biol 1999; 209:1-10. [PMID: 10208738 DOI: 10.1006/dbio.1999.9228] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A long-standing problem in developmental biology has been to understand how the embryonic germ layers gain the competence to differentiate into distinct cell types. Genetic studies have shown that members of the GATA and HNF3/fork head transcription factor families are essential for the formation and differentiation of gut endoderm tissues in worms, flies, and mammals. Recent in vivo footprinting studies have shown that GATA and HNF3 binding sites in chromatin are occupied on a silent gene in endoderm that has the potential to be activated solely in that germ layer. These and other data indicate that these evolutionarily conserved factors help impart the competence of a gene to be activated in development, a phenomenon called genetic potentiation. The mechanistic implications of genetic potentiation and its general significance are discussed.
Collapse
Affiliation(s)
- K Zaret
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
524
|
Drachman JG, Rojnuckarin P, Kaushansky K. Thrombopoietin signal transduction: studies from cell lines and primary cells. Methods 1999; 17:238-49. [PMID: 10080909 DOI: 10.1006/meth.1998.0734] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombopoietin (TPO) and its receptor Mpl support all of the developmental step necessary for megakaryocytopoiesis. In the past few years, the signaling pathways utilized by this member of the cytokine receptor family have been extensively studied, especially JAK/STAT, Ras/MAP kinase, Shc, and other adapter molecules. Many if not most of the secondary signaling pathways activated by thrombopoietin have also been identified upon binding of other hematopoietic growth factors to their cognate receptors, making the study of Mpl signaling representative of the field in general. However, identifying unique molecules or combinations of signals that direct megakaryocyte development has been an elusive goal and has led some investigators to conclude that there is little specificity during Mpl signal transduction. In this article we review the data regarding Mpl signaling with particular attention to the methods employed and critical interpretation of the data generated. Future studies will have to focus on primary bone marrow cells and intact animal models rather than transformed cell lines. Furthermore, it is likely that a comprehensive, integrative analysis of the many pathways activated by ligand binding will be necessary to understand the physiology of cytokine signaling.
Collapse
Affiliation(s)
- J G Drachman
- Division of Hematology, University of Washington School of Medicine, Seattle, Washington, 98195, USA
| | | | | |
Collapse
|
525
|
Perrone L, Tell G, Di Lauro R. Calreticulin enhances the transcriptional activity of thyroid transcription factor-1 by binding to its homeodomain. J Biol Chem 1999; 274:4640-5. [PMID: 9988700 DOI: 10.1074/jbc.274.8.4640] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors are often regulated by associated protein cofactors that are able to modify their activity by several different mechanisms. In this study we show that calreticulin, a Ca2+-binding protein with chaperone activity, binds to thyroid transcription factor-1 (TTF-1), a homeodomain-containing protein implicated in the differentiation of lung and thyroid. The interaction between calreticulin and TTF-1 appears to have functional significance because it results in increased transcriptional stimulation of TTF-1-dependent promoters. Calreticulin binds to the TTF-1 homeodomain and promotes its folding, suggesting that the mechanism involved in stimulation of transcriptional activity is an increase of the steady-state concentration of active TTF-1 protein in the cell. We also demonstrate that calreticulin mRNA levels in thyroid cells are under strict control by the thyroid-stimulating hormone, thus implicating calreticulin in the modulation of thyroid gene expression by thyroid-stimulating hormone.
Collapse
Affiliation(s)
- L Perrone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | | | | |
Collapse
|
526
|
Taketani S, Mohri T, Hioki K, Tokunaga R, Kohno H. Structure and transcriptional regulation of the mouse ferrochelatase gene. Gene X 1999; 227:117-24. [PMID: 10023040 DOI: 10.1016/s0378-1119(99)00011-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Ferrochelatase (EC.4.99.1.1), the final step in the biosynthesis of heme, is widely expressed in various tissues and is induced in erythroid cells. We determined the structure of the mouse ferrochelatase gene after isolation and characterization of lambda phage clones mapping discrete regions of the cDNA. The gene spans about 25 kb and consists of 11 exons. The exon/intron boundary sequences conform to consensus acceptor (GTn)/donor (nAG) sequences, and exons in the gene encode functional protein domains. The promoter region contains multiple Sp1 sites, a CACCC box and GATA-1 binding sites. Function analysis of the promoter by transient transfection assay demonstrated that one Sp1 binding site located at -37/-32 is essential for basic expression of the ferrochelatase gene in both mouse erythroleukemia (MEL) and non-erythroid EL4 cells. In addition, the region (-66/-51) containing a CACCC box and the neighboring GC box partly contributes to the inducible activity of the reporter in MEL cells upon induction with dimethylsulfoxide. It appears that at least two promoter regions of the mouse ferrochelatase gene function in basic and inducible expression.
Collapse
Affiliation(s)
- S Taketani
- Department of Hygiene, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan.
| | | | | | | | | |
Collapse
|
527
|
Svensson EC, Tufts RL, Polk CE, Leiden JM. Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl Acad Sci U S A 1999; 96:956-61. [PMID: 9927675 PMCID: PMC15332 DOI: 10.1073/pnas.96.3.956] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1998] [Accepted: 12/03/1998] [Indexed: 11/18/2022] Open
Abstract
GATA transcription factors are important regulators of both hematopoiesis (GATA-1/2/3) and cardiogenesis (GATA-4) in mammals. The transcriptional activities of the GATA proteins are modulated by their interactions with other transcription factors and with transcriptional coactivators and repressors. Recently, two related zinc finger proteins, U-shaped (USH) and Friend of GATA-1 (FOG) have been reported to interact with the GATA proteins Pannier and GATA-1, respectively, and to modulate their transcriptional activities in vitro and in vivo. In this report, we describe the molecular cloning and characterization of a third FOG-related protein, FOG-2. FOG-2 is an 1,151 amino acid nuclear protein that contains eight zinc finger motifs that are structurally related to those of both FOG and USH. FOG-2 is first expressed in the mouse embryonic heart and septum transversum at embryonic day 8.5 and is subsequently expressed in the developing neuroepithelium and urogenital ridge. In the adult, FOG-2 is expressed predominately in the heart, brain, and testis. FOG-2 associates physically with the N-terminal zinc finger of GATA-4 both in vitro and in vivo. This interaction appears to modulate specifically the transcriptional activity of GATA-4 because overexpression of FOG-2 in both NIH 3T3 cells and primary rat cardiomyocytes represses GATA-4-dependent transcription from multiple cardiac-restricted promoters. Taken together, these results implicate FOG-2 as a novel modulator of GATA-4 function during cardiac development and suggest a paradigm in which tissue-specific interactions between different FOG and GATA proteins regulate the differentiation of distinct mesodermal cell lineages.
Collapse
Affiliation(s)
- E C Svensson
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
528
|
Tevosian SG, Deconinck AE, Cantor AB, Rieff HI, Fujiwara Y, Corfas G, Orkin SH. FOG-2: A novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped. Proc Natl Acad Sci U S A 1999; 96:950-5. [PMID: 9927674 PMCID: PMC15331 DOI: 10.1073/pnas.96.3.950] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/1998] [Indexed: 11/18/2022] Open
Abstract
GATA factors are transcriptional regulatory proteins that play critical roles in the differentiation of multiple cell types in both vertebrates and invertebrates. Recent evidence suggests that the biological activities of both mammalian and Drosophila GATA factors are controlled in part by physical interaction with multitype zinc-finger proteins, Friend of GATA-1 (FOG) and U-shaped (Ush), respectively. Here we describe a new FOG-related polypeptide, designated FOG-2, that is likely to participate in differentiation mediated by GATA factors in several tissues. Expression of FOG-2 mRNA differs from that of FOG and is largely restricted to heart, neurons, and gonads in the adult. Somewhat broader expression is evident during mouse embryonic development. Similar to FOG and Ush, FOG-2 protein interacts specifically with the amino finger of GATA factors in the yeast two-hybrid system and in mammalian cells. Remarkably, though FOG-2 is quite divergent from FOG in its primary sequence, forced expression of FOG-2 rescues terminal erythroid maturation of FOG-/- hematopoietic cells. Thus, members of the FOG family of cofactors share highly specific association with GATA factors and are substantially interchangeable with respect to some aspects of function in vivo. The interaction of GATA and FOG family members constitutes an evolutionarily conserved paradigm for transcriptional control in differentiation and organogenesis.
Collapse
Affiliation(s)
- S G Tevosian
- Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
529
|
Crispino JD, Lodish MB, MacKay JP, Orkin SH. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol Cell 1999; 3:219-28. [PMID: 10078204 DOI: 10.1016/s1097-2765(00)80312-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
GATA-1 and FOG (Friend of GATA-1) are each essential for erythroid and megakaryocyte development. FOG, a zinc finger protein, interacts with the amino (N) finger of GATA-1 and cooperates with GATA-1 to promote differentiation. To determine whether this interaction is critical for GATA-1 action, we selected GATA-1 mutants in yeast that fail to interact with FOG but retain normal DNA binding, as well a compensatory FOG mutant that restores interaction. These novel GATA-1 mutants do not promote erythroid differentiation of GATA-1- erythroid cells. Differentiation is rescued by the second-site FOG mutant. Thus, interaction of FOG with GATA-1 is essential for the function of GATA-1 in erythroid differentiation. These findings provide a paradigm for dissecting protein-protein associations involved in mammalian development.
Collapse
Affiliation(s)
- J D Crispino
- Division of Hematology-Oncology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
530
|
Shaw-White JR, Bruno MD, Whitsett JA. GATA-6 activates transcription of thyroid transcription factor-1. J Biol Chem 1999; 274:2658-64. [PMID: 9915795 DOI: 10.1074/jbc.274.5.2658] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroid transcription factor-1 (TTF-1) is expressed in respiratory epithelial cells, where it regulates the transcription of target genes expressed in a cell-selective manner. GATA-5 and -6, members of the zinc finger family of transcription factors, are also expressed in various cell types within in the developing lung. In the present work, GATA-6 mRNA was detected in adult mouse lung, purified mouse type II epithelial cells, and differentiated mouse pulmonary adenocarcinoma cells (MLE-15 cells), being co-expressed with TTF-1 mRNA. In order to test whether GATA factors regulated TTF-1 gene transcription, GATA-5 and -6 expression vectors were co-transfected with TTF-1 luciferase expression vector. GATA-6, but not GATA-5, markedly activated TTF-1 gene transcription in HeLa cells. EMSA and supershift analysis with GATA-6 antiserum demonstrated that GATA-6 in MLE-15 cell nuclear extracts bound to an element located 96-101 base pairs from major start of TTF-1 gene transcription. Site directed mutagenesis of the GATA element in the TTF-1 promoter region inhibited transactivation by GATA-6 in HeLa cells. GATA-6 is co-expressed with TTF-1 in the respiratory epithelium in vivo and respiratory epithelial cells in vitro. GATA-6 strongly enhanced activity of the human TTF-1 gene promoter in vitro. These findings support the concept that GATA-6 may play an important role in lung cell differentiation and gene expression, at least in part by altering the expression of TTF-1 and its potential targets.
Collapse
Affiliation(s)
- J R Shaw-White
- Children's Hospital Medical Center, Division of Pulmonary Biology, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
531
|
Abstract
The zinc finger transcription factor GATA-2 is highly expressed in immature hematopoietic cells and declines with blood cell maturation. To investigate its role in normal adult hematopoiesis, a bicistronic retroviral vector encoding GATA-2 and the green fluorescent protein (GFP) was used to maintain the high levels of GATA-2 that are normally present in primitive hematopoietic cells. Coexpression of the GFP marker facilitated identification and quantitation of vector-expressing cells. Bone marrow cells transduced with the GATA-2 vector expressed GFP as judged by flow cytometry and GATA-2 as assessed by immunoblot analysis. A 50% to 80% reduction in hematopoietic progenitor-derived colony formation was observed with GATA-2/GFP-transduced marrow, compared with marrow transduced with a GFP-containing vector lacking the GATA-2 cDNA. Culture of purified populations of GATA-2/GFP-expressing and nonexpressing cells confirmed a specific ablation of the colony-forming ability of GATA-2/GFP-expressing progenitor cells. Similarly, loss of spleen colony-forming ability was observed for GATA-2/GFP-expressing bone marrow cells. Despite enforced GATA-2 expression, marrow cells remained viable and were negative in assays to evaluate apoptosis. Although efficient transduction of primitive Sca-1+Lin- cells was observed with the GATA-2/GFP vector, GATA-2/GFP-expressing stem cells failed to substantially contribute to the multilineage hematopoietic reconstitution of transplanted mice. Additionally, mice transplanted with purified, GATA-2/GFP-expressing cells showed post-transplant cytopenias and decreased numbers of total and gene-modified bone marrow Sca-1+ Lin−cells. Although Sca-1+ Lin− bone marrow cells expressing the GATA-2/GFP vector were detected after transplantation, no appreciable expansion in their numbers occurred. In contrast, control GFP-expressing Sca-1+Lin− cells expanded at least 40-fold after transplantation. Thus, enforced expression of GATA-2 in pluripotent hematopoietic cells blocked both their amplification and differentiation. There appears to be a critical dose-dependent effect of GATA-2 on blood cell differentiation in that downregulation of GATA-2 expression is necessary for stem cells to contribute to hematopoiesis in vivo.
Collapse
|
532
|
Abstract
AbstractThe zinc finger transcription factor GATA-2 is highly expressed in immature hematopoietic cells and declines with blood cell maturation. To investigate its role in normal adult hematopoiesis, a bicistronic retroviral vector encoding GATA-2 and the green fluorescent protein (GFP) was used to maintain the high levels of GATA-2 that are normally present in primitive hematopoietic cells. Coexpression of the GFP marker facilitated identification and quantitation of vector-expressing cells. Bone marrow cells transduced with the GATA-2 vector expressed GFP as judged by flow cytometry and GATA-2 as assessed by immunoblot analysis. A 50% to 80% reduction in hematopoietic progenitor-derived colony formation was observed with GATA-2/GFP-transduced marrow, compared with marrow transduced with a GFP-containing vector lacking the GATA-2 cDNA. Culture of purified populations of GATA-2/GFP-expressing and nonexpressing cells confirmed a specific ablation of the colony-forming ability of GATA-2/GFP-expressing progenitor cells. Similarly, loss of spleen colony-forming ability was observed for GATA-2/GFP-expressing bone marrow cells. Despite enforced GATA-2 expression, marrow cells remained viable and were negative in assays to evaluate apoptosis. Although efficient transduction of primitive Sca-1+Lin- cells was observed with the GATA-2/GFP vector, GATA-2/GFP-expressing stem cells failed to substantially contribute to the multilineage hematopoietic reconstitution of transplanted mice. Additionally, mice transplanted with purified, GATA-2/GFP-expressing cells showed post-transplant cytopenias and decreased numbers of total and gene-modified bone marrow Sca-1+ Lin−cells. Although Sca-1+ Lin− bone marrow cells expressing the GATA-2/GFP vector were detected after transplantation, no appreciable expansion in their numbers occurred. In contrast, control GFP-expressing Sca-1+Lin− cells expanded at least 40-fold after transplantation. Thus, enforced expression of GATA-2 in pluripotent hematopoietic cells blocked both their amplification and differentiation. There appears to be a critical dose-dependent effect of GATA-2 on blood cell differentiation in that downregulation of GATA-2 expression is necessary for stem cells to contribute to hematopoiesis in vivo.
Collapse
|
533
|
Abstract
Gene inactivation studies have shown that members of the GATA family of transcription factors are critical for endoderm differentiation in mice, flies and worms, yet how these proteins function in such a conserved developmental context has not been understood. We use in vivo footprinting of mouse embryonic endoderm cells to show that a DNA-binding site for GATA factors is occupied on a liver-specific, transcriptional enhancer of the serum albumin gene. GATA site occupancy occurs in gut endoderm cells at their pluripotent stage: the cells have the potential to initiate tissue development but they have not yet been committed to express albumin or other tissue-specific genes. The GATA-4 isoform accounts for about half of the nuclear GATA-factor-binding activity in the endoderm. GATA site occupancy persists during hepatic development and is necessary for the activity of albumin gene enhancer. Thus, GATA factors in the endoderm are among the first to bind essential regulatory sites in chromatin. Binding occurs prior to activation of gene expression, changes in cell morphology or functional commitment that would indicate differentiation. We suggest that GATA factors at target sites in chromatin may generally help potentiate gene expression and tissue specification in metazoan endoderm development.
Collapse
Affiliation(s)
- P Bossard
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
534
|
Fox AH, Kowalski K, King GF, Mackay JP, Crossley M. Key residues characteristic of GATA N-fingers are recognized by FOG. J Biol Chem 1998; 273:33595-603. [PMID: 9837943 DOI: 10.1074/jbc.273.50.33595] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions play significant roles in the control of gene expression. These interactions often occur between small, discrete domains within different transcription factors. In particular, zinc fingers, usually regarded as DNA-binding domains, are now also known to be involved in mediating contacts between proteins. We have investigated the interaction between the erythroid transcription factor GATA-1 and its partner, the 9 zinc finger protein, FOG (Friend Of GATA). We demonstrate that this interaction represents a genuine finger-finger contact, which is dependent on zinc-coordinating residues within each protein. We map the contact domains to the core of the N-terminal zinc finger of GATA-1 and the 6th zinc finger of FOG. Using a scanning substitution strategy we identify key residues within the GATA-1 N-finger which are required for FOG binding. These residues are conserved in the N-fingers of all GATA proteins known to bind FOG, but are not found in the respective C-fingers. This observation may, therefore, account for the particular specificity of FOG for N-fingers. Interestingly, the key N-finger residues are seen to form a contiguous surface, when mapped onto the structure of the N-finger of GATA-1.
Collapse
Affiliation(s)
- A H Fox
- Department of Biochemistry, University of Sydney, New South Wales, 2006 Australia
| | | | | | | | | |
Collapse
|
535
|
Boyes J, Byfield P, Nakatani Y, Ogryzko V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 1998; 396:594-8. [PMID: 9859997 DOI: 10.1038/25166] [Citation(s) in RCA: 559] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modification of histones, DNA-binding proteins found in chromatin, by addition of acetyl groups occurs to a greater degree when the histones are associated with transcriptionally active DNA. A breakthrough in understanding how this acetylation is mediated was the discovery that various transcriptional co-activator proteins have intrinsic histone acetyltransferase activity (for example, Gcn5p, PCAF, TAF(II)250 and p300/CBP. These acetyltransferases also modify certain transcription factors (TFIIEbeta, TFIIF, EKLF and p53). GATA-1 is an important transcription factor in the haematopoietic lineage and is essential for terminal differentiation of erythrocytes and megakaryocytes. It is associated in vivo with the acetyltransferase p300/CBP. Here we report that GATA-1 is acetylated in vitro by p300. This significantly increases the amount of GATA-1 bound to DNA and alters the mobility of GATA-1-DNA complexes, suggestive of a conformational change in GATA-1. GATA-1 is also acetylated in vivo and acetylation directly stimulates GATA-1-dependent transcription. Mutagenesis of important acetylated residues shows that there is a relationship between the acetylation and in vivo function of GATA-1. We propose that acetylation of transcription factors can alter interactions between these factors and DNA and among different transcription factors, and is an integral part of transcription and differentiation processes.
Collapse
Affiliation(s)
- J Boyes
- Section of Gene Function and Regulation, Chester Beatty Laboratories at The Institute of Cancer Research, London, UK.
| | | | | | | |
Collapse
|
536
|
Sykes TG, Rodaway AR, Walmsley ME, Patient RK. Suppression of GATA factor activity causes axis duplication in Xenopus. Development 1998; 125:4595-605. [PMID: 9806909 DOI: 10.1242/dev.125.23.4595] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Xenopus, the dorsoventral axis is patterned by the interplay between active signalling in ventral territories, and secreted antagonists from Spemann's organiser. Two signals are important in ventral cells, bone morphogenetic protein-4 (BMP-4) and Wnt-8. BMP-4 plays a conserved role in patterning the vertebrate dorsoventral axis, whilst the precise role of Wnt-8 and its relationship with BMP-4, are still unclear. Here we have investigated the role played by the GATA family of transcription factors, which are expressed in ventral mesendoderm during gastrulation and are required for the differentiation of blood and endodermal tissues. Injection ventrally of a dominant-interfering GATA factor (called G2en) induced the formation of secondary axes that phenocopy those induced by the dominant-negative BMP receptor. However, unlike inhibiting BMP signalling, inhibiting GATA activity in the ectoderm does not lead to neuralisation. In addition, analysis of gene expression in G2en injected embryos reveals that at least one known target gene for BMP-4, the homeobox gene Vent-2, is unaffected. In contrast, the expression of Wnt-8 and the homeobox gene Vent-1 is suppressed by G2en, whilst the organiser-secreted BMP antagonist chordin becomes ectopically expressed. These data therefore suggest that GATA activity is essential for ventral cell fate and that subsets of ventralising and dorsalising genes require GATA activity for their expression and suppression, respectively. Finally, using G2en, we show that suppression of Wnt-8 expression, in conjunction with blocked BMP signalling, does not lead to head formation, suggesting that the head-suppressing Wnt signal may not be Wnt-8.
Collapse
Affiliation(s)
- T G Sykes
- Developmental Biology Research Centre, The Randall Institute, King's College London, London WC2B 5RL, UK
| | | | | | | |
Collapse
|
537
|
Mackay JP, Kowalski K, Fox AH, Czolij R, King GF, Crossley M. Involvement of the N-finger in the self-association of GATA-1. J Biol Chem 1998; 273:30560-7. [PMID: 9804826 DOI: 10.1074/jbc.273.46.30560] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc fingers are recognized as small protein domains that bind to specific DNA sequences. Recently however, zinc fingers from a number of proteins, in particular the GATA family of transcription factors, have also been implicated in specific protein-protein interactions. The erythroid protein GATA-1 contains two zinc fingers: the C-finger, which is sufficient for sequence-specific DNA-binding, and the N-finger, which appears both to modulate DNA-binding and to interact with other transcription factors. We have expressed and purified the N-finger domain and investigated its involvement in the self-association of GATA-1. We demonstrate that this domain does not homodimerize but instead makes intermolecular contacts with the C-finger, suggesting that GATA dimers are maintained by reciprocal N-finger-C-finger contacts. Deletion analysis identifies a 25-residue region, C-terminal to the core N-finger domain, that is sufficient for interaction with intact GATA-1. A similar subdomain exists C-terminal to the C-finger, and we show that self-association is substantially reduced when both subdomains are disrupted by mutation. Moreover, mutations that impair GATA-1 self-association also interfere with its ability to activate transcription in transfection studies.
Collapse
Affiliation(s)
- J P Mackay
- Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
538
|
Abstract
Recent studies have shown that hematopoietic transcription factors can engage in multiple protein-protein interactions. Accumulating evidence indicates that specific complexes define differentiation lineages and differentiation stages. It is proposed that these complexes acquire new functions during blood cell differentiation through successive changes in composition - much as discussion topics of groups at a cocktail party take new directions as new people join and others leave.
Collapse
Affiliation(s)
- M H Sieweke
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| | | |
Collapse
|
539
|
Gillemans N, Tewari R, Lindeboom F, Rottier R, de Wit T, Wijgerde M, Grosveld F, Philipsen S. Altered DNA-binding specificity mutants of EKLF and Sp1 show that EKLF is an activator of the beta-globin locus control region in vivo. Genes Dev 1998; 12:2863-73. [PMID: 9744863 PMCID: PMC317172 DOI: 10.1101/gad.12.18.2863] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The locus control region of the beta-globin cluster contains five DNase I hypersensitive sites (5'HS1-5) required for locus activation. 5'HS3 contains six G-rich motifs that are essential for its activity. Members of a protein family, characterized by three zinc fingers highly homologous to those found in transcription factor Sp1, interact with these motifs. Because point mutagenesis cannot distinguish between family members, it is not known which protein activates 5'HS3. We show that the function of such closely related proteins can be distinguished in vivo by matching point mutations in 5'HS3 with amino acid changes in the zinc fingers of Sp1 and EKLF. Testing their activity in transgenic mice shows that EKLF is a direct activator of 5'HS3.
Collapse
Affiliation(s)
- N Gillemans
- Erasmus University Rotterdam, Medical Genetics Center-Department of Cell Biology, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
540
|
Moilanen AM, Poukka H, Karvonen U, Häkli M, Jänne OA, Palvimo JJ. Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol Cell Biol 1998; 18:5128-39. [PMID: 9710597 PMCID: PMC109098 DOI: 10.1128/mcb.18.9.5128] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/1997] [Accepted: 06/02/1998] [Indexed: 11/20/2022] Open
Abstract
Using the DNA-binding domain of androgen receptor (AR) as a bait in a yeast two-hybrid screening, we have identified a small nuclear RING finger protein, termed SNURF, that interacts with AR in a hormone-dependent fashion in both yeast and mammalian cells. Physical interaction between AR and SNURF was demonstrated by coimmunoprecipitation from cell extracts and by protein-protein affinity chromatography. Rat SNURF is a highly hydrophilic protein consisting of 194 amino acid residues and comprising a consensus C3HC4 zinc finger (RING) structure in the C-terminal region and a bipartite nuclear localization signal near the N terminus. Immunohistochemical experiments indicated that SNURF is a nuclear protein. SNURF mRNA is expressed in a variety of human and rat tissues. Overexpression of SNURF in cultured mammalian cells enhanced not only androgen, glucocorticoid, and progesterone receptor-dependent transactivation but also basal transcription from steroid-regulated promoters. Mutation of two of the potential Zn2+ coordinating cysteines to serines in the RING finger completely abolished the ability of SNURF to enhance basal transcription, whereas its ability to activate steroid receptor-dependent transcription was maintained, suggesting that there are separate domains in SNURF that mediate interactions with different regulatory factors. SNURF is capable of interacting in vitro with the TATA-binding protein, and the RING finger domain is needed for this interaction. Collectively, we have identified and characterized a ubiquitously expressed RING finger protein, SNURF, that may function as a bridging factor and regulate steroid receptor-dependent transcription by a mechanism different from those of previously identified coactivator or integrator proteins.
Collapse
Affiliation(s)
- A M Moilanen
- Department of Physiology, Institute of Biomedicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
541
|
Turner J, Crossley M. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators. EMBO J 1998; 17:5129-40. [PMID: 9724649 PMCID: PMC1170841 DOI: 10.1093/emboj/17.17.5129] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Basic Krüppel-like factor (BKLF) is a zinc finger protein that recognizes CACCC elements in DNA. It is expressed highly in erythroid tissues, the brain and other selected cell types. We have studied the activity of BKLF and found that it is capable of repressing transcription, and have mapped its repression domain to the N-terminus. We carried out a two-hybrid screen against BKLF and isolated a novel clone encoding murine C-terminal-binding protein 2 (mCtBP2). mCtBP2 is related to human CtBP, a cellular protein which binds to a Pro-X-Asp-Leu-Ser motif in the C-terminus of the adenoviral oncoprotein, E1a. We show that mCtBP2 recognizes a related motif in the minimal repression domain of BKLF, and the integrity of this motif is required for repression activity. Moreover, when tethered to a promoter by a heterologous DNA-binding domain, mCtBP2 functions as a potent repressor. Finally, we demonstrate that mCtBP2 also interacts with the mammalian transcripition factors Evi-1, AREB6, ZEB and FOG. These results establish a new member of the CtBP family, mCtBP2, as a mammalian co-repressor targeting diverse transcriptional regulators.
Collapse
Affiliation(s)
- J Turner
- Department of Biochemistry, G08, University of Sydney, NSW, Australia, 2006
| | | |
Collapse
|
542
|
Abstract
Erythrocyte production in mammals is known to depend on the exposure of committed progenitor cells to the glycoprotein hormone erythropoietin (Epo). In chimeric mice, gene disruption experiments have demonstrated a critical role for Epo signaling in development beyond the erythroid colony-forming unit (CFU-e) stage. However, whether this might include the possible Epo-specific induction of red blood cell differentiation events is largely unresolved. To address this issue, mechanisms of induced globin expression in Epo-responsive SKT6 cells have been investigated. Chimeric receptors containing an epidermal growth factor (EGF) receptor extracellular domain and varied Epo receptor cytoplasmic domains first were expressed stably at physiological levels in SKT6 cells, and their activities in mediating induced hemoglobinization were assayed. While activity was exerted by a full-length chimera (EE483), truncation to remove 7 of 8 carboxyl-terminal tyrosine sites (EE372) markedly enhanced differentiation signaling. Moreover, mutation of a STAT5 binding site in this construct (EE372-Y343F) inhibited induced globin expression and SKT6 cell hemoglobinization, as did the ectopic expression of dominant-negative forms of STAT5 in parental SKT6 cells. As in normal CFU-e, SKT6 cells also were shown to express functional receptors for stem cell factor (SCF). To further define possible specific requirements for differentiation signaling, effects of SCF on SKT6 cell hemoglobinization were tested. Interestingly, SCF not only failed to promote globin expression but inhibited this Epo-induced event in a dose-dependent, STAT5-independent fashion. Thus, effects of Epo on globin expression may depend specifically on STAT5-dependent events, and SCF normally may function to attenuate terminal differentiation while promoting CFU-e expansion.© 1998 by The American Society of Hematology.
Collapse
|
543
|
Abstract
AbstractErythrocyte production in mammals is known to depend on the exposure of committed progenitor cells to the glycoprotein hormone erythropoietin (Epo). In chimeric mice, gene disruption experiments have demonstrated a critical role for Epo signaling in development beyond the erythroid colony-forming unit (CFU-e) stage. However, whether this might include the possible Epo-specific induction of red blood cell differentiation events is largely unresolved. To address this issue, mechanisms of induced globin expression in Epo-responsive SKT6 cells have been investigated. Chimeric receptors containing an epidermal growth factor (EGF) receptor extracellular domain and varied Epo receptor cytoplasmic domains first were expressed stably at physiological levels in SKT6 cells, and their activities in mediating induced hemoglobinization were assayed. While activity was exerted by a full-length chimera (EE483), truncation to remove 7 of 8 carboxyl-terminal tyrosine sites (EE372) markedly enhanced differentiation signaling. Moreover, mutation of a STAT5 binding site in this construct (EE372-Y343F) inhibited induced globin expression and SKT6 cell hemoglobinization, as did the ectopic expression of dominant-negative forms of STAT5 in parental SKT6 cells. As in normal CFU-e, SKT6 cells also were shown to express functional receptors for stem cell factor (SCF). To further define possible specific requirements for differentiation signaling, effects of SCF on SKT6 cell hemoglobinization were tested. Interestingly, SCF not only failed to promote globin expression but inhibited this Epo-induced event in a dose-dependent, STAT5-independent fashion. Thus, effects of Epo on globin expression may depend specifically on STAT5-dependent events, and SCF normally may function to attenuate terminal differentiation while promoting CFU-e expansion.© 1998 by The American Society of Hematology.
Collapse
|
544
|
Surinya KH, Cox TC, May BK. Identification and characterization of a conserved erythroid-specific enhancer located in intron 8 of the human 5-aminolevulinate synthase 2 gene. J Biol Chem 1998; 273:16798-809. [PMID: 9642238 DOI: 10.1074/jbc.273.27.16798] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thirty five kilobases of sequence encompassing the human erythroid 5-aminolevulinate synthase (ALAS2) gene have been determined. Analysis revealed a very low GC content, few repetitive elements, and evidence for the insertion of a reverse-transcribed mRNA sequence and a neighboring gene. We have investigated whether introns 1, 3, and 8, which correspond to DNase I-hypersensitivity sites in the structurally related mouse ALAS2 gene, affect expression of the human ALAS2 promoter in transient expression assays. Whereas intron 3 was marginally inhibitory, introns 1 and 8 of the human gene stimulated promoter activity. Intron 8 harbored a strong erythroid-specific enhancer activity which was orientation-dependent. Deletion analysis of this region localized enhancer activity to a fragment of 239 base pairs. Transcription factor binding sites clustered within this region include GATA motifs and CACCC boxes, critical regulatory sequences of many erythroid cell-expressed genes. These sites were also identified in the corresponding intron of both the murine and canine ALAS2 genes. Mutagenesis of these conserved sites in the human intron 8 sequence and transient expression analysis in erythroid cells established the functional importance of one GATA motif and two CACCC boxes. The GATA motif bound GATA-1 in vitro. The two functional CACCC boxes each bound Sp1 or a related protein in vitro, but binding of the erythroid Krüppel-like factor and the basic Krüppel-like factor could not be detected. The intron 8 enhancer region was not activated by GATA-1 together with Sp1 in transactivation experiments in COS-1 cells indicating the involvement of a related Sp1 protein or of another unidentified erythroid factor. Overall, these results demonstrate that a GATA-1-binding site and CACCC boxes located within the human ALAS2 intron 8 are critical for the erythroid-specific enhancer activity in transfected erythroid cells, and due to the conserved nature of these binding sites across species, it seems likely that these sites play a functional role in the tissue-restricted expression of the gene in vivo.
Collapse
Affiliation(s)
- K H Surinya
- Department of Biochemistry, University of Adelaide, Adelaide, South Australia, Australia 5005
| | | | | |
Collapse
|
545
|
Feng B, Marzluf GA. Interaction between major nitrogen regulatory protein NIT2 and pathway-specific regulatory factor NIT4 is required for their synergistic activation of gene expression in Neurospora crassa. Mol Cell Biol 1998; 18:3983-90. [PMID: 9632783 PMCID: PMC108983 DOI: 10.1128/mcb.18.7.3983] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Neurospora crassa, the major nitrogen regulatory protein, NIT2, a member of the GATA family of transcription factors, controls positively the expression of numerous genes which specify nitrogen catabolic enzymes. Expression of the highly regulated structural gene nit-3, which encodes nitrate reductase, is dependent upon a synergistic interaction of NIT2 with a pathway-specific control protein, NIT4, a member of the GAL4 family of fungal regulatory factors. The NIT2 and NIT4 proteins both bind at specific recognition elements in the nit-3 promoter, but, in addition, we show that a direct protein-protein interaction between NIT2 and NIT4 is essential for optimal expression of the nit-3 structural gene. Neurospora possesses at least five different GATA factors which control different areas of cellular function, but which have a similar DNA binding specificity. Significantly, only NIT2, of the several Neurospora GATA factors examined, interacts with NIT4. We propose that protein-protein interactions of the individual GATA factors with additional pathway-specific regulatory factors determine each of their specific regulatory functions.
Collapse
Affiliation(s)
- B Feng
- Department of Biochemistry and Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
546
|
|
547
|
|
548
|
Anderson KP, Crable SC, Lingrel JB. Multiple proteins binding to a GATA-E box-GATA motif regulate the erythroid Krüppel-like factor (EKLF) gene. J Biol Chem 1998; 273:14347-54. [PMID: 9603943 DOI: 10.1074/jbc.273.23.14347] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is a zinc finger transcription factor required for beta-globin gene expression and is implicated as one of the key factors necessary for the fetal to adult switch in globin gene expression. In an effort to identify factors involved in the expression of this important erythroid-specific regulatory protein, we have isolated the mouse EKLF gene and systematically analyzed the promoter region. Initially, a reporter construct with 1150 base pairs of the EKLF 5'-region was introduced into transgenic mice and shown to direct erythroid-specific expression. We continued the expression studies in erythroid cells and have identified a sequence element consisting of two GATA sites flanking an E box motif. The three sites act in concert to elevate the transcriptional activity of the EKLF promoter. Each site is essential for EKLF expression indicating that the three binding sites do not work additively, but rather function as a unit. We further show that GATA-1 binds to the two GATA sites and present evidence for binding of another factor from erythroid cell nuclear extracts to the E box motif. These results are consistent with the formation of a quaternary complex composed of an E box dimer and two GATA-1 proteins binding at a combined GATA-E box-GATA activator element in the distal EKLF promoter.
Collapse
Affiliation(s)
- K P Anderson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | | | |
Collapse
|
549
|
Seshasayee D, Gaines P, Wojchowski DM. GATA-1 dominantly activates a program of erythroid gene expression in factor-dependent myeloid FDCW2 cells. Mol Cell Biol 1998; 18:3278-88. [PMID: 9584168 PMCID: PMC108909 DOI: 10.1128/mcb.18.6.3278] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/1997] [Accepted: 03/09/1998] [Indexed: 02/07/2023] Open
Abstract
Erythrocyte development has previously been shown to depend upon the expression of the lineage-restricted trans-acting factor GATA-1. Despite predicted roles for this factor during early development, GATA-1-deficient cells in chimeric mice and embryonic stem cell cultures mature to a late proerythroblast stage and express at least certain genes that normally are thought to be regulated by GATA-1 (including erythroid Krüppel-like factor [EKLF] and the erythropoietin [Epo] receptor). Opportunities to test roles for GATA-1 in erythroid gene activation in these systems therefore are limited. In the present study, in an alternate approach to test the function of GATA-1, GATA-1 has been expressed together with the Epo receptor in myeloid FDCW2 cells and the resulting effects on cytokine-dependent proliferation and erythroid gene expression have been assessed. GATA-1 expression at low levels delayed FDCW2ER cell cycle progression at the G1 phase specifically during Epo-induced mitogenesis. Upon expression of GATA-1 at increased levels, proliferation in response to Epo, interleukin-3 (IL-3), and stem cell factor was attenuated and endogenous GATA-1, EKLF and betamaj-globin gene expression was activated. Friend of GATA-1 (FOG) transcript levels also were enhanced, and ets-1 and c-mpl but not Epo receptor gene expression was induced. Finally, in FDCW2 cells expressing increased levels of GATA-1 and a carboxyl-terminally truncated Epo receptor, Epo (with respect to IL-3 as a control) was shown to markedly promote globin transcript expression. Thus, novel evidence for select hierarchical roles for GATA-1 and Epo in erythroid lineage specification is provided.
Collapse
Affiliation(s)
- D Seshasayee
- Graduate Program in Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
550
|
Abstract
The exponential growth in the amount of genomic data published in recent years has led to increased efforts in analysing genomes for the presence of repeated sequences, which has in turn fostered the development of novel repeat recognition methods. This has resulted in a deepened understanding of the importance and abundance of protein and nucleotide repeats. In the past year, a shift in focus has taken place--from the significance of repeats to protein structure and function, mostly at the protein domain level, to the implication of generally much shorter repeated fragments in genetic diseases and protein malfunctioning.
Collapse
Affiliation(s)
- J Heringa
- Division of Mathematical Biology, National Institute for Medical Research, London, UK.
| |
Collapse
|