501
|
Affiliation(s)
- L N Johnson
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU.
| | | |
Collapse
|
502
|
Scoggin KE, Ulloa A, Nyborg JK. The oncoprotein Tax binds the SRC-1-interacting domain of CBP/p300 to mediate transcriptional activation. Mol Cell Biol 2001; 21:5520-30. [PMID: 11463834 PMCID: PMC87274 DOI: 10.1128/mcb.21.16.5520-5530.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Accepted: 05/14/2001] [Indexed: 11/20/2022] Open
Abstract
Oncogenesis associated with human T-cell leukemia virus (HTLV) infection is directly linked to the virally encoded transcription factor Tax. To activate HTLV-1 transcription Tax interacts with the cellular protein CREB and the pleiotropic coactivators CBP and p300. While extensively studied, the molecular mechanisms of Tax transcription function and coactivator utilization are not fully understood. Previous studies have focused on Tax binding to the KIX domain of CBP, as this was believed to be the key step in recruiting the coactivator to the HTLV-1 promoter. In this study, we identify a carboxy-terminal region of CBP (and p300) that strongly interacts with Tax and mediates Tax transcription function. Through deletion mutagenesis, we identify amino acids 2003 to 2212 of CBP, which we call carboxy-terminal region 2 (CR2), as the minimal region for Tax interaction. Interestingly, this domain corresponds to the steroid receptor coactivator 1 (SRC-1)-interacting domain of CBP. We show that a double point mutant targeted to one of the putative alpha-helical motifs in this domain significantly compromises the interaction with Tax. We also characterize the region of Tax responsible for interaction with CR2 and show that the previously identified transactivation domain of Tax (amino acids 312 to 319) participates in CR2 binding. This region of Tax corresponds to a consensus amphipathic helix, and single point mutations targeted to amino acids on the face of this helix abolish interaction with CR2 and dramatically reduce Tax transcription function. Finally, we demonstrate that Tax and SRC-1 bind to CR2 in a mutually exclusive fashion. Together, these studies identify a novel Tax-interacting site on CBP/p300 and extend our understanding of the molecular mechanism of Tax transactivation.
Collapse
Affiliation(s)
- K E Scoggin
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
503
|
Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2:599-609. [PMID: 11483993 DOI: 10.1038/35085068] [Citation(s) in RCA: 1966] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor CREB -- for 'cyclic AMP response element-binding protein' -- functions in glucose homeostasis, growth-factor-dependent cell survival, and has been implicated in learning and memory. CREB is phosphorylated in response to various signals, but how is specificity achieved in these signalling pathways?
Collapse
MESH Headings
- Activating Transcription Factor 1
- Alternative Splicing
- Animals
- Binding Sites
- Cyclic AMP/physiology
- Cyclic AMP Response Element Modulator
- Cyclic AMP Response Element-Binding Protein/chemistry
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/physiology
- Cyclic AMP-Dependent Protein Kinases/physiology
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation/physiology
- Gene Products, tax/physiology
- Growth Substances/physiology
- Human T-lymphotropic virus 1/genetics
- Leucine Zippers
- Macromolecular Substances
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Genetic
- Models, Molecular
- Multigene Family
- Nuclear Proteins/physiology
- Phosphorylation
- Protein Conformation
- Protein Processing, Post-Translational
- Regulatory Sequences, Nucleic Acid
- Repressor Proteins
- Second Messenger Systems/physiology
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Trans-Activators/physiology
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- B Mayr
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
504
|
Osburn DL, Shao G, Seidel HM, Schulman IG. Ligand-dependent degradation of retinoid X receptors does not require transcriptional activity or coactivator interactions. Mol Cell Biol 2001; 21:4909-18. [PMID: 11438648 PMCID: PMC87210 DOI: 10.1128/mcb.21.15.4909-4918.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cells utilize ubiquitin-mediated proteolysis to regulate the activity of numerous proteins involved in signal transduction, cell cycle control, and transcriptional regulation. For a number of transcription factors, there appears to be a direct correlation between transcriptional activity and protein instability, suggesting that cells use targeted destruction as one method to down-regulate or attenuate gene expression. In this report we demonstrate that retinoid X receptors (RXRs) which function as versatile mediators of nuclear hormone-dependent gene expression are marked for destruction upon binding agonist ligands. Interestingly, when RXR serves as a heterodimeric partner for retinoic acid (RAR) or thyroid hormone (TR) receptors, binding of agonists by RAR or TR leads to degradation of both the transcriptionally active RAR or TR subunits as well as the transcriptionally inactive RXR subunit. Furthermore, using a series of mutants in the ligand-dependent activation domain (activation function 2), we demonstrate that agonist-stimulated degradation of RXR does not require corepressor release, coactivator binding, or transcriptional activity. Taken together, the data suggest a model for targeted destruction of transcription factors based on structural or conformational signals as opposed to functional coupling with gene transcription.
Collapse
Affiliation(s)
- D L Osburn
- Nuclear Receptor Discovery, Ligand Pharmaceuticals, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
505
|
Butscher WG, Haggerty CM, Chaudhry S, Gardner K. Targeting of p300 to the interleukin-2 promoter via CREB-Rel cross-talk during mitogen and oncogenic molecular signaling in activated T-cells. J Biol Chem 2001; 276:27647-56. [PMID: 11313336 DOI: 10.1074/jbc.m009614200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we explore the mechanisms of targeting of p300 to the interleukin-2 (IL-2) promoter in response to mitogenic and oncogenic molecular signals. Recruitment of p300 by cAMP-responsive element-binding protein-Rel cross-talk at the composite CD28 response element (CD28RE)-TRE element of the IL-2 promoter is essential for promoter inducibility during T-cell activation, and CD28RE-TRE is the exclusive target of the human T-cell lymphotropic virus type I oncoprotein Tax. The intrinsic histone acetyltransferase activity of p300 is dispensable for activation of the IL-2 promoter, and the N-terminal 743 residues contain the minimal structural requirements for synergistic transactivation of the CD28RE-TRE, the IL-2 promoter, and endogenous IL-2 gene expression. Mutational analysis of p300 reveals differential structural requirements for the N-terminal p300 module by individual cis-elements within the IL-2 promoter. These findings provide evidence that p300 assembles at the IL-2 promoter to form an enhanceosome-like signal transduction target that is centrally integrated at the CD28RE-TRE element of the IL-2 promoter through specific protein module-targeted associations in activated T-cells.
Collapse
Affiliation(s)
- W G Butscher
- Advanced Technology Center, Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
506
|
Kistanova E, Dell H, Tsantili P, Falvey E, Cladaras C, Hadzopoulou-Cladaras M. The activation function-1 of hepatocyte nuclear factor-4 is an acidic activator that mediates interactions through bulky hydrophobic residues. Biochem J 2001; 356:635-42. [PMID: 11368795 PMCID: PMC1221879 DOI: 10.1042/0264-6021:3560635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hepatocyte nuclear factor-4 (HNF-4) contains two transcription activation domains. One domain, activation function-1 (AF-1), consists of the extreme N-terminal 24 amino acids and functions as a constitutive autonomous activator of transcription. This short transactivator belongs to the class of acidic activators, and it is predicted to adopt an amphipathic alpha-helical structure. Transcriptional analysis of sequential point mutations of the negatively charged residues (Asp and Glu) revealed a stepwise decrease in activity, while mutation of all acidic residues resulted in complete loss of transcriptional activity. Mutations of aromatic and hydrophobic amino acids surrounding the negatively charged residues had a much more profound effect than mutations of acidic amino acids, since even a single mutation of these residues resulted in a dramatic decrease in transactivation, thus demonstrating the importance of hydrophobic residues in AF-1 activity. Like other acidic activators, the AF-1 of HNF-4 binds the transcription factor IIB and the TATA-binding protein directly in vitro. In addition, the cAMP-response-element-binding-protein, a transcriptional adapter involved in the transactivation of a plethora of transcription factors, interacts with the AF-1 of HNF-4 and co-operates in the process of transactivation by HNF-4. The different protein targets of AF-1 suggest that the AF-1 of HNF-4 may be involved in recruiting both general transcription factors and chromatin remodelling proteins during activation of gene expression.
Collapse
Affiliation(s)
- E Kistanova
- Department of Medicine, Section of Molecular Genetics, Cardiovascular Institute, Boston University School of Medicine, Center for Advanced Biomedical Research, 700 Albany Street, W-509 Boston, MA 02118-2394, USA
| | | | | | | | | | | |
Collapse
|
507
|
Jones LC, Whitlock JP. Dioxin-inducible transactivation in a chromosomal setting. Analysis of the acidic domain of the Ah receptor. J Biol Chem 2001; 276:25037-42. [PMID: 11350970 DOI: 10.1074/jbc.m102910200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed the transactivation function of the acidic segment of the Ah receptor (amino acids 515-583) by reconstituting AhR-defective mouse hepatoma cells with mutants. Our data reveal that both hydrophobic and acidic residues are important for transactivation and that these residues are clustered in two regions of the acidic segment of AhR. Both regions are crucial for function, because disruption of either one substantially impairs transactivation of the chromosomal CYP1A1 target gene. Neither region contains an amino acid motif that resembles those reported for other acidic activation domains. Furthermore, proline substitutions in both regions do not impair transactivation in vivo, a finding that implies that alpha-helix formation is not required for function.
Collapse
Affiliation(s)
- L C Jones
- Division of Hematology and Oncology, Cedars Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | |
Collapse
|
508
|
Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, Ptashne M, Wagner G. Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. Genes Dev 2001; 15:1007-20. [PMID: 11316794 PMCID: PMC312679 DOI: 10.1101/gad.873901] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The GAL4 dimerization domain (GAL4-dd) is a powerful transcriptional activator when tethered to DNA in a cell bearing a mutant of the GAL11 protein, named GAL11P. GAL11P (like GAL11) is a component of the RNA-polymerase II holoenzyme. Nuclear magnetic resonance (NMR) studies of GAL4-dd revealed an elongated dimer structure with C(2) symmetry containing three helices that mediate dimerization via coiled-coil contacts. The two loops between the three coiled coils form mobile bulges causing a variation of twist angles between the helix pairs. Chemical shift perturbation analysis mapped the GAL11P-binding site to the C-terminal helix alpha3 and the loop between alpha1 and alpha2. One GAL11P monomer binds to one GAL4-dd dimer rendering the dimer asymmetric and implying an extreme negative cooperativity mechanism. Alanine-scanning mutagenesis of GAL4-dd showed that the NMR-derived GAL11P-binding face is crucial for the novel transcriptional activating function of the GAL4-dd on GAL11P interaction. The binding of GAL4 to GAL11P, although an artificial interaction, represents a unique structural motif for an activating region capable of binding to a single target to effect gene expression.
Collapse
Affiliation(s)
- P Hidalgo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
509
|
Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 2001; 21:2249-58. [PMID: 11259575 PMCID: PMC86859 DOI: 10.1128/mcb.21.7.2249-2258.2001] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fragment of the mixed-lineage leukemia (MLL) gene (Mll, HRX, ALL-1) was identified in a yeast genetic screen designed to isolate proteins that interact with the CREB-CREB-binding protein (CBP) complex. When tested for binding to CREB or CBP individually, this MLL fragment interacted directly with CBP, but not with CREB. In vitro binding experiments refined the minimal region of interaction to amino acids 2829 to 2883 of MLL, a potent transcriptional activation domain, and amino acids 581 to 687 of CBP (the CREB-binding or KIX domain). The transactivation activity of MLL was dependent on CBP, as either adenovirus E1A expression, which inhibits CBP activity, or alteration of MLL residues important for CBP interaction proved effective at inhibiting MLL-mediated transactivation. Single amino acid substitutions within the MLL activation domain revealed that five hydrophobic residues, potentially forming a hydrophobic face of an amphipathic helix, were critical for the interaction of MLL with CBP. Using purified components, we found that the MLL activation domain facilitated the binding of CBP to phosphorylated CREB. In contrast with paradigms in which factors compete for limiting quantities of CBP, these results reveal that two distinct transcription factor activation domains can cooperatively target the same motif on CBP.
Collapse
Affiliation(s)
- P Ernst
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
510
|
Ostedgaard LS, Baldursson O, Welsh MJ. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by its R domain. J Biol Chem 2001; 276:7689-92. [PMID: 11244086 DOI: 10.1074/jbc.r100001200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- L S Ostedgaard
- Howard Hughes Medical Institute, Departments of Internal Medicine and Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
511
|
Affiliation(s)
- A J DeMaggio
- Icos Corporation, Bothell, Washington 98021, USA
| | | | | | | | | |
Collapse
|
512
|
Long F, Schipani E, Asahara H, Kronenberg H, Montminy M. The CREB family of activators is required for endochondral bone development. Development 2001; 128:541-50. [PMID: 11171337 DOI: 10.1242/dev.128.4.541] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have evaluated the importance of the CREB family of transcriptional activators for endochondral bone formation by expressing a potent dominant negative CREB inhibitor (A-CREB) in growth plate chondrocytes of transgenic mice. A-CREB transgenic mice exhibited short-limbed dwarfism and died minutes after birth, apparently due to respiratory failure from a diminished rib cage circumference. Consistent with the robust Ser133 phosphorylation and, hence, activation of CREB in chondrocytes within the proliferative zone of wild-type cartilage during development, chondrocytes in A-CREB mutant cartilage exhibited a profound decrease in proliferative index and a delay in hypertrophy. Correspondingly, the expression of certain signaling molecules in cartilage, most notably the Indian hedgehog (Ihh) receptor patched (Ptch), was lower in A-CREB expressing versus wild-type chondrocytes. CREB appears to promote Ptch expression in proliferating chondrocytes via an Ihh-independent pathway; phospho-CREB levels were comparable in cartilage from Ihh(−/−) and wild-type mice. These results demonstrate the presence of a distinct signaling pathway in developing bone that potentiates Ihh signaling and regulates chondrocyte proliferation, at least in part, via the CREB family of activators.
Collapse
Affiliation(s)
- F Long
- The Salk Institute for Biological Studies, Peptide Biology Laboratories, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
513
|
Felinski EA, Kim J, Lu J, Quinn PG. Recruitment of an RNA polymerase II complex is mediated by the constitutive activation domain in CREB, independently of CREB phosphorylation. Mol Cell Biol 2001; 21:1001-10. [PMID: 11158288 PMCID: PMC99555 DOI: 10.1128/mcb.21.4.1001-1010.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Accepted: 11/14/2000] [Indexed: 11/20/2022] Open
Abstract
The cAMP response element binding protein (CREB) is a bifunctional transcription activator, exerting its effects through a constitutive activation domain (CAD) and a distinct kinase inducible domain (KID), which requires phosphorylation of Ser-133 for activity. Both CAD and phospho-KID have been proposed to recruit polymerase complexes, but this has not been directly tested. Here, we show that the entire CREB activation domain or the CAD enhanced recruitment of a complex containing TFIID, TFIIB, and RNA polymerase II to a linked promoter. The nuclear extracts used mediated protein kinase A (PKA)-inducible transcription, but phosphorylation of CRG (both of the CREB activation domains fused to the Gal4 DNA binding domain) or KID-G4 did not mediate recruitment of a complex, and mutation of the PKA site in CRG abolished transcription induction by PKA but had no effect upon recruitment. The CREB-binding protein (CBP) was not detected in the recruited complex. Our results support a model for transcription activation in which the interaction between the CREB CAD and hTAFII130 of TFIID promotes the recruitment of a polymerase complex to the promoter.
Collapse
Affiliation(s)
- E A Felinski
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
514
|
Abstract
Genomic DNA in eukaryotes is tightly packed in the form of a highly ordered chromatin structure. In view of this tight packing, one of the most important questions in biology is how the transcriptional machinery regulates target genes in chromatin. Reversible modification of histones by acetylation is involved in transcriptional activation as well as repression in chromatin contexts. Recent studies with highly purified histone acetylases have provided insights into the mechanisms whereby acetylases contribute to transcriptional control. Furthermore, they suggest the possibility that histone acetylases could play roles in various forms of DNA metabolism as well as in transcription in chromatin contexts.
Collapse
Affiliation(s)
- Y Nakatani
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
515
|
Encinar JA, Mallo GV, Mizyrycki C, Giono L, Gonzalez-Ros JM, Rico M, Cánepa E, Moreno S, Neira JL, Iovanna JL. Human p8 is a HMG-I/Y-like protein with DNA binding activity enhanced by phosphorylation. J Biol Chem 2001; 276:2742-51. [PMID: 11056169 DOI: 10.1074/jbc.m008594200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the biochemical features, the conformational preferences in solution, and the DNA binding properties of human p8 (hp8), a nucleoprotein whose expression is affected during acute pancreatitis. Biochemical studies show that hp8 has properties of the high mobility group proteins, HMG-I/Y. Structural studies have been carried out by using circular dichroism (near- and far-ultraviolet), Fourier transform infrared, and NMR spectroscopies. All the biophysical probes indicate that hp8 is monomeric (up to 1 mm concentration) and partially unfolded in solution. The protein seems to bind DNA weakly, as shown by electrophoretic gel shift studies. On the other hand, hp8 is a substrate for protein kinase A (PKA). The phosphorylated hp8 (PKAhp8) has a higher content of secondary structure than the nonphosphorylated protein, as concluded by Fourier transform infrared studies. PKAhp8 binds DNA strongly, as shown by the changes in circular dichroism spectra, and gel shift analysis. Thus, although there is not a high sequence homology with HMG-I/Y proteins, hp8 can be considered as a HMG-I/Y-like protein.
Collapse
Affiliation(s)
- J A Encinar
- Centro de Biologia Molecular y Celular, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
516
|
Wu X, McMurray CT. Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J Biol Chem 2001; 276:1735-41. [PMID: 11013247 DOI: 10.1074/jbc.m006727200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin Kinase II (CamKII) inhibits the transcription of many CRE-dependent genes, but the mechanism of dominant transcriptional inhibition is unknown. Here we show that phosphorylation of serine 142 in CREB by CamKII leads to dissociation of the CREB dimer without impeding DNA binding capacity. CamKII-modified CREB binds to DNA efficiently as a monomer; however, monomeric CREB is unable to recruit the CREB-binding protein (CBP) even when phosphorylated at serine 133. Thus, CamKII confers a dominant inhibitory effect on transcription by preventing dimerization of CREB, and this mechanism may account for the attenuation of gene expression.
Collapse
Affiliation(s)
- X Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, the Mayo Graduate School, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
517
|
Li J, Lee GI, Van Doren SR, Walker JC. The FHA domain mediates phosphoprotein interactions. J Cell Sci 2000; 113 Pt 23:4143-9. [PMID: 11069759 DOI: 10.1242/jcs.113.23.4143] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forkhead-associated (FHA) domain is a phosphopeptide-binding domain first identified in a group of forkhead transcription factors but is present in a wide variety of proteins from both prokaryotes and eukaryotes. In yeast and human, many proteins containing an FHA domain are found in the nucleus and involved in DNA repair, cell cycle arrest, or pre-mRNA processing. In plants, the FHA domain is part of a protein that is localized to the plasma membrane and participates in the regulation of receptor-like protein kinase signaling pathways. Recent studies show that a functional FHA domain consists of 120–140 amino acid residues, which is significantly larger than the sequence motif first described. Although FHA domains do not exhibit extensive sequence similarity, they share similar secondary and tertiary structures, featuring a sandwich of two anti-parallel (beta)-sheets. One intriguing finding is that FHA domains may bind phosphothreonine, phosphoserine and sometimes phosphotyrosine, distinguishing them from other well-studied phosphoprotein-binding domains. The diversity of proteins containing FHA domains and potential differences in binding specificities suggest the FHA domain is involved in coordinating diverse cellular processes.
Collapse
Affiliation(s)
- J Li
- Division of Biological Sciences and Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
518
|
Shaywitz AJ, Dove SL, Kornhauser JM, Hochschild A, Greenberg ME. Magnitude of the CREB-dependent transcriptional response is determined by the strength of the interaction between the kinase-inducible domain of CREB and the KIX domain of CREB-binding protein. Mol Cell Biol 2000; 20:9409-22. [PMID: 11094091 PMCID: PMC102197 DOI: 10.1128/mcb.20.24.9409-9422.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The activity of the transcription factor CREB is regulated by extracellular stimuli that result in its phosphorylation at a critical serine residue, Ser133. Phosphorylation of Ser133 is believed to promote CREB-dependent transcription by allowing CREB to interact with the transcriptional coactivator CREB-binding protein (CBP). Previous studies have established that the domain encompassing Ser133 on CREB, known as the kinase-inducible domain (KID), interacts specifically with a short domain in CBP termed the KIX domain and that this interaction depends on the phosphorylation of Ser133. In this study, we adapted a recently described Escherichia coli-based two-hybrid system for the examination of phosphorylation-dependent protein-protein interactions, and we used this system to study the kinase-induced interaction between the KID and the KIX domain. We identified residues of the KID and the KIX domain that are critical for their interaction as well as two pairs of oppositely charged residues that apparently interact at the KID-KIX interface. We then isolated a mutant form of the KIX domain that interacts more tightly with wild-type and mutant forms of the KID than does the wild-type KIX domain. We show that in the context of full-length CBP, the corresponding amino acid substitution resulted in an enhanced ability of CBP to stimulate CREB-dependent transcription in mammalian cells. Conversely, an amino acid substitution in the KIX domain that weakens its interaction with the KID resulted in a decreased ability of full-length CBP to stimulate CREB-dependent transcription. These findings demonstrate that the magnitude of CREB-dependent transcription in mammalian cells depends on the strength of the KID-KIX interaction and suggest that the level of transcription induced by coactivator-dependent transcriptional activators can be specified by the strength of the activator-coactivator interaction.
Collapse
Affiliation(s)
- A J Shaywitz
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
519
|
Houvras Y, Benezra M, Zhang H, Manfredi JJ, Weber BL, Licht JD. BRCA1 physically and functionally interacts with ATF1. J Biol Chem 2000; 275:36230-7. [PMID: 10945975 DOI: 10.1074/jbc.m002539200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BRCA1, a breast and ovarian cancer susceptibility gene, encodes a 220-kDa protein whose precise biochemical function remains unclear. BRCA1 contains an N-terminal RING finger that mediates protein-protein interaction. The C-terminal domain of BRCA1 (BRCT) can activate transcription and interacts with RNA polymerase holoenzyme. Using the yeast two-hybrid system, we identified an interaction between the BRCA1 RING finger and ATF1, a member of the cAMP response element-binding protein/activating transcription factor (CREB/ATF) family. We demonstrate that BRCA1 and ATF1 can physically associate in vitro, in yeast, and in human cells. BRCA1 stimulated transcription from a cAMP response element reporter gene in transient transfections. BRCA1 also stimulated transcription from a natural promoter, that of tumor necrosis factor-alpha, in a manner dependent on the integrity of the cAMP response element. These results implicate BRCA1 in transcriptional activation of ATF1 target genes, some of which are involved in the transcriptional response to DNA damage.
Collapse
Affiliation(s)
- Y Houvras
- Derald H. Ruttenberg Cancer Center and the Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
520
|
Fimia GM, De Cesare D, Sassone-Corsi P. A family of LIM-only transcriptional coactivators: tissue-specific expression and selective activation of CREB and CREM. Mol Cell Biol 2000; 20:8613-22. [PMID: 11046156 PMCID: PMC102166 DOI: 10.1128/mcb.20.22.8613-8622.2000] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transcription factors of the CREB family control the expression of a large number of genes in response to various signaling pathways. Regulation mediated by members of the CREB family has been linked to various physiological functions. Classically, activation by CREB is known to occur upon phosphorylation at an essential regulatory site (Ser133 in CREB) and the subsequent interaction with the ubiquitous coactivator CREB-binding protein (CBP). However, the mechanism by which selectivity is achieved in the identification of target genes, as well as the routes adopted to ensure tissue-specific activation, remains unrecognized. We have recently described the first tissue-specific coactivator of CREB family transcription factors, ACT (activator of CREM in testis). ACT is a LIM-only protein which associates with CREM in male germ cells and provides an activation function which is independent of phosphorylation and CBP. Here we characterize a family of LIM-only proteins which share common structural organization with ACT. These are referred to as four-and-a-half-LIM-domain (FHL) proteins and display tissue-specific and developmentally regulated expression. FHL proteins display different degrees of intrinsic activation potential. They provide powerful activation function to both CREB and CREM when coexpressed either in yeast or in mammalian cells, specific combinations eliciting selective activation. Deletion analysis of the ACT protein shows that the activation function depends on specific arrangements of the LIM domains, which are essential for both transactivation and interaction properties. This study uncovers the existence of a family of tissue-specific coactivators that operate through novel, CBP-independent routes to elicit transcriptional activation by CREB and CREM. The future identification of additional partners of FHL proteins is likely to reveal unappreciated aspects of tissue-specific transcriptional regulation.
Collapse
Affiliation(s)
- G M Fimia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM, Université Louis Pasteur, 67404 Illkirch-Strasbourg, France
| | | | | |
Collapse
|
521
|
De Guzman RN, Liu HY, Martinez-Yamout M, Dyson HJ, Wright PE. Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. J Mol Biol 2000; 303:243-53. [PMID: 11023789 DOI: 10.1006/jmbi.2000.4141] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TAZ2 (CH3) domain of the transcriptional adapter protein CBP has been implicated in direct functional interactions with numerous cellular transcription factors and viral oncoproteins. The solution structure of the TAZ2 domain of murine CBP has been determined by nuclear magnetic resonance (NMR). The protein adopts a novel helical fold stabilized by three zinc ions, each of which is bound to one histidine and three cysteine ligands in HCCC-type motifs. Each zinc-binding site is formed from the carboxy terminus of an alpha-helix, a short loop, and the amino terminus of the next alpha-helix. A peptide derived from the N-terminal transactivation domain of p53 binds specifically to one face of the TAZ2 domain. The close similarities between the TAZ2 and TAZ1 (CH1 domain of CBP/p300) sequences suggest that both domains will adopt similar three-dimensional structures.
Collapse
Affiliation(s)
- R N De Guzman
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
522
|
Vanden Berghe W, Vermeulen L, De Wilde G, De Bosscher K, Boone E, Haegeman G. Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochem Pharmacol 2000; 60:1185-95. [PMID: 11007957 DOI: 10.1016/s0006-2952(00)00412-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin (IL)-6 is a multifunctional cytokine that can be induced by a plethora of chemical or physiological compounds, including the inflammatory cytokines tumor necrosis factor (TNF) and IL-1. The molecule TNF has a trimeric configuration and thus binds to membrane-bound, cellular receptors to initiate cell death mechanisms and signaling pathways leading to gene induction. Previously, we showed that induced clustering of the intracellular domains of the p55 TNF receptor, or of their respective 'death domains' only, is sufficient to activate the nuclear factor kappa B (NF-kappa B) and several mitogen-activated protein kinase (MAPK) pathways. NF-kappa B is the exclusive transcription factor for induction of the IL-6 gene in response to TNF and functions as the final trigger to activate a multiprotein complex, a so-called 'enhanceosome', at the level of the IL-6 promoter. Furthermore, the enhanceosome displays histone acetylation activity, which turned out to be essential for IL-6 gene activation via NF-kappa B. However, activation of NF-kappa B alone is not sufficient for IL-6 gene induction in response to TNF, as inhibition of the coactivated extracellular signal-regulated kinase and p38 MAPK pathways blocks TNF-mediated gene expression. Nevertheless, the transactivating NF-kappa B subunit p65 is not a direct target of MAPK phosphorylation. Thus, we postulated that other components of the enhanceosome complex are sensitive to MAPK cascades and found that MAPK activity is unequivocally linked to the histone acetylation capacity of the enhanceosome to stimulate gene expression in response to TNF. In contrast, glucocorticoid repression of TNF-driven IL-6 gene expression does not depend on abrogation of histone acetyltransferase activity, but originates from interference of the liganded glucocorticoid receptor with the contacts between NF-kappa B p65 and the promoter configuration around the TATA box.
Collapse
Affiliation(s)
- W Vanden Berghe
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
523
|
Frangioni JV, LaRiccia LM, Cantley LC, Montminy MR. Minimal activators that bind to the KIX domain of p300/CBP identified by phage display screening. Nat Biotechnol 2000; 18:1080-5. [PMID: 11017047 DOI: 10.1038/80280] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human gene therapy approaches involving transcription factors often rely on artificial activation domains for transcriptional activation. These domains are often large (e.g., 80 amino acids for VP16), recruit multiple co-activation complexes at once, and offer no fine control over the level of transcription. In an attempt to understand the sequence and structural requirements of a minimal mammalian activator, we employed a molecular diversity approach with a peptide phage display library composed of random eight-amino acid peptides. Using the KIX domain of the mammalian co-activators p300 and CBP as target, we discovered a family of synthetic binding peptides. These peptides share significant homology with natural KIX domain ligands, and are shown to bind an overlapping, yet distinct, surface of p300/CREB-binding protein (CBP). When fused to a heterologous DNA binding domain, these synthetic peptides function as titratable, modular, and potent transcriptional activators in living cells through specific recruitment of p300/CBP, with the level of transcriptional activation proportional to the affinity of the synthetic peptide for the KIX domain. Taken together, our data demonstrate that a molecular diversity approach can be used to discover minimal, co-activator domain-specific synthetic activators, and that transcriptional activation can be modulated as desired at the level of co-activator recruitment.
Collapse
Affiliation(s)
- J V Frangioni
- The Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
524
|
Lee H, Mok KH, Muhandiram R, Park KH, Suk JE, Kim DH, Chang J, Sung YC, Choi KY, Han KH. Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 2000; 275:29426-32. [PMID: 10884388 DOI: 10.1074/jbc.m003107200] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA transcription is initiated by a small regulatory region of transactivators known as the transactivation domain. In contrast to the rapid progress made on the functional aspect of this promiscuous domain, its structural feature is still poorly characterized. Here, our multidimensional NMR study reveals that an unbound full-length p53 transactivation domain, although similar to the recently discovered group of loosely folded proteins in that it does not have tertiary structure, is nevertheless populated by an amphipathic helix and two nascent turns. The helix is formed by residues Thr(18)-Leu(26) (Thr-Phe-Ser-Asp-Leu-Trp-Lys-Leu-Leu), whereas the two turns are formed by residues Met(40)-Met(44) and Asp(48)-Trp(53), respectively. It is remarkable that these local secondary structures are selectively formed by functionally critical and positionally conserved hydrophobic residues present in several acidic transactivation domains. This observation suggests that such local structures are general features of acidic transactivation domains and may represent "specificity determinants" (Ptashne, M., and Gann, A. A. F. (1997), Nature 386, 569-577) that are important for transcriptional activity.
Collapse
Affiliation(s)
- H Lee
- Protein Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology, Yusong, P. O. Box 115, Taejon 305-600, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
525
|
Melcher K. The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins. J Mol Biol 2000; 301:1097-112. [PMID: 10966808 DOI: 10.1006/jmbi.2000.4034] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation domains (ADs) appear to work by making specific protein-protein contacts with the transcriptional machinery. However, ADs show no apparent sequence conservation, they can be functionally replaced by a number of random peptides and unrelated proteins, and their function does not depend on sustaining a complex tertiary structure. To gain a broader perspective on the nature of interactions between acidic ADs and several of their proposed targets, the in vivo strengths of viral, human, yeast, and artificial activation domains were determined under physiological conditions, and mutant ADs with increased in vivo potencies were selected. The affinities between ADs and proposed targets were determined in vitro and all interactions were found to be of low-level affinity with dissociation constants above 10(-7)M. However, in vivo potencies of all ADs correlated nearly perfectly with their affinities for transcriptional proteins. Surprisingly, the weak interactions of the different ADs with at least two non-transcriptional proteins show the same rank order of binding and AD mutants selected for increased in vivo strength also have increased affinities to non-transcriptional proteins. Based on these results, isolated acidic ADs can bind with relatively low-level specificity and affinity to many different proteins and the strength of these semi-specific interactions determine the strength of an AD. I suggest that ADs expose flexible hydrophobic elements in an aqueous environment to contact hydrophobic patches over short distances, shifting specificity of activators largely to the DNA colocalization of arrays of ADs and targets.
Collapse
Affiliation(s)
- K Melcher
- Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75235-8573, USA.
| |
Collapse
|
526
|
Shoemaker BA, Portman JJ, Wolynes PG. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci U S A 2000; 97:8868-73. [PMID: 10908673 PMCID: PMC16787 DOI: 10.1073/pnas.160259697] [Citation(s) in RCA: 794] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein folding and binding are kindred processes. Many proteins in the cell are unfolded, so folding and function are coupled. This paper investigates how binding kinetics is influenced by the folding of a protein. We find that a relatively unstructured protein molecule can have a greater capture radius for a specific binding site than the folded state with its restricted conformational freedom. In this scenario of binding, the unfolded state binds weakly at a relatively large distance followed by folding as the protein approaches the binding site: the "fly-casting mechanism." We illustrate this scenario with the hypothetical kinetics of binding a single repressor molecule to a DNA site and find that the binding rate can be significantly enhanced over the rate of binding of a fully folded protein.
Collapse
Affiliation(s)
- B A Shoemaker
- Departments of Chemistry and Physics, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
527
|
Iñiguez-Lluhí JA, Pearce D. A common motif within the negative regulatory regions of multiple factors inhibits their transcriptional synergy. Mol Cell Biol 2000; 20:6040-50. [PMID: 10913186 PMCID: PMC86080 DOI: 10.1128/mcb.20.16.6040-6050.2000] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA regulatory elements frequently harbor multiple recognition sites for several transcriptional activators. The response mounted from such compound response elements is often more pronounced than the simple sum of effects observed at single binding sites. The determinants of such transcriptional synergy and its control, however, are poorly understood. Through a genetic approach, we have uncovered a novel protein motif that limits the transcriptional synergy of multiple DNA-binding regulators. Disruption of these conserved synergy control motifs (SC motifs) selectively increases activity at compound, but not single, response elements. Although isolated SC motifs do not regulate transcription when tethered to DNA, their transfer to an activator lacking them is sufficient to impose limits on synergy. Mechanistic analysis of the two SC motifs found in the glucocorticoid receptor N-terminal region reveals that they function irrespective of the arrangement of the receptor binding sites or their distance from the transcription start site. Proper function, however, requires the receptor's ligand-binding domain and an engaged dimer interface. Notably, the motifs are not functional in yeast and do not alter the effect of p160 coactivators, suggesting that they require other nonconserved components to operate. Many activators across multiple classes harbor seemingly unrelated negative regulatory regions. The presence of SC motifs within them, however, suggests a common function and identifies SC motifs as critical elements of a general mechanism to modulate higher-order interactions among transcriptional regulators.
Collapse
Affiliation(s)
- J A Iñiguez-Lluhí
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA.
| | | |
Collapse
|
528
|
Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 2000; 68:821-61. [PMID: 10872467 DOI: 10.1146/annurev.biochem.68.1.821] [Citation(s) in RCA: 1660] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extracellular stimuli elicit changes in gene expression in target cells by activating intracellular protein kinase cascades that phosphorylate transcription factors within the nucleus. One of the best characterized stimulus-induced transcription factors, cyclic AMP response element (CRE)-binding protein (CREB), activates transcription of target genes in response to a diverse array of stimuli, including peptide hormones, growth factors, and neuronal activity, that activate a variety of protein kinases including protein kinase A (PKA), pp90 ribosomal S6 kinase (pp90RSK), and Ca2+/calmodulin-dependent protein kinases (CaMKs)[corrected]. These kinases all phosphorylate CREB at a particular residue, serine 133 (Ser133), and phosphorylation of Ser133 is required for CREB-mediated transcription. Despite this common feature, the mechanism by which CREB activates transcription varies depending on the stimulus. In some cases, signaling pathways target additional sites on CREB or proteins associated with CREB, permitting CREB to regulate distinct programs of gene expression under different conditions of stimulation. This review discusses the molecular mechanisms by which Ser133-phosphorylated CREB activates transcription, intracellular signaling pathways that lead to phosphorylation of CREB at Ser133, and features of each signaling pathway that impart specificity at the level of CREB activation.
Collapse
Affiliation(s)
- A J Shaywitz
- Department of Neurology, Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
529
|
Zhang Q, Vo N, Goodman RH. Histone binding protein RbAp48 interacts with a complex of CREB binding protein and phosphorylated CREB. Mol Cell Biol 2000; 20:4970-8. [PMID: 10866654 PMCID: PMC85947 DOI: 10.1128/mcb.20.14.4970-4978.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1999] [Accepted: 04/24/2000] [Indexed: 02/06/2023] Open
Abstract
A CREB-CREB binding protein (CBP) complex was used as bait to screen a mouse embryo cDNA library in yeast. One of the strongest interactions identified the histone binding protein RbAp48. RbAp48 also interacted weakly with CBP alone but did not interact with phosphorylated or nonphosphorylated CREB. CBP (or its homologue p300) from HeLa cell nuclear extracts coimmunoprecipitated with RbAp48 and its homologue RbAp46 and bound to a glutathione S-transferase-RbAp48 fusion protein. This interaction was stimulated by the addition of phosphorylated CREB and allowed the association of core histones and mononucleosomes in an acetylation-dependent manner. RbAp48 lowered the K(m) of CBP histone acetylase activity and facilitated p300-mediated in vitro transcription of a chromatinized template in the presence of acetylcoenzyme A. These data indicate that the association of phosphorylated CREB with CBP promotes the binding of RbAp48 and its homologue RbAp46, allowing the formation of a complex that facilitates histone acetylation during transcriptional activation.
Collapse
Affiliation(s)
- Q Zhang
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
530
|
Giebler HA, Lemasson I, Nyborg JK. p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation. Mol Cell Biol 2000; 20:4849-58. [PMID: 10848610 PMCID: PMC85936 DOI: 10.1128/mcb.20.13.4849-4858.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CREB binding protein (CBP) is a 270-kDa nuclear protein required for activated transcription of a large number of cellular genes. Although CBP was originally discovered through its interaction with phosphorylated CREB (pCREB), it is utilized by a multitude of cellular transcription factors and viral oncoproteins. Both CREB and the tumor suppressor p53 have been shown to directly interact with the KIX domain of CBP. Although coactivator competition is an emerging theme in transcriptional regulation, we have made the fortuitous observation that protein kinase A-phosphorylated CREB strongly enhances p53 association with KIX. Phosphorylated CREB also facilitates interaction of a p53 mutant, defective for KIX binding, indicating that CREB functions in a novel way to bridge p53 and the coactivator. This is accomplished through direct interaction between the bZIP domain of CREB and the amino terminus of p53; a protein-protein interaction that is also detected in vivo. Consistent with our biochemical observations, we show that stimulation of the intracellular cyclic AMP (cAMP) pathway, which leads to CREB phosphorylation, strongly enhances both the transcriptional activation and apoptotic properties of p53. We propose that phosphorylated CREB mediates recruitment of CBP to p53-responsive promoters through direct interaction with p53. These observations provide evidence for a novel pathway that integrates cAMP signaling and p53 transcriptional activity.
Collapse
Affiliation(s)
- H A Giebler
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | | | |
Collapse
|
531
|
Du K, Asahara H, Jhala US, Wagner BL, Montminy M. Characterization of a CREB gain-of-function mutant with constitutive transcriptional activity in vivo. Mol Cell Biol 2000; 20:4320-7. [PMID: 10825195 PMCID: PMC85799 DOI: 10.1128/mcb.20.12.4320-4327.2000] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclic AMP (cAMP)-responsive factor CREB promotes cellular gene expression, following its phosphorylation at Ser133, via recruitment of the coactivator paralogs CREB-binding protein (CBP) and p300. CBP and p300, in turn, appear to mediate target gene induction via their association with RNA polymerase II complexes and via intrinsic histone acetyltransferase activities that mobilize promoter-bound nucleosomes. In addition to cAMP, a wide variety of stimuli, including hypoxia, UV irradiation, and growth factor addition, induce Ser133 phosphorylation with stoichiometry and kinetics comparable to those induced by cAMP. Yet a number of these signals are incapable of promoting target gene activation via CREB phosphorylation per se, suggesting the presence of additional regulatory events either at the level of CREB-CBP complex formation or in the subsequent recruitment of the transcriptional apparatus. Here we characterize a Tyr134Phe CREB mutant that behaves as a constitutive activator in vivo. Like protein kinase A (PKA)-stimulated wild-type CREB, the Tyr134Phe polypeptide was found to stimulate target gene expression via the Ser133-dependent recruitment of CBP and p300. Biochemical studies reveal that mutation of Tyr134 to Phe lowers the K(m) for PKA phosphorylation and thereby induces high levels of constitutive Ser133 phosphorylation in vivo. Consistent with its constitutive activity, Tyr134Phe CREB strongly promoted differentiation of PC12 cells in concert with suboptimal doses of nerve growth factor. Taken together, these results demonstrate that Ser133 phosphorylation is sufficient for cellular gene activation and that additional signal-dependent modifications of CBP or p300 are not required for recruitment of the transcriptional apparatus to the promoter.
Collapse
Affiliation(s)
- K Du
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
532
|
Usukura J, Nishizawa Y, Shimomura A, Kobayashi K, Nagatsu T, Hagiwara M. Direct imaging of phosphorylation-dependent conformational change and DNA binding of CREB by electron microscopy. Genes Cells 2000; 5:515-22. [PMID: 10886376 DOI: 10.1046/j.1365-2443.2000.00345.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The second messenger cAMP stimulates the expression of numerous genes through the PKA-dependent phosphorylation of CREB. The cAMP-regulated transcription factor CREB undergoes conformational change in response to phosphorylation by PKA at Ser 133. The phosphorylation enables interaction between the kinase-inducible domain (KID) of CREB and KIX domain of CREB binding protein (CBP). RESULTS To understand the activation mechanism of CREB-mediated gene expression, we performed the electron-microscope imaging of the transcription machinery. We improved the metal shadowing techniques to achieve higher resolution to detect phosphorylation-induced conformation change of the protein. Homodimer formation of CREB and the complex formation of phosphorylated CREB with CBP were observed under the electron microscope. The binding of the CREB dimer to CREs on the somatostatin and tyrosine hydroxylase promoters were also visualized directly and stereoscopically. CONCLUSIONS Greatly improved resolution achieved by our modified metal shadowing techniques makes it possible to visualize that the shape of CREB homodimer was changed in phosphorylation-dependent manner and that the promoter DNA strands containing CREs appeared to be bent and twisted slightly by the holding in the crevice of the CREB homodimer. This method may be applicable to visualize transcriptional activation process of nuclear receptors or general transcription machinery.
Collapse
Affiliation(s)
- J Usukura
- Department of Anatomy, Nagoya University School of Medicine, Nagoya 466, Japan
| | | | | | | | | | | |
Collapse
|
533
|
Abstract
Activation domains are functional modules that enable DNA-binding proteins to stimulate transcription. Characterization of these essential modules in transcription factors has been hampered by their low sequence homology. Here we delineate the peptide sequences that are required for transactivation and interaction with hTAF(II)31, a classical target of the acidic class of activation domains. Our analyses indicate that hTAF(II)31 recognizes a diverse set of sequences for transactivation. This information enabled the identification of hTAF(II)31-binding sequences that are critical for the activity of the activation domains of five human transcription factors: NFAT1, ALL1, NF-IL6, ESX, and HSF-1. The interaction surfaces are localized in short peptide segments of activation domains. The brevity and heterogeneity of the motifs may explain the low sequence homology among acidic activation domains.
Collapse
Affiliation(s)
- Y Choi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
534
|
Newton AL, Sharpe BK, Kwan A, Mackay JP, Crossley M. The transactivation domain within cysteine/histidine-rich region 1 of CBP comprises two novel zinc-binding modules. J Biol Chem 2000; 275:15128-34. [PMID: 10748221 DOI: 10.1074/jbc.m910396199] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP-response element-binding protein-binding protein (CBP) is a transcriptional coactivator that interacts with a number of DNA-binding proteins and cofactor proteins involved in the regulation of transcription. Relatively little is known about the structure of CBP, but it has been noted that it contains three domains that are rich in cysteine and histidine (CH1, CH2, and CH3). The sequence of CH2 conforms to that of a leukemia-associated protein domain (PHD finger), and it has been postulated that this and both CH1 and CH3 may be zinc finger domains. This has not, however, been demonstrated experimentally. We have studied CH1 and show that it is composed of two novel zinc-binding modules, which we term "zinc bundles." Each bundle contains the sequence Cys-X(4)-Cys-X(8)-His-X(3)-Cys, and we show that a synthetic peptide comprising one zinc bundle from CH1 can fold in a zinc-dependent manner. CH3 also appears to contain two zinc bundles, one with the variant sequence Cys-X(2)-Cys-X(9)-His-X(3)-Cys, and we demonstrate that this variant motif also undergoes Zn(II)-induced folding. CH1 acts as a transcriptional activation domain in cellular assays. We show that mutations in any of the four zinc-chelating residues in either zinc bundle of CH1 significantly impair this activity and that these mutations also interfere with certain protein-protein interactions mediated by CH1. Our results indicate that CBP is a genuine zinc-binding protein and introduce zinc bundles as novel protein interaction domains.
Collapse
Affiliation(s)
- A L Newton
- Department of Biochemistry, G08, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
535
|
Ostedgaard LS, Baldursson O, Vermeer DW, Welsh MJ, Robertson AD. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Proc Natl Acad Sci U S A 2000; 97:5657-62. [PMID: 10792060 PMCID: PMC25884 DOI: 10.1073/pnas.100588797] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2000] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708-831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indicating that R8 is functional. Unexpectedly, this functional R8 was predominantly random coil, as revealed by CD and limited proteolysis. The CD spectra of both phosphorylated and nonphosphorylated R8 were similar in aqueous buffer. The folding agent trimethylamine N-oxide induced only a small increase in the helical content of nonphosphorylated R8 and even less change in the helical content of phosphorylated R8. These data, indicating that the R domain is predominantly random coil, may explain the seemingly complex way in which phosphorylation regulates CFTR channel activity.
Collapse
Affiliation(s)
- L S Ostedgaard
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
536
|
|
537
|
Johnson BA, Wilson EM, Li Y, Moller DE, Smith RG, Zhou G. Ligand-induced stabilization of PPARgamma monitored by NMR spectroscopy: implications for nuclear receptor activation. J Mol Biol 2000; 298:187-94. [PMID: 10764590 DOI: 10.1006/jmbi.2000.3636] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nuclear receptors are ligand-dependent transcription factors that are mediators of the action of lipophilic hormones and other endogenous ligands and are the targets of drugs useful in a variety of therapeutic areas. Peroxisome proliferator-activated receptor (PPAR)gamma is a nuclear receptor that, acting as a heterodimer with RXR, mediates a variety of cellular effects including adipocyte-differentiation. Due to its role in modulating insulin sensitivity, it is the target of therapeutically active anti-diabetic agents such as rosiglitazone. We have assigned the chemical shifts of the backbone atoms of the 32 kDa ligand-binding domain of PPARgamma in the presence of bound rosiglitazone. Three-dimensional HNCO spectra of the apo ligand-binding domain (LBD) have less than half the expected number of cross-peaks. The missing cross-peaks are restored upon binding strong agonists such as rosiglitazone. The NMR results indicate that the apo-LBD of PPARgamma is in a conformationally mobile state, and that agonist binding is associated with a marked stabilization of the conformation. Mapping the missing peaks to the 3D X-ray crystallographic structure indicates the region of mobility is extensive and includes the ligand-binding region and the cofactor-binding site. This leads to the conclusion that activation of this nuclear receptor is a result of a population shift of a dynamic ensemble of conformations, rather than a two-state switch from an inactive to an active conformation. Our results have important implications for the mechanisms by which antagonists, partial agonists, and agonists of nuclear receptor function operate.
Collapse
Affiliation(s)
- B A Johnson
- Department of Endocrinology and Chemical Biology, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | |
Collapse
|
538
|
De Cesare D, Sassone-Corsi P. Transcriptional regulation by cyclic AMP-responsive factors. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:343-69. [PMID: 10697414 DOI: 10.1016/s0079-6603(00)64009-6] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotes, transcriptional regulation on stimulation of the adenylate cyclase signaling pathway is mediated by a family of cyclic AMP-responsive nuclear factors, including CREB, CREM, and ATF-1. These factors contain the basic domain/leucine zipper motifs and bind as dimers to cAMP-responsive elements (CREs). The activation function of CRE-binding proteins is modulated by phosphorylation by several kinases and is mediated by coactivators such as CBP and p300. Activation might also be independent of CBP and phosphorylation in some specific cell types, such as male germ cells, wherein the protein ACT confers a powerful activation function to CREM. The inducible cAMP early repressor (ICER) protein is the only inducible member of this family. The induction of this powerful repressor is likely to be important for the transient nature of cAMP-induced gene expression. CRE-binding proteins have been found to play an important role in the physiology of the pituitary gland, in regulating spermatogenesis, in the response to circadian rhythms, and in the molecular basis of memory.
Collapse
Affiliation(s)
- D De Cesare
- Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS-INSERM-Université Louis Pasteur, Illkirch-Strasbourg, France
| | | |
Collapse
|
539
|
Wagner BL, Bauer A, Schütz G, Montminy M. Stimulus-specific interaction between activator-coactivator cognates revealed with a novel complex-specific antiserum. J Biol Chem 2000; 275:8263-6. [PMID: 10722651 DOI: 10.1074/jbc.275.12.8263] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of second messenger pathways propagate inductive signals via protein-protein interactions that are phosphorylation-dependent. The second messenger, cAMP, for example, promotes cellular gene expression via the protein kinase A-mediated phosphorylation of cAMP-response element-binding protein (CREB) at Ser(133), and this modification in turn stimulates the association of CREB with the co-activator, CREB-binding protein (CBP). The solution structure of the CREB.CBP complex, using relevant interaction domains, kinase inducible domain and kinase-induced domain interacting domain, referred to as KID and KIX, respectively, shows that KID undergoes a coil to helix transition, upon binding to KIX, that stabilizes complex formation. Whether such changes occur in the context of the full-length CREB and CBP proteins, however, is unclear. Here we characterize a novel antiserum that specifically binds to the CREB. CBP complex but to neither protein individually. Epitope mapping experiments demonstrate that the CREB.CBP antiserum detects residues in KID that undergo a conformational change upon binding to KIX. The ability of this antiserum to recognize full-length CREB.CBP complexes in a phospho-(Ser(133))-dependent manner demonstrates that the structural transition observed with the isolated KID domain also occurs in the context of the full-length CREB protein. To our knowledge, this is the first report documenting formation of endogenous cellular protein-protein complexes in situ.
Collapse
Affiliation(s)
- B L Wagner
- Peptide Biology Laboratories, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
540
|
Lee D, Lee B, Kim J, Kim DW, Choe J. cAMP response element-binding protein-binding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription. J Biol Chem 2000; 275:7045-51. [PMID: 10702269 DOI: 10.1074/jbc.275.10.7045] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP response element-binding protein-binding protein (CBP) is a eucaryotic transcriptional co-activator that contains multiple protein-protein interaction domains for association with various transcription factors, components of the basal transcriptional apparatus, and other co-activator proteins. Here, we report that CBP is also a co-activator of the human papillomavirus (HPV) E2 protein, which is a sequence-specific transcription/replication factor. We provide biochemical, genetic, and functional evidence that CBP binds directly to HPV E2 in vivo and in vitro and activates E2-dependent transcription. Mutations in an amphipathic helix within HPV-18 E2 abolish its transcriptional activation properties and its ability to bind to CBP. Furthermore, the binding of CBP to E2 was shown to be necessary for E2-dependent transcription. Interestingly, the histone acetyltransferase activity of CBP plays a role in CBP activation of E2-dependent transcription.
Collapse
Affiliation(s)
- D Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | | | | | | | |
Collapse
|
541
|
Cardinaux JR, Notis JC, Zhang Q, Vo N, Craig JC, Fass DM, Brennan RG, Goodman RH. Recruitment of CREB binding protein is sufficient for CREB-mediated gene activation. Mol Cell Biol 2000; 20:1546-52. [PMID: 10669732 PMCID: PMC85336 DOI: 10.1128/mcb.20.5.1546-1552.2000] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1999] [Accepted: 11/16/1999] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of the transcription factor CREB leads to the recruitment of the coactivator, CREB binding protein (CBP). Recent studies have suggested that CBP recruitment is not sufficient for CREB function, however. We have identified a conserved protein-protein interaction motif within the CBP-binding domains of CREB and another transcription factor, SREBP (sterol-responsive element binding protein). In contrast to CREB, SREBP interacts with CBP in the absence of phosphorylation. We have exploited the conservation of this interaction motif to test whether CBP recruitment to CREB is sufficient for transcriptional activation. Substitution of six nonconserved amino acids from SREBP into the activation domain of CREB confers high-affinity, phosphorylation-independent CBP binding. The mutated CREB molecule, CREB(DIEDML), activates transcription in F9 teratocarcinoma and PC12 cells even in the absence of protein kinase A (PKA). Addition of exogenous CBP augments the level of transcription mediated by CREB(DIEDML), and adenovirus 12S E1A blocks transcription, implicating CBP in the activation process. Thus, recruitment of CBP to CREB is sufficient for transcriptional activation. Addition of PKA stimulates transcription induced by CREB(DIEDML) further, suggesting that a phosphorylation event downstream from CBP recruitment augments CREB signaling.
Collapse
Affiliation(s)
- J R Cardinaux
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
542
|
Bridges KG, Hua Q, Brigham-Burke MR, Martin JD, Hensley P, Dahl CE, Digard P, Weiss MA, Coen DM. Secondary structure and structure-activity relationships of peptides corresponding to the subunit interface of herpes simplex virus DNA polymerase. J Biol Chem 2000; 275:472-8. [PMID: 10617641 DOI: 10.1074/jbc.275.1.472] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of the catalytic subunit of herpes simplex virus DNA polymerase with the processivity subunit, UL42, is essential for viral replication and is thus a potential target for antiviral drug discovery. We have previously reported that a peptide analogous to the C-terminal 36 residues of the catalytic subunit, which are necessary and sufficient for its interaction with UL42, forms a monomeric structure with partial alpha-helical character. This peptide and one analogous to the C-terminal 18 residues specifically inhibit UL42-dependent long chain DNA synthesis. Using multidimensional (1)H nuclear magnetic resonance spectroscopy, we have found that the 36-residue peptide contains partially ordered N- and C-terminal alpha-helices separated by a less ordered region. A series of "alanine scan" peptides derived from the C-terminal 18 residues of the catalytic subunit were tested for their ability to inhibit long-chain DNA synthesis and by circular dichroism for secondary structure. The results identify structural aspects and specific side chains that appear to be crucial for interacting with UL42. These findings may aid in the rational design of new drugs for the treatment of herpesvirus infections.
Collapse
Affiliation(s)
- K G Bridges
- Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
543
|
Abstract
CREB binding protein (CBP) is a cellular coactivator protein that regulates essentially all known pathways of gene expression. The transcriptional coactivator properties of CBP are utilized by at least 25 different transcription factors representing nearly all known classes of DNA binding proteins. Once bound to their target genes, these transcription factors are believed to tether CBP to the promoter, leading to activated transcription. CBP functions to stimulate transcription through direct recruitment of the general transcription machinery as well as acetylation of both histone and transcription factor substrates. Recent observations indicate that a critical dosage of CBP is required for normal development and tumor suppression, and that perturbations in CBP concentrations may disrupt cellular homeostasis. Furthermore, there is accumulating evidence that CBP deregulation plays a direct role in hematopoietic malignancies. However, the molecular events linking CBP deregulation and malignant transformation are unclear. Further insight into the function of CBP, and its role as a tumor suppressor, can be gained through recent studies of the human T-cell leukemia virus, type I (HTLV-I) Tax oncoprotein. Tax is known to utilize CBP to stimulate transcription from the viral promoter. However, recent data suggest that as a consequence of the Tax-CBP interaction, many cellular transcription factor pathways may be deregulated. Tax disruption of CBP function may play a key role in transformation of the HTLV-I-infected cell. Thus, Tax derailment of CBP may lend important information about the tumor suppressor properties of CBP and serve as a model for the role of CBP in hematopoietic malignancies.
Collapse
Affiliation(s)
- Karen Van Orden
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| | - Jennifer K. Nyborg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
- Address correspondence to Jennifer K. Nyborg, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870. Tel: (970) 491-0420; Fax: (970) 491-0494; E-mail:
| |
Collapse
|
544
|
Cruzalegui FH, Cano E, Treisman R. ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 1999; 18:7948-57. [PMID: 10637505 DOI: 10.1038/sj.onc.1203362] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elk-1, a member of the TCF family of Ets domain proteins, contains a C-terminal transcriptional activation domain with multiple copies of the MAPK core consensus sequence S/T-P. This region is phosphorylated by MAP kinases in vitro and in vivo, but the extent and kinetics of phosphorylation at the different sites have not been investigated in detail. We prepared antisera against the phosphorylated forms of residues T353, T363, T368, S383, S389 and T417. The antisera specifically recognize the phosphorylated Elk-1 C terminus and are specific for their cognate sites, as assessed by peptide competition and mutagenesis experiments. Analysis of cells stably expressing Elk-1 in vivo shows that following serum or TPA stimulation, residues T353, T363, T368, S383, S389 and T417 become phosphorylated with similar kinetics. Mutation of any one site does not prevent phosphorylation of the others. Mutation to alanine of S383, F378 or W379, which virtually abolishes transcriptional activation by Elk-1, does not affect phosphorylation of any sites tested. Analysis of Elk-1 using two-dimensional gel electrophoresis shows that following ERK activation Elk-1 receives at least six phosphates in addition to those present prior to stimulation. We propose that the Elk-1 C-terminal regulatory domain becomes stoichiometrically phosphorylated following growth factor stimulation.
Collapse
Affiliation(s)
- F H Cruzalegui
- Transcription Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
545
|
Uesugi M, Verdine GL. The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc Natl Acad Sci U S A 1999; 96:14801-6. [PMID: 10611293 PMCID: PMC24728 DOI: 10.1073/pnas.96.26.14801] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional activation domains share little sequence homology and generally lack folded structures in the absence of their targets, aspects that have rendered activation domains difficult to characterize. Here, a combination of biochemical and nuclear magnetic resonance experiments demonstrates that the activation domain of the tumor suppressor p53 has an FXXPhiPhi motif (F, Phe; X, any amino acids; Phi, hydrophobic residues) that folds into an alpha-helix upon binding to one of its targets, hTAF(II)31 (a human TFIID TATA box-binding protein-associated factor). MDM2, the cellular attenuator of p53, discriminates the FXXPhiPhi motif of p53 from those of NF-kappaB p65 and VP16 and specifically inhibits p53 activity. Our studies support the notion that the FXXPhiPhi sequence is a general alpha-helical recognition motif for hTAF(II)31 and provide insights into the mechanistic basis for regulation of p53 function.
Collapse
Affiliation(s)
- M Uesugi
- Department of Chemistry, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
546
|
Glenn DJ, Maurer RA. MRG1 binds to the LIM domain of Lhx2 and may function as a coactivator to stimulate glycoprotein hormone alpha-subunit gene expression. J Biol Chem 1999; 274:36159-67. [PMID: 10593900 DOI: 10.1074/jbc.274.51.36159] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tissue-specific expression of the alpha-subunit gene of glycoprotein hormones involves an enhancer element designated the pituitary glycoprotein basal element, which interacts with the LIM homeodomain transcription factor, Lhx2. In the present studies we have explored the function of the LIM domain of Lhx2 in stimulating alpha-subunit transcription. When fused to the GAL4 DNA-binding domain, the LIM domain of Lhx2 was shown to contain a transcriptional activation domain. Furthermore, in the context of an alpha-subunit reporter gene in which a GAL4-binding site replaced the pituitary glycoprotein basal element, the LIM domain enhanced both basal and Ras-mediated transcription. In addition, a synergistic response to Ras activation was observed when the Lhx2 LIM domain and the transactivation domain of Elk1 are directed to a minimal reporter gene. A yeast two-hybrid screen identified the recently described melanocyte-specific gene-related gene 1 (MRG1) as an Lhx2 LIM-interacting protein. MRG1 was shown to bind Lhx2 in vitro, and a co-immunoprecipitation assay provided evidence that endogenous MRG1 forms a complex with Lhx2 in alphaT3-1 cells. Expression of MRG1 in alphaT3-1 cells enhanced alpha-subunit reporter gene activity. MRG1 was also shown to bind in vitro to the TATA-binding protein and the transcriptional coactivator, p300. These data suggest a model in which the Lhx2 LIM domain activates transcription through interaction with MRG1 leading to recruitment of p300/CBP and the TATA-binding protein.
Collapse
Affiliation(s)
- D J Glenn
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
547
|
Abstract
BACKGROUND Smad4 functions as a common mediator of transforming growth factor beta (TGF-beta) signaling by forming complexes with the phosphorylated state of pathway-restricted SMAD proteins that act in specific signaling pathways to activate transcription. SMAD proteins comprise two domains, the MH1 and MH2 domain, separated by a linker region. The transcriptional activity and synergistic effect of Smad4 require a stretch of proline-rich sequence, the SMAD-activation domain (SAD), located N-terminal of the MH2 domain. To understand how the SAD contributes to Smad4 function, the crystal structure of a fragment including the SAD and MH2 domain (S4AF) was determined. RESULTS The structure of the S4AF trimer reveals novel features important for Smad4 function. A Smad4-specific sequence insertion within the MH2 domain interacts with the C-terminal tail to form a structural extension from the core. This extension (the TOWER) contains a solvent-accessible glutamine-rich helix. The SAD reinforces the TOWER and the structural core through interactions; two residues involved in these interactions are targets of tumorigenic mutation. The solvent-accessible proline residues of the SAD are located on the same face as the glutamine-rich helix of the TOWER, forming a potential transcription activation surface. A tandem sulfate-ion-binding site was identified within the subunit interface, which may interact with the phosphorylated C-terminal sequence of pathway-restricted SMAD proteins. CONCLUSIONS The structure suggests that the SAD provides transcriptional capability by reinforcing the structural core and coordinating with the TOWER to present the proline-rich and glutamine-rich surfaces for interaction with transcription partners. The sulfate-ion-binding sites are potential 'receptors' for the phosphorylated sequence of pathway-restricted SMAD proteins in forming a heteromeric complex. The structure thus provides a new model that can be tested using biochemical and cellular approaches.
Collapse
Affiliation(s)
- B Qin
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | |
Collapse
|
548
|
Rojo-Niersbach E, Furukawa T, Tanese N. Genetic dissection of hTAF(II)130 defines a hydrophobic surface required for interaction with glutamine-rich activators. J Biol Chem 1999; 274:33778-84. [PMID: 10559271 DOI: 10.1074/jbc.274.47.33778] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID is a multiprotein complex consisting of the TATA box-binding protein and multiple TATA box-binding protein-associated factors (TAF(II)s). The central domain of human TAF(II)130 contains four glutamine-rich regions Q1-Q4 that interact with transcriptional activators such as Sp1 and CREB and mediate activation. We screened in yeast random point mutations introduced into Q1-Q4 against the Sp1 activation domain and obtained a distinct set of hTAF(II)130s with alterations in TAF(II)-activator interaction. Here we characterize functionally an hTAF(II)130 mutant containing a phenylalanine to serine change at position 311 (F311S) that is compromised in its ability to associate with Sp1B and CREB-N activation domains. Substitution of phenylalanine with tyrosine but not with isoleucine or tryptophan also reduced hTAF(II)130 interaction, suggesting that the hydrophobic character rather than the specific amino acid at this position is a key determinant of interaction. Deletion of nine amino acids (Delta9) surrounding Phe(311) abolished the interaction of hTAF(II)130 with Sp1. Overexpression of hTAF(II)130Q1/Q2 and Q1-Q4 strongly inhibited Sp1-dependent transcriptional enhancement in transient transfection assays, whereas expression of either F311S or Delta9 only partially suppressed Sp1-mediated activation. Thus, a short hydrophobic sequence motif encompassing Phe(311) in hTAF(II)130 represents a critical surface with which Sp1B interacts to activate transcription.
Collapse
Affiliation(s)
- E Rojo-Niersbach
- Department of Microbiology, Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
549
|
Stevenson MA, Zhao MJ, Asea A, Coleman CN, Calderwood SK. Salicylic Acid and Aspirin Inhibit the Activity of RSK2 Kinase and Repress RSK2-Dependent Transcription of Cyclic AMP Response Element Binding Protein- and NF-κB-Responsive Genes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Sodium salicylate (NaSal) and other nonsteroidal anti-inflammatory drugs (NSAIDs) coordinately inhibit the activity of NF-κB, activate heat shock transcription factor 1 and suppress cytokine gene expression in activated monocytes and macrophages. Because our preliminary studies indicated that these effects could be mimicked by inhibitors of signal transduction, we have studied the effects of NSAIDs on signaling molecules potentially downstream of LPS receptors in activated macrophages. Our findings indicate that ribosomal S6 kinase 2 (RSK2), a 90-kDa ribosomal S6 kinase with a critical role as an effector of the RAS-mitogen-activated protein kinase pathway and a regulator of immediate early gene transcription is a target for inhibition by the NSAIDs. NSAIDs inhibited the activity of purified RSK2 kinase in vitro and of RSK2 in mammalian cells and suppressed the phosphorylation of RSK2 substrates cAMP response element binding protein (CREB) and I-κBα in vivo. Additionally, NaSal inhibited the phosphorylation by RSK2 of CREB and I-κBα on residues crucial for their transcriptional activity in vivo and thus repressed CREB and NF-κB-dependent transcription. These experiments suggest that RSK2 is a target for NSAIDs in the inhibition of monocyte-specific gene expression and indicate the importance of RSK2 and related kinases in cell regulation, indicating a new area for anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Mary Ann Stevenson
- Department of Adult Oncology and Joint Center for Radiation Therapy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Mei-Juan Zhao
- Department of Adult Oncology and Joint Center for Radiation Therapy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Alexzander Asea
- Department of Adult Oncology and Joint Center for Radiation Therapy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - C. Norman Coleman
- Department of Adult Oncology and Joint Center for Radiation Therapy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Stuart K. Calderwood
- Department of Adult Oncology and Joint Center for Radiation Therapy, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
550
|
Eilers AL, Billin AN, Liu J, Ayer DE. A 13-amino acid amphipathic alpha-helix is required for the functional interaction between the transcriptional repressor Mad1 and mSin3A. J Biol Chem 1999; 274:32750-6. [PMID: 10551834 DOI: 10.1074/jbc.274.46.32750] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Mad family of bHLHZip proteins heterodimerize with Max and function to repress the transcriptional and transforming activities of the Myc proto-oncogene. Mad:Max heterodimers repress transcription by recruiting a large multi-protein complex containing the histone deacetylases, HDAC1 and HDAC2, to DNA. The interaction between Mad proteins and HDAC1/2 is mediated by the corepressor mSin3A and requires sequences at the amino terminus of the Mad proteins, termed the SID, for Sin3 interaction domain, and the second of four paired amphipathic alpha-helices (PAH2) in mSin3A. To better understand the requirements for the interaction between the SID and PAH2, we have performed mutagenesis and structural studies on the SID. These studies show that amino acids 8-20 of Mad1 are sufficient for SID:PAH2 interaction. Further, this minimal 13-residue SID peptide forms an amphipathic alpha-helix in solution, and residues on the hydrophobic face of the SID helix are required for interaction with PAH2. Finally, the minimal SID can function as an autonomous and portable repression domain, demonstrating that it is sufficient to target a functional mSin3A/HDAC corepressor complex.
Collapse
Affiliation(s)
- A L Eilers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | | | |
Collapse
|