501
|
Mahadeo KM, Khazal SJ, Abdel-Azim H, Fitzgerald JC, Taraseviciute A, Bollard CM, Tewari P, Duncan C, Traube C, McCall D, Steiner ME, Cheifetz IM, Lehmann LE, Mejia R, Slopis JM, Bajwa R, Kebriaei P, Martin PL, Moffet J, McArthur J, Petropoulos D, O'Hanlon Curry J, Featherston S, Foglesong J, Shoberu B, Gulbis A, Mireles ME, Hafemeister L, Nguyen C, Kapoor N, Rezvani K, Neelapu SS, Shpall EJ. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol 2019; 16:45-63. [PMID: 30082906 PMCID: PMC7096894 DOI: 10.1038/s41571-018-0075-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In 2017, an autologous chimeric antigen receptor (CAR) T cell therapy indicated for children and young adults with relapsed and/or refractory CD19+ acute lymphoblastic leukaemia became the first gene therapy to be approved in the USA. This innovative form of cellular immunotherapy has been associated with remarkable response rates but is also associated with unique and often severe toxicities, which can lead to rapid cardiorespiratory and/or neurological deterioration. Multidisciplinary medical vigilance and the requisite health-care infrastructure are imperative to ensuring optimal patient outcomes, especially as these therapies transition from research protocols to standard care. Herein, authors representing the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network Hematopoietic Stem Cell Transplantation (HSCT) Subgroup and the MD Anderson Cancer Center CAR T Cell Therapy-Associated Toxicity (CARTOX) Program have collaborated to provide comprehensive consensus guidelines on the care of children receiving CAR T cell therapy.
Collapse
Affiliation(s)
- Kris M Mahadeo
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sajad J Khazal
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hisham Abdel-Azim
- Department of Pediatrics, Blood and Marrow Transplantation Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Julie C Fitzgerald
- Department of Anesthesiology and Critical Care, Division of Critical Care, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Agne Taraseviciute
- Department of Pediatrics, Division of Hematology-Oncology, University of Washington, Seattle Children's Hospital, Seattle, WA, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and Department of Pediatrics, Children's National and The George Washington University, Washington DC, USA
| | - Priti Tewari
- Department of Pediatrics, Stem Cell Transplantation, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Christine Duncan
- Pediatric Hematology-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Chani Traube
- Department of Pediatric Critical Care, Weil Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - David McCall
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marie E Steiner
- Department of Pediatrics, Division of Critical Care, University of Minnesota, Masonic Children's Hospital, University of Minnesota, Minneapolis, MN, USA
| | - Ira M Cheifetz
- Department of Pediatrics, Division of Critical Care, Duke Children's Hospital, Duke University, Durham, NC, USA
| | - Leslie E Lehmann
- Pediatric Hematology-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Rodrigo Mejia
- Department of Pediatrics, Critical Care, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Slopis
- Department of Pediatrics, Neurology, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajinder Bajwa
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Nationwide Children's Hospital, the Ohio State University, Columbus, OH, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul L Martin
- Department of Pediatrics, Division of Blood and Marrow Transplant, Duke Children's Hospital, Duke University, Durham, NC, USA
| | - Jerelyn Moffet
- Department of Pediatrics, Division of Blood and Marrow Transplant, Duke Children's Hospital, Duke University, Durham, NC, USA
| | - Jennifer McArthur
- Department of Pediatrics, Division of Critical Care, St. Jude's Children's Research Hospital, Memphis, TN, USA
| | - Demetrios Petropoulos
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joan O'Hanlon Curry
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Featherston
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica Foglesong
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Basirat Shoberu
- Department of Pharmacy, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alison Gulbis
- Department of Pharmacy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria E Mireles
- Department of Pharmacy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa Hafemeister
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cathy Nguyen
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neena Kapoor
- Department of Pediatrics, Blood and Marrow Transplantation Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
502
|
ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol Blood Marrow Transplant 2018; 25:625-638. [PMID: 30592986 DOI: 10.1016/j.bbmt.2018.12.758] [Citation(s) in RCA: 1833] [Impact Index Per Article: 305.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is rapidly emerging as one of the most promising therapies for hematologic malignancies. Two CAR T products were recently approved in the United States and Europe for the treatment ofpatients up to age 25years with relapsed or refractory B cell acute lymphoblastic leukemia and/or adults with large B cell lymphoma. Many more CAR T products, as well as other immunotherapies, including various immune cell- and bi-specific antibody-based approaches that function by activation of immune effector cells, are in clinical development for both hematologic and solid tumor malignancies. These therapies are associated with unique toxicities of cytokine release syndrome (CRS) and neurologic toxicity. The assessment and grading of these toxicities vary considerably across clinical trials and across institutions, making it difficult to compare the safety of different products and hindering the ability to develop optimal strategies for management of these toxicities. Moreover, some aspects of these grading systems can be challenging to implement across centers. Therefore, in an effort to harmonize the definitions and grading systems for CRS and neurotoxicity, experts from all aspects of the field met on June 20 and 21, 2018, at a meeting supported by the American Society for Transplantation and Cellular Therapy (ASTCT; formerly American Society for Blood and Marrow Transplantation, ASBMT) in Arlington, VA. Here we report the consensus recommendations of that group and propose new definitions and grading for CRS and neurotoxicity that are objective, easy to apply, and ultimately more accurately categorize the severity of these toxicities. The goal is to provide a uniform consensus grading system for CRS and neurotoxicity associated with immune effector cell therapies, for use across clinical trials and in the postapproval clinical setting.
Collapse
|
503
|
Wang K, Han Y, Cho WC, Zhu H. The rise of human stem cell-derived natural killer cells for cancer immunotherapy. Expert Opin Biol Ther 2018; 19:141-148. [PMID: 30583701 DOI: 10.1080/14712598.2019.1559293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Natural killer (NK) cell therapy has been proven to be safe and clinically effective for the treatment of multiple cancers, in particular blood cancers. Most of the clinical trials use primary NK cells from peripheral blood or umbilical cord blood, or NK-92 cells. Each cell source is confined by limitations, such as donor dependence, low persistence in vivo, and its difficulty to genetically modify. Thus, there is an urgent need to explore novel NK cell sources for clinical use. AREAS COVERED This article highlights the recent progress in utilizing stem cell-derived NK cells as anticancer therapies and strategies to improve their antitumor activities. EXPERT COMMENTARY Stem cell-derived NK cells are homogenous, easy to genetically modify on a clonal level, and can be expanded to clinical scale. They may therefore arise as an ideal population for developing off-the-shelf, standardized adoptive NK cell therapeutic products.
Collapse
Affiliation(s)
- Kejian Wang
- a Lin He's Academician Workstation of New Medicine and Clinical Translation at The Third Affiliated Hospital , Guangzhou Medical University , Guangzhou , P.R. China
| | - Yue Han
- b Department of Medicine, Division of Regenerative Medicine , University of California San Diego , San Diego , CA , USA
| | - William C Cho
- c Department of Clinical Oncology , Queen Elizabeth Hospital , Kowloon , Hong Kong
| | - Huang Zhu
- b Department of Medicine, Division of Regenerative Medicine , University of California San Diego , San Diego , CA , USA
| |
Collapse
|
504
|
Boettcher AN, Loving CL, Cunnick JE, Tuggle CK. Development of Severe Combined Immunodeficient (SCID) Pig Models for Translational Cancer Modeling: Future Insights on How Humanized SCID Pigs Can Improve Preclinical Cancer Research. Front Oncol 2018; 8:559. [PMID: 30560086 PMCID: PMC6284365 DOI: 10.3389/fonc.2018.00559] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Within the last decade there have been several severe combined immunodeficient (SCID) pig models discovered or genetically engineered. The animals have mutations in ARTEMIS, IL2RG, or RAG1/2 genes, or combinations thereof, providing SCID pigs with NK cells, but deficient in T and B cells, or deficient in NK, T, and B cells for research studies. Biocontainment facilities and positive pressure isolators are developed to limit pathogen exposure and prolong the life of SCID pigs. Raising SCID pigs in such facilities allows for completion of long-term studies such as xenotransplantation of human cells. Ectopically injected human cancer cell lines develop into tumors in SCID pigs, thus providing a human-sized in vivo model for evaluating imaging methods to improve cancer detection and therapeutic research and development. Immunocompromised pigs have the potential to be immunologically humanized by xenotransplantation with human hematopoietic stem cells, peripheral blood leukocytes, or fetal tissue. These cells can be introduced through various routes including injection into fetal liver or the intraperitoneal (IP) space, or into piglets by intravenous, IP, and intraosseous administration. The development and maintenance of transplanted human immune cells would be initially (at least) dependent on immune signaling from swine cells. Compared to mice, swine share higher homology in immune related genes with humans. We hypothesize that the SCID pig may be able to support improved engraftment and differentiation of a wide range of human immune cells as compared to equivalent mouse models. Humanization of SCID pigs would thus provide a valuable model system for researchers to study interactions between human tumor and human immune cells. Additionally, as the SCID pig model is further developed, it may be possible to develop patient-derived xenograft models for individualized therapy and drug testing. We thus theorize that the individualized therapeutic approach would be significantly improved with a humanized SCID pig due to similarities in size, metabolism, and physiology. In all, porcine SCID models have significant potential as an excellent preclinical animal model for therapeutic testing.
Collapse
Affiliation(s)
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Joan E. Cunnick
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
505
|
Saetersmoen ML, Hammer Q, Valamehr B, Kaufman DS, Malmberg KJ. Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells. Semin Immunopathol 2018; 41:59-68. [PMID: 30361801 DOI: 10.1007/s00281-018-0721-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022]
Abstract
Cell therapy is emerging as a very promising therapeutic modality against cancer, spearheaded by the clinical success of chimeric antigen receptor (CAR) modified T cells for B cell malignancies. Currently, FDA-approved CAR-T cell products are based on engineering of autologous T cells harvested from the patient, typically using a central manufacturing facility for gene editing before the product can be delivered to the clinic and infused to the patients. For a broader implementation of advanced cell therapy and to reduce costs, it would be advantageous to use allogeneic "universal" cell therapy products that can be stored in cell banks and provided upon request, in a manner analogous to biopharmaceutical drug products. In this review, we outline a roadmap for development of off-the-shelf cell therapy based on natural killer (NK) cells derived from induced pluripotent stem cells (iPSCs). We discuss strategies to engineer iPSC-derived NK (iPSC-NK) cells for enhanced functional potential, persistence, and homing.
Collapse
Affiliation(s)
| | - Quirin Hammer
- Department of Medicine, Huddinge, Karolinska Institute, Solna, Sweden
| | | | - Dan S Kaufman
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karl-Johan Malmberg
- The KG Jebsen Center for Cancer Immunotherapy, University of Oslo, Oslo, Norway. .,Department of Medicine, Huddinge, Karolinska Institute, Solna, Sweden. .,Institute for Cancer research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
506
|
Richards RM, Sotillo E, Majzner RG. CAR T Cell Therapy for Neuroblastoma. Front Immunol 2018; 9:2380. [PMID: 30459759 PMCID: PMC6232778 DOI: 10.3389/fimmu.2018.02380] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
Patients with high risk neuroblastoma have a poor prognosis and survivors are often left with debilitating long term sequelae from treatment. Even after integration of anti-GD2 monoclonal antibody therapy into standard, upftont protocols, 5-year overall survival rates are only about 50%. The success of anti-GD2 therapy has proven that immunotherapy can be effective in neuroblastoma. Adoptive transfer of chimeric antigen receptor (CAR) T cells has the potential to build on this success. In early phase clinical trials, CAR T cell therapy for neuroblastoma has proven safe and feasible, but significant barriers to efficacy remain. These include lack of T cell persistence and potency, difficulty in target identification, and an immunosuppressive tumor microenvironment. With recent advances in CAR T cell engineering, many of these issues are being addressed in the laboratory. In this review, we summarize the clinical trials that have been completed or are underway for CAR T cell therapy in neuroblastoma, discuss the conclusions and open questions derived from these trials, and consider potential strategies to improve CAR T cell therapy for patients with neuroblastoma.
Collapse
Affiliation(s)
- Rebecca M. Richards
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Robbie G. Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
507
|
Abstract
Immunotherapy is one of the most exciting recent breakthroughs in the field of cancer treatment. Many different approaches are being developed and a number have already gained regulatory approval or are under investigation in clinical trials. However, learning from the past, preclinical animal models often insufficiently reflect the physiological situation in humans, which subsequently causes treatment failures in clinical trials. Due to species-specific differences in most parts of the immune system, the transfer of knowledge from preclinical studies to clinical trials is eminently challenging. Human tumor cell line-based or patient-derived xenografts in immunocompromised mice have been successfully applied in the preclinical testing of cytotoxic or molecularly targeted agents, but naturally these systems lack the human immune system counterpart. The co-transplantation of human peripheral blood mononuclear cells or hematopoietic stem cells is employed to overcome this limitation. This review summarizes some important aspects of the different available tumor xenograft mouse models, their history, and their implementation in drug development and personalized therapy. Moreover, recent progress, opportunities and limitations of different humanized mouse models will be discussed.
Collapse
|
508
|
Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies. J Immunol Res 2018; 2018:4054815. [PMID: 30306093 PMCID: PMC6166361 DOI: 10.1155/2018/4054815] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are powerful immune effectors whose antitumor activity is regulated through a sophisticated network of activating and inhibitory receptors. As effectors of cancer immunotherapy, NK cells are attractive as they do not attack healthy self-tissues nor do they induce T cell-driven inflammatory cytokine storm, enabling their use as allogeneic adoptive cellular therapies. Clinical responses to adoptive NK-based immunotherapy have been thwarted, however, by the profound immunosuppression induced by the tumor microenvironment, particularly severe in the context of solid tumors. In addition, the short postinfusion persistence of NK cells in vivo has limited their clinical efficacy. Enhancing the antitumor immunity of NK cells through genetic engineering has been fueled by the promise that impaired cytotoxic functionality can be restored or augmented with the use of synthetic genetic approaches. Alongside expressing chimeric antigen receptors to overcome immune escape by cancer cells, enhance their recognition, and mediate their killing, NK cells have been genetically modified to enhance their persistence in vivo by the expression of cytokines such as IL-15, avoid functional and metabolic tumor microenvironment suppression, or improve their homing ability, enabling enhanced targeting of solid tumors. However, NK cells are notoriously adverse to endogenous gene uptake, resulting in low gene uptake and transgene expression with many vector systems. Though viral vectors have achieved the highest gene transfer efficiencies with NK cells, nonviral vectors and gene transfer approaches—electroporation, lipofection, nanoparticles, and trogocytosis—are emerging. And while the use of NK cell lines has achieved improved gene transfer efficiencies particularly with viral vectors, challenges with primary NK cells remain. Here, we discuss the genetic engineering of NK cells as they relate to NK immunobiology within the context of cancer immunotherapy, highlighting the most recent breakthroughs in viral vectors and nonviral approaches aimed at genetic reprogramming of NK cells for improved adoptive immunotherapy of cancer, and, finally, address their clinical status.
Collapse
|
509
|
Natural Killer Cells in Liver Disease and Hepatocellular Carcinoma and the NK Cell-Based Immunotherapy. J Immunol Res 2018; 2018:1206737. [PMID: 30255103 PMCID: PMC6142725 DOI: 10.1155/2018/1206737] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
Nature killer (NK) cells play a critical role in host innate and adaptive immune defense against viral infections and tumors. NK cells are enriched in liver hematopoietic cells with unique NK repertories and functions to safeguard liver cells against hepatitis virus infection or malignancy transformation. However, accumulating evidences were found that the NK cells were modulated by liver diseases and liver cancers including hepatocellular carcinoma (HCC) and showed impaired functions failing to activate the elimination of the viral-infected cells or tumor cells and were further involved in the pathogenesis of liver injury and inflammation. The full characterization of circulation and intrahepatic NK cell phenotype and function in liver disease and liver cancer has not only provided new insight into the disease pathogenesis but has also discovered new targets for developing new NK cell-based therapeutic strategies. This review will discuss and summarize the NK cell phenotypic and functional changes in liver disease and HCC, and the NK cell-based immunotherapy approaches and progresses for cancers including HCC will also be reviewed.
Collapse
|
510
|
Ngai H, Tian G, Courtney AN, Ravari SB, Guo L, Liu B, Jin J, Shen ET, Di Pierro EJ, Metelitsa LS. IL-21 Selectively Protects CD62L + NKT Cells and Enhances Their Effector Functions for Adoptive Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2018; 201:2141-2153. [PMID: 30111631 DOI: 10.4049/jimmunol.1800429] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
T cells expressing CD19-specific chimeric Ag receptors (CARs) produce high remission rates in B cell lymphoma, but frequent disease recurrence and challenges in generating sufficient numbers of autologous CAR T cells necessitate the development of alternative therapeutic effectors. Vα24-invariant NKTs have intrinsic antitumor properties and are not alloreactive, allowing for off-the-shelf use of CAR-NKTs from healthy donors. We recently reported that CD62L+ NKTs persist longer and have more potent antilymphoma activity than CD62L- cells. However, the conditions governing preservation of CD62L+ cells during NKT cell expansion remain largely unknown. In this study, we demonstrate that IL-21 preserves this crucial central memory-like NKT subset and enhances its antitumor effector functionality. We found that following antigenic stimulation with α-galactosylceramide, CD62L+ NKTs both expressed IL-21R and secreted IL-21, each at significantly higher levels than CD62L- cells. Although IL-21 alone failed to expand stimulated NKTs, combined IL-2/IL-21 treatment produced more NKTs and increased the frequency of CD62L+ cells versus IL-2 alone. Gene expression analysis comparing CD62L+ and CD62L- cells treated with IL-2 alone or IL-2/IL-21 revealed that the latter condition downregulated the proapoptotic protein BIM selectively in CD62L+ NKTs, protecting them from activation-induced cell death. Moreover, IL-2/IL-21-expanded NKTs upregulated granzyme B expression and produced more TH1 cytokines, leading to enhanced in vitro cytotoxicity of nontransduced and anti-CD19-CAR-transduced NKTs against CD1d+ and CD19+ lymphoma cells, respectively. Further, IL-2/IL-21-expanded CAR-NKTs dramatically increased the survival of lymphoma-bearing NSG mice compared with IL-2-expanded CAR-NKTs. These findings have immediate translational implications for the development of NKT cell-based immunotherapies targeting lymphoma and other malignancies.
Collapse
Affiliation(s)
- Ho Ngai
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
| | - Gengwen Tian
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
| | - Amy N Courtney
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Soodeh B Ravari
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Linjie Guo
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Bin Liu
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Jingling Jin
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Elise T Shen
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Erica J Di Pierro
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Leonid S Metelitsa
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
511
|
Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell 2018; 23:181-192.e5. [PMID: 30082067 PMCID: PMC6084450 DOI: 10.1016/j.stem.2018.06.002] [Citation(s) in RCA: 626] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/13/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptors (CARs) significantly enhance the anti-tumor activity of immune effector cells. Although most studies have evaluated CAR expression in T cells, here we evaluate different CAR constructs that improve natural killer (NK) cell-mediated killing. We identified a CAR containing the transmembrane domain of NKG2D, the 2B4 co-stimulatory domain, and the CD3ζ signaling domain to mediate strong antigen-specific NK cell signaling. NK cells derived from human iPSCs that express this CAR (NK-CAR-iPSC-NK cells) have a typical NK cell phenotype and demonstrate improved anti-tumor activity compared with T-CAR-expressing iPSC-derived NK cells (T-CAR-iPSC-NK cells) and non-CAR-expressing cells. In an ovarian cancer xenograft model, NK-CAR-iPSC-NK cells significantly inhibited tumor growth and prolonged survival compared with PB-NK cells, iPSC-NK cells, or T-CAR-iPSC-NK cells. Additionally, NK-CAR-iPSC-NK cells demonstrate in vivo activity similar to that of T-CAR-expressing T cells, although with less toxicity. These NK-CAR-iPSC-NK cells now provide standardized, targeted "off-the-shelf" lymphocytes for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Li
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David L Hermanson
- Department of Medicine, University of Minnesota Minneapolis, Minneapolis, MN 55455, USA
| | - Branden S Moriarity
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
512
|
Salter AI, Pont MJ, Riddell SR. Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood 2018; 131:2621-2629. [PMID: 29728402 PMCID: PMC6032892 DOI: 10.1182/blood-2018-01-785840] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
The ability to harness a patient's immune system to target malignant cells is now transforming the treatment of many cancers, including hematologic malignancies. The adoptive transfer of T cells selected for tumor reactivity or engineered with natural or synthetic receptors has emerged as an effective modality, even for patients with tumors that are refractory to conventional therapies. The most notable example of adoptive cell therapy is with T cells engineered to express synthetic chimeric antigen receptors (CARs) that reprogram their specificity to target CD19. CAR T cells have shown remarkable antitumor activity in patients with refractory B-cell malignancies. Ongoing research is focused on understanding the mechanisms of incomplete tumor elimination, reducing toxicities, preventing antigen escape, and identifying suitable targets and strategies based on established and emerging principles of synthetic biology for extending this approach to other hematologic malignancies. This review will discuss the current status, challenges, and potential future applications of CAR T-cell therapy in hematologic malignancies.
Collapse
Affiliation(s)
- Alexander I Salter
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Department of Medicine, University of Washington, Seattle, WA
| | - Margot J Pont
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
513
|
Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, Yin J, You F, Zhu M, Shen W, Chen G, Zhu X, Wu D, Yu J. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res 2018; 8:1083-1089. [PMID: 30034945 PMCID: PMC6048396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023] Open
Abstract
CAR T cells have shown clinical efficacy for acute lymphoblastic leukemia, but this therapy has not been effective for acute myeloid leukemia (AML), and other treatment options are needed. Theoretically, CAR-NK cells have a more favorable toxicity profile compared to CAR T cells, especially in avoiding adverse effects such as cytokine release syndrome. However, the clinical evidence for this has not yet been reported. In the current study, we tested the safety of CD33-CAR NK cells in patients with relapsed and refractory AML. At doses up to 5 × 109 (5 billion) cells per patient, no significant adverse effects were observed. CAR NK-92 cells can be produced at much lower cost compared to CAR T cells, and we believe after being optimized, they will be widely accessible for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaowen Tang
- Institute of Blood and Bone Marrow TransplantationSuzhou, China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Lin Yang
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
- The Cyrus Tang Hematology Center, Soochow UniversitySuzhou, China
- Persongen BioTherapeutics Co., Ltd.Suzhou, China
| | - Zheng Li
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
- Institute of Blood and Bone Marrow TransplantationSuzhou, China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Ansel P Nalin
- Comprehensive Cancer Center, The Ohio State UniversityColumbus, OH 43210, USA
| | - Haiping Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
- Institute of Blood and Bone Marrow TransplantationSuzhou, China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Ting Xu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
- Institute of Blood and Bone Marrow TransplantationSuzhou, China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Jia Yin
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
- Institute of Blood and Bone Marrow TransplantationSuzhou, China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Fengtao You
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
- The Cyrus Tang Hematology Center, Soochow UniversitySuzhou, China
- Persongen BioTherapeutics Co., Ltd.Suzhou, China
| | - Mingqing Zhu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
- Institute of Blood and Bone Marrow TransplantationSuzhou, China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Wenhong Shen
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
- Institute of Blood and Bone Marrow TransplantationSuzhou, China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Guanghua Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
- Institute of Blood and Bone Marrow TransplantationSuzhou, China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Xiaming Zhu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
- Institute of Blood and Bone Marrow TransplantationSuzhou, China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
- Institute of Blood and Bone Marrow TransplantationSuzhou, China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State UniversityColumbus, OH 43210, USA
- The James Cancer Hospital, The Ohio State UniversityColumbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State UniversityColumbus, OH 43210, USA
| |
Collapse
|
514
|
Interleukin-15-Stimulated Natural Killer Cells Clear HIV-1-Infected Cells following Latency Reversal Ex Vivo. J Virol 2018; 92:JVI.00235-18. [PMID: 29593039 DOI: 10.1128/jvi.00235-18] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Current efforts toward human immunodeficiency virus (HIV) eradication include approaches to augment immune recognition and elimination of persistently infected cells following latency reversal. Natural killer (NK) cells, the main effectors of the innate immune system, recognize and clear targets using different mechanisms than CD8+ T cells, offering an alternative or complementary approach for HIV clearance strategies. We assessed the impact of interleukin 15 (IL-15) treatment on NK cell function and the potential for stimulated NK cells to clear the HIV reservoir. We measured NK cell receptor expression, antibody-dependent cell-mediated cytotoxicity (ADCC), cytotoxicity, interferon gamma (IFN-γ) production, and antiviral activity in autologous HIV replication systems. All NK cell functions were uniformly improved by IL-15, and, more importantly, IL-15-treated NK cells were able to clear latently HIV-infected cells after exposure to vorinostat, a clinically relevant latency-reversing agent. We also demonstrate that NK cells from HIV-infected individuals aviremic on antiretroviral therapy can be efficiently stimulated with IL-15. Our work opens a promising line of investigation leading to future immunotherapies to clear persistent HIV infection using NK cells.IMPORTANCE In the search for an HIV cure, strategies to enhance immune function to allow recognition and clearance of HIV-infected cells following latency reversal are being evaluated. Natural killer (NK) cells possess characteristics that can be exploited for immunotherapy against persistent HIV infection. We demonstrate that NK cells from HIV-positive donors can be strongly stimulated with IL-15, improving their antiviral and cytotoxic potential and, more importantly, clearing HIV-infected cells after latency reversal with a clinically relevant drug. Our results encourage further investigation to design NK cell-based immunotherapies to achieve HIV eradication.
Collapse
|
515
|
Jin H, Wan C, Zou Z, Zhao G, Zhang L, Geng Y, Chen T, Huang A, Jiang F, Feng JP, Lovell JF, Chen J, Wu G, Yang K. Tumor Ablation and Therapeutic Immunity Induction by an Injectable Peptide Hydrogel. ACS NANO 2018; 12:3295-3310. [PMID: 29558107 DOI: 10.1021/acsnano.7b08148] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Immunosuppressive tumor microenvironments (TMEs) create tremendous obstacles for an effective cancer therapy. Herein, we developed a melittin-RADA32 hybrid peptide hydrogel loaded with doxorubicin (DOX) for a potent chemoimmunotherapy against melanoma through the active regulation of TMEs. The formed melittin-RADA32-DOX (MRD) hydrogel has an interweaving nanofiber structure and exhibits excellent biocompatibility, controlled drug release properties both in vitro and in vivo, and an enhanced killing effect to melanoma cells. A single-dose injection of MRD hydrogel retarded the growth of primary melanoma tumors by more than 95% due to loaded melittin and DOX, with concomitant recruitment of activated natural killer cells in the tumors. Furthermore, MRD hydrogel can activate dendritic cells of draining lymph nodes, specifically deplete M2-like tumor-associated macrophages (TAMs), and produce active, cytotoxic T cells to further defend the cells against remaining tumors, providing potent anticancer efficacy against subcutaneous and metastatic tumors in vivo. Multidose injection of MRD hydrogel eliminated 50% of the primary tumors and provided a strong immunological memory effect against tumor rechallenge after eradication of the initial tumors. Owing to its abilities to perform controlled drug release, regulate innate immune cells, deplete M2-like TAMs, direct anticancer and immune-stimulating capabilities, and reshape immunosuppressive TMEs, MRD hydrogel may serve as a powerful tool for anticancer applications.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Humans
- Hydrogel, Polyethylene Glycol Dimethacrylate/administration & dosage
- Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry
- Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology
- Immunotherapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Peptides/administration & dosage
- Peptides/chemistry
- Peptides/pharmacology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- Structure-Activity Relationship
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jue-Ping Feng
- Department of Oncology, PuAi Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430034 , China
| | - Jonathan F Lovell
- Department of Biomedical Engineering , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| | | | | | | |
Collapse
|
516
|
Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer 2018; 9:1773-1781. [PMID: 29805703 PMCID: PMC5968765 DOI: 10.7150/jca.24577] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022] Open
Abstract
In the past decades, our knowledge about the relationship between cancer and the immune system has increased considerably. Recent years' success of cancer immunotherapy including monoclonal antibodies (mAbs), cancer vaccines, adoptive cancer therapy and the immune checkpoint therapy has revolutionized traditional cancer treatment. However, challenges still exist in this field. Personalized combination therapies via new techniques will be the next promising strategies for the future cancer treatment direction.
Collapse
Affiliation(s)
- Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, the Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China
| | - Jibei Chen
- Department of Respiratory Medicine, Yancheng Third People's Hospital, the Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China
| |
Collapse
|
517
|
Schmidt S, Tramsen L, Rais B, Ullrich E, Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases - current status and future perspectives. Oncotarget 2018; 9:20891-20907. [PMID: 29755697 PMCID: PMC5945539 DOI: 10.18632/oncotarget.25058] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are involved in the host immune response against infections due to viral, bacterial and fungal pathogens, all of which are a significant cause of morbidity and mortality in immunocompromised patients. Since the recovery of the immune system has a major impact on the outcome of an infectious complication, there is major interest in strengthening the host response in immunocompromised patients, either by using cytokines or growth factors or by adoptive cellular therapies transfusing immune cells such as granulocytes or pathogen-specific T-cells. To date, relatively little is known about the potential of adoptively transferring NK cells in immunocompromised patients with infectious complications, although the anti-cancer property of NK cells is already being investigated in the clinical setting. This review will focus on the antimicrobial properties of NK cells and the current standing and future perspectives of generating and using NK cells as immunotherapy in patients with infectious complications, an approach which is promising and might have an important clinical impact in the future.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
518
|
Lin C, Zhang J. Reformation in chimeric antigen receptor based cancer immunotherapy: Redirecting natural killer cell. Biochim Biophys Acta Rev Cancer 2018; 1869:200-215. [DOI: 10.1016/j.bbcan.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/20/2018] [Indexed: 01/05/2023]
|
519
|
Daher M, Rezvani K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol 2018; 51:146-153. [PMID: 29605760 PMCID: PMC6140331 DOI: 10.1016/j.coi.2018.03.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
Recent advances in the field of cellular therapy have focused on autologous T cells engineered to express a chimeric antigen receptor (CAR) against tumor antigens. Remarkable responses have been observed in patients receiving autologous CD19-redirected T cells for the treatment of B-lymphoid malignancies. However, the generation of autologous products for each patient is logistically challenging and expensive. Extensive research efforts are ongoing to generate an off-the-shelf cellular product for the treatment of cancer patients. Natural killer (NK) cells are attractive contenders since they have potent anti-tumor activity, and their safety in the allogeneic setting expands the cell sources for NK cell therapy beyond an autologous one. In this review, we discuss advantages and limitations of NK cellular therapy, and novel genetic engineering strategies that may be applied to overcome some of the limitations. Next-generation engineered NK cells are showing great promise in the preclinical setting and it is likely that in the next few years CAR-engineered NK cells will be incorporated into the current armamentarium of cell-based cancer therapeutics.
Collapse
Affiliation(s)
- May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, TX, United States.
| |
Collapse
|
520
|
Rosenberg J, Huang J. CD8 + T Cells and NK Cells: Parallel and Complementary Soldiers of Immunotherapy. Curr Opin Chem Eng 2018; 19:9-20. [PMID: 29623254 PMCID: PMC5880541 DOI: 10.1016/j.coche.2017.11.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD8+ T cells and NK cells are both cytotoxic effector cells of the immune system, but the recognition, specificity, sensitivity, and memory mechanisms are drastically different. While many of these topics have been extensively studied in CD8+ T cells, very little is known about NK cells. Current cancer immunotherapies mainly focus on CD8+ T cells, but have many issues of toxicity and efficacy. Given the heterogeneous nature of cancer, personalized cancer immunotherapy that integrates the power of both CD8+ T cells in adaptive immunity and NK cells in innate immunity might be the future direction, along with precision targeting and effective delivery of tumor-specific, memory CD8+ T cells and NK cells.
Collapse
Affiliation(s)
- Jillian Rosenberg
- Committee on Cancer Biology, The University of Chicago, IL 60637, USA
| | - Jun Huang
- Committee on Cancer Biology, The University of Chicago, IL 60637, USA
- Institute for Molecular Engineering, The University of Chicago, IL 60637, USA
| |
Collapse
|
521
|
Harrer DC, Dörrie J, Schaft N. Chimeric Antigen Receptors in Different Cell Types: New Vehicles Join the Race. Hum Gene Ther 2018; 29:547-558. [PMID: 29320890 DOI: 10.1089/hum.2017.236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adoptive cellular therapy has evolved into a powerful force in the battle against cancer, holding promise for curative responses in patients with advanced and refractory tumors. Autologous T cells, reprogrammed to target malignant cells via the expression of a chimeric antigen receptor (CAR) represent the frontrunner in this approach. Tremendous clinical regressions have been achieved using CAR-T cells against a variety of cancers both in numerous preclinical studies and in several clinical trials, most notably against acute lymphoblastic leukemia, and resulted in a very recent United States Food and Drug Administration approval of the first CAR-T-cell therapy. In most studies CARs are transferred to conventional αβT cells. Nevertheless, transferring a CAR into different cell types, such as γδT cells, natural killer cells, natural killer T cells, and myeloid cells has yet received relatively little attention, although these cell types possess unique features that may aid in surmounting some of the hurdles CAR-T-cell therapy currently faces. This review focuses on CAR therapy using effectors beyond conventional αβT cells and discusses those strategies against the backdrop of developing a safe, powerful, and durable cancer therapy.
Collapse
Affiliation(s)
- Dennis C Harrer
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Jan Dörrie
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Niels Schaft
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| |
Collapse
|
522
|
Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front Immunol 2018; 9:283. [PMID: 29497427 PMCID: PMC5818392 DOI: 10.3389/fimmu.2018.00283] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic “off-the-shelf” cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use.
Collapse
|
523
|
García-Martínez E, Smith M, Buqué A, Aranda F, de la Peña FA, Ivars A, Cánovas MS, Conesa MAV, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 2018; 7:e1433982. [PMID: 29872569 PMCID: PMC5980390 DOI: 10.1080/2162402x.2018.1433982] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.
Collapse
Affiliation(s)
- Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, IDIBAPS, Barcelona, Spain
| | | | - Alejandra Ivars
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Sanchez Cánovas
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, France
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
524
|
Gomes-Silva D, Ramos CA. Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line. Biotechnol J 2018; 13:10.1002/biot.201700097. [PMID: 28960810 PMCID: PMC5966018 DOI: 10.1002/biot.201700097] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/20/2017] [Indexed: 11/08/2022]
Abstract
The focus of cancer treatment has recently shifted toward targeted therapies, including immunotherapy, which allow better individualization of care and are hoped to increase the probability of success for patients. Specifically, T cells genetically modified to express chimeric antigen receptors (CARs; CAR-T cells) have generated exciting results. Recent clinical successes with this cutting-edge therapy have helped to push CAR-T cells toward approval for wider use. However, several limitations need to be addressed before the widespread use of CAR-T cells as a standard treatment. Here, a succinct background on adoptive T-cell therapy (ATCT)is given. A brief overview of the structure of CARs, how they are introduced into T cells, and how CAR-T cell expansion and selection is achieved in vitro is then presented. Some of the challenges in CAR design are discussed, as well as the difficulties that arise in large-scale CAR-T cell manufacture that will need to be addressed to achieve successful commercialization of this type of cell therapy. Finally, developments already on the horizon are discussed.
Collapse
Affiliation(s)
- Diogo Gomes-Silva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
525
|
Xu Z, Li P, Fan L, Wu M. The Potential Role of circRNA in Tumor Immunity Regulation and Immunotherapy. Front Immunol 2018; 9:9. [PMID: 29403493 PMCID: PMC5786515 DOI: 10.3389/fimmu.2018.00009] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) can be divided into circular non-coding RNAs (circRNAs) and linear ncRNAs. ncRNAs exist in different cell types, including normal cells, tumor cells and immunocytes. Linear ncRNAs, such as long ncRNAs and microRNAs, have been found to play important roles in the regulation of tumor immunity and immunotherapy; however, the functions of circRNAs in tumor immunity and immunotherapy are less known. Here, we review the current status of ncRNAs in the regulation of tumor immunity and immunotherapy and emphatically discuss the potential roles of circRNAs as tumor antigens in the regulation of tumor immunity and immunotherapy.
Collapse
Affiliation(s)
- Zihao Xu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China
| | - Li Fan
- Department of Biochemistry, University of California Riverside, Riverside, CA, United States
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China.,Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China
| |
Collapse
|
526
|
Pinz KG, Yakaboski E, Jares A, Liu H, Firor AE, Chen KH, Wada M, Salman H, Tse W, Hagag N, Lan F, Leung ELH, Jiang X, Ma Y. Targeting T-cell malignancies using anti-CD4 CAR NK-92 cells. Oncotarget 2017; 8:112783-112796. [PMID: 29348865 PMCID: PMC5762550 DOI: 10.18632/oncotarget.22626] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a group of very aggressive non-Hodgkin's lymphomas (NHLs) with poor prognoses and account for a majority of T-cell malignancies. Overall, the standard of care for patients with T-cell malignancies is poorly established, and there is an urgent clinical need for a new approach. As demonstrated in B-cell malignancies, chimeric antigen receptor (CAR) immunotherapy provides great hope as a curative treatment regimen. Because PTCLs develop from mature T-cells, these NHLs are commonly CD4+, and CD4 is highly and uniformly expressed. Therefore, CD4 is an ideal target for PTCL CAR immunotherapy. To that effect, we created a robust third-generation anti-CD4 CAR construct (CD4CAR) and introduced it into clonal NK cells (NK-92). CD4CAR NK-92 cells specifically and robustly eliminated diverse CD4+ human T-cell leukemia and lymphoma cell lines (KARPAS-299, CCRF-CEM, and HL60) and patient samples ex vivo. Furthermore, CD4CAR NK-92 cells effectively targeted KARPAS-299 cells in vivo that modeled difficult-to-access lymphoma nodules, significantly prolonging survival. In our study, we present novel targeting of CD4 using CAR-modified NK cells, and demonstrate efficacy. Combined, our data support CD4CAR NK cell immunotherapy as a potential new avenue for the treatment of PTCLs and CD4+ T-cell malignancies.
Collapse
Affiliation(s)
- Kevin G. Pinz
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
| | - Elizabeth Yakaboski
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
| | - Alexander Jares
- Department of Pathology, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| | - Hua Liu
- Department of Pathology, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| | - Amelia E. Firor
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
| | - Kevin H. Chen
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
| | - Masayuki Wada
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
| | - Huda Salman
- Department of Internal Medicine, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| | - William Tse
- Division of Hematology and Medical Oncology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Nabil Hagag
- Department of Internal Medicine, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| | - Fengshuo Lan
- Department of Internal Medicine, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR, China
| | - Xun Jiang
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR, China
| | - Yupo Ma
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR, China
- Department of Pathology, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| |
Collapse
|
527
|
Audehm S, Krackhardt AM. Specific Adoptive Cellular Immunotherapy in Allogeneic Stem Cell Transplantation. Oncol Res Treat 2017; 40:691-696. [PMID: 29069663 DOI: 10.1159/000484051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents a treatment option for a diversity of advanced hematopoietic malignancies providing hope for long-term responses especially due to immunogenic effects associated with the treatment modality. Despite respectable progress in the field, relapses and/or opportunistic infections are major reasons for the high treatment-related mortality. However, a number of novel immunotherapeutic approaches using defined cell populations have been developed to directly target residual malignant cells as well as defined infectious diseases. We here provide an overview of current adoptive cellular immunotherapies in the context of allo-HSCT and close with an outlook on new directions within the field.
Collapse
Affiliation(s)
- Stefan Audehm
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
528
|
Martín-Antonio B, Suñe G, Perez-Amill L, Castella M, Urbano-Ispizua A. Natural Killer Cells: Angels and Devils for Immunotherapy. Int J Mol Sci 2017; 18:ijms18091868. [PMID: 28850071 PMCID: PMC5618517 DOI: 10.3390/ijms18091868] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, the relevance of the immune system to fight cancer has led to the development of immunotherapy, including the adoptive cell transfer of immune cells, such as natural killer (NK) cells and chimeric antigen receptors (CAR)-modified T cells. The discovery of donor NK cells’ anti-tumor activity in acute myeloid leukemia patients receiving allogeneic stem cell transplantation (allo-SCT) was the trigger to conduct many clinical trials infusing NK cells. Surprisingly, many of these studies did not obtain optimal results, suggesting that many different NK cell parameters combined with the best clinical protocol need to be optimized. Various parameters including the high array of activating receptors that NK cells have, the source of NK cells selected to treat patients, different cytotoxic mechanisms that NK cells activate depending on the target cell and tumor cell survival mechanisms need to be considered before choosing the best immunotherapeutic strategy using NK cells. In this review, we will discuss these parameters to help improve current strategies using NK cells in cancer therapy. Moreover, the chimeric antigen receptor (CAR) modification, which has revolutionized the concept of immunotherapy, will be discussed in the context of NK cells. Lastly, the dark side of NK cells and their involvement in inflammation will also be discussed.
Collapse
Affiliation(s)
- Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Guillermo Suñe
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Lorena Perez-Amill
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Maria Castella
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Alvaro Urbano-Ispizua
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| |
Collapse
|