501
|
Affiliation(s)
- Scott B Vafai
- Howard Hughes Medical Institute, Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
502
|
Wang G, Yang E, Mandhan I, Brinkmeyer-Langford CL, Cai JJ. Population-level expression variability of mitochondrial DNA-encoded genes in humans. Eur J Hum Genet 2014; 22:1093-9. [PMID: 24398800 DOI: 10.1038/ejhg.2013.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 10/22/2013] [Accepted: 11/09/2013] [Indexed: 12/28/2022] Open
Abstract
Human mitochondria contain multiple copies of a circular genome made up of double-stranded DNA (mtDNA) that encodes proteins involved in cellular respiration. Transcript abundance of mtDNA-encoded genes varies between human individuals, yet the level of variation in the general population has not been systematically assessed. In the present study, we revisited large-scale RNA sequencing data generated from lymphoblastoid cell lines of HapMap samples of European and African ancestry to estimate transcript abundance and quantify expression variation for mtDNA-encoded genes. In both populations, we detected up to over 100-fold difference in mtDNA gene expression between individuals. The marked variation was not due to differences in mtDNA copy number between individuals, but was shaped by the transcription of hundreds of nuclear genes. Many of these nuclear genes were co-expressed with one another, resulting in a module-enriched co-expression network. Significant correlations in expression between genes of the mtDNA and nuclear genomes were used to identify factors involved with the regulation of mitochondrial functions. In conclusion, we determined the baseline amount of variability in mtDNA gene expression in general human populations and cataloged a complete set of nuclear genes whose expression levels are correlated with those of mtDNA-encoded genes. Our findings will enable the integration of information from both mtDNA and nuclear genetic systems, and facilitate the discovery of novel regulatory pathways involving mitochondrial functions.
Collapse
Affiliation(s)
- Gang Wang
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ence Yang
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ishita Mandhan
- Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | | | - James J Cai
- 1] Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA [2] Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
503
|
Sharma NK, Lebedeva M, Thomas T, Kovalenko OA, Stumpf JD, Shadel GS, Santos JH. Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia. DNA Repair (Amst) 2014; 13:22-31. [PMID: 24342190 PMCID: PMC6211587 DOI: 10.1016/j.dnarep.2013.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 11/26/2013] [Indexed: 12/28/2022]
Abstract
Ataxia Telangiectasia (A-T) is a progressive childhood disorder characterized most notably by cerebellar degeneration and predisposition to cancer. A-T is caused by mutations in the kinase ATM, a master regulator of the DNA double-strand break response. In addition to DNA-damage signaling defects, A-T cells display mitochondrial dysfunction that is thought to contribute to A-T pathogenesis. However, the molecular mechanism leading to mitochondrial dysfunction in A-T remains unclear. Here, we show that lack of ATM leads to reduced mitochondrial DNA (mtDNA) integrity and mitochondrial dysfunction, which are associated to defective mtDNA repair. While protein levels of mtDNA repair proteins are essentially normal, in the absence of ATM levels specifically of DNA ligase III (Lig3), the only DNA ligase working in mitochondria is reduced. The reduction of Lig3 is observed in different A-T patient cells, in brain and pre-B cells derived from ATM knockout mice as well as upon transient or stable knockdown of ATM. Furthermore, pharmacological inhibition of Lig3 in wild type cells phenocopies the mtDNA repair defects observed in A-T patient cells. As targeted deletion of LIG3 in the central nervous system causes debilitating ataxia in mice, reduced Lig3 protein levels and the consequent mtDNA repair defect may contribute to A-T neurodegeneration. A-T is thus the first disease characterized by diminished Lig3.
Collapse
Affiliation(s)
- Nilesh K Sharma
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Maria Lebedeva
- Department of Genetics, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States
| | - Terace Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Olga A Kovalenko
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Jeffrey D Stumpf
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Building 101, Durham, NC 27709, United States
| | - Gerald S Shadel
- Department of Genetics, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States; Department of Pathology, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States
| | - Janine H Santos
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States.
| |
Collapse
|
504
|
Zhu JY, Vereshchagina N, Sreekumar V, Burbulla LF, Costa AC, Daub KJ, Woitalla D, Martins LM, Krüger R, Rasse TM. Knockdown of Hsc70-5/mortalin induces loss of synaptic mitochondria in a Drosophila Parkinson's disease model. PLoS One 2013; 8:e83714. [PMID: 24386261 PMCID: PMC3875477 DOI: 10.1371/journal.pone.0083714] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/07/2013] [Indexed: 02/02/2023] Open
Abstract
Mortalin is an essential component of the molecular machinery that imports nuclear-encoded proteins into mitochondria, assists in their folding, and protects against damage upon accumulation of dysfunctional, unfolded proteins in aging mitochondria. Mortalin dysfunction associated with Parkinson’s disease (PD) increases the vulnerability of cultured cells to proteolytic stress and leads to changes in mitochondrial function and morphology. To date, Drosophila melanogaster has been successfully used to investigate pathogenesis following the loss of several other PD-associated genes. We generated the first loss-of-Hsc70-5/mortalin-function Drosophila model. The reduction of Mortalin expression recapitulates some of the defects observed in the existing Drosophila PD-models, which include reduced ATP levels, abnormal wing posture, shortened life span, and reduced spontaneous locomotor and climbing ability. Dopaminergic neurons seem to be more sensitive to the loss of mortalin than other neuronal sub-types and non-neuronal tissues. The loss of synaptic mitochondria is an early pathological change that might cause later degenerative events. It precedes both behavioral abnormalities and structural changes at the neuromuscular junction (NMJ) of mortalin-knockdown larvae that exhibit increased mitochondrial fragmentation. Autophagy is concomitantly up-regulated, suggesting that mitochondria are degraded via mitophagy. Ex vivo data from human fibroblasts identifies increased mitophagy as an early pathological change that precedes apoptosis. Given the specificity of the observed defects, we are confident that the loss-of-mortalin model presented in this study will be useful for further dissection of the complex network of pathways that underlie the development of mitochondrial parkinsonism.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School of Cellular & Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Natalia Vereshchagina
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Vrinda Sreekumar
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School of Cellular & Molecular Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Lena F. Burbulla
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ana C. Costa
- Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester, United Kingdom
| | - Katharina J. Daub
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Dirk Woitalla
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - L. Miguel Martins
- Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester, United Kingdom
| | - Rejko Krüger
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- * E-mail: (TMR); (RK)
| | - Tobias M. Rasse
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- * E-mail: (TMR); (RK)
| |
Collapse
|
505
|
Acin-Perez R, Enriquez JA. The function of the respiratory supercomplexes: the plasticity model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:444-50. [PMID: 24368156 DOI: 10.1016/j.bbabio.2013.12.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 01/16/2023]
Abstract
Mitochondria are important organelles not only as efficient ATP generators but also in controlling and regulating many cellular processes. Mitochondria are dynamic compartments that rearrange under stress response and changes in food availability or oxygen concentrations. The mitochondrial electron transport chain parallels these rearrangements to achieve an optimum performance and therefore requires a plastic organization within the inner mitochondrial membrane. This consists in a balanced distribution between free respiratory complexes and supercomplexes. The mechanisms by which the distribution and organization of supercomplexes can be adjusted to the needs of the cells are still poorly understood. The aim of this review is to focus on the functional role of the respiratory supercomplexes and its relevance in physiology. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Jose A Enriquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| |
Collapse
|
506
|
Abstract
Stemming from the pioneering studies of bioenergetics in the 1950s, 1960s, and 1970s, mitochondria have become ingrained in the collective psyche of scientists as the "powerhouses" of the cell. While this remains a worthy moniker, more recent efforts have revealed that these organelles are home to a vast array of metabolic and signaling processes and possess a proteomic landscape that is both highly varied and largely uncharted. As mitochondrial dysfunction is increasingly being implicated in a spectrum of human diseases, it is imperative that we construct a more complete framework of these organelles by systematically defining the functions of their component parts. Powerful new approaches in biochemistry and systems biology are helping to fill in the gaps.
Collapse
Affiliation(s)
- David J. Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
507
|
Franko A, Baris OR, Bergschneider E, von Toerne C, Hauck SM, Aichler M, Walch AK, Wurst W, Wiesner RJ, Johnston ICD, de Angelis MH. Efficient isolation of pure and functional mitochondria from mouse tissues using automated tissue disruption and enrichment with anti-TOM22 magnetic beads. PLoS One 2013; 8:e82392. [PMID: 24349272 PMCID: PMC3861405 DOI: 10.1371/journal.pone.0082392] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022] Open
Abstract
To better understand molecular mechanisms regulating changes in metabolism, as observed e.g. in diabetes or neuronal disorders, the function of mitochondria needs to be precisely determined. The usual isolation methods such as differential centrifugation result in isolates of highly variable quality and quantity. To fulfill the need of a reproducible isolation method from solid tissues, which is suitable to handle parallel samples simultaneously, we developed a protocol based on anti-TOM22 (translocase of outer mitochondrial membrane 22 homolog) antibody-coupled magnetic beads. To measure oxygen consumption rate in isolated mitochondria from various mouse tissues, a traditional Clark electrode and the high-throughput XF Extracellular Flux Analyzer were used. Furthermore, Western blots, transmission electron microscopic and proteomic studies were performed to analyze the purity and integrity of the mitochondrial preparations. Mitochondrial fractions isolated from liver, brain and skeletal muscle by anti-TOM22 magnetic beads showed oxygen consumption capacities comparable to previously reported values and little contamination with other organelles. The purity and quality of isolated mitochondria using anti-TOM22 magnetic beads was compared to traditional differential centrifugation protocol in liver and the results indicated an obvious advantage of the magnetic beads method compared to the traditional differential centrifugation technique.
Collapse
Affiliation(s)
- Andras Franko
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Olivier R. Baris
- Institute of Vegetative Physiology, Medical Faculty, University of Köln, Köln, Germany
| | | | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Axel K. Walch
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München, Neuherberg, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
- Technische Universität München, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Neuherberg, Germany
- DZNE – Deutsches Zentrum fuer Neurodegenerative Erkrankungen, Site Munich, Germany
| | - Rudolf J. Wiesner
- Institute of Vegetative Physiology, Medical Faculty, University of Köln, Köln, Germany
- Center for Molecular Medicine (CMMC), University of Köln, Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-associated Diseases (CECAD), University of Köln, Köln, Germany
| | | | - Martin Hrabĕ de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, WZW - Center of Life and Food Science Weihenstephan, Chair of Experimental Genetics, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
508
|
Benner C, Konovalov S, Mackintosh C, Hutt KR, Stunnenberg R, Garcia-Bassets I. Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions. PLoS Genet 2013; 9:e1003906. [PMID: 24244184 PMCID: PMC3820735 DOI: 10.1371/journal.pgen.1003906] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
Genome-wide maps of DNase I hypersensitive sites (DHSs) reveal that most human promoters contain perpetually active cis-regulatory elements between −150 bp and +50 bp (−150/+50 bp) relative to the transcription start site (TSS). Transcription factors (TFs) recruit cofactors (chromatin remodelers, histone/protein-modifying enzymes, and scaffold proteins) to these elements in order to organize the local chromatin structure and coordinate the balance of post-translational modifications nearby, contributing to the overall regulation of transcription. However, the rules of TF-mediated cofactor recruitment to the −150/+50 bp promoter regions remain poorly understood. Here, we provide evidence for a general model in which a series of cis-regulatory elements (here termed ‘cardinal’ motifs) prefer acting individually, rather than in fixed combinations, within the −150/+50 bp regions to recruit TFs that dictate cofactor signatures distinctive of specific promoter subsets. Subsequently, human promoters can be subclassified based on the presence of cardinal elements and their associated cofactor signatures. In this study, furthermore, we have focused on promoters containing the nuclear respiratory factor 1 (NRF1) motif as the cardinal cis-regulatory element and have identified the pervasive association of NRF1 with the cofactor lysine-specific demethylase 1 (LSD1/KDM1A). This signature might be distinctive of promoters regulating nuclear-encoded mitochondrial and other particular genes in at least some cells. Together, we propose that decoding a signature-based, expanded model of control at proximal promoter regions should lead to a better understanding of coordinated regulation of gene transcription. Human cells exploit different mechanisms to coordinate the expression of both protein-coding and non-coding RNAs. Elucidating these mechanisms is essential to understanding normal physiology and disease. In our attempt to identify new regulatory layers acting particularly at proximal promoters, we have computationally analyzed the genomic sequences located from −150 bp to +50 bp relative to the transcriptional start site (TSS), which are often at the center of ‘open’ chromatin regions in human promoters. We have confirmed the presence of a series of cis-regulatory elements (here referred to as ‘cardinal’ motifs) that show a strong preference for these short regions. Interestingly, these elements tend to act independently rather than in fixed combinations. Therefore, we propose that they confer unique regulatory features to the human promoter subsets that contain each of these particular elements. In agreement with this model, we have identified a large repertoire of preferential partnerships between transcription factors recognizing cardinal motifs and their associated proteins (cofactors), thus decoding a signature-based model that distinguishes distinctive regulatory types of promoters based on cardinal motifs. These signatures may underlie a new layer of transcriptional regulation to orchestrate coordinated gene expression in human promoters.
Collapse
Affiliation(s)
- Christopher Benner
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Sergiy Konovalov
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Carlos Mackintosh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Kasey R. Hutt
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Rieka Stunnenberg
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
509
|
Hildick-Smith GJ, Cooney JD, Garone C, Kremer LS, Haack TB, Thon JN, Miyata N, Lieber DS, Calvo SE, Akman HO, Yien YY, Huston NC, Branco DS, Shah DI, Freedman ML, Koehler CM, Italiano JE, Merkenschlager A, Beblo S, Strom TM, Meitinger T, Freisinger P, Donati MA, Prokisch H, Mootha VK, DiMauro S, Paw BH. Macrocytic anemia and mitochondriopathy resulting from a defect in sideroflexin 4. Am J Hum Genet 2013; 93:906-14. [PMID: 24119684 DOI: 10.1016/j.ajhg.2013.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 01/19/2023] Open
Abstract
We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.
Collapse
Affiliation(s)
- Gordon J Hildick-Smith
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
510
|
Westermann B. Mitochondrial inheritance in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1039-46. [PMID: 24183694 DOI: 10.1016/j.bbabio.2013.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 11/25/2022]
Abstract
Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.
Collapse
|
511
|
Gohil VM, Zhu L, Baker CD, Cracan V, Yaseen A, Jain M, Clish CB, Brookes PS, Bakovic M, Mootha VK. Meclizine inhibits mitochondrial respiration through direct targeting of cytosolic phosphoethanolamine metabolism. J Biol Chem 2013; 288:35387-95. [PMID: 24142790 PMCID: PMC3853286 DOI: 10.1074/jbc.m113.489237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism.
Collapse
Affiliation(s)
- Vishal M Gohil
- From the Departments of Molecular Biology and Medicine, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | | | | | | | | | | | | | | | | | |
Collapse
|
512
|
Delmiro A, Rivera H, García-Silva MT, García-Consuegra I, Martín-Hernández E, Quijada-Fraile P, de Las Heras RS, Moreno-Izquierdo A, Martín MÁ, Arenas J, Martínez-Azorín F. Whole-exome sequencing identifies a variant of the mitochondrial MT-ND1 gene associated with epileptic encephalopathy: west syndrome evolving to Lennox-Gastaut syndrome. Hum Mutat 2013; 34:1623-7. [PMID: 24105702 DOI: 10.1002/humu.22445] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/09/2013] [Indexed: 11/08/2022]
Abstract
We describe a West syndrome (WS) patient with unidentified etiology that evolved to Lennox-Gastaut syndrome. The mitochondrial respiratory chain of the patient showed a simple complex I deficiency in fibroblasts. Whole-exome sequencing (WES) uncovered two heterozygous mutations in NDUFV2 gene that were reassigned to a pseudogene. With the WES data, it was possible to obtain whole mitochondrial DNA sequencing and to identify a heteroplasmic variant in the MT-ND1 (MTND1) gene (m.3946G>A, p.E214K). The expression of the gene in patient fibroblasts was not affected but the protein level was significantly reduced, suggesting that protein stability was affected by this mutation. The lower protein level also affected assembly of complex I and supercomplexes (I/III2 /IV and I/III2 ), leading to complex I deficiency. While ATP levels at steady state under stress conditions were not affected, the amount of ROS produced by complex I was significantly increased.
Collapse
Affiliation(s)
- Aitor Delmiro
- Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, E-28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, E-28041, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
513
|
Habersetzer J, Larrieu I, Priault M, Salin B, Rossignol R, Brèthes D, Paumard P. Human F1F0 ATP synthase, mitochondrial ultrastructure and OXPHOS impairment: a (super-)complex matter? PLoS One 2013; 8:e75429. [PMID: 24098383 PMCID: PMC3788808 DOI: 10.1371/journal.pone.0075429] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/14/2013] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial morphogenesis is a key process of cell physiology. It is essential for the proper function of this double membrane-delimited organelle, as it ensures the packing of the inner membrane in a very ordered pattern called cristae. In yeast, the mitochondrial ATP synthase is able to form dimers that can assemble into oligomers. Two subunits (e and g) are involved in this supramolecular organization. Deletion of the genes encoding these subunits has no effect on the ATP synthase monomer assembly or activity and only affects its dimerization and oligomerization. Concomitantly, the absence of subunits e and g and thus, of ATP synthase supercomplexes, promotes the modification of mitochondrial ultrastructure suggesting that ATP synthase oligomerization is involved in cristae morphogenesis. We report here that in mammalian cells in culture, the shRNA-mediated down-regulation of subunits e and g affects the stability of ATP synthase and results in a 50% decrease of the available functional enzyme. Comparable to what was shown in yeast, when subunits e and g expression are repressed, ATP synthase dimers and oligomers are less abundant when assayed by native electrophoresis. Unexpectedly, mammalian ATP synthase dimerization/oligomerization impairment has functional consequences on the respiratory chain leading to a decrease in OXPHOS activity. Finally these structural and functional alterations of the ATP synthase have a strong impact on the organelle itself leading to the fission of the mitochondrial network and the disorganization of mitochondrial ultrastructure. Unlike what was shown in yeast, the impairment of the ATP synthase oligomerization process drastically affects mitochondrial ATP production. Thus we propose that mutations or deletions of genes encoding subunits e and g may have physiopathological implications.
Collapse
Affiliation(s)
- Johann Habersetzer
- Laboratoire des Systèmes Transducteurs d'Energie et Morphologie Mitochondriale, Université Bordeaux Segalen, IBGC, UMR 5095, Bordeaux, France ; CNRS, IBGC, UMR 5095, Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
514
|
Lee WS, Sokol RJ. Mitochondrial hepatopathies: advances in genetics, therapeutic approaches, and outcomes. J Pediatr 2013; 163:942-8. [PMID: 23810725 PMCID: PMC3934633 DOI: 10.1016/j.jpeds.2013.05.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/24/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Way Seah Lee
- Department of Pediatrics, University of Malaya Medical Center, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
- Pediatrics and Child Health Research Group, University of Malaya, Kuala Lumpur, Malaysia, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Ronald J. Sokol
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition and the Digestive Health Institute, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
515
|
Novel mitochondrial C15620A variant may modulate the phenotype of mitochondrial G11778A mutation in a Chinese family with Leigh syndrome. Neuromolecular Med 2013; 16:119-26. [PMID: 24062162 DOI: 10.1007/s12017-013-8264-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/03/2013] [Indexed: 01/25/2023]
Abstract
We report a case of 3-year-old boy who presented with Leigh syndrome but carried a mitochondrial G11778A mutation in the fourth subunit of the NADH dehydrogenase gene (MTND4). Additional to G11778A mutation, a novel C15620A variant was detected, which resulted in the conversion from leucine to isoleucine in the mitochondrial cytochrome b gene. As G11778A mutation is the most common mutation associated with Leber's hereditary optic neuropathy (LHON), given the unusual phenotype, the C15620A mutation was postulated to influence the pathogenicity of the G11778A mutation. This case further expands the clinical spectrum associated with the primary G11778A LHON mutation.
Collapse
|
516
|
Lartigue L, Faustin B. Mitochondria: Metabolic regulators of innate immune responses to pathogens and cell stress. Int J Biochem Cell Biol 2013; 45:2052-6. [DOI: 10.1016/j.biocel.2013.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/18/2013] [Accepted: 06/23/2013] [Indexed: 12/11/2022]
|
517
|
Rackham O, Filipovska A. Supernumerary proteins of mitochondrial ribosomes. Biochim Biophys Acta Gen Subj 2013; 1840:1227-32. [PMID: 23958563 DOI: 10.1016/j.bbagen.2013.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition compared to prokaryotic and cytoplasmic ribosomes. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and new, supernumerary proteins that can be unique to different organisms. In mammals, there are specific supernumerary ribosomal proteins that are not present in other eukaryotes. SCOPE OF REVIEW Here we discuss the roles of supernumerary proteins in the regulation of mitochondrial gene expression and compare them among different eukaryotic systems. Furthermore, we consider if differences in the structure and organization of mitochondrial genomes may have contributed to the acquisition of mitochondrial ribosomal proteins with new functions. MAJOR CONCLUSIONS The distinct and diverse compositions of mitochondrial ribosomes illustrate the high evolutionary divergence found between mitochondrial genetic systems. GENERAL SIGNIFICANCE Elucidating the role of the organism-specific supernumerary proteins may provide a window into the regulation of mitochondrial gene expression through evolution in response to distinct evolutionary paths taken by mitochondria in different organisms. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Oliver Rackham
- Western Australian Institute for Medical Research, Western Australia 6000, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Western Australian Institute for Medical Research, Western Australia 6000, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Western Australia 6009, Australia.
| |
Collapse
|
518
|
Avti PK, Maysinger D, Kakkar A. Alkyne-azide "click" chemistry in designing nanocarriers for applications in biology. Molecules 2013; 18:9531-49. [PMID: 23966076 PMCID: PMC6270461 DOI: 10.3390/molecules18089531] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022] Open
Abstract
The alkyne-azide cycloaddition, popularly known as the "click" reaction, has been extensively exploited in molecule/macromolecule build-up, and has offered tremendous potential in the design of nanomaterials for applications in a diverse range of disciplines, including biology. Some advantageous characteristics of this coupling include high efficiency, and adaptability to the environment in which the desired covalent linking of the alkyne and azide terminated moieties needs to be carried out. The efficient delivery of active pharmaceutical agents to specific organelles, employing nanocarriers developed through the use of "click" chemistry, constitutes a continuing topical area of research. In this review, we highlight important contributions click chemistry has made in the design of macromolecule-based nanomaterials for therapeutic intervention in mitochondria and lipid droplets.
Collapse
Affiliation(s)
- Pramod K. Avti
- Montreal Heart Institute, Research Center, 5000 Bélanger Est, Montréal, QC H1T 1C8, Canada
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. Montréal, QC H3A 0B8 Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. Montréal, QC H3A 0B8 Canada
| |
Collapse
|
519
|
Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 2013; 19:1111-3. [PMID: 23913125 PMCID: PMC4153471 DOI: 10.1038/nm.3261] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/20/2013] [Indexed: 01/17/2023]
Abstract
Mitochondrial diseases are commonly caused by mutations in the mitochondrial DNA (mtDNA), which in most cases co–exists with the wild–type (mtDNA heteroplasmy). We have engineered TAL–effector nucleases (TALENs) to localize to mitochondria and cleave different classes of pathogenic mtDNA mutations. MitoTALEN expression led to permanent reductions in deletion or point mutant mtDNA in patient–derived cells, raising the possibility that they can be curative to some of these diseases.
Collapse
|
520
|
Inada N, Uchiyama S. Methods and benefits of imaging the temperature distribution inside living cells. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/iim.13.34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
521
|
Claus C, Schönefeld K, Hübner D, Chey S, Reibetanz U, Liebert UG. Activity increase in respiratory chain complexes by rubella virus with marginal induction of oxidative stress. J Virol 2013; 87:8481-92. [PMID: 23720730 PMCID: PMC3719815 DOI: 10.1128/jvi.00533-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are important for the viral life cycle, mainly by providing the energy required for viral replication and assembly. A highly complex interaction with mitochondria is exerted by rubella virus (RV), which includes an increase in the mitochondrial membrane potential as a general marker for mitochondrial activity. We aimed in this study to provide a more comprehensive picture of the activity of mitochondrial respiratory chain complexes I to IV. Their activities were compared among three different cell lines. A strong and significant increase in the activity of mitochondrial respiratory enzyme succinate:ubiquinone oxidoreductase (complex II) and a moderate increase of ubiquinol:cytochrome c oxidoreductase (complex III) were detected in all cell lines. In contrast, the activity of mitochondrial respiratory enzyme cytochrome c oxidase (complex IV) was significantly decreased. The effects on mitochondrial functions appear to be RV specific, as they were absent in control infections with measles virus. Additionally, these alterations of the respiratory chain activity were not associated with an elevated transcription of oxidative stress proteins, and reactive oxygen species (ROS) were induced only marginally. Moreover, protein and/or mRNA levels of markers for mitochondrial biogenesis and structure were elevated, such as nuclear respiratory factors (NRFs) and mitofusin 2 (Mfn2). Together, these results establish a novel view on the regulation of mitochondrial functions by viruses.
Collapse
Affiliation(s)
- C. Claus
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - K. Schönefeld
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - D. Hübner
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - S. Chey
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - U. Reibetanz
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - U. G. Liebert
- Institute of Virology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
522
|
Hashimi H, McDonald L, Stríbrná E, Lukeš J. Trypanosome Letm1 protein is essential for mitochondrial potassium homeostasis. J Biol Chem 2013; 288:26914-25. [PMID: 23893410 DOI: 10.1074/jbc.m113.495119] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Letm1 is a conserved protein in eukaryotes bearing energized mitochondria. Hemizygous deletion of its gene has been implicated in symptoms of the human disease Wolf-Hirschhorn syndrome. Studies almost exclusively performed in opisthokonts have attributed several roles to Letm1, including maintaining mitochondrial morphology, mediating either calcium or potassium/proton antiport, and facilitating mitochondrial translation. We address the ancestral function of Letm1 in the highly diverged protist and significant pathogen, Trypanosoma brucei. We demonstrate that Letm1 is involved in maintaining mitochondrial volume via potassium/proton exchange across the inner membrane. This role is essential in the vector-dwelling procyclic and mammal-infecting bloodstream stages as well as in Trypanosoma brucei evansi, a form of the latter stage lacking an organellar genome. In the pathogenic bloodstream stage, the mitochondrion consumes ATP to maintain an energized state, whereas that of T. brucei evansi also lacks a conventional proton-driven membrane potential. Thus, Letm1 performs its function in different physiological states, suggesting that ion homeostasis is among the few characterized essential pathways of the mitochondrion at this T. brucei life stage. Interestingly, Letm1 depletion in the procyclic stage can be complemented by exogenous expression of its human counterpart, highlighting the conservation of protein function between highly divergent species. Furthermore, although mitochondrial translation is affected upon Letm1 ablation, it is an indirect consequence of K(+) accumulation in the matrix.
Collapse
Affiliation(s)
- Hassan Hashimi
- From the Institute of Parasitology, Biology Centre, Czech Academy of Sciences and
| | | | | | | |
Collapse
|
523
|
Lloyd RE, McGeehan JE. Structural analysis of mitochondrial mutations reveals a role for bigenomic protein interactions in human disease. PLoS One 2013; 8:e69003. [PMID: 23874847 PMCID: PMC3706435 DOI: 10.1371/journal.pone.0069003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/05/2013] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are the energy producing organelles of the cell, and mutations within their genome can cause numerous and often severe human diseases. At the heart of every mitochondrion is a set of five large multi-protein machines collectively known as the mitochondrial respiratory chain (MRC). This cellular machinery is central to several processes important for maintaining homeostasis within cells, including the production of ATP. The MRC is unique due to the bigenomic origin of its interacting proteins, which are encoded in the nucleus and mitochondria. It is this, in combination with the sheer number of protein-protein interactions that occur both within and between the MRC complexes, which makes the prediction of function and pathological outcome from primary sequence mutation data extremely challenging. Here we demonstrate how 3D structural analysis can be employed to predict the functional importance of mutations in mtDNA protein-coding genes. We mined the MITOMAP database and, utilizing the latest structural data, classified mutation sites based on their location within the MRC complexes III and IV. Using this approach, four structural classes of mutation were identified, including one underexplored class that interferes with nuclear-mitochondrial protein interactions. We demonstrate that this class currently eludes existing predictive approaches that do not take into account the quaternary structural organization inherent within and between the MRC complexes. The systematic and detailed structural analysis of disease-associated mutations in the mitochondrial Complex III and IV genes significantly enhances the predictive power of existing approaches and our understanding of how such mutations contribute to various pathologies. Given the general lack of any successful therapeutic approaches for disorders of the MRC, these findings may inform the development of new diagnostic and prognostic biomarkers, as well as new drugs and targets for gene therapy.
Collapse
Affiliation(s)
- Rhiannon E. Lloyd
- Cellular and Molecular Neuro-Oncology Group, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - John E. McGeehan
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Science, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
524
|
Rahman S. Gastrointestinal and hepatic manifestations of mitochondrial disorders. J Inherit Metab Dis 2013; 36:659-73. [PMID: 23674168 DOI: 10.1007/s10545-013-9614-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Inherited defects of oxidative phosphorylation lead to heterogeneous, often multisystem, mitochondrial diseases. This review highlights those mitochondrial syndromes with prominent gastrointestinal and hepatic symptoms, categorised according to underlying disease mechanism. Mitochondrial encephalopathies with major gastrointestinal involvement include mitochondrial neurogastrointestinal encephalopathy and ethylmalonic encephalopathy, which are each associated with highly specific clinical and metabolic profiles. Mitochondrial hepatopathies are most frequently caused by defects of mitochondrial DNA maintenance and expression. Although mitochondrial disorders are notorious for extreme clinical, biochemical and genetic heterogeneity, there are some pathognomonic clinical and metabolic clues that suggest a specific diagnosis, and these are highlighted. An approach to diagnosis of these complex disorders is presented, together with a genetic classification, including mitochondrial DNA disorders and nuclear-encoded defects of mitochondrial DNA maintenance and translation, OXPHOS complex assembly and mitochondrial membrane lipids. Finally, supportive and experimental therapeutic options for these currently incurable diseases are reviewed, including liver transplantation, allogeneic haematopoietic stem cell transplantation and gene therapy.
Collapse
Affiliation(s)
- Shamima Rahman
- Mitochondrial Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
525
|
Giacomotto J, Brouilly N, Walter L, Mariol MC, Berger J, Ségalat L, Becker TS, Currie PD, Gieseler K. Chemical genetics unveils a key role of mitochondrial dynamics, cytochrome c release and IP3R activity in muscular dystrophy. Hum Mol Genet 2013; 22:4562-78. [PMID: 23804750 DOI: 10.1093/hmg/ddt302] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. The subcellular mechanisms of DMD remain poorly understood and there is currently no curative treatment available. Using a Caenorhabditis elegans model for DMD as a pharmacologic and genetic tool, we found that cyclosporine A (CsA) reduces muscle degeneration at low dose and acts, at least in part, through a mitochondrial cyclophilin D, CYN-1. We thus hypothesized that CsA acts on mitochondrial permeability modulation through cyclophilin D inhibition. Mitochondrial patterns and dynamics were analyzed, which revealed dramatic mitochondrial fragmentation not only in dystrophic nematodes, but also in a zebrafish model for DMD. This abnormal mitochondrial fragmentation occurs before any obvious sign of degeneration can be detected. Moreover, we demonstrate that blocking/delaying mitochondrial fragmentation by knocking down the fission-promoting gene drp-1 reduces muscle degeneration and improves locomotion abilities of dystrophic nematodes. Further experiments revealed that cytochrome c is involved in muscle degeneration in C. elegans and seems to act, at least in part, through an interaction with the inositol trisphosphate receptor calcium channel, ITR-1. Altogether, our findings reveal that mitochondria play a key role in the early process of muscle degeneration and may be a target of choice for the design of novel therapeutics for DMD. In addition, our results provide the first indication in the nematode that (i) mitochondrial permeability transition can occur and (ii) cytochrome c can act in cell death.
Collapse
Affiliation(s)
- Jean Giacomotto
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, NSW 2050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
526
|
Abstract
Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders but also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson's disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models as well as multicellular organisms have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for several diseases, which has spurred active drug discovery efforts in this area.
Collapse
|
527
|
Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A, Ventura-Clapier R, Joubert F. Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 2013; 4:102. [PMID: 23675354 PMCID: PMC3650619 DOI: 10.3389/fphys.2013.00102] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/23/2013] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dynamics is a recent topic of research in the field of cardiac physiology. The study of mechanisms involved in the morphological changes and in the mobility of mitochondria is legitimate since the adult cardiomyocytes possess numerous mitochondria which occupy at least 30% of cell volume. However, architectural constraints exist in the cardiomyocyte that limit mitochondrial movements and communication between adjacent mitochondria. Still, the proteins involved in mitochondrial fusion and fission are highly expressed in these cells and could be involved in different processes important for the cardiac function. For example, they are required for mitochondrial biogenesis to synthesize new mitochondria and for the quality-control of the organelles. They are also involved in inner membrane organization and may play a role in apoptosis. More generally, change in mitochondrial morphology can have consequences in the functioning of the respiratory chain, in the regulation of the mitochondrial permeability transition pore (MPTP), and in the interactions with other organelles. Furthermore, the proteins involved in fusion and fission of mitochondria are altered in cardiac pathologies such as ischemia/reperfusion or heart failure (HF), and appear to be valuable targets for pharmacological therapies. Thus, mitochondrial dynamics deserves particular attention in cardiac research. The present review draws up a report of our knowledge on these phenomena.
Collapse
Affiliation(s)
- Jerome Piquereau
- Department of Signaling and Cardiac Pathophysiology, U-769, INSERM Châtenay-Malabry, France ; IFR141, Université Paris-Sud Châtenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
528
|
Baile MG, Whited K, Claypool SM. Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling. Mol Biol Cell 2013; 24:2008-20. [PMID: 23637464 PMCID: PMC3681703 DOI: 10.1091/mbc.e13-03-0121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the clinically relevant tafazzin-mediated cardiolipin (CL) remodeling pathway is incomplete. In this study, a new trafficking step required for CL remodeling has been identified. Further, it is demonstrated that flux through this CL remodeling pathway is controlled by the strength of the mitochondrial electrochemical gradient. The mitochondrial-specific lipid cardiolipin (CL) is required for numerous processes therein. After its synthesis on the matrix-facing leaflet of the inner membrane (IM), CL undergoes acyl chain remodeling to achieve its final form. In yeast, this process is completed by the transacylase tafazzin, which associates with intermembrane space (IMS)-facing membrane leaflets. Mutations in TAZ1 result in the X-linked cardiomyopathy Barth syndrome. Amazingly, despite this clear pathophysiological association, the physiological importance of CL remodeling is unresolved. In this paper, we show that the lipase initiating CL remodeling, Cld1p, is associated with the matrix-facing leaflet of the mitochondrial IM. Thus monolysocardiolipin generated by Cld1p must be transported to IMS-facing membrane leaflets to gain access to tafazzin, identifying a previously unknown step required for CL remodeling. Additionally, we show that Cld1p is the major site of regulation in CL remodeling; and that, like CL biosynthesis, CL remodeling is augmented in growth conditions requiring mitochondrially produced energy. However, unlike CL biosynthesis, dissipation of the mitochondrial membrane potential stimulates CL remodeling, identifying a novel feedback mechanism linking CL remodeling to oxidative phosphorylation capacity.
Collapse
Affiliation(s)
- Matthew G Baile
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
529
|
Meyer JN, Leung MCK, Rooney JP, Sendoel A, Hengartner MO, Kisby GE, Bess AS. Mitochondria as a target of environmental toxicants. Toxicol Sci 2013; 134:1-17. [PMID: 23629515 PMCID: PMC3693132 DOI: 10.1093/toxsci/kft102] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enormous strides have recently been made in our understanding of the biology and pathobiology of mitochondria. Many diseases have been identified as caused by mitochondrial dysfunction, and many pharmaceuticals have been identified as previously unrecognized mitochondrial toxicants. A much smaller but growing literature indicates that mitochondria are also targeted by environmental pollutants. We briefly review the importance of mitochondrial function and maintenance for health based on the genetics of mitochondrial diseases and the toxicities resulting from pharmaceutical exposure. We then discuss how the principles of mitochondrial vulnerability illustrated by those fields might apply to environmental contaminants, with particular attention to factors that may modulate vulnerability including genetic differences, epigenetic interactions, tissue characteristics, and developmental stage. Finally, we review the literature related to environmental mitochondrial toxicants, with a particular focus on those toxicants that target mitochondrial DNA. We conclude that the fields of environmental toxicology and environmental health should focus more strongly on mitochondria.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
530
|
Lieber DS, Calvo SE, Shanahan K, Slate NG, Liu S, Hershman SG, Gold NB, Chapman BA, Thorburn DR, Berry GT, Schmahmann JD, Borowsky ML, Mueller DM, Sims KB, Mootha VK. Targeted exome sequencing of suspected mitochondrial disorders. Neurology 2013; 80:1762-70. [PMID: 23596069 DOI: 10.1212/wnl.0b013e3182918c40] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To evaluate the utility of targeted exome sequencing for the molecular diagnosis of mitochondrial disorders, which exhibit marked phenotypic and genetic heterogeneity. METHODS We considered a diverse set of 102 patients with suspected mitochondrial disorders based on clinical, biochemical, and/or molecular findings, and whose disease ranged from mild to severe, with varying age at onset. We sequenced the mitochondrial genome (mtDNA) and the exons of 1,598 nuclear-encoded genes implicated in mitochondrial biology, mitochondrial disease, or monogenic disorders with phenotypic overlap. We prioritized variants likely to underlie disease and established molecular diagnoses in accordance with current clinical genetic guidelines. RESULTS Targeted exome sequencing yielded molecular diagnoses in established disease loci in 22% of cases, including 17 of 18 (94%) with prior molecular diagnoses and 5 of 84 (6%) without. The 5 new diagnoses implicated 2 genes associated with canonical mitochondrial disorders (NDUFV1, POLG2), and 3 genes known to underlie other neurologic disorders (DPYD, KARS, WFS1), underscoring the phenotypic and biochemical overlap with other inborn errors. We prioritized variants in an additional 26 patients, including recessive, X-linked, and mtDNA variants that were enriched 2-fold over background and await further support of pathogenicity. In one case, we modeled patient mutations in yeast to provide evidence that recessive mutations in ATP5A1 can underlie combined respiratory chain deficiency. CONCLUSION The results demonstrate that targeted exome sequencing is an effective alternative to the sequential testing of mtDNA and individual nuclear genes as part of the investigation of mitochondrial disease. Our study underscores the ongoing challenge of variant interpretation in the clinical setting.
Collapse
Affiliation(s)
- Daniel S Lieber
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
531
|
Neto BAD, Corrêa JR, Silva RG. Selective mitochondrial staining with small fluorescent probes: importance, design, synthesis, challenges and trends for new markers. RSC Adv 2013. [DOI: 10.1039/c2ra21995f] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
532
|
Uchiumi F, Fujikawa M, Miyazaki S, Tanuma SI. Implication of bidirectional promoters containing duplicated GGAA motifs of mitochondrial function-associated genes. AIMS MOLECULAR SCIENCE 2013. [DOI: 10.3934/molsci.2013.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
533
|
Stroud DA, Formosa LE, Wijeyeratne XW, Nguyen TN, Ryan MT. Gene knockout using transcription activator-like effector nucleases (TALENs) reveals that human NDUFA9 protein is essential for stabilizing the junction between membrane and matrix arms of complex I. J Biol Chem 2012; 288:1685-90. [PMID: 23223238 DOI: 10.1074/jbc.c112.436766] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription activator-like effector nucleases (TALENs) represent a promising approach for targeted knock-out of genes in cultured human cells. We used TALEN-technology to knock out the nuclear gene encoding NDUFA9, a subunit of mitochondrial respiratory chain complex I in HEK293T cells. Screening for the knock-out revealed a mixture of NDUFA9 cell clones that harbored partial deletions of the mitochondrial N-terminal targeting signal but were still capable of import. A cell line lacking functional copies of both NDUFA9 alleles resulted in a loss of NDUFA9 protein expression, impaired assembly of complex I, and cells incapable of growth in galactose medium. Cells lacking NDUFA9 contained a complex I subcomplex consisting of membrane arm subunits but not marker subunits of the matrix arm. Re-expression of NDUFA9 restored the defects in complex I assembly. We conclude that NDUFA9 is involved in stabilizing the junction between membrane and matrix arms of complex I, a late assembly step critical for complex I biogenesis and activity.
Collapse
Affiliation(s)
- David A Stroud
- Department of Biochemistry, La Trobe Institute for Molecular Science, and ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne 3086, Australia
| | | | | | | | | |
Collapse
|