501
|
Luo Y, Lu Y, Long B, Lin Y, Yang Y, Xu Y, Zhang X, Zhang J. Blocking DNA Damage Repair May Be Involved in Stattic (STAT3 Inhibitor)-Induced FLT3-ITD AML Cell Apoptosis. Front Cell Dev Biol 2021; 9:637064. [PMID: 33796529 PMCID: PMC8007876 DOI: 10.3389/fcell.2021.637064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The FMS-like tyrosine kinase 3 (FLT3)- internal tandem duplication (ITD) mutation can be found in approximately 25% of all acute myeloid leukemia (AML) cases and is associated with a poor prognosis. The main treatment for FLT3-ITD-positive AML patients includes genotoxic therapy and FLT3 inhibitors, which are rarely curative. Inhibiting STAT3 activity can improve the sensitivity of solid tumor cells to radiotherapy and chemotherapy. This study aimed to explore whether Stattic (a STAT3 inhibitor) affects FLT3-ITD AML cells and the underlying mechanism. Stattic can inhibit the proliferation, promote apoptosis, arrest cell cycle at G0/G1, and suppress DNA damage repair in MV4-11cells. During the process, through mRNA sequencing, we found that DNA damage repair-related mRNA are also altered during the process. In summary, the mechanism by which Stattic induces apoptosis in MV4-11cells may involve blocking DNA damage repair machineries.
Collapse
Affiliation(s)
- Yuxuan Luo
- Department of Pediatric, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Lu
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Blood Transfusion, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Long
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Sen Yat-sen Institute of Hematology, Guangzhou, China
| | - Yansi Lin
- Department of General Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanling Yang
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yichuang Xu
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangzhong Zhang
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Sen Yat-sen Institute of Hematology, Guangzhou, China
| | - Jingwen Zhang
- Department of Hematology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Sen Yat-sen Institute of Hematology, Guangzhou, China
| |
Collapse
|
502
|
Wooten DJ, Gebru M, Wang HG, Albert R. Data-Driven Math Model of FLT3-ITD Acute Myeloid Leukemia Reveals Potential Therapeutic Targets. J Pers Med 2021; 11:jpm11030193. [PMID: 33799721 PMCID: PMC7998618 DOI: 10.3390/jpm11030193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023] Open
Abstract
FLT3-mutant acute myeloid leukemia (AML) is an aggressive form of leukemia with poor prognosis. Treatment with FLT3 inhibitors frequently produces a clinical response, but the disease nevertheless often recurs. Recent studies have revealed system-wide gene expression changes in FLT3-mutant AML cell lines in response to drug treatment. Here we sought a systems-level understanding of how these cells mediate these drug-induced changes. Using RNAseq data from AML cells with an internal tandem duplication FLT3 mutation (FLT3-ITD) under six drug treatment conditions including quizartinib and dexamethasone, we identified seven distinct gene programs representing diverse biological processes involved in AML drug-induced changes. Based on the literature knowledge about genes from these modules, along with public gene regulatory network databases, we constructed a network of FLT3-ITD AML. Applying the BooleaBayes algorithm to this network and the RNAseq data, we created a probabilistic, data-driven dynamical model of acquired resistance to these drugs. Analysis of this model reveals several interventions that may disrupt targeted parts of the system-wide drug response. We anticipate co-targeting these points may result in synergistic treatments that can overcome resistance and prevent eventual recurrence.
Collapse
Affiliation(s)
- David J. Wooten
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA;
| | - Melat Gebru
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA; (M.G.); (H.-G.W.)
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA; (M.G.); (H.-G.W.)
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA;
- Correspondence:
| |
Collapse
|
503
|
Zhang D, Guo Y, Zhao Y, Yu L, Chang Z, Pei H, Huang J, Chen C, Xue H, Xu X, Pan Y, Li N, Zhu C, Zhao ZJ, Yu J, Chen Y. Expression of a recombinant FLT3 ligand and its emtansine conjugate as a therapeutic candidate against acute myeloid leukemia cells with FLT3 expression. Microb Cell Fact 2021; 20:67. [PMID: 33691697 PMCID: PMC7948335 DOI: 10.1186/s12934-021-01559-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background Most patients with acute myeloid leukemia (AML) remain uncurable and require novel therapeutic methods. Gain-of-function FMS-like tyrosine kinase 3 (FLT3) mutations are present in 30–40% of AML patients and serve as an attractive therapeutic target. In addition, FLT3 is aberrantly expressed on blasts in > 90% of patients with AML, making the FLT3 ligand-based drug conjugate a promising therapeutic strategy for the treatment of patients with AML. Here, E. coli was used as a host to express recombinant human FLT3 ligand (rhFL), which was used as a specific vehicle to deliver cytotoxic drugs to FLT3 + AML cells. Methods Recombinant hFL was expressed and purified from induced recombinant BL21 (DE3) E. coli. Purified rhFL and emtansine (DM1) were conjugated by an N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) linker. We evaluated the potency of the conjugation product FL-DM1 against FLT3-expressing AML cells by examining viability, apoptosis and the cell cycle. The activation of proteins related to the activation of FLT3 signaling and apoptosis pathways was detected by immunoblotting. The selectivity of FL-DM1 was assessed in our unique HCD-57 cell line, which was transformed with the FLT3 internal tandem duplication mutant (FLT3-ITD). Results Soluble rhFL was successfully expressed in the periplasm of recombinant E. coli. The purified rhFL was bioactive in stimulating FLT3 signaling in AML cells, and the drug conjugate FL-DM1 showed activity in cell signaling and internalization. FL-DM1 was effective in inhibiting the survival of FLT3-expressing THP-1 and MV-4-11 AML cells, with half maximal inhibitory concentration (IC50) of 12.9 nM and 1.1 nM. Additionally, FL-DM1 induced caspase-3-dependent apoptosis and arrested the cell cycle at the G2/M phase. Moreover, FL-DM1 selectively targeted HCD-57 cells transformed by FLT3-ITD but not parental HCD-57 cells without FLT3 expression. FL-DM1 can also induce obvious apoptosis in primary FLT3-positive AML cells ex vivo. Conclusions Our data demonstrated that soluble rhFL can be produced in a bioactive form in the periplasm of recombinant E. coli. FL can be used as a specific vehicle to deliver DM1 into FLT3-expressing AML cells. FL-DM1 exhibited cytotoxicity in FLT3-expressing AML cell lines and primary AML cells. FL-DM1 may have potential clinical applications in treating patients with FLT3-positive AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01559-6.
Collapse
Affiliation(s)
- Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Junbin Huang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hongman Xue
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yihang Pan
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ningning Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chengming Zhu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, 1100 N. Lindsay, Oklahoma City, OK, 73104, USA
| | - Jian Yu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
504
|
Wang Z, Cai J, Cheng J, Yang W, Zhu Y, Li H, Lu T, Chen Y, Lu S. FLT3 Inhibitors in Acute Myeloid Leukemia: Challenges and Recent Developments in Overcoming Resistance. J Med Chem 2021; 64:2878-2900. [PMID: 33719439 DOI: 10.1021/acs.jmedchem.0c01851] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene are often present in newly diagnosed acute myeloid leukemia (AML) patients with an incidence rate of approximately 30%. Recently, many FLT3 inhibitors have been developed and exhibit positive preclinical and clinical effects against AML. However, patients develop resistance soon after undergoing FLT3 inhibitor treatment, resulting in short durable responses and poor clinical effects. This review will discuss the main mechanisms of resistance to clinical FLT3 inhibitors and summarize the emerging strategies that are utilized to overcome drug resistance. Basically, medicinal chemistry efforts to develop new small-molecule FLT3 inhibitors offer a direct solution to this problem. Other potential strategies include the combination of FLT3 inhibitors with other therapies and the development of multitarget inhibitors. It is hoped that this review will provide inspiring insights into the discovery of new AML therapies that can eventually overcome the resistance to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiongheng Cai
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jie Cheng
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Wenqianzi Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yifan Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| |
Collapse
|
505
|
Heimbruch KE, Meyer AE, Agrawal P, Viny AD, Rao S. A cohesive look at leukemogenesis: The cohesin complex and other driving mutations in AML. Neoplasia 2021; 23:337-347. [PMID: 33621854 PMCID: PMC7905235 DOI: 10.1016/j.neo.2021.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) affects tens of thousands of patients a year, yet survival rates are as low as 25% in certain populations. This poor survival rate is partially due to the vast genetic diversity of the disease. Rarely do 2 patients with AML have the same mutational profile, which makes the development of targeted therapies particularly challenging. However, a set of recurrent mutations in chromatin modifiers have been identified in many patients, including mutations in the cohesin complex, which have been identified in up to 20% of cases. Interestingly, the canonical function of the cohesin complex in establishing sister chromatid cohesin during mitosis is unlikely to be the affected role in leukemogenesis. Instead, the cohesin complex's role in DNA looping and gene regulation likely facilitates disease. The epigenetic mechanisms by which cohesin complex mutations promote leukemia are not completely elucidated, but alterations of enhancer-promoter interactions and differential histone modifications have been shown to drive oncogenic gene expression changes. Such changes commonly include HoxA upregulation, which may represent a common pathway that could be therapeutically targeted. As cohesin mutations rarely occur alone, examining the impact of common co-occurring mutations, including those in NPM1, the core-binding factor complex, FLT3, and ASXL1, will yield additional insight. While further study of these mutational interactions is required, current research suggests that the use of combinatorial genetics could be the key to uncovering new targets, allowing for the treatment of AML patients based on their individual genetic profiles.
Collapse
Affiliation(s)
- Katelyn E Heimbruch
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Puja Agrawal
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
506
|
Trabal AM, Chandra J. Narrative review of targetable features of pediatric acute myeloid leukemia from molecular and metabolic perspectives. PEDIATRIC MEDICINE (HONG KONG, CHINA) 2021; 4:9. [PMID: 39877586 PMCID: PMC11774499 DOI: 10.21037/pm-20-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Background and Objective Unlike the majority of pediatric leukemia patients, young patients with acute myeloid leukemia (AML) have not seen significant improvement in treatment outcomes. This is frequently attributed to the heterogeneity of this malignancy in terms of its mutations and molecularly defined categories. In adult versus pediatric cases of AML, the heterogeneity is preserved, although there are key differences in the incidence of gene mutations, chromosomal translocations, and other molecular features. Current treatment strategies consider broader cellular features of AML, such as altered metabolic and anti-apoptotic properties, and many of these are common across pediatric and adult AML. Methods A narrative review was conducted to compile literature regarding molecular and metabolic features of AML and new treatment modalities in the adult and pediatric population. Articles published in PubMed were gathered and studied over 6 months for review and comparison. Studies published in English over a ten-year period from 2000-2020 were included. Keywords used for the searches included acute myeloid leukemia, cytogenetics, pediatric acute myeloid leukemia, and treatment of acute myeloid leukemia. Key Content and Findings Molecular characteristics of adult-onset myeloid leukemia as compared to those in the pediatric population are detailed. We highlight unique features of pediatric AML biology and potential ties to metabolism, as well as recent advances in therapy. Conclusions Differences in adult and pediatric AML cytogenetics, metabolism, and molecular features should be further characterized in order to individualize treatment, develop new therapeutic options, and improve patient outcome.
Collapse
Affiliation(s)
- Adriana Milagros Trabal
- Division of Pediatric Oncology and Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joya Chandra
- Division of Pediatric Oncology and Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
507
|
Yilmaz M, Alfayez M, DiNardo CD, Borthakur G, Kadia TM, Konopleva MY, Loghavi S, Kanagal-Shamanna R, Patel KP, Jabbour EJ, Garcia-Manero G, Pemmaraju N, Pierce SA, Ghayas I, Short NJ, Montalban-Bravo G, Takahashi K, Assi R, Alotaibi AS, Ohanian M, Andreeff M, Cortes JE, Kantarjian HM, Ravandi F, Daver NG. Correction to: Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol 2021; 14:34. [PMID: 33618754 PMCID: PMC7901199 DOI: 10.1186/s13045-020-01023-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
Affiliation(s)
- Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Mansour Alfayez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Sherry A Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Issa Ghayas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Guillermo Montalban-Bravo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Rita Assi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Ahmad S Alotaibi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Maro Ohanian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Jorge E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA.
| |
Collapse
|
508
|
Mosquera Orgueira A, Peleteiro Raíndo A, Cid López M, Antelo Rodríguez B, Díaz Arias JÁ, Ferreiro Ferro R, Alonso Vence N, Bendaña López Á, Abuín Blanco A, Bao Pérez L, Melero Valentín P, González Pérez MS, Cerchione C, Martinelli G, Montesinos Fernández P, Pérez Encinas MM, Bello López JL. Gene expression profiling identifies FLT3 mutation-like cases in wild-type FLT3 acute myeloid leukemia. PLoS One 2021; 16:e0247093. [PMID: 33592069 PMCID: PMC7886212 DOI: 10.1371/journal.pone.0247093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND FLT3 mutation is present in 25-30% of all acute myeloid leukemias (AML), and it is associated with adverse outcome. FLT3 inhibitors have shown improved survival results in AML both as upfront treatment and in relapsed/refractory disease. Curiously, a variable proportion of wild-type FLT3 patients also responded to these drugs. METHODS We analyzed 6 different transcriptomic datasets of AML cases. Differential expression between mutated and wild-type FLT3 AMLs was performed with the Wilcoxon-rank sum test. Hierarchical clustering was used to identify FLT3-mutation like AMLs. Finally, enrichment in recurrent mutations was performed with the Fisher's test. RESULTS A FLT3 mutation-like gene expression pattern was identified among wild-type FLT3 AMLs. This pattern was highly enriched in NPM1 and DNMT3A mutants, and particularly in combined NPM1/DNMT3A mutants. CONCLUSIONS We identified a FLT3 mutation-like gene expression pattern in AML which was highly enriched in NPM1 and DNMT3A mutations. Future analysis about the predictive role of this biomarker among wild-type FLT3 patients treated with FLT3 inhibitors is envisaged.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
- * E-mail:
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
| | - José Ángel Díaz Arias
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | - Roi Ferreiro Ferro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | - Ángeles Bendaña López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | - Aitor Abuín Blanco
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | - Laura Bao Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | | | - Marta Sonia González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | | | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | | | - Manuel Mateo Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
| | - José Luis Bello López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
| |
Collapse
|
509
|
Yamamoto K, Yakushijin K, Mizutani Y, Okuni-Watanabe M, Goto H, Higashime A, Miyata Y, Kitao A, Matsumoto H, Saegusa J, Matsuoka H, Minami H. Expression of a novel type of KMT2A/EPS15 fusion transcript in FLT3 mutation-positive B-lymphoblastic leukemia with t(1;11)(p32;q23). Cancer Genet 2021; 254-255:92-97. [PMID: 33647817 DOI: 10.1016/j.cancergen.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/07/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
The t(1;11)(p32;q23) translocation is a rare but recurrent cytogenetic aberration in acute myeloid leukemia (AML) and B-cell acute lymphoblastic leukemia (B-ALL). This translocation was initially shown to form a fusion gene between KMT2A exon 8 at 11q23 and EPS15 exon 2 at 1p32 in AML. Activating mutations of FLT3 are frequently found in AML but are very rare in ALL. Here, we describe a 75-year-old woman who was diagnosed with B-ALL since her bone marrow was made up of 98.2% lymphoblasts. These blasts were positive for CD19, CD22, CD79a, CD13, and CD33 but negative for CD10 and myeloperoxidase. The karyotype by G-banding and spectral karyotyping was 46,XX,t(1;11)(p32;q23). Expression of KMT2A/EPS15 and reciprocal EPS15/KMT2A fusion transcripts were shown: KMT2A exon 8 was in-frame fused to EPS15 exon 12, indicating that this fusion transcript was a novel type. Considering three reported B-ALL cases, EPS15 breakpoints were markedly different between AML (exon 2) and B-ALL (exons 10-12). Furthermore, an uncommon type of FLT3 mutation in the juxtamembrane domain was detected: in-frame 4-bp deletion and 10-bp insertion. Accordingly, our results indicate that the novel type of KMT2A/EPS15 fusion transcript and FLT3 mutation may cooperate in the pathogenesis of adult B-ALL as class II and class I mutations, respectively.
Collapse
Affiliation(s)
- Katsuya Yamamoto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Kimikazu Yakushijin
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yu Mizutani
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Marika Okuni-Watanabe
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hideaki Goto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ako Higashime
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshiharu Miyata
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Akihito Kitao
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hisayuki Matsumoto
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Jun Saegusa
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
510
|
Liss F, Frech M, Wang Y, Giel G, Fischer S, Simon C, Weber LM, Nist A, Stiewe T, Neubauer A, Burchert A, Liefke R. IRF8 Is an AML-Specific Susceptibility Factor That Regulates Signaling Pathways and Proliferation of AML Cells. Cancers (Basel) 2021; 13:cancers13040764. [PMID: 33673123 PMCID: PMC7917770 DOI: 10.3390/cancers13040764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Despite progress, acute myeloid leukemia (AML) remains one of the deadliest cancer diseases. The identification of novel molecular targets may allow developing innovative and alternative treatment options for AML. Using public data from genome-edited cancer cells, we identified factors that are specifically essential for AML cell growth. We validated the critical role of the transcription factor IRF8 and demonstrated that it modulates the function of the cells by regulating important signaling molecules. These results support that IRF8 may be a suitable molecular target for the treatment of AML. Abstract Personalized treatment of acute myeloid leukemia (AML) that target individual aberrations strongly improved the survival of AML patients. However, AML is still one of the most lethal cancer diseases of the 21st century, demonstrating the need to find novel drug targets and to explore alternative treatment strategies. Upon investigation of public perturbation data, we identified the transcription factor IRF8 as a novel AML-specific susceptibility gene in humans. IRF8 is upregulated in a subset of AML cells and its deletion leads to impaired proliferation in those cells. Consistently, high IRF8 expression is associated with poorer patients’ prognoses. Combining gene expression changes upon IRF8 deletion and the genome-wide localization of IRF8 in the AML cell line MV4-11, we demonstrate that IRF8 directly regulates key signaling molecules, such as the kinases SRC and FAK, the transcription factors RUNX1 and IRF5, and the cell cycle regulator Cyclin D1. IRF8 loss impairs AML-driving signaling pathways, including the WNT, Chemokine, and VEGF signaling pathways. Additionally, many members of the focal adhesion pathway showed reduced expression, providing a putative link between high IRF8 expression and poor prognosis. Thus, this study suggests that IRF8 could serve as a biomarker and potential molecular target in a subset of human AMLs.
Collapse
Affiliation(s)
- Franziska Liss
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Miriam Frech
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Ying Wang
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Gavin Giel
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Andreas Neubauer
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Andreas Burchert
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
- Correspondence: ; Tel.: +49-6421-28-66697
| |
Collapse
|
511
|
Fujino S, Miyoshi N, Ito A, Yasui M, Ohue M, Ogino T, Takahashi H, Uemura M, Matsuda C, Mizushima T, Doki Y, Eguchi H. Crenolanib Regulates ERK and AKT/mTOR Signaling Pathways in RAS/BRAF-Mutated Colorectal Cancer Cells and Organoids. Mol Cancer Res 2021; 19:812-822. [PMID: 33579816 DOI: 10.1158/1541-7786.mcr-20-0600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 12/09/2022]
Abstract
Recently developed molecularly targeted therapies such as EGFR inhibitors have notably improved the prognosis of patients with cancer. However, patients with KRAS and BRAF mutations do not currently benefit from these therapies. Here, we aimed to examine potential effects of crenolanib as a new molecularly targeted therapy in colorectal cancer. We used multiple colorectal cancer cell lines to investigate the growth-inhibitory effect of crenolanib and its effect in combination with other cytotoxic agents. Primary cultures of patient-derived organoids (PDO), a model that reflects the heterogeneity of clinical colorectal cancer, were used to further validate the effects of crenolanib. Unlike cetuximab, crenolanib remarkably suppressed ERK and AKT/mTOR pathways in HT29 cells with BRAF mutation and in HCT116 cells with KRAS mutation with corresponding growth-suppressing effects. Additive or synergistic effects were observed in treatments with combination of crenolanib and other cytotoxic drugs. Moreover, crenolanib suppressed the expression of stem cell markers, such as OCT4, NANOG, and SOX2. These observations were substantiated in seven PDOs with KRAS mutation and two PDOs without KRAS/BRAF mutations, with crenolanib suppressing the growth of all PDOs regardless of their KRAS mutation status. Furthermore, crenolanib abrogated PDGF- and TGFβ-induced increase of OCT4-positive cells in PDOs. Together, these findings suggest that crenolanib may have clinical utility for patients with colorectal cancer, especially patients with KRAS/BRAF mutations. IMPLICATIONS: These findings indicate that crenolanib can be a useful target agent for patients with colorectal cancer, especially patients with KRAS/BRAF mutations.
Collapse
Affiliation(s)
- Shiki Fujino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.,Innovative Oncology Research and Translational Medicine, Osaka International Cancer Institute, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan. .,Innovative Oncology Research and Translational Medicine, Osaka International Cancer Institute, Osaka, Japan
| | - Aya Ito
- Innovative Oncology Research and Translational Medicine, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Yasui
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| |
Collapse
|
512
|
Jacobs CF, Eldering E, Kater AP. Kinase inhibitors developed for treatment of hematologic malignancies: implications for immune modulation in COVID-19. Blood Adv 2021; 5:913-925. [PMID: 33560402 PMCID: PMC7871903 DOI: 10.1182/bloodadvances.2020003768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are used to target dysregulated signaling pathways in virtually all hematologic malignancies. Many of the targeted signaling pathways are also essential in nonmalignant immune cells. The current coronavirus severe acute respiratory syndrome coronavirus 2 pandemic catalyzed clinical exploration of TKIs in the treatment of the various stages of COVID-19, which are characterized by distinct immune-related complications. Most of the reported effects of TKIs on immune regulation have been explored in vitro, with different class-specific drugs having nonoverlapping target affinities. Moreover, many of the reported in vivo effects are based on artificial animal models or on observations made in symptomatic patients with a hematologic malignancy who often already suffer from disturbed immune regulation. Based on in vitro and clinical observations, we attempt to decipher the impact of the main TKIs approved or in late-stage development for the treatment of hematological malignancies, including inhibitors of Bruton's tyrosine kinase, spleen tyrosine kinase, BCR-Abl, phosphatidylinositol 3-kinase/ mammalian target of rapamycin, JAK/STAT, and FMS-like tyrosine kinase 3, to provide a rationale for how such inhibitors could modify clinical courses of diseases, such as COVID-19.
Collapse
Affiliation(s)
- Chaja F Jacobs
- Department of Experimental Immunology and
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Amsterdam, The Netherlands; and
| | - Eric Eldering
- Department of Experimental Immunology and
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Amsterdam, The Netherlands; and
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Amsterdam, The Netherlands; and
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
513
|
Marjoncu D, Andrick B. Gilteritinib: A Novel FLT3 Inhibitor for Relapsed/Refractory Acute Myeloid Leukemia. J Adv Pract Oncol 2021; 11:104-108. [PMID: 33542854 PMCID: PMC7517771 DOI: 10.6004/jadpro.2020.11.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common adult leukemia, with an overall poor prognosis. New agents targeting various receptors may improve treatment outcomes and overall survival. FMS-like tyrosine kinase 3 (FLT3) is a targetable mutation occurring in one third of AML patients. It contributes to increased tumor proliferation and decreased cellular differentiation, ultimately conferring a poor overall prognosis. Among patients with FLT3-positive relapsed/refractory AML, outcomes are particularly dismal. Gilteritinib is a novel, second-generation FLT3 inhibitor approved by the U.S. Food & Drug Administration (FDA) for the treatment of relapsed/refractory AML with an FLT3 mutation as detected by an FDA-approved test.
Collapse
|
514
|
Surka C, Jin L, Mbong N, Lu CC, Jang IS, Rychak E, Mendy D, Clayton T, Tindall E, Hsu C, Fontanillo C, Tran E, Contreras A, Ng SWK, Matyskiela M, Wang K, Chamberlain P, Cathers B, Carmichael J, Hansen J, Wang JCY, Minden MD, Fan J, Pierce DW, Pourdehnad M, Rolfe M, Lopez-Girona A, Dick JE, Lu G. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 2021; 137:661-677. [PMID: 33197925 PMCID: PMC8215192 DOI: 10.1182/blood.2020008676] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).
Collapse
Affiliation(s)
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | - Stanley W K Ng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Kai Wang
- Bristol-Myers Squibb, San Diego, CA
| | | | | | | | | | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Jinhong Fan
- Bristol-Myers Squibb, San Francisco, CA; and
| | | | | | | | | | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gang Lu
- Bristol-Myers Squibb, San Diego, CA
| |
Collapse
|
515
|
Lai Y, OuYang G, Sheng L, Zhang Y, Lai B, Zhou M. Novel prognostic genes and subclasses of acute myeloid leukemia revealed by survival analysis of gene expression data. BMC Med Genomics 2021; 14:39. [PMID: 33536020 PMCID: PMC7860023 DOI: 10.1186/s12920-021-00888-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is biologically heterogeneous diseases with adverse prognosis. This study was conducted to find prognostic biomarkers that could effectively classify AML patients and provide guidance for treatment decision making. METHODS Weighted gene co-expression network analysis was applied to detect co-expression modules and analyze their relationship with clinicopathologic characteristics using RNA sequencing data from The Cancer Genome Atlas database. The associations of gene expression with patients' mortality were investigated by a variety of statistical methods and validated in an independent dataset of 405 AML patients. A risk score formula was created based on a linear combination of five gene expression levels. RESULTS The weighted gene co-expression network analysis detected 63 co-expression modules. The pink and darkred modules were negatively significantly correlated with overall survival of AML patients. High expression of FNDC3B, VSTM1 and CALR was associated with favourable overall survival, while high expression of PLA2G4A was associated with adverse overall survival. Hierarchical clustering analysis of FNDC3B, VSTM1, PLA2G4A, GOLGA3 and CALR uncovered four subgroups of AML patients. The cluster1 AML patients showed younger age, lower cytogenetics risk, higher frequency of NPM1 mutations and more favourable overall survival than cluster3 patients. The risk score was demonstrated to be an indicator of adverse prognosis in AML patients CONCLUSIONS: The FNDC3B, VSTM1, PLA2G4A, GOLGA3, CALR and risk score may serve as key prognostic biomarkers for the stratification and ultimately guide rational treatment of AML patients.
Collapse
Affiliation(s)
- Yanli Lai
- Department of Hematology, Ningbo First Hospital, 59 Liuting RoadZhejiang Province, Ningbo, 315000, China
| | - Guifang OuYang
- Department of Hematology, Ningbo First Hospital, 59 Liuting RoadZhejiang Province, Ningbo, 315000, China
| | - Lixia Sheng
- Department of Hematology, Ningbo First Hospital, 59 Liuting RoadZhejiang Province, Ningbo, 315000, China
| | - Yanli Zhang
- Department of Hematology, Ningbo First Hospital, 59 Liuting RoadZhejiang Province, Ningbo, 315000, China
| | - Binbin Lai
- Department of Hematology, Ningbo First Hospital, 59 Liuting RoadZhejiang Province, Ningbo, 315000, China
| | - Miao Zhou
- Department of Hematology, Ningbo First Hospital, 59 Liuting RoadZhejiang Province, Ningbo, 315000, China.
| |
Collapse
|
516
|
Multiplexed single-cell mass cytometry reveals distinct inhibitory effects on intracellular phosphoproteins by midostaurin in combination with chemotherapy in AML cells. Exp Hematol Oncol 2021; 10:7. [PMID: 33531064 PMCID: PMC7852110 DOI: 10.1186/s40164-021-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
Background Fms-related tyrosine kinase 3 (FLT3) receptor serves as a prognostic marker and therapeutic target in acute myeloid leukemia (AML). Approximately one-third of AML patients carry mutation in FLT3, associated with unfavourable prognosis and high relapse rate. The multitargeted kinase inhibitor midostaurin (PKC412) in combination with standard chemotherapy (daunorubicin and cytarabine) was recently shown to increase overall survival of AML patients. For that reason, PKC412 has been approved for treatment of AML patients with FLT3-mutation. PKC412 synergizes with standard chemotherapy, but the mechanism involved is not fully understood and the risk of relapse is still highly problematic. Methods By utilizing the unique nature of mass cytometry for single cell multiparameter analysis, we have explored the proteomic effect and intracellular signaling response in individual leukemic cells with internal tandem duplication of FLT3 (FLT3-ITD) after midostaurin treatment in combination with daunorubicin or cytarabine. Results We have identified a synergistic inhibition of intracellular signaling proteins after PKC412 treatment in combination with daunorubicin. In contrast, cytarabine antagonized phosphorylation inhibition of PKC412. Moreover, we found elevated levels of FLT3 surface expression after cytarabine treatment. Interestingly, the surface localization of FLT3 receptor increased in vivo on the blast cell population of two AML patients during day 3 of induction therapy (daunorubicin; once/day from day 1–3 and cytarabine; twice/day from day 1–7). We found FLT3 receptor expression to correlate with intracellular cytarabine (AraC) response. AML cell line cultured with AraC with or without PKC412 had an antagonizing phosphorylation inhibition of pAKT (p = 0.042 and 0.0261, respectively) and pERK1/2 (0.0134 and 0.0096, respectively) in FLT3high compared to FLT3low expressing cell populations. Conclusions Our study provides insights into how conventional chemotherapy affects protein phosphorylation of vital signaling proteins in human leukemia cells. The results presented here support further investigation of novel strategies to treat FLT3-mutated AML patients with PKC412 in combination with chemotherapy agents and the potential development of novel treatment strategies.
Collapse
|
517
|
Wu Z, Zhang H, Wu M, Peng G, He Y, Wan N, Zeng Y. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia. Biomed Pharmacother 2021; 137:111299. [PMID: 33508619 DOI: 10.1016/j.biopha.2021.111299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a crucial activating receptor in the immune recognition and eradication of abnormal cells by natural killer (NK) cells, and T lymphocytes. NKG2D can transmit activation signals and activate the immune system by recognizing the NKG2D ligands (NKG2D-L) on acute myeloid leukemia (AML) cells. Downregulation of NKG2D-L in AML can circumvent resistance to chemotherapy and immune recognition. Considering this effect, the exploration of targeting the NKG2D/NKG2D-L axis is considered to have tremendous potential for the discovery of novel biomacromolecule antibodies and pharmacological modulators in AML. This review was to outline the impact of NKG2D/NKG2D-L axis on intrinsic immunosurveillance and the development of AML. Furthermore, the NKG2D/NKG2D-L axis related modulators and progress in preclinical and clinical trials was also to be reviewed.
Collapse
Affiliation(s)
- Zhenhui Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Huan Zhang
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Min Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Guorui Peng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Yanqiu He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Na Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yingjian Zeng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
518
|
FLT3-ITD DNA allelic burden, but not mRNA levels, influences the biological characteristics of AML patients. REV ROMANA MED LAB 2021. [DOI: 10.2478/rrlm-2021-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
FMS-like tyrosine kinase 3 gene internal tandem (FLT3-ITD) mutations represent one of the most frequent genetic lesions in acute myeloid leukemia (AML) and imparts a negative prognostic. For an optimal patient management, current clinical guidelines recommend the evaluation of the allelic ratio (AR), expressed as the DNA FLT3-ITD/WT mutational burden. We sought to evaluate the differences between the AR and FLT3-ITD/WT mRNA ratio (RR) and their respective impact on the biological characteristics of AML patients. A total of 32 DNA and mRNA samples from AML patients with FLT3-ITD were evaluated. There was a good correlation between the AR and RR (Spearman’s rho= 0.652, P <0.001). None of the biological characteristics were influenced by the RR values, whereas patients with high AR values (≥0.5) had higher WBC counts (Mann-Whitney, P= 0.01), LDH levels (Mann-Whitney, P= 0.037), and circulating blasts levels (Mann-Whitney, P= 0.023) than patients with low AR values (<0.5). Also, there was a good correlation between AR values and WBC count (Spearman’s correlation, P= 0.001), and LDH levels (Spearman’s correlation, P= 0.007). In our study population the AR, but not the RR, influenced the biological characteristic of patients suggesting a dose-independent effect of FLT3-ITD mutations.
Collapse
|
519
|
Yen SC, Chen LC, Huang HL, Ngo ST, Wu YW, Lin TE, Sung TY, Lien ST, Tseng HJ, Pan SL, Huang WJ, Hsu KC. Investigation of Selected Flavonoid Derivatives as Potent FLT3 Inhibitors for the Potential Treatment of Acute Myeloid Leukemia. JOURNAL OF NATURAL PRODUCTS 2021; 84:1-10. [PMID: 33393294 DOI: 10.1021/acs.jnatprod.0c00589] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis and a high degree of relapse seen in patients. Overexpression of FMS-like tyrosine kinase 3 (FLT3) is associated with up to 70% of AML patients. Wild-type FLT3 induces proliferation and inhibits apoptosis in AML cells, while uncontrolled proliferation of FLT3 kinase activity is also associated with FLT3 mutations. Therefore, inhibiting FLT3 activity is a promising AML therapy. Flavonoids are a group of phytochemicals that can target protein kinases, suggesting their potential antitumor activities. In this study, several plant-derived flavonoids have been identified with FLT3 inhibitory activity. Among these compounds, compound 40 (5,7,4'-trihydroxy-6-methoxyflavone) exhibited the most potent inhibition against not only FLT3 (IC50 = 0.44 μM) but also FLT3-D835Y and FLT3-ITD mutants (IC50 = 0.23 and 0.39 μM, respectively). The critical interactions between the FLT3 binding site and the compounds were identified by performing a structure-activity relationship analysis. Furthermore, the results of cellular assays revealed that compounds 28, 31, 32, and 40 exhibited significant cytotoxicity against two human AML cell lines (MOLM-13 and MV-4-11), and compounds 31, 32, and 40 resulted in cell apoptosis and G0/G1 cell cycle arrest. Collectively, these flavonoids have the potential to be further optimized as FLT3 inhibitors and provide valuable chemical information for the development of new AML drugs.
Collapse
Affiliation(s)
- Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, People's Republic of China
| | - Liang-Chieh Chen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, People's Republic of China
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Li Huang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sin-Ting Ngo
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Wu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Institute of Bioinformatics and Systems Biology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Ssu-Ting Lien
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
520
|
Polomski M, Brachet-Botineau M, Juen L, Viaud-Massuard MC, Gouilleux F, Prié G. Inhibitors Targeting STAT5 Signaling in Myeloid Leukemias: New Tetrahydroquinoline Derivatives with Improved Antileukemic Potential. ChemMedChem 2021; 16:1034-1046. [PMID: 33275308 DOI: 10.1002/cmdc.202000841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 01/23/2023]
Abstract
Signal transducers and activators of transcription 5A and 5B (STAT5A and STAT5B) are two closely related STAT family members that are crucial downstream effectors of tyrosine kinase oncoproteins such as FLT3-ITD in acute myeloid leukemia (AML) and BCR-ABL in chronic myeloid leukemia (CML). We recently developed and reported the synthesis of a first molecule called 17 f that selectively inhibits STAT5 signaling in myeloid leukemia cells and overcomes their resistance to chemotherapeutic agents. To improve the antileukemic effect of 17 f, we synthesized ten analogs of this molecule and analyzed their impact on cell growth, survival, chemoresistance and STAT5 signaling. Two compounds, 7 a and 7 a', were identified as having similar or higher antileukemic effects in various AML and CML cell lines. Both molecules were found to be more effective than 17 f at inhibiting STAT5 activity/expression and suppressing the chemoresistance of CML.
Collapse
Affiliation(s)
- Marion Polomski
- Equipe IMT "Innovation Moléculaire et Thérapeutique" - GICC EA7501, Université de Tours-Labex SYNORG, Faculté de Pharmacie, 31 av. Monge, 37200, Tours, France
| | - Marie Brachet-Botineau
- Equipe LNOx "Niche Leucémique & Métabolisme Oxydatif" - GICC ERL 7001 CNRS, Université de Tours, Faculté de Médecine, Bâtiment Dutrochet, 10bis bvd Tonnellé, 37032, Tours, France
| | - Ludovic Juen
- Equipe IMT "Innovation Moléculaire et Thérapeutique" - GICC EA7501, Université de Tours-Labex SYNORG, Faculté de Pharmacie, 31 av. Monge, 37200, Tours, France
| | - Marie-Claude Viaud-Massuard
- Equipe IMT "Innovation Moléculaire et Thérapeutique" - GICC EA7501, Université de Tours-Labex SYNORG, Faculté de Pharmacie, 31 av. Monge, 37200, Tours, France
| | - Fabrice Gouilleux
- Equipe LNOx "Niche Leucémique & Métabolisme Oxydatif" - GICC ERL 7001 CNRS, Université de Tours, Faculté de Médecine, Bâtiment Dutrochet, 10bis bvd Tonnellé, 37032, Tours, France
| | - Gildas Prié
- Equipe IMT "Innovation Moléculaire et Thérapeutique" - GICC EA7501, Université de Tours-Labex SYNORG, Faculté de Pharmacie, 31 av. Monge, 37200, Tours, France
| |
Collapse
|
521
|
Tsetsos F, Yu D, Sul JH, Huang AY, Illmann C, Osiecki L, Darrow SM, Hirschtritt ME, Greenberg E, Muller-Vahl KR, Stuhrmann M, Dion Y, Rouleau GA, Aschauer H, Stamenkovic M, Schlögelhofer M, Sandor P, Barr CL, Grados MA, Singer HS, Nöthen MM, Hebebrand J, Hinney A, King RA, Fernandez TV, Barta C, Tarnok Z, Nagy P, Depienne C, Worbe Y, Hartmann A, Budman CL, Rizzo R, Lyon GJ, McMahon WM, Batterson JR, Cath DC, Malaty IA, Okun MS, Berlin C, Woods DW, Lee PC, Jankovic J, Robertson MM, Gilbert DL, Brown LW, Coffey BJ, Dietrich A, Hoekstra PJ, Kuperman S, Zinner SH, Wagner M, Knowles JA, Jeremy Willsey A, Tischfield JA, Heiman GA, Cox NJ, Freimer NB, Neale BM, Davis LK, Coppola G, Mathews CA, Scharf JM, Paschou P, Barr CL, Batterson JR, Berlin C, Budman CL, Cath DC, Coppola G, Cox NJ, Darrow S, Davis LK, Dion Y, Freimer NB, Grados MA, Greenberg E, Hirschtritt ME, Huang AY, Illmann C, King RA, Kurlan R, Leckman JF, Lyon GJ, Malaty IA, Mathews CA, McMahon WM, Neale BM, Okun MS, Osiecki L, Robertson MM, Rouleau GA, Sandor P, Scharf JM, Singer HS, Smit JH, Sul JH, Yu D, Aschauer HAH, Barta C, Budman CL, Cath DC, Depienne C, Hartmann A, Hebebrand J, Konstantinidis A, Mathews CA, Müller-Vahl K, Nagy P, Nöthen MM, Paschou P, Rizzo R, Rouleau GA, Sandor P, Scharf JM, Schlögelhofer M, Stamenkovic M, Stuhrmann M, Tsetsos F, Tarnok Z, Wolanczyk T, Worbe Y, Brown L, Cheon KA, Coffey BJ, Dietrich A, Fernandez TV, Garcia-Delgar B, Gilbert D, Grice DE, Hagstrøm J, Hedderly T, Heiman GA, Heyman I, Hoekstra PJ, Huyser C, Kim YK, Kim YS, King RA, Koh YJ, Kook S, Kuperman S, Leventhal BL, Madruga-Garrido M, Mir P, Morer A, Münchau A, Plessen KJ, Roessner V, Shin EY, Song DH, Song J, Tischfield JA, Willsey AJ, Zinner S, Aschauer H, Barr CL, Barta C, Batterson JR, Berlin C, Brown L, Budman CL, Cath DC, Coffey BJ, Coppola G, Cox NJ, Darrow S, Davis LK, Depienne C, Dietrich A, Dion Y, Fernandez T, Freimer NB, Gilbert D, Grados MA, Greenberg E, Hartmann A, Hebebrand J, Heiman G, Hirschtritt ME, Hoekstra P, Huang AY, Illmann C, Jankovic J, King RA, Kuperman S, Lee PC, Lyon GJ, Malaty IA, Mathews CA, McMahon WM, Müller-Vahl K, Nagy P, Neale BM, Nöthen MM, Okun MS, Osiecki L, Paschou P, Rizzo R, Robertson MM, Rouleau GA, Sandor P, Scharf JM, Schlögelhofer M, Singer HS, Stamenkovic M, Stuhrmann M, Sul JH, Tarnok Z, Tischfield J, Tsetsos F, Willsey AJ, Woods D, Worbe Y, Yu D, Zinner S. Synaptic processes and immune-related pathways implicated in Tourette syndrome. Transl Psychiatry 2021; 11:56. [PMID: 33462189 PMCID: PMC7814139 DOI: 10.1038/s41398-020-01082-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/18/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS.
Collapse
Grants
- R01 NS102371 NINDS NIH HHS
- R01 NS096207 NINDS NIH HHS
- R01 NS096008 NINDS NIH HHS
- R01 MH115958 NIMH NIH HHS
- K08 MH099424 NIMH NIH HHS
- U24 NS095914 NINDS NIH HHS
- K02 NS085048 NINDS NIH HHS
- R01 MH115963 NIMH NIH HHS
- U01 HG009086 NHGRI NIH HHS
- R56 MH120736 NIMH NIH HHS
- U54 MD010722 NIMHD NIH HHS
- UL1 TR001863 NCATS NIH HHS
- R01 DC016977 NIDCD NIH HHS
- R01 NS105746 NINDS NIH HHS
- R01 MH118233 NIMH NIH HHS
- DP2 HD098859 NICHD NIH HHS
- R01 MH115961 NIMH NIH HHS
- U24 MH068457 NIMH NIH HHS
- P50 HD103537 NICHD NIH HHS
- R25 NS108939 NINDS NIH HHS
- R01 MH114927 NIMH NIH HHS
- R01 NR014852 NINR NIH HHS
- R21 HG010652 NHGRI NIH HHS
- R01 MH113362 NIMH NIH HHS
- RM1 HG009034 NHGRI NIH HHS
- FT is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Reinforcement of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (IKY)
- KMV has received financial or material research support from the EU (FP7-HEALTH-2011 No. 278367, FP7-PEOPLE-2012-ITN No. 316978), the German Research Foundation (DFG: GZ MU 1527/3-1), the German Ministry of Education and Research (BMBF: 01KG1421), the National Institute of Mental Health (NIMH), the Tourette Gesellschaft Deutschland e.V., the Else-Kroner-Fresenius-Stiftung, and GW, Almirall, Abide Therapeutics, and Therapix Biosiences and has received consultant’s honoraria from Abide Therapeutics, Tilray, Resalo Vertrieb GmbH, and Wayland Group, speaker’s fees from Tilray and Cogitando GmbH, and royalties from Medizinisch Wissenschaftliche Verlagsgesellschaft Berlin, Elsevier, and Kohlhammer; and is a consultant for Nuvelution TS Pharma Inc., Zynerba Pharmaceuticals, Resalo Vertrieb GmbH, CannaXan GmbH, Therapix Biosiences, Syqe, Nomovo Pharma, and Columbia Care.
- MMN has received fees for memberships in Scientific Advisory Boards from the Lundbeck Foundation and the Robert-Bosch-Stiftung, and for membership in the Medical-Scientific Editorial Office of the Deutsches Ärzteblatt. MMN was reimbursed travel expenses for a conference participation by Shire Deutschland GmbH. MMN receives salary payments from Life & Brain GmbH and holds shares in Life & Brain GmbH. All this concerned activities outside the submitted work.
- IM has participated in research funded by the Parkinson Foundation, Tourette Association, Dystonia Coalition, AbbVie, Biogen, Boston Scientific, Eli Lilly, Impax, Neuroderm, Prilenia, Revance, Teva but has no owner interest in any pharmaceutical company. She has received travel compensation or honoraria from the Tourette Association of America, Parkinson Foundation, International Association of Parkinsonism and Related Disorders, Medscape, and Cleveland Clinic, and royalties for writing a book with Robert rose publishers.
- MSO serves as a consultant for the Parkinson’s Foundation, and has received research grants from NIH, Parkinson’s Foundation, the Michael J. Fox Foundation, the Parkinson Alliance, Smallwood Foundation, the Bachmann-Strauss Foundation, the Tourette Syndrome Association, and the UF Foundation. MSO’s DBS research is supported by: NIH R01 NR014852 and R01NS096008. MSO is PI of the NIH R25NS108939 Training Grant. MSO has received royalties for publications with Demos, Manson, Amazon, Smashwords, Books4Patients, Perseus, Robert Rose, Oxford and Cambridge (movement disorders books). MSO is an associate editor for New England Journal of Medicine Journal Watch Neurology. MSO has participated in CME and educational activities on movement disorders sponsored by the Academy for Healthcare Learning, PeerView, Prime, QuantiaMD, WebMD/Medscape, Medicus, MedNet, Einstein, MedNet, Henry Stewart, American Academy of Neurology, Movement Disorders Society and by Vanderbilt University. The institution and not MSO receives grants from Medtronic, Abbvie, Boston Scientific, Abbott and Allergan and the PI has no financial interest in these grants. MSO has participated as a site PI and/or co-I for several NIH, foundation, and industry sponsored trials over the years but has not received honoraria. Research projects at the University of Florida receive device and drug donations.
- DW receives royalties for books on Tourette Syndrome with Guilford Press, Oxford University Press, and Springer Press.
- BMN is a member of the scientific advisory board at Deep Genomics and consultant for Camp4 Therapeutics, Takeda Pharmaceutical and Biogen.
Collapse
Affiliation(s)
- Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Sabrina M Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Kirsten R Muller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | | | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas V Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Douglas W Woods
- Marquette University and University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Paul C Lee
- Tripler Army Medical Center and University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Donald L Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | | | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Samuel H Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | | | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | | | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabrina Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Roger Kurlan
- Atlantic Neuroscience Institute, Overlook Hospital, Summit, NJ, USA
| | - James F Leckman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jan H Smit
- Department of Psychiatry, VU UniversityMedical Center, Amsterdam, The Netherlands
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harald Aschauer Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anastasios Konstantinidis
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Center for Mental Health Muldenstrasse, BBRZMed, Linz, Austria
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Tomasz Wolanczyk
- Department of Child Psychiatry, Medical University of Warsaw, 00-001, Warsaw, Poland
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Lawrence Brown
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keun-Ah Cheon
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thomas V Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Blanca Garcia-Delgar
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic Universitari, Barcelona, Spain
| | - Donald Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Dorothy E Grice
- Department of Psychiatry, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Hagstrøm
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
| | - Tammy Hedderly
- Tic and Neurodevelopmental Movements Service (TANDeM), Evelina Children's Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
- Paediatric Neurosciences, Kings College London, London, UK
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Isobel Heyman
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Psychological and Mental Health Services, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chaim Huyser
- De Bascule, Academic Centre for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | | | - Young-Shin Kim
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yun-Joo Koh
- The Korea Institute for Children's Social Development, Rudolph Child Research Center, Seoul, South Korea
| | - Sodahm Kook
- Kangbuk Samsung Hospital, Seoul, South Korea
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bennett L Leventhal
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Marcos Madruga-Garrido
- Sección de Neuropediatría, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Astrid Morer
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic Universitari, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Kerstin J Plessen
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav CarusTU Dresden, Dresden, Germany
| | - Eun-Young Shin
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Dong-Ho Song
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Jungeun Song
- National Health Insurance Service Ilsan Hospital, Goyang-Si, South Korea
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samuel Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lawrence Brown
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabrina Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Thomas Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Donald Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Pieter Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Paul C Lee
- Tripler Army Medical Center and University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Jay Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Douglas Woods
- Marquette University and University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
522
|
Kennedy VE, Smith CC. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front Oncol 2021; 10:612880. [PMID: 33425766 PMCID: PMC7787101 DOI: 10.3389/fonc.2020.612880] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
The FLT3 receptor is overexpressed on the majority of acute myeloid leukemia (AML) blasts. Mutations in FLT3 are the most common genetic alteration in AML, identified in approximately one third of newly diagnosed patients. FLT3 internal tandem duplication mutations (FLT3-ITD) are associated with increased relapse and inferior overall survival. Multiple small molecule inhibitors of FLT3 signaling have been identified, two of which (midostaurin and gilteritinib) are currently approved in the United States, and many more of which are in clinical trials. Despite significant advances, resistance to FLT3 inhibitors through secondary FLT3 mutations, upregulation of parallel pathways, and extracellular signaling remains an ongoing challenge. Novel therapeutic strategies to overcome resistance, including combining FLT3 inhibitors with other antileukemic agents, development of new FLT3 inhibitors, and FLT3-directed immunotherapy are in active clinical development. Multiple questions regarding FLT3-mutated AML remain. In this review, we highlight several of the current most intriguing controversies in the field including the role of FLT3 inhibitors in maintenance therapy, the role of hematopoietic cell transplantation in FLT3-mutated AML, use of FLT3 inhibitors in FLT3 wild-type disease, significance of non-canonical FLT3 mutations, and finally, emerging concerns regarding clonal evolution.
Collapse
Affiliation(s)
- Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Catherine C Smith
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
523
|
Why isn't there a one-size-fits-all approach for relapsed/refractory acute myeloid leukemia? Insights into different variables for decision-making. Best Pract Res Clin Haematol 2021; 34:101240. [PMID: 33762095 DOI: 10.1016/j.beha.2021.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Relapsed refractory acute myeloid leukemia (R/R AML) has a poor prognosis. While the heterogeneity and diversity of R/R AML pose hurdles towards defining a standard of care, there have been various advances over the years. These, however, have added to the complexity of decision-making for R/R AML. This review has summarized evidence that will provide insights into factors that influence treatment choices in R/R AML and determine whether ongoing clinical trials can aid in identifying a standard approach for different sub-groups of patients.
Collapse
|
524
|
Mori M, Hidaka K. [Pharmacological and clinical profile of gilteritinib (Xospata ® tablets 40 mg), a therapeutic agent for relapsed or refractory FLT3-mutated acute myeloid leukemia]. Nihon Yakurigaku Zasshi 2021; 156:37-46. [PMID: 33390479 DOI: 10.1254/fpj.20050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Gilteritinib fumarate (Xospata® tablets 40 mg) is a novel, highly selective, oral FMS-like tyrosine kinase 3 (FLT3) inhibitor used for the treatment of patients with relapsed or refractory FLT3-mutated acute myeloid leukemia (AML), and it was approved in Japan in September 2018. Preclinical studies demonstrated that gilteritinib inhibited FLT3 and showed antiproliferative activity against Ba/F3 cells expressing mutated FLT3. In addition, gilteritinib inhibited tumor growth, induced tumor regression, and prolonged survival in mice xenografted with MV4-11 cells endogenously expressing FLT3-internal tandem duplication. In clinical trials conducted in the United States, Europe, and Japan, plasma concentrations after administration of gilteritinib 20 to 450 mg/day were generally dose proportional, and gilteritinib was well tolerated. Multiple clinical trials, including a global Phase III study, in patients with relapsed or refractory FLT3-mutated AML treated with gilteritinib demonstrated higher response rates of complete remission or complete remission with partial hematologic recovery and longer overall survival compared with patients treated with salvage chemotherapy. Some clinical trials are ongoing in patients with FLT3-mutated AML at various treatment stages, such as induction therapy, maintenance therapy, and treatment after hematopoietic stem cell transplantation. In conclusion, in vitro, in vivo, and clinical data indicate that gilteritinib fumarate is an effective treatment option in adult patients with relapsed or refractory FLT3-mutated AML in Japan.
Collapse
Affiliation(s)
- Masamichi Mori
- Research Program Management, Drug Discovery Research, Astellas Pharma Inc
| | - Kazuyuki Hidaka
- Medical Science, Medical Affairs, Astellas Pharma Inc.,Current affiliation: Syneos Health Commercial K.K
| |
Collapse
|
525
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
526
|
Pandya BJ, Yang H, Schmeichel C, Qi CZ, Shah MV. A budget impact analysis of gilteritinib for the treatment of relapsed or refractory FLT3 mut+ acute myeloid leukemia in a US health plan. J Med Econ 2021; 24:19-28. [PMID: 33280474 DOI: 10.1080/13696998.2020.1851698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS To estimate the economic impact of the introduction of gilteritinib for the treatment of relapsed/refractory (R/R) FLT3 mutation-positive (FLT3 mut+) acute myeloid leukemia (AML) from a US payer's perspective. METHODS A budget impact model (BIM) was developed to evaluate the 3-year total budgetary impact of treating adults with R/R FLT3 mut+ AML eligible for gilteritinib in a hypothetical US health plan. Total costs (drugs/administration, hospitalization, monitoring, adverse events, transfusions, subsequent hematopoietic stem cell transplantation, post-progression, and FLT3 testing) were estimated before and after gilteritinib entry. The budget impact was the total cost difference between the two scenarios. The target population size and cost inputs were based on public data or published literature, drug market share was informed by market research data, and the model included recommended treatments for R/R FLT3 mut+ AML per clinical guidelines. Deterministic sensitivity analyses (DSAs) and scenario analyses varying key model inputs and assumptions were conducted to test for robustness. RESULTS In a hypothetical health plan with 1 million members, 20.9 adults with R/R FLT3 mut+ AML were estimated to be eligible for gilteritinib. Of these, it was assumed 30.0% would be treated with gilteritinib in Year 1 following gilteritinib entry, increasing the total plan budget by $663,795 and the per-member-per-month (PMPM) cost by $0.055. In Years 2-3, the market share of gilteritinib increased to 45.0%, increasing the total plan budget impact by $1,078,371 and $1,087,230, and the PMPM cost by $0.090 and $0.091, respectively. The model results remained robust in DSAs and scenario analyses, with the largest impact observed when the projected uptake of gilteritinib was changed. LIMITATIONS The results of this BIM are contingent upon the model's assumptions and inputs. CONCLUSIONS Adding gilteritinib to the formulary for the treatment of adults with R/R FLT3 mut+ AML had a minimal budget impact from a US payer's perspective.
Collapse
Affiliation(s)
- Bhavik J Pandya
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| | | | | | | | - Manasee V Shah
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| |
Collapse
|
527
|
Zhong Y, Xu F, Wu J, Schubert J, Li MM. Application of Next Generation Sequencing in Laboratory Medicine. Ann Lab Med 2021; 41:25-43. [PMID: 32829577 PMCID: PMC7443516 DOI: 10.3343/alm.2021.41.1.25] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The rapid development of next-generation sequencing (NGS) technology, including advances in sequencing chemistry, sequencing technologies, bioinformatics, and data interpretation, has facilitated its wide clinical application in precision medicine. This review describes current sequencing technologies, including short- and long-read sequencing technologies, and highlights the clinical application of NGS in inherited diseases, oncology, and infectious diseases. We review NGS approaches and clinical diagnosis for constitutional disorders; summarize the application of U.S. Food and Drug Administration-approved NGS panels, cancer biomarkers, minimal residual disease, and liquid biopsy in clinical oncology; and consider epidemiological surveillance, identification of pathogens, and the importance of host microbiome in infectious diseases. Finally, we discuss the challenges and future perspectives of clinical NGS tests.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - Feng Xu
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Jinhua Wu
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Jeffrey Schubert
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Marilyn M. Li
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| |
Collapse
|
528
|
Xu Y, Wang P, Li M, Wu Z, Li X, Shen J, Xu R. Natural small molecule triptonide inhibits lethal acute myeloid leukemia with FLT3-ITD mutation by targeting Hedgehog/FLT3 signaling. Biomed Pharmacother 2021; 133:111054. [PMID: 33254022 DOI: 10.1016/j.biopha.2020.111054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022] Open
Abstract
Acute myeloid leukemia harboring internal tandem duplication of FMS-like tyrosine kinase 3 (FLT3-ITD AML) is a subset of highly aggressive malignancies with poor clinical outcome. Despite some advances in the development of FLT3 tyrosine kinase inhibitors (FLT3 inhibitors), most of FLT3-ITD AML patients suffer from lethal disease relapse, suggesting the requirement of novel targets and agents. Here we describe a natural small molecule, triptonide that can efficiently inhibit FLT3-ITD-driven AML in vitro and in vivo. Mechanistically, triptonide targeted Hedgehog/FLT3 signaling by inhibiting its critical effectors, which are GLI2, c-Myc and FLT3 and induced apoptosis of FLT3-ITD-driven leukemia cells. In addition, we also observed that triptonide activated tumor suppressor p53. In vivo, triptonide treatment markedly suppressed lethal FLT3-ITD-driven AML with good tolerance and prolonged survival time in orthotopic mouse model. Our studies identify Hedgehog/FLT3 axis as a novel target for treating FLT3-ITD-driven leukemia and demonstrate that triptonide is an active lead compound that can kill FLT3-ITD-driven leukemia cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Cycle Checkpoints
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Signal Transduction
- Tandem Repeat Sequences
- Triterpenes/pharmacology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
- Zinc Finger Protein Gli2/genetics
- Zinc Finger Protein Gli2/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Mice
Collapse
Affiliation(s)
- Ying Xu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Ping Wang
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Mengyuan Li
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhaoxing Wu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xian Li
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310009, China.
| | - Rongzhen Xu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
529
|
Mologni L, Marzaro G, Redaelli S, Zambon A. Dual Kinase Targeting in Leukemia. Cancers (Basel) 2021; 13:E119. [PMID: 33401428 PMCID: PMC7796318 DOI: 10.3390/cancers13010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials. A brief overview of dual-targeting inhibitors (kinase/histone deacetylase (HDAC) and kinase/tubulin polymerization inhibitors) applied to leukemia is also given. Finally, the very recently developed Proteolysis Targeting Chimeras (PROTAC)-based kinase inhibitors are presented.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy;
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
530
|
Madan V, Koeffler HP. Differentiation therapy of myeloid leukemia: four decades of development. Haematologica 2021; 106:26-38. [PMID: 33054125 PMCID: PMC7776344 DOI: 10.3324/haematol.2020.262121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia is characterized by arrested differentiation, and agents that overcome this block are therapeutically useful, as shown by the efficacy of all-trans retinoic acid in acute promyelocytic leukemia. However, the early promise of differentiation therapy did not translate into clinical benefit for other subtypes of acute myeloid leukemia, in which cytotoxic chemotherapeutic regimens remained the standard of care. Recent advances, including insights from sequencing of acute myeloid leukemia genomes, have led to the development of targeted therapies, comprising agents that induce differentiation of leukemic cells in preclinical models and clinical trials, thus rejuvenating interest in differentiation therapy. These agents act on various cellular processes including dysregulated metabolic programs, signaling pathways, epigenetic machinery and the cell cycle. In particular, inhibitors of mutant IDH1/2 and FLT3 have shown clinical benefit, leading to approval by regulatory bodies of their use. Besides the focus on recently approved differentiation therapies, this review also provides an overview of differentiation- inducing agents being tested in clinical trials or investigated in preclinical research. Combinatorial strategies are currently being tested for several agents (inhibitors of KDM1A, DOT1L, BET proteins, histone deacetylases), which were not effective in clinical studies as single agents, despite encouraging anti-leukemic activity observed in preclinical models. Overall, recently approved drugs and new investigational agents being developed highlight the merits of differentiation therapy; and ongoing studies promise further advances in the treatment of acute myeloid leukemia in the near future.
Collapse
Affiliation(s)
- Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore.
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore; Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA; Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital.
| |
Collapse
|
531
|
Choi S, Kim BK, Ahn HY, Hong KT, Choi JY, Shin HY, Kang HJ. Outcomes of pediatric acute myeloid leukemia patients with FLT3-ITD mutations in the pre-FLT3 inhibitor era. Blood Res 2020; 55:217-224. [PMID: 33232940 PMCID: PMC7784129 DOI: 10.5045/br.2020.2020127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 11/27/2022] Open
Abstract
Background Acute myeloid leukemia (AML) with internal tandem duplication in FMS-like tyrosine kinase 3 (FLT3-ITD) is associated with poor outcomes. This study aimed to analyze the outcomes of pediatric AML patients with FLT3-ITD mutations in the pre-FLT3 inhibitor era. Methods We retrospectively reviewed and identified 18 patients diagnosed with non-M3 AML with FLT3-ITD mutations at Seoul National University Children’s Hospital between May 2008 and August 2019. Results The median age was 13 years (range, 6‒19 yr). The median follow-up time was 43 months (range, 6‒157 mo). Fourteen patients received BH-AC-based (N4-Behenoy1-1-b-D-arabinofuranosy1cytosine) and 4 received cytarabine-based induction chemotherapy. Complete remission (CR) was achieved in 72.2% of the patients after the first induction chemotherapy and 80% of the patients achieved CR after salvage therapy. The overall CR rate was 94% (17/18 patients). These 17 patients underwent hematopoietic stem cell transplantation (9 matched unrelated donors, 5 matched related donors, and 3 haploidentical donors). Relapse occurred in 22% of the patients. Event free survival and overall survival rates were 53.8±12.1% and 53.6±12.1%, respectively, and they were not significantly different according to the type of induction chemotherapy (P=0.690) or the type of donor (P=0.102). Conclusion This study outlines the outcomes of pediatric AML patients with FLT3-ITD-mutations in one institution over a decade. Outcomes were significantly improved in this study compared to our previous report in 2004, where RFS and EFS were 0%. This study can provide baseline data for pediatric patients in the pre-FLT3 inhibitor era.
Collapse
Affiliation(s)
- Sujin Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea
| | - Bo Kyung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea
| | - Hong Yul Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea
| | - Kyung Taek Hong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea
| | - Hee Young Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea.,Wide River Institute of Immunology, Hongcheon, Korea
| |
Collapse
|
532
|
Damnernsawad A, Bottomly D, Kurtz SE, Eide CA, McWeeney SK, Tyner JW, Nechiporuk T. Genome-wide CRISPR screen identifies regulators of MAPK and MTOR pathways mediating sorafenib resistance in acute myeloid leukemia. Haematologica 2020; 107:77-85. [PMID: 33375770 PMCID: PMC8719098 DOI: 10.3324/haematol.2020.257964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 11/11/2022] Open
Abstract
Drug resistance impedes the long-term effect of targeted therapies in acute myeloid leukemia (AML), necessitating the identification of mechanisms underlying resistance. Approximately 25% of AML patients carry FLT3 mutations and develop post-treatment insensitivity to FLT3 inhibitors, including sorafenib. Using a genomewide CRISPR screen, we identified LZTR1, NF1, TSC1 and TSC2, negative regulators of the MAPK and MTOR pathways, as mediators of resistance to sorafenib. Analyses of ex vivo drug sensitivity assays in samples from patients with FLT3-ITD AML revealed that lower expression of LZTR1, NF1, and TSC2 correlated with sensitivity to sorafenib. Importantly, MAPK and/or MTOR complex 1 (MTORC1) activity was upregulated in AML cells made resistant to several FLT3 inhibitors, including crenolanib, quizartinib, and sorafenib. These cells were sensitive to MEK inhibitors, and the combination of FLT3 and MEK inhibitors showed enhanced efficacy, suggesting the effectiveness of such treatment in AML patients with FLT3 mutations and those with resistance to FLT3 inhibitors.
Collapse
Affiliation(s)
- Alisa Damnernsawad
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA; Department of Biology, Faculty of Science, Mahidol University, Bangkok
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Stephen E Kurtz
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Christopher A Eide
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA; Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR.
| | - Tamilla Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR.
| |
Collapse
|
533
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
534
|
Miao H, Kim E, Chen D, Purohit T, Kempinska K, Ropa J, Klossowski S, Trotman W, Danet-Desnoyers G, Cierpicki T, Grembecka J. Combinatorial treatment with menin and FLT3 inhibitors induces complete remission in AML models with activating FLT3 mutations. Blood 2020; 136:2958-2963. [PMID: 33331926 PMCID: PMC7751359 DOI: 10.1182/blood.2020006575] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - EunGi Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Dong Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - James Ropa
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN; and
| | | | - Winifred Trotman
- Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gwenn Danet-Desnoyers
- Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | |
Collapse
|
535
|
Eckardt JN, Bornhäuser M, Wendt K, Middeke JM. Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects. Blood Adv 2020; 4:6077-6085. [PMID: 33290546 PMCID: PMC7724910 DOI: 10.1182/bloodadvances.2020002997] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Machine learning (ML) is rapidly emerging in several fields of cancer research. ML algorithms can deal with vast amounts of medical data and provide a better understanding of malignant disease. Its ability to process information from different diagnostic modalities and functions to predict prognosis and suggest therapeutic strategies indicates that ML is a promising tool for the future management of hematologic malignancies; acute myeloid leukemia (AML) is a model disease of various recent studies. An integration of these ML techniques into various applications in AML management can assure fast and accurate diagnosis as well as precise risk stratification and optimal therapy. Nevertheless, these techniques come with various pitfalls and need a strict regulatory framework to ensure safe use of ML. This comprehensive review highlights and discusses recent advances in ML techniques in the management of AML as a model disease of hematologic neoplasms, enabling researchers and clinicians alike to critically evaluate this upcoming, potentially practice-changing technology.
Collapse
Affiliation(s)
- Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases, Dresden (NCT/UCC), Dresden, Germany
- German Consortium for Translational Cancer Research, DKFZ, Heidelberg, Germany; and
| | - Karsten Wendt
- Institute of Circuits and Systems, Technical University Dresden, Dresden, Germany
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
536
|
Wang ES, Baron J. Management of toxicities associated with targeted therapies for acute myeloid leukemia: when to push through and when to stop. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:57-66. [PMID: 33275692 PMCID: PMC7727512 DOI: 10.1182/hematology.2020000089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The recent advent of myriad targeted therapies for acute myeloid leukemia (AML) has led to new hope for our patients but has also introduced new challenges in managing the disease. For clinicians, the ability to treat AML in the outpatient setting with novel agents of equal or greater efficacy than 7+3 has been transformative. Despite the enthusiasm, however, the reality is that many patients are still frail and remain at risk for treatment-related complications. Translating the results of clinical trials into improved outcomes for these individuals requires an understanding of how best to manage the adverse effects of these agents. Which patients benefit most and what to watch for? When to stop therapy? Using illustrative case presentations, this review details the unique toxicities associated with each of the approved mutation-specific and nonspecific targeted drugs for AML. The goal of this review is to help clinicians determine the risk:benefit ratio in decision making for individual patients with AML.
Collapse
Affiliation(s)
| | - Jeffrey Baron
- Department of Pharmacy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
537
|
Jeon JY, Buelow DR, Garrison DA, Niu M, Eisenmann ED, Huang KM, Zavorka Thomas ME, Weber RH, Whatcott CJ, Warner SL, Orwick SJ, Carmichael B, Stahl E, Brinton LT, Lapalombella R, Blachly JS, Hertlein E, Byrd JC, Bhatnagar B, Baker SD. TP-0903 is active in models of drug-resistant acute myeloid leukemia. JCI Insight 2020; 5:140169. [PMID: 33268594 PMCID: PMC7714403 DOI: 10.1172/jci.insight.140169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Effective treatment for AML is challenging due to the presence of clonal heterogeneity and the evolution of polyclonal drug resistance. Here, we report that TP-0903 has potent activity against protein kinases related to STAT, AKT, and ERK signaling, as well as cell cycle regulators in biochemical and cellular assays. In vitro and in vivo, TP-0903 was active in multiple models of drug-resistant FLT3 mutant AML, including those involving the F691L gatekeeper mutation and bone marrow microenvironment–mediated factors. Furthermore, TP-0903 demonstrated preclinical activity in AML models with FLT3-ITD and common co-occurring mutations in IDH2 and NRAS genes. We also showed that TP-0903 had ex vivo activity in primary AML cells with recurrent mutations including MLL-PTD, ASXL1, SRSF2, and WT1, which are associated with poor prognosis or promote clinical resistance to AML-directed therapies. Our preclinical studies demonstrate that TP-0903 is a multikinase inhibitor with potent activity against multiple drug-resistant models of AML that will have an immediate clinical impact in a heterogeneous disease like AML. TP-0903, a multikinase inhibitor, demonstrates preclinical activity in models of drug-resistant AML, including those involving FLT3 mutations, bone marrow microenvironment-mediated factors and recurrent mutations.
Collapse
Affiliation(s)
- Jae Yoon Jeon
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | | | - Mingshan Niu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | - Robert H Weber
- Division of Pharmaceutics and Pharmacology, College of Pharmacy
| | | | | | | | | | - Emily Stahl
- Division of Hematology, Department of Internal Medicine, and
| | | | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - James S Blachly
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Erin Hertlein
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - John C Byrd
- Division of Pharmaceutics and Pharmacology, College of Pharmacy.,Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Bhavana Bhatnagar
- Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy.,Division of Hematology, Department of Internal Medicine, and.,Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, Ohio, USA
| |
Collapse
|
538
|
Synthesis and biological evaluation of diaryl urea derivatives as FLT3 inhibitors. Bioorg Med Chem Lett 2020; 30:127525. [PMID: 32898697 DOI: 10.1016/j.bmcl.2020.127525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
As a class III receptor tyrosine kinase (RTK), FMS-like tyrosine kinase 3 (FLT3) is always overexpressed in many cases of acute leukemia. This paper studies the structure-based synthesis and biological evaluation of diaryl urea derivatives as FLT3 inhibitors. Encouragingly, compounds 15b, 16b, 24a, and 24c showed excellent biological activities in a low nanomolar range. In particular, compound 16b demonstrated significant inhibitory potency against FLT3-ITD (IC50 = 5.60 nM) and better antiproliferative activity than quizartinib against MV4-11 cell line (IC50 = 0.176 nM). It is indicated that compound 16b for the treatment of acute myeloid leukemia could be very promising.
Collapse
|
539
|
Zhang Y, Zhao BD, Wang CC, Wang YG, Wang HF, Wang JH, Liu LX, Lou F, Cao SB, Hu XX, Huang AJ, Yang JM, Meng HT, Yu WJ, Tong HY, Wang JM, Jin J. A novel prognostic scoring model for newly diagnosed FLT3-ITD-positive acute myeloid leukemia. Am J Cancer Res 2020; 10:4527-4537. [PMID: 33415016 PMCID: PMC7783775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023] Open
Abstract
FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most common somatic mutations in acute myeloid leukemia (AML). However, the molecular structure characteristics and widely accepted prognostic factors for FLT3-ITD are still not well described. This study aimed to retrospectively examine 81 patients with FLT3-ITD-positive AML diagnosed and treated at the First Affiliated Hospital of Zhejiang University from December 2013 to March 2018 using the next-generation sequencing 185-gene platform. High variant allele frequency (VAF) [> 0.48, P = 0.0089 for overall survival (OS), P = 0.13 for relapse-free survival (RFS)], multiple ITDs (> 1 ITDs, P = 0.011 for OS, P = 0.033 for RFS) and longer insertion length (> 69 bp, P = 0.14 for OS, P = 0.0078 for RFS) predicted poor survival. The study further proposed an easily applicable scoring model for OS using the Least Absolute Shrinkage and Selector Operation (LASSO) Cox regression model. Also, an independent cohort of 30 patients was used for external model validation. The mode was expressed as follows: 0.659 × FLT3-ITD VAF + 0.375 × FLT3-ITD number + 0.807 × Age + 0.688 × DNMT3A + 1.939 × U2AF1 (FLT3-ITD VAF > 0.48 scored 1; FLT3-ITD number scored 1 if carried 1 ITD, 2 if carried ≥ 2 ITDs; age > 44 years scored 1, the presence of DNMT3A or U2AF1 scored 1; 0 for other conditions). It categorized patients into low-risk (L-R, score < 1, n = 20) and high-risk (H-R, score ≥ 1, n = 61) groups based on the risk score with a significant difference in survival (3-year OS, P < 0.0001; 3-year RFS, P = 0.0005). A prognostic nomogram that integrated these five factors was developed with a concordance index calculation [OS: 0.68, 95% CI (0.64-0.72)].
Collapse
Affiliation(s)
- Yi Zhang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang UniversityHangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and TreatmentHangzhou, Zhejiang, China
| | - Bi-De Zhao
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | | | - Yun-Gui Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang UniversityHangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and TreatmentHangzhou, Zhejiang, China
| | - Hua-Feng Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang UniversityHangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and TreatmentHangzhou, Zhejiang, China
| | - Jing-Han Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang UniversityHangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and TreatmentHangzhou, Zhejiang, China
| | - Li-Xia Liu
- Acornmed Biotechnology Co., Ltd.Beijing, China
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd.Beijing, China
| | - Shan-Bo Cao
- Acornmed Biotechnology Co., Ltd.Beijing, China
| | - Xiao-Xia Hu
- Department of Hematology, Institute of Hematology, Changhai HospitalShanghai, China
| | - Ai-Jie Huang
- Department of Hematology, Institute of Hematology, Changhai HospitalShanghai, China
| | - Jian-Min Yang
- Department of Hematology, Institute of Hematology, Changhai HospitalShanghai, China
| | - Hai-Tao Meng
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang UniversityHangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and TreatmentHangzhou, Zhejiang, China
| | - Wen-Juan Yu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang UniversityHangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and TreatmentHangzhou, Zhejiang, China
| | - Hong-Yan Tong
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang UniversityHangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and TreatmentHangzhou, Zhejiang, China
| | - Jian-Min Wang
- Department of Hematology, Institute of Hematology, Changhai HospitalShanghai, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang UniversityHangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and TreatmentHangzhou, Zhejiang, China
| |
Collapse
|
540
|
Quaglieri A, Flensburg C, Speed TP, Majewski IJ. Finding a suitable library size to call variants in RNA-Seq. BMC Bioinformatics 2020; 21:553. [PMID: 33261552 PMCID: PMC7708150 DOI: 10.1186/s12859-020-03860-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA sequencing allows the study of both gene expression changes and transcribed mutations, providing a highly effective way to gain insight into cancer biology. When planning the sequencing of a large cohort of samples, library size is a fundamental factor affecting both the overall cost and the quality of the results. Here we specifically address how overall library size influences the detection of somatic mutations in RNA-seq data in two acute myeloid leukaemia datasets. RESULTS : We simulated shallower sequencing depths by downsampling 45 acute myeloid leukaemia samples (100 bp PE) that are part of the Leucegene project, which were originally sequenced at high depth. We compared the sensitivity of six methods of recovering validated mutations on the same samples. The methods compared are a combination of three popular callers (MuTect, VarScan, and VarDict) and two filtering strategies. We observed an incremental loss in sensitivity when simulating libraries of 80M, 50M, 40M, 30M and 20M fragments, with the largest loss detected with less than 30M fragments (below 90%, average loss of 7%). The sensitivity in recovering insertions and deletions varied markedly between callers, with VarDict showing the highest sensitivity (60%). Single nucleotide variant sensitivity is relatively consistent across methods, apart from MuTect, whose default filters need adjustment when using RNA-Seq. We also analysed 136 RNA-Seq samples from the TCGA-LAML cohort (50 bp PE) and assessed the change in sensitivity between the initial libraries (average 59M fragments) and after downsampling to 40M fragments. When considering single nucleotide variants in recurrently mutated myeloid genes we found a comparable performance, with a 6% average loss in sensitivity using 40M fragments. CONCLUSIONS Between 30M and 40M 100 bp PE reads are needed to recover 90-95% of the initial variants on recurrently mutated myeloid genes. To extend this result to another cancer type, an exploration of the characteristics of its mutations and gene expression patterns is suggested.
Collapse
Affiliation(s)
- Anna Quaglieri
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Grattan St, Melbourne, 3010, Australia.
| | - Christoffer Flensburg
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia
| | - Terence P Speed
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia.,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Grattan St, Melbourne, 3010, Australia.,Department of Mathematics and Statistics, The University of Melbourne, 813 Swanston Street, Melbourne, 3010, Australia
| | - Ian J Majewski
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Grattan St, Melbourne, 3010, Australia.
| |
Collapse
|
541
|
Gebru MT, Wang HG. Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia. J Hematol Oncol 2020; 13:155. [PMID: 33213500 PMCID: PMC7678146 DOI: 10.1186/s13045-020-00992-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by several gene mutations and cytogenetic abnormalities affecting differentiation and proliferation of myeloid lineage cells. FLT3 is a receptor tyrosine kinase commonly overexpressed or mutated, and its mutations are associated with poor prognosis in AML. Although aggressive chemotherapy often followed by hematopoietic stem cell transplant is the current standard of care, the recent approval of FLT3-targeted drugs is revolutionizing AML treatment that had remained unchanged since the 1970s. However, despite the dramatic clinical response to targeted agents, such as FLT3 inhibitors, remission is almost invariably short-lived and ensued by relapse and drug resistance. Hence, there is an urgent need to understand the molecular mechanisms driving drug resistance in order to prevent relapse. In this review, we discuss FLT3 as a target and highlight current understanding of FLT3 inhibitor resistance.
Collapse
Affiliation(s)
- Melat T Gebru
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
542
|
Yang Y, Zhong F, Huang X, Zhang N, Du J, Long Z, Zheng B, Lin W, Liu W, Ma W. High expression of HOXA5 is associated with poor prognosis in acute myeloid leukemia. Curr Probl Cancer 2020; 45:100673. [PMID: 33223227 DOI: 10.1016/j.currproblcancer.2020.100673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND HOXA5 is considered as an oncogene in many tumors. This study in- vestigated the HOXA5 expression in Chinese acute myeloid leukemia (AML) patients and evaluated the predictive significance of HOXA5 with a single-center retrospective study. METHODS We investigated the expression pattern and prognostic value of HOXA5 in patients with AML through by using a series of databases and various datasets, including the ONCOMINE, TCGA, and STRING datasets. The bone marrow samples of 53 newly diagnosed AML patients (non-M3 subtype) and 19 benign individuals were collected in our center. HOXA5 mRNA expression levels were detected by real-time qPCR, HOXA5 protein expression levels were detected by Western Blot. Clinical data was obtained from inpatient medical records. RESULTS Two microarrays in Oncomine showed that the expression level of HOXA5 was significantly upregulated in AML. Our data revealed that AML patients had higher HOXA5 mRNA and protein expression levels than the controls (P < 0.001). The blast percentage in bone marrow of HOXA5 high-expression group was higher that of HOXA5 low-expression group (P < 0.05). Higher expression level of HOXA5 revealed a worse OS in AML (P < 0.05). CONCLUSION Our findings suggested that HOXA5 might have the potential ability to act as a diagnostic biomarker and potential therapeutic target for AML.
Collapse
Affiliation(s)
- You Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Fangfang Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Xiaoming Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Na Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jingjing Du
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ze Long
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Bowen Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wenjun Liu
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China.
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
543
|
Kim RS, Yaghy A, Wilde LR, Shields CL. An Iridociliochoroidal Myeloid Sarcoma Associated With Relapsed Acute Myeloid Leukemia With FLT3-ITD Mutation, Treated With Gilteritinib, an FLT3 Inhibitor. JAMA Ophthalmol 2020; 138:418-419. [PMID: 32163103 DOI: 10.1001/jamaophthalmol.2020.0110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ryan S Kim
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Antonio Yaghy
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lindsay R Wilde
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
544
|
Discovery of Oxazol-2-amine Derivatives as Potent Novel FLT3 Inhibitors. Molecules 2020; 25:molecules25215154. [PMID: 33167505 PMCID: PMC7663913 DOI: 10.3390/molecules25215154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3) is the most common mutation in patients with acute myeloid leukemia (AML). FLT3-ITD+ induces constitutive activation of FLT3, causing an abnormally rapid proliferation of cancer cells. In this study, we identified novel FLT3 inhibitors and investigated 5-(4-fluorophenyl)-N-phenyloxazol-2-amine (compound 7; 7c) as candidates for the treatment of AML. The results showed that 7c inhibited the activities of FLT3 and mutated FLT3 in a cell-free kinase assay and Molm-13 and MV4-11 cells, as well as the proliferation of FLT3-ITD+ AML cells, increasing apoptosis. The anti-leukemic activity of 7c was confirmed by in vivo tumor growth inhibition in MV4-11 xenograft mice. Besides, 7c suppressed the expression of DNA damage repair genes. Combination treatment with 7c and olaparib (a poly (ADP-ribose) polymerase [PARP] inhibitor) synergistically inhibited cell proliferation in Molm-13 and MV4-11 cells. Our findings demonstrated that 7c is a therapeutic candidate targeting FLT3 for AML treatment and suggested that combination treatment with 7c and a PARP inhibitor may be an effective therapy regimen for FLT3-mutated AML.
Collapse
|
545
|
Abstract
Acute myeloid leukemia (AML) is a clinically, morphologically, and genetically heterogeneous disorder. Like many malignancies, the genomic landscape of pediatric AML has been mapped recently through sequencing of large cohorts of patients. Much has been learned about the biology of AML through studies of specific recurrent genetic lesions. Further, genetic lesions have been linked to specific clinical features, response to therapy, and outcome, leading to improvements in risk stratification. Lastly, targeted therapeutic approaches have been developed for the treatment of specific genetic lesions, some of which are already having a positive impact on outcomes. While the advances made based on the discoveries of sequencing studies are significant, much work is left. The biologic, clinical, and prognostic impact of a number of genetic lesions, including several seemingly unique to pediatric patients, remains undefined. While targeted approaches are being explored, for most, the efficacy and tolerability when incorporated into standard therapy is yet to be determined. Furthermore, the challenge of how to study small subpopulations with rare genetic lesions in an already rare disease will have to be considered. In all, while questions and challenges remain, precisely defining the genomic landscape of AML, holds great promise for ultimately leading to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Shannon E Conneely
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA
| | - Rachel E Rau
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA.
| |
Collapse
|
546
|
Tyrosine kinase inhibitors for acute myeloid leukemia: A step toward disease control? Blood Rev 2020; 44:100675. [DOI: 10.1016/j.blre.2020.100675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
|
547
|
Estey EH. Acute myeloid leukemia: 2021 update on risk-stratification and management. Am J Hematol 2020; 95:1368-1398. [PMID: 32833263 DOI: 10.1002/ajh.25975] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022]
Abstract
Management of AML involves choosing between purely palliative care, standard therapy and investigational therapy ("clinical trial"). Even most older patients likely benefit from treatment. Based on randomized trials CPX 351, midostaurin, gemtuzumab ozogamicin, and venetoclax, the latter three when combined with other drugs, should now be considered standard therapy. Knowledge of the likely results with these therapies is essential in deciding whether to recommend them or participate in a clinical trial, possibly including these drugs. Hence here, in the context of established prognostic algorithms, we review results with the recently- approved drugs compared with their predecessors and describe other potential options. We discuss benefit/risk ratios underlying the decision to offer allogeneic transplant and emphasize the importance of measurable residual disease. When first seeing a newly-diagnosed patient physicians must decide whether to offer conventional treatment or investigational therapy, the latter preferably in the context of a clinical trial. As noted below, such trials have led to changes in what today is considered "conventional" therapy compared to even 1-2 years ago. In older patients decision making has often included inquiring whether specific anti-AML therapy should be offered at all, rather than focusing on a purely palliative approach emphasizing transfusion and antibiotic support, with involvement of a palliative care specialist.
Collapse
Affiliation(s)
- Elihu H. Estey
- Division of Hematology University of Washington Seattle Washington
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle Washington
| |
Collapse
|
548
|
Banskota SU, Khanal N, Bhatt VR. A precision medicine approach to management of acute myeloid leukemia in older adults. Curr Opin Oncol 2020; 32:650-655. [PMID: 32826488 PMCID: PMC7737662 DOI: 10.1097/cco.0000000000000673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Therapy selection in older adults with acute myeloid leukemia (AML) can be challenging because of a higher incidence of high-risk cytogenetic and molecular features conferring chemoresistance and poor functional status leading to increased treatment-related toxicities. The purpose of this review is to highlight the recent advances in precision medicine in AML that have shown promise to improve outcomes of older adults. RECENT FINDINGS The utilization of next generation sequencing to identify and target actionable mutations can influence therapy selection in one-third of patients and can result in higher response rates as well as survival compared with those who do not receive targeted therapy. Oral targeted agents are available for AML with IDH 1, IDH2, or FLT3 mutations. Low-intensity venetoclax-based regimens have shown high rates of responses in AML, particularly among those with NPM1 and IDH2 mutations; responses are often durable and associated with minimal residual disease (MRD) negativity. Multiple studies have demonstrated the prognostic significance of flow cytometric MRD, with potential implications for subsequent therapy. SUMMARY Novel approaches for AML risk-stratification, MRD assessment, and a precision medicine approach offer significant promise to improve survival and quality of life of older adults.
Collapse
Affiliation(s)
| | - Nabin Khanal
- Franciscan Physician Network Oncology & Hematology Specialists, St Francis hospital, Indianapolis, IN
| | - Vijaya Raj Bhatt
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
549
|
El-Masry OS, Al-Amri AM, Alqatari A, Alsamman K. RNA sequencing-based identification of potential targets in acute myeloid leukemia: A case report. Biomed Rep 2020; 13:42. [PMID: 32934815 PMCID: PMC7469581 DOI: 10.3892/br.2020.1349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) refers to heterogenous types of blood cancer which possess a complicated genomic landscape, and multiple novel mutational alterations are frequently being reported. Herein, a case report of a 37-year old AML patient is presented, who was diagnosed following laboratory investigation after admission. The patient had thrombocytopenia, and three consecutive blast counts of 40, 30 and 41%, respectively. A blood sample was collected for whole-genome RNA sequencing to understand the transcriptomic profile at the time of diagnosis and compared with a matched female control. Gene expression was quantified using the RSEM software package. Bioinformatics analysis revealed a significant number of differentially expressed genes in the patient, suggesting a marked change in the transcriptomic landscape in this patient. By mining the bioinformatics data and screening the highly expressed genes with ≥80% probability of gene expression, four novel genes were highlighted that may serve as potential future targets in AML patients; Rh associated glycoprotein, succinate receptor 1, transmembrane-4 L-six family member-1 and ADGRA3, although further validation of their value is required.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Kingdom of Saudi Arabia
| | - Ali M. Al-Amri
- Department of Internal Medicine/Oncology, College of Medicine, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of The University, Al-Khobar, Eastern Province 34445, Kingdom of Saudi Arabia
| | - Ahlam Alqatari
- Hematology Laboratory/Hematopathology, College of Medicine, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of The University, Al-Khobar, Eastern Province 34445, Kingdom of Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Kingdom of Saudi Arabia
| |
Collapse
|
550
|
Daver N, Wei AH, Pollyea DA, Fathi AT, Vyas P, DiNardo CD. New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer J 2020; 10:107. [PMID: 33127875 PMCID: PMC7599225 DOI: 10.1038/s41408-020-00376-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Conventional therapy for acute myeloid leukemia is composed of remission induction with cytarabine- and anthracycline-containing regimens, followed by consolidation therapy, including allogeneic stem cell transplantation, to prolong remission. In recent years, there has been a significant shift toward the use of novel and effective, target-directed therapies, including inhibitors of mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase (IDH), the B-cell lymphoma 2 inhibitor venetoclax, and the hedgehog pathway inhibitor glasdegib. In older patients the combination of a hypomethylating agent or low-dose cytarabine, venetoclax achieved composite response rates that approximate those seen with standard induction regimens in similar populations, but with potentially less toxicity and early mortality. Preclinical data suggest synergy between venetoclax and FLT3- and IDH-targeted therapies, and doublets of venetoclax with inhibitors targeting these mutations have shown promising clinical activity in early stage trials. Triplet regimens involving the hypomethylating agent and venetoclax with FLT3 or IDH1/2 inhibitor, the TP53-modulating agent APR-246 and magrolimab, myeloid cell leukemia-1 inhibitors, or immune therapies such as CD123 antibody-drug conjugates and programmed cell death protein 1 inhibitors are currently being evaluated. It is hoped that such triplets, when applied in appropriate patient subsets, will further enhance remission rates, and more importantly remission durations and survival.
Collapse
Affiliation(s)
- Naval Daver
- MD Anderson Cancer Center, Houston, TX, USA.
| | - Andrew H Wei
- The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Daniel A Pollyea
- University of Colorado Department of Medicine, Division of Hematology, Aurora, CO, USA
| | | | - Paresh Vyas
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford Comprehensive BRC, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | |
Collapse
|