501
|
Shoukier M, Kadia T, Konopleva M, Alotaibi AS, Alfayez M, Loghavi S, Patel KP, Kanagal-Shamanna R, Cortes J, Samra B, Jabbour E, Garcia-Manero G, Takahashi K, Pierce S, Short NJ, Yilmaz M, Sasaki K, Masarova L, Pemmaraju N, Borthakur G, Kantarjian HM, Ravandi F, DiNardo CD, Daver N. Clinical characteristics and outcomes in patients with acute myeloid leukemia with concurrent FLT3-ITD and IDH mutations. Cancer 2020; 127:381-390. [PMID: 33119202 DOI: 10.1002/cncr.33293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH1 and IDH2) mutations commonly co-occur with FMS-like tyrosine kinase 3 (FLT3) mutations in patients with acute myeloid leukemia (AML). METHODS The authors reviewed cases of patients with FLT3-internal tandem duplication (FLT3-ITD)-mutated AML with concurrent IDH mutations diagnosed between January 2011 and December 2018. RESULTS A total of 91 patients with FLT3-ITD and IDH1 or IDH2 "double-mutated" AML were identified; 36 patients had concurrent FLT3-ITD/IDH1 mutations (18 in the frontline and 18 in the recurrent and/or refractory [R/R] setting) and 55 patients had concurrent FLT3-ITD/IDH2 mutations (37 in the frontline and 18 in the R/R setting). FLT3 and/or IDH inhibitors (FLT3Is and/or IDHIs) were given as a single agent or in combination with cytotoxic chemotherapy (CCT) or low-intensity therapy (LIT). Rates of complete remission (CR) plus CR with incomplete count recovery (CRi) with the use of CCT and FLT3Is were 100% and 64%, respectively, in patients in the frontline and R/R settings. CCT with IDHIs was given in 2 frontline patients and both achieved a CR. LIT with FLT3Is in the frontline and R/R settings demonstrated CR and CRi rates of 67% and 28%, respectively. Single-agent FLT3Is and IDHIs demonstrated limited activity with a CR and/or CRi rate of 14% in patients with disease in the R/R setting. CONCLUSIONS The combination of FLT3I-based therapy with CCT or LIT appeared to be effective in both the frontline and R/R settings among patients with FLT3-ITD/IDH co-mutated disease. Fewer patients with double-mutated disease received CCT or LIT with IDH1/2 inhibitor in the frontline setting; however, high response rates also were noted with this approach. LAY SUMMARY The prognostic influence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and isocitrate dehydrogenase (IDH) co-mutation status on outcomes in patients with acute myeloid leukemia receiving an FLT3 inhibitor, non-FLT3/IDH inhibitor-based regimens, or an IDH inhibitor is unclear. This is an important clinical question because multiple targeted therapies for FLT3 and IDH1/2 mutations have become available. The results of the current study demonstrated that a combination of a FLT3 inhibitor with cytotoxic chemotherapy or low-intensity therapy appears to be an effective approach in patients with FLT3-ITD/IDH co-mutated disease in both the frontline and recurrent and/or refractory settings. Fewer dual-mutated patients received cytotoxic chemotherapy or low-intensity therapy with an IDH1/2 inhibitor in the frontline setting; however, excellent responses also were observed with this approach.
Collapse
Affiliation(s)
- Mahran Shoukier
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ahmad S Alotaibi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mansour Alfayez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge Cortes
- Georgia Cancer Center at Augusta University, Augusta, Georgia
| | - Bachar Samra
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
502
|
Phoompoung P, Henry B, Daher-Reyes G, Sibai H, Husain S. Invasive Mold Infections in FLT3-Mutated Acute Myeloid Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 21:e477-e482. [PMID: 33678591 DOI: 10.1016/j.clml.2020.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The incidence and risk factors for invasive mold infections (IMI) in acute myeloid leukemia (AML) patients carrying FLT3 mutations have not been addressed. PATIENTS AND METHODS This retrospective cohort included FLT3-mutated AML patients (2008-2018). Primary outcome was IMI incidence within 6 months after first induction or salvage therapy. RESULTS We included 108 patients receiving fluconazole or micafungin prophylaxis. IMI incidence after induction and salvage therapy was 4.8% and 14.8%, respectively, and did not differ between patients receiving 3+7 regimen or 3+7 plus midostaurin (4.3% vs 4.5%). In a bivariate analysis, age (odds ratio, 1.11; P = .027) and FLT3 ITD mutation (odds ratio, 0.05; P = .023) were independently associated with IMI after induction chemotherapy. Gilteritinib was more frequently prescribed in patients with relapsed/refractory disease who developed IMI (50% vs 27.3%, P = .563). CONCLUSION FLT3 ITD mutation may be a preventive factor for IMI. Neither midostaurin nor salvage gilteritinib significantly increased the risk of IMI in this population.
Collapse
Affiliation(s)
- Pakpoom Phoompoung
- Transplant Infectious Diseases, Ajmera Transplant Centre; Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Benoît Henry
- Transplant Infectious Diseases, Ajmera Transplant Centre
| | | | - Hassan Sibai
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Ajmera Transplant Centre.
| |
Collapse
|
503
|
Zhou Z, Mo S, Gu R, Dai W, Zou X, Han L, Zhang L, Wang R, Cai G. Hematopoietic Gene Expression Regulation Through m 6A Methylation Predicts Prognosis in Stage III Colorectal Cancer. Front Oncol 2020; 10:572708. [PMID: 33102231 PMCID: PMC7556240 DOI: 10.3389/fonc.2020.572708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
Background Methylation of N6 adenosine (m6A) plays important regulatory roles in diverse biological processes. The purpose of this research was to explore the potential mechanism of m6A modification level on the clinical outcome of stage III colorectal cancer (CRC). Methods Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were adopted to reveal the signal pathway which was most likely affected by m6A methylation. The linear models for microarray data (LIMMA) method and the least absolute shrink-age and selection operator (LASSO) Cox regression model were used to identify the signature. The signature can sensitively separate the patients into high and low risk indicating the relapse-free survival (RFS) time based on time-dependent receiver operating characteristic (ROC) analysis. Then, the multi-gene signature was validated in GSE14333 and the Cancer Genome Atlas (TCGA) cohort. The number of the samples in GSE14333 and TCGA cohort are 63 and 150. Finally, two nomograms were set up and validated to predict prognosis of patients with stage III CRC. Results The hematopoietic cell lineage (HCL) signaling pathway was disclosed through GSEA and GSVA. Seven HCL-related genes were determined in the LASSO model to construct signature, with AUC 0.663, 0.708, and 0.703 at 1-, 3-, and 5-year RFS, respectively. Independent datasets analysis and stratification analysis indicated that the HCL-related signature was reliable in distinguishing high- and low-risk stage III CRC patients. Two nomograms incorporating the signature and pathological N stage were set up, which yielded good discrimination and calibration in the predictions of prognosis for stage III CRC patients. Conclusions A novel HCL-related signature was developed as a predictive model for survival rate of stage III CRC patients. Nomograms based on the signature were advantageous to facilitate personalized counseling and treatment in stage III CRC.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaobo Mo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruiqi Gu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinhui Zou
- School of Public Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyu Han
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Long Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
504
|
Malik HS, Bilal A, Ullah R, Iqbal M, Khan S, Ahmed I, Krohn K, Saleem RSZ, Hussain H, Faisal A. Natural and Semisynthetic Chalcones as Dual FLT3 and Microtubule Polymerization Inhibitors. JOURNAL OF NATURAL PRODUCTS 2020; 83:3111-3121. [PMID: 32975953 DOI: 10.1021/acs.jnatprod.0c00699] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Activating mutations in FLT3 receptor tyrosine kinase are found in a third of acute myeloid leukemia (AML) patients and are associated with disease relapse and a poor prognosis. The majority of these mutations are internal tandem duplications (ITDs) in the juxtamembrane domain of FLT3, which have been validated as a therapeutic target. The clinical success of selective inhibitors targeting oncogenic FLT3, however, has been limited due to the acquisition of drug resistance. Herein the identification of a dual FLT3/microtubule polymerization inhibitor, chalcone 4 (2'-allyloxy-4,4'-dimethoxychalcone), is reported through screening of 15 related chalcones for differential antiproliferative activity in leukemia cell lines dependent on FLT3-ITD (MV-4-11) or BCR-ABL (K562) oncogenes and by subsequent screening for mitotic inducers in the HCT116 cell line. Three natural chalcones (1-3) were found to be differentially more potent toward the MV-4-11 (FLT3-ITD) cell line compared to the K562 (BCR-ABL) cell line. Notably, the new semisynthetic chalcone 4, which is a 2'-O-allyl analogue of the natural chalcone 3, was found to be more potent toward the FLT3-ITD+ cell line and inhibited FLT3 signaling in FLT3-dependent cells. An in vitro kinase assay confirmed that chalcone 4 directly inhibited FLT3. Moreover, chalcone 4 induced mitotic arrest in these cells and inhibited tubulin polymerization in both cellular and biochemical assays. Treatment of MV-4-11 cells with this inhibitor for 24 and 48 h resulted in apoptotic cell death. Finally, chalcone 4 was able to overcome TKD mutation-mediated acquired resistance to FLT3 inhibitors in a MOLM-13 cell line expressing FLT3-ITD with the D835Y mutation. Chalcone 4 is, therefore, a promising lead for the discovery of dual-target FLT3 inhibitors.
Collapse
Affiliation(s)
- Haleema Sadia Malik
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aishah Bilal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Maheen Iqbal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sardraz Khan
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ishtiaq Ahmed
- Department of Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Karsten Krohn
- Department of Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hidayat Hussain
- Department of Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
505
|
Martin M, Mayer IA, Walenkamp AME, Lapa C, Andreeff M, Bobirca A. At the Bedside: Profiling and treating patients with CXCR4-expressing cancers. J Leukoc Biol 2020; 109:953-967. [PMID: 33089889 DOI: 10.1002/jlb.5bt1219-714r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
The chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) and its ligand, C-X-C motif chemokine 12, are key mediators of hematopoietic cell trafficking. Their roles in the proliferation and metastasis of tumor cells, induction of angiogenesis, and invasive tumor growth have been recognized for over 2 decades. CXCR4 is a promising target for imaging and therapy of both hematologic and solid tumors. To date, Sanofi Genzyme's plerixafor is the only marketed CXCR4 inhibitor (i.e., Food and Drug Administration-approved in 2008 for stem cell mobilization). However, several new CXCR4 inhibitors are now being investigated as potential therapies for a variety of fluid and solid tumors. These small molecules, peptides, and Abs include balixafortide (POL6326, Polyphor), mavorixafor (X4P-001, X4 Pharmaceuticals), motixafortide (BL-8040, BioLineRx), LY2510924 (Eli Lilly), and ulocuplumab (Bristol-Myers Squibb). Early clinical evidence has been encouraging, for example, with motixafortide and balixafortide, and the CXCR4 inhibitors appear to be generally safe and well tolerated. Molecular imaging is increasingly being used for effective patient selection before, or early during CXCR4 inhibitor treatment. The use of radiolabeled theranostics that combine diagnostics and therapeutics is an additional intriguing approach. The current status and future directions for radioimaging and treating patients with CXCR4-expressing hematologic and solid malignancies are reviewed. See related review - At the Bench: Pre-Clinical Evidence for Multiple Functions of CXCR4 in Cancer. J. Leukoc. Biol. xx: xx-xx; 2020.
Collapse
Affiliation(s)
- Miguel Martin
- Oncology Department, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | - Ingrid A Mayer
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annemiek M E Walenkamp
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas, Maryland Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
506
|
Advances in Azorella glabra Wedd. Extract Research: In Vitro Antioxidant Activity, Antiproliferative Effects on Acute Myeloid Leukemia Cells and Bioactive Compound Characterization. Molecules 2020; 25:molecules25214890. [PMID: 33105817 PMCID: PMC7660062 DOI: 10.3390/molecules25214890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/25/2022] Open
Abstract
Azorella glabra Wedd. (AG) is traditionally used to treat gonorrhea or kidney’s problems. The antioxidant, antidiabetic, anticholinesterase and in vitro antitumor activities of AG extracts were recently reported. The aim of this work was to investigate anti-leukemic properties of AG chloroform fraction (AG CHCl3) and of its ten sub-fractions (I-X) and to identify their possible bioactive compounds. We determined their in vitro antioxidant activity using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), nitric oxide (NO) and superoxide anion (SO) assays, and their phytochemical profile by spectrophotometric and LC-MS/MS techniques. I-X action on two acute myeloid leukemia (AML) cell lines viability, apoptosis and cell cycle were evaluated by MTS, western blotting and cytofluorimetric assays. Different polyphenol, flavonoid and terpenoid amount, and antioxidant activity were found among all samples. Most of I-X induced a dose/time dependent reduction of cell viability higher than parent extract. IV and VI sub-fractions showed highest cytotoxic activity and, of note, a negligible reduction of healthy cell viability. They activated intrinsic apoptotic pathway, induced a G0/G1 block in leukemic cells and, interestingly, led to apoptosis in patient AML cells. These activities could be due to mulinic acid or azorellane terpenoids and their derivatives, tentatively identified in both IV and VI. In conclusion, our data suggest AG plant as a source of potential anti-AML agents.
Collapse
|
507
|
Peterlin P, Chevallier P, Knapper S, Collin M. FLT3 ligand in acute myeloid leukemia: a simple test with deep implications. Leuk Lymphoma 2020; 62:264-270. [PMID: 33078658 DOI: 10.1080/10428194.2020.1834091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In contrast to Fms-like tyrosine kinase 3 (FLT3), the influence of FLT3 ligand (FLT3L) on acute myeloid leukemia (AML) biology and disease prognosis has been poorly described. Here we provide an overview of the role played by FLT3L in AML. While being a cytokine implicated in the regulation of hematopoiesis, both in normal situation and after intensive chemotherapy, FLT3L has also a role in enhancing proliferation, inhibiting apoptosis and conferring resistance to FLT3 inhibitors in AML. Moreover, recent independent data show how its measurement may be helpful in the disease management. Indeed, FLT3L could provide a low cost, rapid and noninvasive assessment of chemosensitivity and blast clearance that has robust prognostic significance for patients with AML.
Collapse
Affiliation(s)
- Pierre Peterlin
- Hematology Clinic, CHU de Nantes, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Patrice Chevallier
- Hematology Clinic, CHU de Nantes, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Steven Knapper
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthew Collin
- Newcastle University Translational and Clinical Research Institute and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
508
|
Alotaibi AS, Yilmaz M, Loghavi S, DiNardo C, Borthakur G, Kadia TM, Thakral B, Pemmaraju N, Issa GC, Konopleva M, Short NJ, Patel K, Tang G, Ravandi F, Daver N. Emergence of BCR- ABL1 Fusion in AML Post-FLT3 Inhibitor-Based Therapy: A Potentially Targetable Mechanism of Resistance - A Case Series. Front Oncol 2020; 10:588876. [PMID: 33194747 PMCID: PMC7606916 DOI: 10.3389/fonc.2020.588876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
Despite the promising result with FLT3 inhibitors in AML, the emergence of resistance poses a significant challenge, leading to a shorter response duration and inferior survival. This is frequently driven by on-target or parallel prosurvival mutations. The emergence of BCR–ABL1 as a mechanism of possible clonal evolution in relapsed AML has rarely been reported. Here we report our experience with three patients who had emergent BCR–ABL1 fusion at relapse after FLT3 inhibitors–based therapies. The first patient was refractory to multiple lines of therapies, including FLT3 inhibitors–based therapy. Patients 2 and 3 showed some response to combined FLT3-inhibitor and BCR–ABL targeted therapy (gilteritinib and ponatinib). The availability of effective targeted therapies for BCR–ABL1 makes this an important aberration to proactively identify and possibly target at relapse post–FLT3-inhibitor therapies.
Collapse
Affiliation(s)
- Ahmad S Alotaibi
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Musa Yilmaz
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Sanam Loghavi
- The Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Courtney DiNardo
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Gautam Borthakur
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Tapan M Kadia
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Beenu Thakral
- The Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Naveen Pemmaraju
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Ghayas C Issa
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Marina Konopleva
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Nicholas J Short
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Keyur Patel
- The Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Guilin Tang
- The Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Farhad Ravandi
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Naval Daver
- The Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
509
|
De Bellis E, Ottone T, Mercante L, Falconi G, Cugini E, Consalvo MI, Travaglini S, Paterno G, Piciocchi A, Rossi ELL, Gurnari C, Maurillo L, Buccisano F, Arcese W, Voso MT. Terminal deoxynucleotidyl transferase (TdT) expression is associated with FLT3-ITD mutations in Acute Myeloid Leukemia. Leuk Res 2020; 99:106462. [PMID: 33091616 DOI: 10.1016/j.leukres.2020.106462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
The terminal deoxynucleotidyl transferase (TdT) is a DNA polymerase expressed in acute myeloid leukemias (AMLs), where it may be involved in the generation of NPM1 and FLT3-ITD mutations. We studied the correlations between TdT expression and FLT3-ITD or NPM1 mutations in primary AML samples, and the impact on patients' survival. TdT expression was analyzed in 143 adult AML patients by flow cytometry as percentage of positivity and mean fluorescence intensity (MFI) on blasts. TdT was positive in 49 samples (34.2%), with a median of 48% TdT-positivity (range 7-98) and a median MFI of 2.70 (range 1.23-30.54). FLT3-ITD and NPM1 mutations were present in 24 (16.7%) and 34 (23.7%) cases, respectively. Median TdT expression on blasts was significantly higher in FLT3-ITD+, as compared with FLT3-ITD- AMLs (median 8% vs 0% respectively, p = 0.035). NPM1 mutational status, FLT3-ITD allelic ratio, karyotype, and ELN risk groups, did not correlate with TdT expression or MFI on blasts. TdT + patients had poorer survival as compared to TdT-, but this result was not confirmed by the multivariable analysis, where ELN risk stratification as well as age and type of treatment remained independent prognostic factors for OS. In summary, our results support the possible implication of TdT enzyme in the generation of FLT3-ITD mutations in AML.
Collapse
Affiliation(s)
- Eleonora De Bellis
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy; Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - Lisa Mercante
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Elisa Cugini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maria Irno Consalvo
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | | | | | | | - Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Luca Maurillo
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - William Arcese
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy; Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy.
| |
Collapse
|
510
|
Lu J, Wu X, Wang L, Li T, Sun L. Long noncoding RNA LINC00467 facilitates the progression of acute myeloid leukemia by targeting the miR-339/SKI pathway. Leuk Lymphoma 2020; 62:428-437. [PMID: 33054480 DOI: 10.1080/10428194.2020.1832667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A growing body of evidence indicates that long non-coding RNA (lncRNA) is involved in the development and progression of many diseases. It has been reported that lncRNA LINC00467 is disregulated in multiple tumors, while its role in acute myeloid leukemia (AML) is still unknown. Here, we find that LINC00467 expression is significantly increased in AML specimens and cell lines. Further investigations show that knockdown of LINC00467 inhibits the malignant phenotypes of AML cells. Consistently, LINC00467 knockdown slows AML progression in immunodeficient mice. Interestingly, microRNA-339 (miR-339) is upregulated and its target gene SKI, an oncogene, is downregulated in AML cells after LINC00467 knockdown. More importantly, inhibition of miR-339 can largely abolish the effect of LINC00467 knockdown on AML cells. Collectively, our data demonstrate that LINC00467 plays an important role in the pathogenesis of AML by targeting the miR-339/SKI pathway, which provides a new sight for the subsequent treatment of AML.
Collapse
Affiliation(s)
- Jun Lu
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| | - Xifeng Wu
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| | - Lijuan Wang
- Department of Hematology, Qingdao Binhai University Affiliated Hospital, Qingdao, China
| | - Tantan Li
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| | - Ling Sun
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| |
Collapse
|
511
|
Wang J, Xue SL, Li Z, Yu JQ, Wang C, Chu XL, Han R, Tao T, Wu TM, Wang BR, Wan CL, Qiu QC, Bao XB, Wu DP. [The prognostic value of cloned genetic mutations in patients with CBFβ-MYH11 fusion-positive acute myeloid leukemia receiving intensive consolidation therapy]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:853-857. [PMID: 33190444 PMCID: PMC7656080 DOI: 10.3760/cma.j.issn.0253-2727.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 12/19/2022]
Affiliation(s)
- J Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - S L Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - Z Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - J Q Yu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - C Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - X L Chu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - R Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - T Tao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - T M Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - B R Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - C L Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - Q C Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - X B Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| | - D P Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou 215006, China
| |
Collapse
|
512
|
Matsuo H, Yoshida K, Nakatani K, Harata Y, Higashitani M, Ito Y, Kamikubo Y, Shiozawa Y, Shiraishi Y, Chiba K, Tanaka H, Okada A, Nannya Y, Takeda J, Ueno H, Kiyokawa N, Tomizawa D, Taga T, Tawa A, Miyano S, Meggendorfer M, Haferlach C, Ogawa S, Adachi S. Fusion partner-specific mutation profiles and KRAS mutations as adverse prognostic factors in MLL-rearranged AML. Blood Adv 2020; 4:4623-4631. [PMID: 32991719 PMCID: PMC7556160 DOI: 10.1182/bloodadvances.2020002457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Mixed-lineage leukemia (MLL) gene rearrangements are among the most frequent chromosomal abnormalities in acute myeloid leukemia (AML). MLL fusion patterns are associated with the patient's prognosis; however, their relationship with driver mutations is unclear. We conducted sequence analyses of 338 genes in pediatric patients with MLL-rearranged (MLL-r) AML (n = 56; JPLSG AML-05 study) alongside data from the TARGET study's pediatric cohorts with MLL-r AML (n = 104), non-MLL-r AML (n = 581), and adult MLL-r AML (n = 81). KRAS mutations were most frequent in pediatric patients with high-risk MLL fusions (MLL-MLLLT10, MLL-MLLT4, and MLL-MLLT1). Pediatric patients with MLL-r AML (n = 160) and a KRAS mutation (KRAS-MT) had a significantly worse prognosis than those without a KRAS mutation (KRAS-WT) (5-year event-free survival [EFS]: 51.8% vs 18.3%, P < .0001; 5-year overall survival [OS]: 67.3% vs 44.3%, P = .003). The adverse prognostic impact of KRAS mutations was confirmed in adult MLL-r AML. KRAS mutations were associated with adverse prognoses in pediatric patients with both high-risk (MLLT10+MLLT4+MLLT1; n = 60) and intermediate-to-low-risk (MLLT3+ELL+others; n = 100) MLL fusions. The prognosis did not differ significantly between patients with non-MLL-r AML with KRAS-WT or KRAS-MT. Multivariate analysis showed the presence of a KRAS mutation to be an independent prognostic factor for EFS (hazard ratio [HR], 2.21; 95% confidence interval [CI], 1.35-3.59; P = .002) and OS (HR, 1.85; 95% CI, 1.01-3.31; P = .045) in MLL-r AML. The mutation is a distinct adverse prognostic factor in MLL-r AML, regardless of risk subgroup, and is potentially useful for accurate treatment stratification. This trial was registered at the UMIN (University Hospital Medical Information Network) Clinical Trials Registry (UMIN-CTR; http://www.umin.ac.jp/ctr/index.htm) as #UMIN000000511.
Collapse
Affiliation(s)
- Hidemasa Matsuo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kana Nakatani
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutarou Harata
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Moe Higashitani
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuri Ito
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiko Kamikubo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - June Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Akio Tawa
- Higashiosaka Aramoto Heiwa Clinic, Higashiosaka, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI ASHBi), Kyoto University, Kyoto, Japan; and
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
513
|
Bocsi GT, Kang J, Kennedy A, Singh L, Peditto S, Cardona DM. Developing Pathology Measures for the Quality Payment Program-Part I: A Quest for Meaningful Measures. Arch Pathol Lab Med 2020; 144:686-696. [PMID: 32459533 DOI: 10.5858/arpa.2019-0377-oa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Quality measures assess health care processes, outcomes, and patient perceptions associated with high-quality health care, which is commonly defined as care that is effective, safe, efficient, patient centered, equitable, and timely. Such measures are now being used in order to incentivize provision of high-quality health care. OBJECTIVE.— To meet the goals of the Quality Payment Program, quality measures will be developed from clinical practice guidelines and relevant, peer-reviewed research identifying evidence that the measure addresses 3 areas: a high-priority aspect of health care or a specific national health goal or priority; a meaningful focus, such as leading to a desired health outcome; and a gap or variation in care. DESIGN.— Within the College of American Pathologists (CAP), the Measures and Performance Assessment Subcommittee is tasked with developing useful performance measures. Participating practitioners can then select measures that are meaningful to their respective patients and practices, and reflect the quality of the services they provide. RESULTS.— The CAP developed 23 quality measures for reporting to the Centers for Medicare & Medicaid Services that reflect rigorous clinical evidence and address areas in need of performance improvement. CONCLUSIONS.— Because the implications of reporting on these pathology-specific metrics are significant, these measures and the process by which they were designed are presented here in peer-reviewed fashion. The measures described in this article (part 1) represent recent efforts by the CAP to develop meaningful measures that reflect rigorous clinical evidence and highlight areas with opportunities for performance improvement.
Collapse
Affiliation(s)
- Gregary T Bocsi
- From the Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora (Dr Bocsi); the Department of Pathology, NorthShore University Health System, Evanston, Illinois (Dr Kang); the Advocacy Division, College of American Pathologists, Washington, DC (Mss Kennedy, Singh, and Peditto); and the Department of Pathology, Duke University Medical Center, Durham, North Carolina (Dr Cardona). Ms Kennedy is currently with the American Society of Clinical Oncology, Arlington, Virginia
| | - Jason Kang
- From the Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora (Dr Bocsi); the Department of Pathology, NorthShore University Health System, Evanston, Illinois (Dr Kang); the Advocacy Division, College of American Pathologists, Washington, DC (Mss Kennedy, Singh, and Peditto); and the Department of Pathology, Duke University Medical Center, Durham, North Carolina (Dr Cardona). Ms Kennedy is currently with the American Society of Clinical Oncology, Arlington, Virginia
| | - Angela Kennedy
- From the Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora (Dr Bocsi); the Department of Pathology, NorthShore University Health System, Evanston, Illinois (Dr Kang); the Advocacy Division, College of American Pathologists, Washington, DC (Mss Kennedy, Singh, and Peditto); and the Department of Pathology, Duke University Medical Center, Durham, North Carolina (Dr Cardona). Ms Kennedy is currently with the American Society of Clinical Oncology, Arlington, Virginia
| | - Loveleen Singh
- From the Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora (Dr Bocsi); the Department of Pathology, NorthShore University Health System, Evanston, Illinois (Dr Kang); the Advocacy Division, College of American Pathologists, Washington, DC (Mss Kennedy, Singh, and Peditto); and the Department of Pathology, Duke University Medical Center, Durham, North Carolina (Dr Cardona). Ms Kennedy is currently with the American Society of Clinical Oncology, Arlington, Virginia
| | - Stephanie Peditto
- From the Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora (Dr Bocsi); the Department of Pathology, NorthShore University Health System, Evanston, Illinois (Dr Kang); the Advocacy Division, College of American Pathologists, Washington, DC (Mss Kennedy, Singh, and Peditto); and the Department of Pathology, Duke University Medical Center, Durham, North Carolina (Dr Cardona). Ms Kennedy is currently with the American Society of Clinical Oncology, Arlington, Virginia
| | - Diana M Cardona
- From the Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora (Dr Bocsi); the Department of Pathology, NorthShore University Health System, Evanston, Illinois (Dr Kang); the Advocacy Division, College of American Pathologists, Washington, DC (Mss Kennedy, Singh, and Peditto); and the Department of Pathology, Duke University Medical Center, Durham, North Carolina (Dr Cardona). Ms Kennedy is currently with the American Society of Clinical Oncology, Arlington, Virginia
| |
Collapse
|
514
|
Yilmaz M, Alfayez M, DiNardo CD, Borthakur G, Kadia TM, Konopleva MY, Loghavi S, Kanagal-Shamanna R, Patel KP, Jabbour EJ, Garcia-Manero G, Pemmaraju N, Pierce SA, Ghayas I, Short NJ, Montalban-Bravo G, Takahashi K, Assi R, Alotaibi AS, Ohanian M, Andreeff M, Cortes JE, Kantarjian HM, Ravandi F, Daver NG. Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol 2020; 13:132. [PMID: 33032648 PMCID: PMC7542942 DOI: 10.1186/s13045-020-00964-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Second-generation FLT3-inhibitors (FLT3i) demonstrated single-agent composite CR rates (CRc) of 45-55% in patients with relapsed/refractory (R/R) FLT3-mutated AML in phase II/III trials. However, > 85% of patients treated were prior FLT3i naïve. The response rates to sequential FLT3i exposure remain poorly defined. METHODS We retrospectively reviewed patients with FLT3-mutated AML between November 2006 and December 2019. RESULTS In frontline patients treated with a FLT3i (cohort 1), the CRc rates and median overall survival (OS) with the first (n = 56), second (n = 32), and third FLT3i-based (n = 8) therapy were 77%, 31%, and 25%, and 16.7 months, 6.0 months, and 1.4 months, respectively. In patients receiving a FLT3i-based therapy for the first time in a R/R AML setting (cohort 2), the CRc rates and median OS were 45%, 21%, and 10%, and 7.9 months, 4.0 months, and 4.1 months with the first (n = 183), second (n = 89), and third/fourth (n = 29) FLT3i-based therapy, respectively. In cohort 1, CRc rates with single-agent FLT3i (n = 21) versus FLT3i-based combinations (n = 19) in second/third sequential FLT3i exposures were 19% versus 42%, respectively. In cohort 2, the CRc rates with single-agent FLT3i (n = 82) versus FLT3i-based combinations (n = 101) in first FLT3i exposure were 34% versus 53%, respectively, and those with single-agent FLT3i (n = 63) versus FLT3i-based combinations (n = 55) in second/third/fourth sequential FLT3i exposures were 13% versus 25%, respectively. CONCLUSION CRc rates drop progressively with sequential exposure to FLT3i's in FLT3-mutated AML. In all settings, CRc rates were higher with FLT3i-based combinations compared with single-agent FLT3i therapy in similar FLT3i exposure settings.
Collapse
Affiliation(s)
- Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Mansour Alfayez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Sherry A Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Issa Ghayas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Guillermo Montalban-Bravo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Rita Assi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Ahmad S Alotaibi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Maro Ohanian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Jorge E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA.
| |
Collapse
|
515
|
High-fat diet intensifies MLL-AF9-induced acute myeloid leukemia through activation of the FLT3 signaling in mouse primitive hematopoietic cells. Sci Rep 2020; 10:16187. [PMID: 32999332 PMCID: PMC7528010 DOI: 10.1038/s41598-020-73020-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Using a MLL-AF9 knock-in mouse model, we discovered that consumption of a high-fat diet (HFD) accelerates the risk of developing acute myeloid leukemia (AML). This regimen increases the clusterization of FLT3 within lipid rafts on the cell surface of primitive hematopoietic cells, which overactivates this receptor as well as the downstream JAK/STAT signaling known to enhance the transformation of MLL-AF9 knock-in cells. Treatment of mice on a HFD with Quizartinib, a potent inhibitor of FLT3 phosphorylation, inhibits the JAK3/STAT3, signaling and finally antagonizes the accelerated development of AML that occurred following the HFD regimen. We can therefore conclude that, on a mouse model of AML, a HFD enforces the FLT3 signaling pathway on primitive hematopoietic cells and, in turn, improves the oncogenic transformation of MLL-AF9 knock-in cells and the leukemia initiation.
Collapse
|
516
|
Absence of BCL-2 Expression Identifies a Subgroup of AML with Distinct Phenotypic, Molecular, and Clinical Characteristics. J Clin Med 2020; 9:jcm9103090. [PMID: 32992732 PMCID: PMC7599534 DOI: 10.3390/jcm9103090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by the rapid and uncontrolled clonal growth of myeloid lineage cells in the bone marrow. The advent of oral, selective inhibitors of the B-cell leukemia/lymphoma-2 (BCL-2) apoptosis pathway, such as venetoclax, will likely induce a paradigm shift in the treatment of AML. However, the high cost of this treatment and the risk of additive toxicity when used in combination with standard chemotherapy represent limitations to its use and underscore the need to identify which patients are most—and least—likely to benefit from incorporation of venetoclax into the treatment regimen. Bone marrow specimens from 93 newly diagnosed AML patients were collected in this study and evaluated for BCL-2 protein expression by immunohistochemistry. Using this low-cost, easily, and readily applicable analysis method, we found that 1 in 5 AML patients can be considered as BCL-2−. In addition to a lower bone marrow blast percentage, this group exhibited a favorable molecular profile characterized by lower WT1 expression and underrepresentation of FLT3 mutations. As compared to their BCL-2+ counterparts, the absence of BCL-2 expression was associated with a favorable response to standard chemotherapy and overall survival, thus potentially precluding the necessity for venetoclax add-on.
Collapse
|
517
|
Du W, Xu A, Huang Y, Cao J, Zhu H, Yang B, Shao X, He Q, Ying M. The role of autophagy in targeted therapy for acute myeloid leukemia. Autophagy 2020; 17:2665-2679. [PMID: 32917124 DOI: 10.1080/15548627.2020.1822628] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although molecular targeted therapies have recently displayed therapeutic effects in acute myeloid leukemia (AML), limited response and acquired resistance remain common problems. Numerous studies have associated autophagy, an essential degradation process involved in the cellular response to stress, with the development and therapeutic response of cancers including AML. Thus, we review studies on the role of autophagy in AML development and summarize the linkage between autophagy and several recurrent genetic abnormalities in AML, highlighting the potential of capitalizing on autophagy modulation in targeted therapy for AML.Abbreviations: AML: acute myeloid leukemia; AMPK: AMP-activated protein kinase; APL: acute promyelocytic leukemia; ATG: autophagy related; ATM: ATM serine/threonine kinase; ATO: arsenic trioxide; ATRA: all trans retinoic acid; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; BET proteins, bromodomain and extra-terminal domain family; CMA: chaperone-mediated autophagy; CQ: chloroquine; DNMT, DNA methyltransferase; DOT1L: DOT1 like histone lysine methyltransferase; FLT3: fms related receptor tyrosine kinase 3; FIS1: fission, mitochondrial 1; HCQ: hydroxychloroquine; HSC: hematopoietic stem cell; IDH: isocitrate dehydrogenase; ITD: internal tandem duplication; KMT2A/MLL: lysine methyltransferase 2A; LSC: leukemia stem cell; MDS: myelodysplastic syndromes; MTORC1: mechanistic target of rapamycin kinase complex 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPM1: nucleophosmin 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PML: PML nuclear body scaffold; ROS: reactive oxygen species; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SAHA: vorinostat; SQSTM1: sequestosome 1; TET2: tet methylcytosine dioxygenase 2; TKD: tyrosine kinase domain; TKI: tyrosine kinase inhibitor; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VPA: valproic acid; WDFY3/ALFY: WD repeat and FYVE domain containing 3.
Collapse
Affiliation(s)
- Wenxin Du
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yunpeng Huang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
518
|
Mosquera Orgueira A, Bao Pérez L, Mosquera Torre A, Peleteiro Raíndo A, Cid López M, Díaz Arias JÁ, Ferreiro Ferro R, Antelo Rodríguez B, González Pérez MS, Albors Ferreiro M, Alonso Vence N, Pérez Encinas MM, Bello López JL, Martinelli G, Cerchione C. FLT3 inhibitors in the treatment of acute myeloid leukemia: current status and future perspectives. Minerva Med 2020; 111:427-442. [PMID: 32955823 DOI: 10.23736/s0026-4806.20.06989-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene arise in 25-30% of all acute myeloid leukemia (AML) patients. These mutations lead to constitutive activation of the protein product and are divided in two broad types: internal tandem duplication (ITD) of the juxtamembrane domain (25% of cases) and point mutations in the tyrosine kinase domain (TKD). Patients with FLT3 ITD mutations have a high relapse risk and inferior cure rates, whereas the role of FLT3 TKD mutations still remains to be clarified. Additionally, growing research indicates that FLT3 status evolves through a disease continuum (clonal evolution), where AML cases can acquire FLT3 mutations at relapse - not present in the moment of diagnosis. Several FLT3 inhibitors have been tested in patients with FLT3-mutated AML. These drugs exhibit different kinase inhibitory profiles, pharmacokinetics and adverse events. First-generation multi-kinase inhibitors (sorafenib, midostaurin, lestaurtinib) are characterized by a broad-spectrum of drug targets, whereas second-generation inhibitors (quizartinib, crenolanib, gilteritinib) show more potent and specific FLT3 inhibition, and are thereby accompanied by less toxic effects. Notwithstanding, all FLT3 inhibitors face primary and acquired mechanisms of resistance, and therefore the combinations with other drugs (standard chemotherapy, hypomethylating agents, checkpoint inhibitors) and its application in different clinical settings (upfront therapy, maintenance, relapsed or refractory disease) are under study in a myriad of clinical trials. This review focuses on the role of FLT3 mutations in AML, pharmacological features of FLT3 inhibitors, known mechanisms of drug resistance and accumulated evidence for the use of FLT3 inhibitors in different clinical settings.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain - .,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain - .,University of Santiago de Compostela, Santiago de Compostela, Spain -
| | - Laura Bao Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Alicia Mosquera Torre
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Á Díaz Arias
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Roi Ferreiro Ferro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta S González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Manuel Albors Ferreiro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Manuel M Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José L Bello López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cerchione
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
519
|
Abdul-Hamil NA, Wong GC, Nagarajan C, Martinelli G, Cherchione C. Midostaurin in acute myeloid leukemia: current evidence and practical considerations in routine clinical use. Minerva Med 2020; 111:443-454. [PMID: 32955824 DOI: 10.23736/s0026-4806.20.07014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mutation within the FMS-like tyrosine kinase 3 (FLT3) gene are one of the most frequent genetic alterations in acute myeloid leukemia. A high mutation fraction of FLT3-ITD molecules on the surface of leukemia cells is associated with short remissions and overall adverse outcomes in AML. In this article we summarize the clinical trial data of midostaurin - one of the FLT3 inhibitors. We review its use in various combinations both in relapsed/refractory acute myeloid leukemia as well as in the newly diagnosed patients and recollect the evidence of its use as maintenance therapy post allogenic stem cell transplantation. We enumerate the practical issues faced in the use of midostaurin like antifungal prophylaxis, dosage of concomitant chemotherapy agents as well as available data on sequencing of the FLT3 inhibitors. Lastly, we provide our perspective of the future directions for FLT3 inhibition especially midostaurin, the underlying resistance mechanisms and the need for standardization of the FLT3 tests.
Collapse
Affiliation(s)
- Nurul A Abdul-Hamil
- Department of Hematology, Singapore General Hospital, Singapore, Singapore -
| | - Gee C Wong
- Department of Hematology, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-NUS Blood Cancer Center, Singapore, Singapore
| | - Chandramouli Nagarajan
- Department of Hematology, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke-NUS Blood Cancer Center, Singapore, Singapore
| | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cherchione
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
520
|
Kang C, Blair HA. Gilteritinib: A Review in Relapsed or Refractory FLT3-Mutated Acute Myeloid Leukaemia. Target Oncol 2020; 15:681-689. [PMID: 32940858 DOI: 10.1007/s11523-020-00749-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gilteritinib (Xospata®), a next-generation tyrosine kinase inhibitor (TKI), is approved in several countries/regions worldwide for the treatment of relapsed or refractory acute myeloid leukaemia (AML) in adults with FMS-like tyrosine kinase 3 (FLT3) mutations. In this patient population, oral gilteritinib significantly improved overall survival (OS) and the response rate for complete remission with full or partial haematological recovery compared with salvage chemotherapy in the phase III ADMIRAL trial. In an integrated safety analysis of patients with relapsed or refractory AML, the most commonly reported grade ≥ 3 treatment-related adverse events (AEs) in gilteritinib recipients included anaemia, febrile neutropenia and thrombocytopenia. Clinically relevant AEs of special interest (AESIs) with gilteritinib therapy included differentiation syndrome, posterior reversible encephalopathy syndrome, QT interval prolongation and pancreatitis. AEs, including AESIs, were generally manageable with dose reduction, interruption or discontinuation. All patients of reproductive potential should use contraception during gilteritinib treatment due to the risk of embryo-foetal toxicity. Given its convenient oral regimen, along with the poor prognosis and paucity of treatment options for adults with relapsed or refractory FLT3-mutated AML, gilteritinib represents a valuable first-line targeted monotherapy in these patients.
Collapse
Affiliation(s)
- Connie Kang
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| | - Hannah A Blair
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand
| |
Collapse
|
521
|
Molina Garay C, Carrillo Sánchez K, Flores Lagunes LL, Jiménez Olivares M, Muñoz Rivas A, Villegas Torres BE, Flores Aguilar H, Núñez Enríquez JC, Jiménez Hernández E, Bekker Méndez VC, Torres Nava JR, Flores Lujano J, Martín Trejo JA, Mata Rocha M, Medina Sansón A, Espinoza Hernández LE, Peñaloza Gonzalez JG, Espinosa Elizondo RM, Flores Villegas LV, Amador Sanchez R, Pérez Saldívar ML, Sepúlveda Robles OA, Rosas Vargas H, Rangel López A, Domínguez López ML, García Latorre EA, Reyes Maldonado E, Galindo Delgado P, Mejía Aranguré JM, Alaez Verson C. Profiling FLT3 Mutations in Mexican Acute Myeloid Leukemia Pediatric Patients: Impact on Overall Survival. Front Pediatr 2020; 8:586. [PMID: 33042924 PMCID: PMC7525023 DOI: 10.3389/fped.2020.00586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is the second most frequent leukemia in childhood. The FLT3 gene participates in hematopoietic stem cell proliferation. FLT3 mutations are recurrent in AML and influence prognosis. In Mexican pediatric AML patients, FLT3 mutational profile, and their clinical impact have not been evaluated. Aim of the study: This study aimed to identify the profile of FLT3 mutations in pediatric patients with de novo AML and to assess their possible influence on overall survival (OS) and other clinical features. Methods: Massive parallel target sequencing of FLT3 was performed in 80 patients. Results: FLT3 mutations [internal tandem duplication (ITD) or tyrosine kinase domain (TKD)] were identified in 24% of them. OS was significantly lower in FLT3 POS cases than in FLT3 NEG (p = 0.03). The average OS for FLT3 POS was 1.2 vs. 2.2 years in FLT3 NEG. There were no significant differences in the children's sex, age, percentage of blasts in bone marrow aspirate, or white blood cell count in peripheral blood at diagnosis between both groups. No differences were identified stratifying by the mutational load (high > 0.4) or type of mutation. The negative effect of FLT3 mutations was also observed in patients with acute promyelocytic leukemia (APL). Conclusions: FLT3 mutational profile is described in Mexican pediatric AML patients for the first time. Mutated FLT3 negatively impacts the outcome of AML patients, even considering the APL group. The clinical benefit from treatment with tyrosine kinase inhibitors in the FLT3 POS pediatric patients needs to be assessed in clinical trials. FLT3 testing may contribute to better risk stratification in our pediatric AML patients.
Collapse
Affiliation(s)
- Carolina Molina Garay
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | - Karol Carrillo Sánchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | | | - Marco Jiménez Olivares
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | - Anallely Muñoz Rivas
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | | | | | - Juan Carlos Núñez Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Vilma Carolina Bekker Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología “Dr. Daniel Méndez Hernández”, “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaria de Salud del D.F., Mexico City, Mexico
| | - Janet Flores Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martín Trejo
- Servicio de Hematología Pediátrica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Minerva Mata Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Aurora Medina Sansón
- Servicio de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Secretaria de Salud (SSa), Mexico City, Mexico
| | - Laura Eugenia Espinoza Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | | | - Luz Victoria Flores Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Raquel Amador Sanchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Maria Luisa Pérez Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Angélica Rangel López
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | | | - Elba Reyes Maldonado
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Juan Manuel Mejía Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Carmen Alaez Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| |
Collapse
|
522
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
523
|
Overview of the Side-Effects of FDA- and/or EMA-Approved Targeted Therapies for the Treatment of Hematological Malignancies. J Clin Med 2020; 9:jcm9092903. [PMID: 32911829 PMCID: PMC7565707 DOI: 10.3390/jcm9092903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
In the last decade there has been tremendous effort in offering better therapeutic management strategies to patients with hematologic malignancies. These efforts have ranged from biological to clinical approaches and resulted in the rapid development of new approaches. The main “problem” that comes with the high influx of newly approved drugs, which not only influences hematologists that frequently work with these drugs but also affects other healthcare professionals that work with hematologists in patient management, including intensive care unit (ICU) physicians, is they have to keep up within their specialty and, in addition, with the side-effects that can occur when encountering hematology-specific therapies. Nonetheless, there are few people that have an in-depth understanding of a specialty outside theirs. Thus, this manuscript offers an overview of the most common side-effects caused by therapies used in hematology nowadays, or that are currently being investigated in clinical trials, with the purpose to serve as an aid to other specialties. Nevertheless, because of the high amount of information on this subject, each chapter will offer an overview of the side-effects of a drug class with each reference of the section being intended as further reading.
Collapse
|
524
|
Yang W, Liu S, Li Y, Wang Y, Deng Y, Sun W, Huang H, Xie J, He A, Chen H, Tao A, Yan J. Pyridoxine induces monocyte-macrophages death as specific treatment of acute myeloid leukemia. Cancer Lett 2020; 492:96-105. [PMID: 32860849 DOI: 10.1016/j.canlet.2020.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that gradually develops resistance to current chemotherapy treatments. The available chemotherapy drugs show serious non-specific cytotoxicity to healthy normal cells, resulting in relapse and low survival rates. Natural small molecules with less toxicity and high selectivity for AML are urgently needed. In this study, we confirmed that pyridoxine (vitamin B6) selectively induces monocyte macrophages to undergo programmed cell death in two different modes: caspase-3-dependent apoptosis in U937 cells or GSDME-mediated pyroptosis in THP-1 cells. Further molecular analysis indicated that blocking the caspase pathway could switch the death to MLKL-dependent necroptosis and subsequent extensive inflammatory response. Pyridoxine also delayed the disease progression in a THP-1 leukemia mouse model. In addition, it induced the death of primary AML cells from AML patients by activating caspase-8/3. Overall, our results identify pyridoxine, a low-toxicity natural small molecule, as a potential therapeutic drug for AML treatment.
Collapse
Affiliation(s)
- Wei Yang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Shuai Liu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yunlei Li
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yujie Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yao Deng
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Weimin Sun
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Hualan Huang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Junmou Xie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Andong He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Honglv Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China.
| |
Collapse
|
525
|
Kumode T, Rai S, Tanaka H, Espinoza JL, Kakutani H, Watatani Y, Minamoto S, Taniguchi Y, Nakayama S, Morita Y, Ashida T, Matsumura I. Targeted therapy for medullary and extramedullary relapse of FLT3-ITD acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation. Leuk Res Rep 2020; 14:100219. [PMID: 32817816 PMCID: PMC7426564 DOI: 10.1016/j.lrr.2020.100219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/30/2022] Open
Abstract
We report a case with extramedullary tumors affecting the supraclavicular region that presented as a relapse of acute myeloid leukemia (AML) with FLT3-ITD mutation after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Treatment with gilteritinib resulted in remarkable response with disappearance of both the medullary and extramedullary tumors. Subsequently, a 2nd allo-HSCT was performed in an attempt to cure his AML and complete molecular response has been sustained with gilteritinib resumption without worsening GVHD. Targeted therapy with gilteritinib for medullary and extramedullary relapse of FLT3-ITD AML could be effective and suitable as a bridging therapy for allo-HSCT.
Collapse
|
526
|
Guo Y, Sun H, Zhang D, Zhao Y, Shi M, Yang M, Xing S, Fu X, Bin T, Lu B, Wu S, Xu X, Xu X, Chen Y, Zhao ZJ. Development of a highly sensitive method for detection of FLT3D835Y. Biomark Res 2020; 8:30. [PMID: 32817792 PMCID: PMC7424998 DOI: 10.1186/s40364-020-00210-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/05/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a malignant hematological neoplasm of myeloid progenitor cells. Mutations of FLT3 in its tyrosine kinase domain (FLT3-TKD) are found in ~ 8% of patients with AML, with D835Y as the most common substitution. This mutation activates survival signals that drives the disease and is resistant to the first generation FLT3 inhibitors. Development of a highly sensitive method to detect FLT3D835Y is important to direct therapeutic options, predict prognosis, and monitor minimal residual disease in patients with AML. Methods and results In the present study, we developed a highly sensitive FLT3D835Y detection method by using the restriction fragment nested allele-specific PCR technique. The method consists of three steps: 1) initial amplification of DNA samples with PCR primers surrounding the FLT3D835Y mutation site, 2) digestion of the PCR products with restriction enzyme EcoRV that only cleaves the wild type allele, and 3) detection of FLT3D835Y by allele-specific PCR with nested primers. We were able to detect FLT3D835Y with a sensitivity of 0.001% by using purified plasmid DNAs and blood cell DNAs containing known proportions of FLT3D835Y. We analyzed blood cell DNA samples from 64 patients with AML and found six FLT3D835Y-positive cases, two of which could not be detected by conventional DNA sequencing methods. Importantly, the method was able to detect FLT3D835Y in a sample collected from a relapsed patient while the patient was in complete remission with negative MRD determined by flow cytometry. Therefore, our RFN-AS-PCR detected MRD after treatment that was missed by flow cytometry and Sanger DNA sequencing, by conventional methods. Conclusions We have developed a simple and highly sensitive method that will allow for detection of FLT3D835Y at a very low level. This method may have major clinical implications for treatment of AML.
Collapse
Affiliation(s)
- Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong China.,Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 451, Oklahoma City, OK 73104 USA
| | - Honghua Sun
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong China.,Clinical laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107 Guangdong China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong China
| | - Mingxia Shi
- Department of Hematology, the First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032 China
| | - Ming Yang
- College of Life Sciences, Jilin University, Changchun, Jilin, 130012 China
| | - Shu Xing
- College of Life Sciences, Jilin University, Changchun, Jilin, 130012 China
| | - Xueqi Fu
- College of Life Sciences, Jilin University, Changchun, Jilin, 130012 China
| | - Ting Bin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China, Shenzhen, 518107 Guangdong China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China, Shenzhen, 518107 Guangdong China
| | - Shunjie Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China, Shenzhen, 518107 Guangdong China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China, Shenzhen, 518107 Guangdong China
| | - Xuesong Xu
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun, Jilin, 130033 China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 451, Oklahoma City, OK 73104 USA
| |
Collapse
|
527
|
Park M, Vaikari VP, Lam AT, Zhang Y, MacKay JA, Alachkar H. Anti-FLT3 nanoparticles for acute myeloid leukemia: Preclinical pharmacology and pharmacokinetics. J Control Release 2020; 324:317-329. [PMID: 32428520 PMCID: PMC7473778 DOI: 10.1016/j.jconrel.2020.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
FLT3 receptor is an important therapeutic target in acute myeloid leukemia due to high incidence of mutations associated with poor clinical outcome. Targeted therapies against the FLT3 receptor, including small-molecule FLT3 tyrosine kinase inhibitors (TKIs) and anti-FLT3 antibodies, have demonstrated promising preclinical and even clinical efficacy. Yet, even with the current FDA approval for two FLT3 inhibitors, these modalities were unable to cure AML or significantly extend the lives of patients with a common mutation called FLT3-ITD. While FLT3 is a viable target, the approaches to inhibit its activity were inadequate. To develop a new modality for targeting FLT3, our team engineered an α-FLT3-A192 fusion protein composed of a single chain variable fragment antibody conjugated with an elastin-like polypeptide. These fusion proteins assemble into multi-valent nanoparticles with excellent stability and pharmacokinetic properties as well as in vitro and in vivo pharmacological activity in cellular and xenograft murine models of AML. In conclusion, α-FLT3-A192 fusions appear to be a viable new modality for targeting FLT3 in AML and warrant further preclinical development to bring it into the clinic.
Collapse
Affiliation(s)
- Mincheol Park
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Vijaya Pooja Vaikari
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Albert T Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, United States; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, United States
| | - John Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, United States
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
528
|
Garcia-Horton A, Yee KW. Quizartinib for the treatment of acute myeloid leukemia. Expert Opin Pharmacother 2020; 21:2077-2090. [DOI: 10.1080/14656566.2020.1801637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alejandro Garcia-Horton
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, CANADA
| | - Karen Wl Yee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, CANADA
| |
Collapse
|
529
|
Yang HC, Stern A, Chiu DTY. G6PD: A hub for metabolic reprogramming and redox signaling in cancer. Biomed J 2020; 44:285-292. [PMID: 33097441 PMCID: PMC8358196 DOI: 10.1016/j.bj.2020.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/11/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic hubs play a major role in the initiation and development of cancer. Oncogenic signaling pathways drive metabolic reprogramming and alter redox homeostasis. G6PD has potential oncogenic activity and it plays a pivotal role in cell proliferation, survival and stress responses. Aberrant activation of G6PD via metabolic reprogramming alters NADPH levels, leading to an antioxidant or a pro-oxidant environment which can either enhance DNA oxidative damage and genomic instability or initiate oncogenic signaling. Nutrient deprivation can rewire metabolism, which leads to mutations that determine a cancer cell's fate. Deregulated G6PD status and oxidative stress form a vicious cycle, which paves the way for cancer progression. This review aims to update and focus the potential role of G6PD in metabolic reprogramming and redox signaling in cancer.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA
| | - Daniel Tsun-Yee Chiu
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Pediatric Hematology/Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
530
|
Alavianmehr A, Mansouri M, Ramzi M, Faghih M, Monabati A, Arandi N, Faghih Z, Farjadian S. Association of killer-cell immunoglobulin-like receptor genes with acute myelogenous leukaemia. Int J Immunogenet 2020; 47:512-521. [PMID: 32767509 DOI: 10.1111/iji.12509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 11/30/2022]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are important because of their key roles in NK cell development and function. Some KIR genes have been associated with the incidence of haematological malignancies. This study was designed to determine whether the inheritance of specific KIR genes is associated with susceptibility to acute myelogenous leukaemia (AML) in Persians living in south-western Iran. KIR genes and KIR2DS4 variants were typed by polymerase chain reaction-sequence-specific primer (PCR-SSP) in 167 patients with AML and 169 healthy controls. Our results showed 10% of patients-mostly females-were classified as M3. Flt3 mutations were detected in 26% of patients, most of whom had internal tandem duplication (ITD). The frequency of activating KIRs (aKIRs)-mainly KIR3DS1-was higher in patients, whereas inhibitory KIRs (iKIRs)-particularly KIR3DL1 and KIR2DL1-were more common among controls. The incidence of the KIR2DS4fl allele was higher among patients with non-M3 AML than controls. We also found a higher frequency of 4 or more iKIR genes in the controls and a higher frequency of 4 or more aKIR genes in the patients. Individuals with more iKIR than aKIR belonged predominantly to the control group. Individuals with the telomeric AA genotype who had inherited the KIR2DS4fl allele were more frequent in the patient group. According to our results, increased frequency of aKIRs in patients with AML may lead to the hyperactivation of NK cells against malignant cells with reduced or lack of HLA class I molecules followed by NK cell exhaustion which allow malignant cells to progress.
Collapse
Affiliation(s)
- Ali Alavianmehr
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Mansouri
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Faghih
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nargess Arandi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Farjadian
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
531
|
Wang TY, Yang R. ScanITD: Detecting internal tandem duplication with robust variant allele frequency estimation. Gigascience 2020; 9:giaa089. [PMID: 32852038 PMCID: PMC7450668 DOI: 10.1093/gigascience/giaa089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Internal tandem duplications (ITDs) are tandem duplications within coding exons and are important prognostic markers and drug targets for acute myeloid leukemia (AML). Next-generation sequencing has enabled the discovery of ITD at single-nucleotide resolution. ITD allele frequency is used in the risk stratification of patients with AML; higher ITD allele frequency is associated with poorer clinical outcomes. However, the ITD allele frequency data are often unavailable to treating physicians and the detection of ITDs with accurate variant allele frequency (VAF) estimation remains challenging for short-read sequencing. RESULTS Here we present the ScanITD approach, which performs a stepwise seed-and-realignment procedure for ITD detection with accurate VAF prediction. The evaluations on simulated and real data demonstrate that ScanITD outperforms 3 state-of-the-art ITD detectors, especially for VAF estimation. Importantly, ScanITD yields better accuracy than general-purpose structural variation callers for predicting ITD size range duplications. CONCLUSIONS ScanITD enables the accurate identification of ITDs with robust VAF estimation. ScanITD is written in Python and is open-source software that is freely accessible at https://github.com/ylab-hi/ScanITD.
Collapse
Affiliation(s)
- Ting-You Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, 425 E. River Pkwy, Minneapolis, MN 55455, USA
| |
Collapse
|
532
|
Park S, Cho BS, Kim HJ. New agents in acute myeloid leukemia (AML). Blood Res 2020; 55:S14-S18. [PMID: 32719171 PMCID: PMC7386889 DOI: 10.5045/br.2020.s003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Despite expanding knowledge in the molecular landscape of acute myeloid leukemia (AML) and an increasing understanding of leukemogenic pathways, little has changed in the treatment of AML in the last 40 years. Since introduction in the 1970s, combination chemotherapy consisting of anthracycline and cytarabine has been the mainstay of treatment, with major therapeutic advances based on improving supportive care rather than the introduction of novel therapeutics. Over the last decades, there have been extensive efforts to identify specific target mutations or pathways with the aim of improving clinical outcomes. Finally, after a prolonged wait, we are witnessing the next wave of AML treatment, characterized by a more “precise” and “personalized” understanding of the unique molecular or genetic mapping of individual patients. This new trend has since been further facilitated, with four new FDA approvals granted in 2017 in AML therapeutics. Currently, a total of eight targeted agents have been approved since 2017 (as of Jan. 2020). In this review, we will briefly discuss these newer agents in the context of their indication and the basis of their approval.
Collapse
Affiliation(s)
- Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
533
|
Hwang SM. Classification of acute myeloid leukemia. Blood Res 2020; 55:S1-S4. [PMID: 32719169 PMCID: PMC7386892 DOI: 10.5045/br.2020.s001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
The World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues was revised in 2017 on the basis of recent high-throughput sequencing and gene expression data on hematologic malignancies. This review explores the current WHO classification of acute myeloid leukemia (AML) and related precursor neoplasms, highlighting the changes made in the current edition and focusing on the diagnosis of AML.
Collapse
Affiliation(s)
- Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
534
|
Eguchi M, Minami Y, Kuzume A, Chi S. Mechanisms Underlying Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Biomedicines 2020; 8:biomedicines8080245. [PMID: 32722298 PMCID: PMC7459983 DOI: 10.3390/biomedicines8080245] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
FLT3-ITD and FLT3-TKD mutations were observed in approximately 20 and 10% of acute myeloid leukemia (AML) cases, respectively. FLT3 inhibitors such as midostaurin, gilteritinib and quizartinib show excellent response rates in patients with FLT3-mutated AML, but its duration of response may not be sufficient yet. The majority of cases gain secondary resistance either by on-target and off-target abnormalities. On-target mutations (i.e., FLT3-TKD) such as D835Y keep the TK domain in its active form, abrogating pharmacodynamics of type II FLT3 inhibitors (e.g., midostaurin and quizartinib). Second generation type I inhibitors such as gilteritinib are consistently active against FLT3-TKD as well as FLT3-ITD. However, a “gatekeeper” mutation F691L shows universal resistance to all currently available FLT3 inhibitors. Off-target abnormalities are consisted with a variety of somatic mutations such as NRAS, AXL and PIM1 that bypass or reinforce FLT3 signaling. Off-target mutations can occur just in the primary FLT3-mutated clone or be gained by the evolution of other clones. A small number of cases show primary resistance by an FL-dependent, FGF2-dependent, and stromal CYP3A4-mediated manner. To overcome these mechanisms, the development of novel agents such as covalently-coupling FLT3 inhibitor FF-10101 and the investigation of combination therapy with different class agents are now ongoing. Along with novel agents, gene sequencing may improve clinical approaches by detecting additional targetable mutations and determining individual patterns of clonal evolution.
Collapse
Affiliation(s)
- Motoki Eguchi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| | - Ayumi Kuzume
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa 296-8602, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
| |
Collapse
|
535
|
Thakral B, Daver N, Tang Z, Patel KP, Ok CY, Loghavi S, Khoury JD, Alotaibi AS, Konopleva M, Yilmaz M, Medeiros LJ. Clonal evolution with acquisition of BCR-ABL1 in refractory acute myeloid leukemia post therapy with FLT3-inhibitor. Leuk Lymphoma 2020; 61:3243-3246. [DOI: 10.1080/10428194.2020.1797008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Beenu Thakral
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenya Tang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P. Patel
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D. Khoury
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Marina Konopleva
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Musa Yilmaz
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
536
|
Zhong Y, Qiu RZ, Sun SL, Zhao C, Fan TY, Chen M, Li NG, Shi ZH. Small-Molecule Fms-like Tyrosine Kinase 3 Inhibitors: An Attractive and Efficient Method for the Treatment of Acute Myeloid Leukemia. J Med Chem 2020; 63:12403-12428. [PMID: 32659083 DOI: 10.1021/acs.jmedchem.0c00696] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is an important member of the class III receptor tyrosine kinase (RTK) family, which is involved in the proliferation of hematopoietic cells and lymphocytes. In recent years, increasing evidence have demonstrated that the activation and mutation of FLT3 is closely implicated in the occurrence and development of acute myeloid leukemia (AML). The exploration of small-molecule inhibitors targeting FLT3 has aroused wide interest of pharmaceutical chemists and is expected to bring new hope for AML therapy. In this review, we specifically highlighted FLT3 mediated JAK/STAT, RAS/MAPK, and PI3K/AKT/mTOR signaling. The structural properties and biological activities of representative FLT3 inhibitors reported from 2014 to the present were also summarized. In addition, the major challenges in the current advance of novel FLT3 inhibitors were further analyzed, with the aim to guide future drug discovery.
Collapse
Affiliation(s)
- Yue Zhong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Run-Ze Qiu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian-Yuan Fan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
537
|
Voisset E, Brenet F, Lopez S, de Sepulveda P. SRC-Family Kinases in Acute Myeloid Leukaemia and Mastocytosis. Cancers (Basel) 2020; 12:cancers12071996. [PMID: 32708273 PMCID: PMC7409304 DOI: 10.3390/cancers12071996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022] Open
Abstract
Protein tyrosine kinases have been recognized as important actors of cell transformation and cancer progression, since their discovery as products of viral oncogenes. SRC-family kinases (SFKs) play crucial roles in normal hematopoiesis. Not surprisingly, they are hyperactivated and are essential for membrane receptor downstream signaling in hematological malignancies such as acute myeloid leukemia (AML) and mastocytosis. The precise roles of SFKs are difficult to delineate due to the number of substrates, the functional redundancy among members, and the use of tools that are not selective. Yet, a large num ber of studies have accumulated evidence to support that SFKs are rational therapeutic targets in AML and mastocytosis. These two pathologies are regulated by two related receptor tyrosine kinases, which are well known in the field of hematology: FLT3 and KIT. FLT3 is one of the most frequently mutated genes in AML, while KIT oncogenic mutations occur in 80-90% of mastocytosis. Studies on oncogenic FLT3 and KIT signaling have shed light on specific roles for members of the SFK family. This review highlights the central roles of SFKs in AML and mastocytosis, and their interconnection with FLT3 and KIT oncoproteins.
Collapse
|
538
|
Hou HA, Tien HF. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. J Biomed Sci 2020; 27:81. [PMID: 32690020 PMCID: PMC7372828 DOI: 10.1186/s12929-020-00674-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy in terms of clinical features, underlying pathogenesis and treatment outcomes. Recent advances in genomic techniques have unraveled the molecular complexity of AML leukemogenesis, which in turn have led to refinement of risk stratification and personalized therapeutic strategies for patients with AML. Incorporation of prognostic and druggable genetic biomarkers into clinical practice to guide patient-specific treatment is going to be the mainstay in AML therapeutics. Since 2017 there has been an explosion of novel treatment options to tailor personalized therapy for AML patients. In the past 3 years, the U.S. Food and Drug Administration approved a total of eight drugs for the treatment of AML; most specifically target certain gene mutations, biological pathways, or surface antigen. These novel agents are especially beneficial for older patients or those with comorbidities, in whom the treatment choice is limited and the clinical outcome is very poor. How to balance efficacy and toxicity to further improve patient outcome is clinically relevant. In this review article, we give an overview of the most relevant genetic markers in AML with special focus on the therapeutic implications of these aberrations.
Collapse
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
539
|
Inhibition of Methyltransferase DOT1L Sensitizes to Sorafenib Treatment AML Cells Irrespective of MLL-Rearrangements: A Novel Therapeutic Strategy for Pediatric AML. Cancers (Basel) 2020; 12:cancers12071972. [PMID: 32698374 PMCID: PMC7409321 DOI: 10.3390/cancers12071972] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Pediatric acute myeloid leukemia (AML) is an aggressive malignancy with poor prognosis for which there are few effective targeted approaches, despite the numerous genetic alterations, including MLL gene rearrangements (MLL-r). The histone methyltransferase DOT1L is involved in supporting the proliferation of MLL-r cells, for which a target inhibitor, Pinometostat, has been evaluated in a clinical trial recruiting pediatric MLL-r leukemic patients. However, modest clinical effects have been observed. Recent studies have reported that additional leukemia subtypes lacking MLL-r are sensitive to DOT1L inhibition. Here, we report that targeting DOT1L with Pinometostat sensitizes pediatric AML cells to further treatment with the multi-kinase inhibitor Sorafenib, irrespectively of MLL-r. DOT1L pharmacologic inhibition induces AML cell differentiation and modulates the expression of genes with relevant roles in cancer development. Such modifications in the transcriptional program increase the apoptosis and growth suppression of both AML cell lines and primary pediatric AML cells with diverse genotypes. Through ChIP-seq analysis, we identified the genes regulated by DOT1L irrespective of MLL-r, including the Sorafenib target BRAF, providing mechanistic insights into the drug combination activity. Our results highlight a novel therapeutic strategy for pediatric AML patients.
Collapse
|
540
|
Tran AA, Miljković M, Prasad V. Analysis of estimated clinical benefit of newly approved drugs for US patients with acute myeloid leukemia. Leuk Res 2020; 96:106420. [PMID: 32712431 DOI: 10.1016/j.leukres.2020.106420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/19/2023]
Abstract
The increased number of available United States Food and Drug Administration (FDA)-approved drugs indicated for acute myeloid leukemia (AML) have generated considerable interest and may have the potential to influence practice. We performed a retrospective cross-sectional study performed from September to November 2019 to determine 1) demographic and subgroup characteristics of patients with newly diagnosed cases of acute myeloid leukemia, 2) FDA data on drugs indicated for AML approved from 1969 through November 2019, 3) measures of response from drug labels, and 4) published reports documenting the response for drugs approved before the 1979 Labeling Act. We used publicly available data from the Food and Drug Administration (FDA), the American Cancer Society, the Leukemia and Lymphoma Society, and the U.S. Census Bureau. According to our estimation methods, cytarabine infused continuously for 7 days, with three short boluses of anthracycline over Days 1-3, the standard of care known as "7 + 3", continues to have the largest population benefit. The maximum cost per course of treatment for an average regimen is enasidenib for salvage therapy, estimated to be around $120,131. The minimum cost was $1,662.50 for standard 7 + 3 chemotherapy. The mean and median cost for all AML treatments was $43,784.26 and $35,083.70, respectively. While it is true that the number of available therapies approved by the FDA has increased dramatically, it is not yet clear how large of a clinical benefit we can expect to see from these new lines of therapies.
Collapse
Affiliation(s)
- Audrey A Tran
- School of Medicine, Oregon Health & Science University, United States; Division of Hematology Oncology, Knight Cancer Institute, Oregon Health & Science University, United States
| | - Milos Miljković
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States
| | - Vinay Prasad
- Department of Epidemiology and Biostatistics, University of California, San Francisco, United States.
| |
Collapse
|
541
|
Jin W. The Role of Tyrosine Kinases as a Critical Prognostic Parameter and Its Targeted Therapies in Ewing Sarcoma. Front Cell Dev Biol 2020; 8:613. [PMID: 32754598 PMCID: PMC7381324 DOI: 10.3389/fcell.2020.00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (ES) is a rare, highly aggressive, bone, or soft tissue-associated tumor. Although this sarcoma often responds well to initial chemotherapy, 40% of the patients develop a lethal recurrence of the disease, with death recorded in 75-80% of patients with metastatic ES within 5 years, despite receiving high-dose chemotherapy. ES is genetically well-characterized, as indicated by the EWS-FLI1 fusion protein encoded as a result of chromosomal translocation in 80-90% of patients with ES, as well as in ES-related cancer cell lines. Recently, tyrosine kinases have been identified in the pathogenesis of ES. These tyrosine kinases, acting as oncoproteins, are associated with the clinical pathogenesis, metastasis, acquisition of self-renewal traits, and chemoresistance of ES, through the activation of various intracellular signaling pathways. This review describes the recent progress related to cellular and molecular functional roles of tyrosine kinases in the progression of ES.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
542
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
543
|
Cao Y, Kong S, Xin Y, Meng Y, Shang S, Qi Y. Lestaurtinib potentiates TRAIL-induced apoptosis in glioma via CHOP-dependent DR5 induction. J Cell Mol Med 2020; 24:7829-7840. [PMID: 32441887 PMCID: PMC7348155 DOI: 10.1111/jcmm.15415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/19/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022] Open
Abstract
Lestaurtinib, also called CEP-701, is an inhibitor of tyrosine kinase, causes haematological remission in patients with AML possessing FLT3-ITD (FLT3 gene) internal tandem duplication and strongly inhibits tyrosine kinase FLT3. Treatment with lestaurtinib modulates various signalling pathways and leads to cell growth arrest and programmed cell death in several tumour types. However, the effect of lestaurtinib on glioma remains unclear. In this study, we examined lestaurtinib and TRAIL interactions in glioma cells and observed their synergistic activity on glioma cell apoptosis. While U87 and U251 cells showed resistance to TRAIL single treatment, they were sensitized to apoptosis induced by TRAIL in the presence of lestaurtinib because of increased death receptor 5 (DR5) levels through CHOP-dependent manner. We also demonstrated using a xenograft model of mouse that the tumour growth was absolutely suppressed because of the combined treatment compared to TRAIL or lestaurtinib treatment carried out singly. Our findings reveal a potential new strategy to improve antitumour activity induced by TRAIL in glioma cells using lestaurtinib through a mechanism dependent on CHOP.
Collapse
Affiliation(s)
- Yingxiao Cao
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Shiqi Kong
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yuling Xin
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yan Meng
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| | - Shuling Shang
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| | - Yanhui Qi
- Department of Intensive Care UnitXingtai People’s HospitalXingtaiChina
| |
Collapse
|
544
|
Yamashita M, Dellorusso PV, Olson OC, Passegué E. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer 2020; 20:365-382. [PMID: 32415283 PMCID: PMC7658795 DOI: 10.1038/s41568-020-0260-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Haematopoiesis is governed by haematopoietic stem cells (HSCs) that produce all lineages of blood and immune cells. The maintenance of blood homeostasis requires a dynamic response of HSCs to stress, and dysregulation of these adaptive-response mechanisms underlies the development of myeloid leukaemia. Leukaemogenesis often occurs in a stepwise manner, with genetic and epigenetic changes accumulating in pre-leukaemic HSCs prior to the emergence of leukaemic stem cells (LSCs) and the development of acute myeloid leukaemia. Clinical data have revealed the existence of age-related clonal haematopoiesis, or the asymptomatic clonal expansion of mutated blood cells in the elderly, and this phenomenon is connected to susceptibility to leukaemic transformation. Here we describe how selection for specific mutations that increase HSC competitive fitness, in conjunction with additional endogenous and environmental changes, drives leukaemic transformation. We review the ways in which LSCs take advantage of normal HSC properties to promote survival and expansion, thus underlying disease recurrence and resistance to conventional therapies, and we detail our current understanding of leukaemic 'stemness' regulation. Overall, we link the cellular and molecular mechanisms regulating HSC behaviour with the functional dysregulation of these mechanisms in myeloid leukaemia and discuss opportunities for targeting LSC-specific mechanisms for the prevention or cure of malignant diseases.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
545
|
Kang D, Ludwig E, Jaworowicz D, Huang H, Fiedler-Kelly J, Cortes J, Ganguly S, Khaled S, Krämer A, Levis M, Martinelli G, Perl A, Russell N, Abutarif M, Choi Y, Mendell J, Yin O. Population Pharmacokinetic Analysis of Quizartinib in Healthy Volunteers and Patients With Relapsed/Refractory Acute Myeloid Leukemia. J Clin Pharmacol 2020; 60:1629-1641. [PMID: 32598495 PMCID: PMC7689835 DOI: 10.1002/jcph.1680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
Quizartinib is an FMS‐like tyrosine kinase 3 (FLT3) inhibitor that has shown robust clinical activity in patients with FLT3‐internal tandem duplication–mutated relapsed/refractory acute myeloid leukemia (AML). This analysis evaluated the population pharmacokinetics (PK) of quizartinib and its active metabolite, AC886, in a pooled analysis of data from 649 healthy volunteers or patients with AML from 8 clinical trials including the phase 3 QuANTUM‐R study. Quizartinib was given as a single dose or multiple once‐daily doses of 20, 30, 60, or 90 mg. Nonlinear mixed‐effects modeling was performed using observed concentrations of quizartinib and AC886. Strong CYP3A inhibitor use resulted in an 82% increase in the area under the curve (AUC) and a 72% increase in the maximum concentration (Cmax) of quizartinib. Albumin level, age, and body surface area were statistically significant covariates on quizartinib PK. However, their individual effects on quizartinib AUC and Cmax were <20%. For AC886, strong CYP3A inhibitor use, body surface area and black/African American race were significant covariates. Except for strong CYP3A inhibitor use, the effects on the overall exposure (AUC of quizartinib + AC886) were <20%. The population PK model provided an adequate description of the observed concentrations of quizartinib and AC886 in both healthy volunteers and patients with AML. Only concomitant use of strong CYP3A inhibitors had a clinically meaningful effect on quizartinib PK exposure.
Collapse
Affiliation(s)
- Dongwoo Kang
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | - Elizabeth Ludwig
- Cognigen Corporation, a Simulations Plus company, Buffalo, New York, USA
| | - David Jaworowicz
- Cognigen Corporation, a Simulations Plus company, Buffalo, New York, USA
| | - Hannah Huang
- Cognigen Corporation, a Simulations Plus company, Buffalo, New York, USA
| | - Jill Fiedler-Kelly
- Cognigen Corporation, a Simulations Plus company, Buffalo, New York, USA
| | - Jorge Cortes
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Mark Levis
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alexander Perl
- Division of Hematology and Oncology, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nigel Russell
- Centre for Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | | | | | - Ophelia Yin
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| |
Collapse
|
546
|
Abstract
Relapse is still a common scenario in acute myeloid leukemia (AML) treatment and occurs in 40–50% of younger and the great majority of elderly patients. The prognosis in relapsed AML patients is generally poor but depends largely on the timing of relapse (early versus late) and the possibility of allogeneic hematopoietic stem cell transplantation (HSCT). At the time of relapse, we again perform a mutational screening and cytogenetic analysis in all AML patients as clonal evolution of disease is frequent. Clinical trials should be first priority in all relapsed patients. In fit patients without prior transplant, we aim to perform HSCT after salvage therapy. In AML patients relapsing after HSCT and good performance status, intensive therapy can be considered with subsequent cellular therapy such as donor lymphocyte infusion (DLI) or a second HSCT. However, less than 20% of these patients are alive after 5 years. For those patients that are unfit, the therapeutic aim is to prolong life with acceptable quality of life. Here, hypomethylating agents (HMA), low-dose AraC (LDAC), and solely cytoreductive therapy with hydroxurea are options depending on first-line therapy. For those patients that have not been treated with venetoclax in first line, the combination therapy of venetoclax with demethylating agents achieves encouraging response rates. Venetoclax is currently also studied in combination with intensive salvage therapy. Importantly, for patients with isocitrate dehydrogenase (IDH) 1/2–mutated AML, ivosidenib, an IDH1 inhibitor, and enasidenib, an IDH2 inhibitor, present well-tolerated options in the setting of refractory or relapsed (r/r) disease even in elderly and heavily pre-treated patients with response rates of 30–40%. Both substances have been approved by the U.S. Food and Drug Administration (FDA) for r/r AML patients with IDH1/2 mutations (but not yet by the European Medicines Agency (EMA)). For patients with FMS-like tyrosine kinase 3 (FLT3) mutations, treatment with the selective FLT3 inhibitor gilteritinib is well tolerated and leads to improved outcome compared with standard salvage therapy. The approval has been granted by the FDA and the EMA. Generally, we would recommend targeted therapy for IDH1/2- and FLT3-mutated AML if available. In order to improve outcome in relapsed AML, it will be important to intelligently combine novel substances with each other as well as chemotherapy in prospective clinical trials. The development of therapies with bispecific antibodies or chimeric antigen receptor T cells (CAR-T) are still in early development.
Collapse
|
547
|
Tsai HK, Brackett DG, Szeto D, Frazier R, MacLeay A, Davineni P, Manning DK, Garcia E, Lindeman NI, Le LP, Lennerz JK, Gibson CJ, Lindsley RC, Kim AS, Nardi V. Targeted Informatics for Optimal Detection, Characterization, and Quantification of FLT3 Internal Tandem Duplications Across Multiple Next-Generation Sequencing Platforms. J Mol Diagn 2020; 22:1162-1178. [PMID: 32603763 PMCID: PMC7479488 DOI: 10.1016/j.jmoldx.2020.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023] Open
Abstract
Assessment of internal tandem duplications in FLT3 (FLT3-ITDs) and their allelic ratio (AR) is recommended by clinical guidelines for diagnostic workup of acute myeloid leukemia and traditionally performed through capillary electrophoresis (CE). Although significant progress has been made integrating FLT3-ITD detection within contemporary next-generation sequencing (NGS) panels, AR estimation is not routinely part of clinical NGS practice because of inherent biases and challenges. In this study, data from multiple NGS platforms—anchored multiplex PCR (AMP), amplicon [TruSeq Custom Amplicon (TSCA)], and hybrid-capture—were analyzed through a custom algorithm, including platform-specific measures of AR. Sensitivity and specificity of NGS for FLT3-ITD status relative to CE were 100% (42/42) and 99.4% (1076/1083), respectively, by AMP on an unselected cohort and 98.1% (53/54) and 100% (48/48), respectively, by TSCA on a selected cohort. Primer analysis identified criteria for ITDs to escape detection by TSCA, estimated to occur in approximately 9% of unselected ITDs. Allelic fractions under AMP or TSCA were highly correlated to CE, with linear regression slopes near 1 for ITDs not duplicating primers, and systematically underestimated for ITDs duplicating a primer. Bias was alleviated in AMP through simple adjustments. This article provides an approach for targeted computational FLT3-ITD analysis for NGS data from multiple platforms; AMP was found capable of near perfect sensitivity and specificity with relatively accurate estimates of ARs.
Collapse
Affiliation(s)
- Harrison K Tsai
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Diane G Brackett
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - David Szeto
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ryan Frazier
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Allison MacLeay
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Phani Davineni
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Danielle K Manning
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Elizabeth Garcia
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Long P Le
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Christopher J Gibson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
548
|
FLT3 stop mutation increases FLT3 ligand level and risk of autoimmune thyroid disease. Nature 2020; 584:619-623. [PMID: 32581359 DOI: 10.1038/s41586-020-2436-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
Abstract
Autoimmune thyroid disease is the most common autoimmune disease and is highly heritable1. Here, by using a genome-wide association study of 30,234 cases and 725,172 controls from Iceland and the UK Biobank, we find 99 sequence variants at 93 loci, of which 84 variants are previously unreported2-7. A low-frequency (1.36%) intronic variant in FLT3 (rs76428106-C) has the largest effect on risk of autoimmune thyroid disease (odds ratio (OR) = 1.46, P = 2.37 × 10-24). rs76428106-C is also associated with systemic lupus erythematosus (OR = 1.90, P = 6.46 × 10-4), rheumatoid factor and/or anti-CCP-positive rheumatoid arthritis (OR = 1.41, P = 4.31 × 10-4) and coeliac disease (OR = 1.62, P = 1.20 × 10-4). FLT3 encodes fms-related tyrosine kinase 3, a receptor that regulates haematopoietic progenitor and dendritic cells. RNA sequencing revealed that rs76428106-C generates a cryptic splice site, which introduces a stop codon in 30% of transcripts that are predicted to encode a truncated protein, which lacks its tyrosine kinase domains. Each copy of rs76428106-C doubles the plasma levels of the FTL3 ligand. Activating somatic mutations in FLT3 are associated with acute myeloid leukaemia8 with a poor prognosis and rs76428106-C also predisposes individuals to acute myeloid leukaemia (OR = 1.90, P = 5.40 × 10-3). Thus, a predicted loss-of-function germline mutation in FLT3 causes a reduction in full-length FLT3, with a compensatory increase in the levels of its ligand and an increased disease risk, similar to that of a gain-of-function mutation.
Collapse
|
549
|
Andrews C, Maze D, Murphy T, Sibai H. Combination treatment with CPX-351 and midostaurin in patients with secondary acute myeloid leukaemia that are FLT3 mutated: three cases and review of literature. Br J Haematol 2020; 190:467-470. [PMID: 32567045 DOI: 10.1111/bjh.16800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Claire Andrews
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Dawn Maze
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Tracy Murphy
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Hassan Sibai
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
550
|
Vagapova ER, Lebedev TD, Tikhonova AD, Goikhman BV, Ivanenko KA, Spirin PV, Prassolov VS. High Expression Level of SP1, CSF1R, and PAK1 Correlates with Sensitivity of Leukemia Cells to the Antibiotic Mithramycin. Mol Biol 2020. [DOI: 10.1134/s002689332003019x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|