501
|
Yan J, Walz K, Nakamura H, Carattini-Rivera S, Zhao Q, Vogel H, Wei N, Justice MJ, Bradley A, Lupski JR. COP9 signalosome subunit 3 is essential for maintenance of cell proliferation in the mouse embryonic epiblast. Mol Cell Biol 2003; 23:6798-808. [PMID: 12972600 PMCID: PMC193933 DOI: 10.1128/mcb.23.19.6798-6808.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Csn3 (Cops3) maps to the mouse chromosome 11 region syntenic to the common deletion interval for the Smith-Magenis syndrome, a contiguous gene deletion syndrome. It encodes the third subunit of an eight-subunit protein complex, the COP9 signalosome (CSN), which controls a wide variety of molecules of different functions. Mutants of this complex caused lethality at early development of both plants and Drosophila melanogaster. CSN function in vivo in mammals is unknown. We disrupted the murine Csn3 gene in three independent ways with insertional vectors, including constructing a approximately 3-Mb inversion chromosome. The heterozygous mice appeared normal, although the protein level was reduced. Csn3(-/-) embryos arrested after 5.5 days postcoitum (dpc) and resorbed by 8.5 dpc. Mutant embryos form an abnormal egg cylinder which does not gastrulate. They have reduced numbers of epiblast cells, mainly due to increased cell death. In the Csn3(-/-) mice, subunit 8 of the COP9 complex was not detected by immunohistochemical techniques, suggesting that the absence of Csn3 may disrupt the entire COP9 complex. Therefore, Csn3 is important for maintaining the integrity of the COP9 signalosome and is crucial to maintain the survival of epiblast cells and thus the development of the postimplantation embryo in mice.
Collapse
Affiliation(s)
- Jiong Yan
- Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
502
|
Lykke-Andersen K, Schaefer L, Menon S, Deng XW, Miller JB, Wei N. Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death. Mol Cell Biol 2003; 23:6790-7. [PMID: 12972599 PMCID: PMC193936 DOI: 10.1128/mcb.23.19.6790-6797.2003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Revised: 05/19/2003] [Accepted: 06/27/2003] [Indexed: 11/20/2022] Open
Abstract
Csn2 (Trip15/Cops2/Alien) encodes the second subunit of the COP9 signalosome (CSN), an eight-subunit heteromeric complex homologous to the lid subcomplex of the 26S proteasome. CSN is a regulator of SCF (Skp1-cullin-F-box protein)ubiquitin ligases, mostly through the enzymatic activity that deconjugates the ubiquitin-like protein Nedd8 from the SCF Cul1 component. In addition, CSN associates with protein kinase activities targeting p53, c-Jun, and IkappaB for phosphorylation. Csn2 also interacts with and regulates a subset of nuclear hormone receptors and is considered a novel corepressor. We report that targeted disruption of Csn2 in mice caused arrest of embryo development at the peri-implantation stage. Csn2(-/-) blastocysts failed to outgrow in culture and exhibited a cell proliferation defect in inner cell mass, accompanied by a slight decrease in Oct4. In addition, lack of Csn2 disrupted the CSN complex and resulted in a drastic increase in cyclin E, supporting a role for CSN in cooperating with the SCF-ubiquitin-proteasome system to regulate protein turnover. Furthermore, Csn2(-/-) embryos contained elevated levels of p53 and p21, which may contribute to premature cell cycle arrest of the mutant.
Collapse
Affiliation(s)
- Karin Lykke-Andersen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | | | | | | | |
Collapse
|
503
|
|
504
|
Abstract
COP9 Signalosome (CSN) is a fascinating protein complex whose biochemical and physiological functions are only beginning to be understood. It is conserved throughout eukaryotes and is critical to the proper development of all multicellular organisms in which its function has been explored. Recent work suggests that CSN plays a key role in sustaining the activity of SCF and other cullin-based ubiquitin ligases, which may account for its essential roles in development. Here, we summarize what is known about CSN, and discuss hypotheses for how CSN promotes the activity of SCF ubiquitin ligases.
Collapse
Affiliation(s)
- Gregory A Cope
- Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | |
Collapse
|
505
|
Wong BR, Parlati F, Qu K, Demo S, Pray T, Huang J, Payan DG, Bennett MK. Drug discovery in the ubiquitin regulatory pathway. Drug Discov Today 2003; 8:746-54. [PMID: 12944097 DOI: 10.1016/s1359-6446(03)02780-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ubiquitin system has been implicated in the pathogenesis of numerous disease states, including oncogenesis, inflammation, viral infection, CNS disorders and metabolic dysfunction. Ubiquitin conjugation and deconjugation to substrate proteins is carried out by multiple families of proteins, each with a defined role in the enzymatic cascade. This conjugation-deconjugation system parallels the kinase-phosphatase system in that both alter protein function by the addition and removal of post-translational modifiers. Our understanding of ubiquitin biology and strategies to interfere pharmacologically with the ubiquitin regulatory machinery is progressing rapidly. In light of increased interest in ubiquitin pathways as drug targets, we review the ubiquitin enzymatic cascades, highlighting therapeutic opportunities and enzymatic mechanisms. We also discuss the challenges of targeting this class of enzymes with small molecules, as well as current approaches and progress in drug discovery.
Collapse
Affiliation(s)
- Brian R Wong
- Rigel Pharmaceuticals, 1180 Veterans Blvd South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
506
|
Lundgren J, Masson P, Realini CA, Young P. Use of RNA interference and complementation to study the function of the Drosophila and human 26S proteasome subunit S13. Mol Cell Biol 2003; 23:5320-30. [PMID: 12861018 PMCID: PMC165711 DOI: 10.1128/mcb.23.15.5320-5330.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The S13 subunit (also called Pad1, Rpn11, and MPR1) is a component of the 19S complex, a regulatory complex essential for the ubiquitin-dependent proteolytic activity of the 26S proteasome. To address the functional role of S13, we combined double-stranded RNA interference (RNAi) against the Drosophila proteasome subunit DmS13 with expression of wild-type and mutant forms of the homologous human gene, HS13. These studies show that DmS13 is essential for 26S function. Loss of the S13 subunit in metazoan cells leads to increased levels of ubiquitin conjugates, cell cycle defects, DNA overreplication, and apoptosis. In vivo assays using short-lived proteasome substrates confirmed that the 26S ubiquitin-dependent degradation pathway is compromised in S13-depleted cells. In complementation experiments using Drosophila cell lines expressing HS13, wild-type HS13 was found to fully rescue the knockdown phenotype after DmS13 RNAi treatment, while an HS13 containing mutations (H113A-H115A) in the proposed isopeptidase active site was unable to rescue. A mutation within the conserved MPN/JAMM domain (C120A) abolished the ability of HS13 to rescue the Drosophila cells from apoptosis or DNA overreplication. However, the C120A mutant was found to partially restore normal levels of ubiquitin conjugates. The S13 subunit may possess multiple functions, including a deubiquitinylating activity and distinct activities essential for cell cycle progression that require the conserved C120 residue.
Collapse
Affiliation(s)
- Josefin Lundgren
- Department of Molecular Biology and Functional Genetics, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
507
|
Gan-Erdene T, Nagamalleswari K, Yin L, Wu K, Pan ZQ, Wilkinson KD. Identification and characterization of DEN1, a deneddylase of the ULP family. J Biol Chem 2003; 278:28892-900. [PMID: 12759362 DOI: 10.1074/jbc.m302890200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify deneddylases, proteases with specificity for hydrolysis of Nedd8 derivatives, a facile method was developed for the synthesis of Nedd8 amidomethylcoumarin (a substrate) and Nedd8 vinyl sulfone (an inhibitor). Deneddylase activity is necessary to reverse the conjugation of Nedd8 to cullin, a modification that regulates at least some ubiquitin ligases. The reaction of Nedd8 vinyl sulfone with L-M(TK-) mouse fibroblast lysates identified two deneddylases. The deubiquitinating enzyme UCH-L3 is labeled by both ubiquitin vinyl sulfone and Nedd8 vinyl sulfone. In contrast, a second and more selective enzyme is labeled only by Nedd8 vinyl sulfone. This protein, DEN1, is a 221-amino acid thiol protease that is encoded by an open reading frame previously annotated as SENP8. Recombinant human DEN1 shows significant specificity for Nedd8 and catalyzes the hydrolysis of Nedd8 amidomethylcoumarin with a Km of 51 nm and a kcat of7s-1. The catalytic efficiency of DEN1 acting upon ubiquitin amidomethylcoumarin is 6 x 10-4 that of Nedd8 amidomethylcoumarin and its activity on SUMO-1 amidomethylcoumarin is undetectable. This selectivity was unexpected as DEN1 is most closely related to enzymes that catalyze desumoylation. This observation expands to four the number of DUB families with members that can process the C terminus of Nedd8.
Collapse
Affiliation(s)
- Tudeviin Gan-Erdene
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
508
|
Devoto A, Muskett PR, Shirasu K. Role of ubiquitination in the regulation of plant defence against pathogens. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:307-11. [PMID: 12873523 DOI: 10.1016/s1369-5266(03)00060-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ubiquitination is emerging as a common regulatory mechanism that controls a range of cellular processes in plants. Recent exciting discoveries from several laboratories suggest that ubiquitination may also play an important role in plant disease resistance. Several putative ubiquitin ligases have been identified as defence regulators. In addition, a combination of genetic screens and gene-silencing technologies has identified subunits and proposed regulators of SCF ubiquitin ligases as essential components of resistance (R)-gene-mediated resistance. Although no ubiquitin ligase targets that are associated with disease resistance have yet been identified in plants, there is evidence that this well-known protein-modification system may regulate plant defences against pathogens.
Collapse
Affiliation(s)
- Alessandra Devoto
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
509
|
Wu K, Yamoah K, Dolios G, Gan-Erdene T, Tan P, Chen A, Lee CG, Wei N, Wilkinson KD, Wang R, Pan ZQ. DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1. J Biol Chem 2003; 278:28882-91. [PMID: 12759363 DOI: 10.1074/jbc.m302888200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nedd8 activates ubiquitination by increasing the efficiency of polyubiquitin chain assembly through its covalent conjugation to cullin molecules. Here we report the isolation, cloning, and characterization of a novel human Nedd8-specific protease called DEN1. Human DEN1 is encoded by AAH31411.1, a previously uncharacterized protein of 212 amino acids that shares homology with the Ulp1 cysteinyl SUMO deconjugating enzyme family. Recombinant human DEN1, purified from bacteria, selectively binds to Nedd8 and hydrolyzes C-terminal derivatives of Nedd8. Interestingly, DEN1 deconjugates cullin 1 (CUL1)-Nedd8 in a concentration-dependent manner. At a low concentration, DEN1 processes hyper-neddylated CUL1 to yield a mononeddylated form, which presumably contains the Lys-720CUL1-Nedd8 linkage. At elevated concentrations, DEN1 is able to complete the removal of Nedd8 from CUL1. These activities distinguish DEN1 from the COP9 signalosome, which is capable of efficiently cleaving the Lys-720CUL1-Nedd8 conjugate, but lacks Nedd8 C-terminal hydrolytic activity and poorly processes hyperneddylated CUL1. These results suggest a unique role for DEN1 in regulating the modification of cullins by Nedd8.
Collapse
Affiliation(s)
- Kenneth Wu
- Derald H. Ruttenberg Cancer Center and Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
510
|
Busch S, Eckert SE, Krappmann S, Braus GH. The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol Microbiol 2003; 49:717-30. [PMID: 12864854 DOI: 10.1046/j.1365-2958.2003.03612.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The COP9 signalosome (CSN) is a conserved multiprotein complex involved in regulation of eukaryotic development. The deduced amino acid sequences of two Aspergillus nidulans genes, csnD and csnE, show high identities to the fourth and fifth CSN subunits of higher eukaryotes. The csnD transcript is abundant during vegetative growth as well as development and the corresponding protein accumulates in the nucleus. Strains deleted for either csn gene are viable and show identical mutant phenotypes at conditions that allow development: hyphae appear partly red and contain cells of reduced size. Additionally, light dependence of propagation onset is affected. The Delta csn mutants are capable of initiating the sexual cycle and develop primordia, but maturation to sexual fruit bodies is blocked. This developmental arrest could not be overcome by overexpression of the sexual activator velvet (VEA). We conclude that the COP9 signalosome in A. nidulans is a key regulator of sexual development, and its proposed structural and functional conservation to the CSN of higher eukaryotes enables studies on this regulatory complex in a genetically amenable organism.
Collapse
Affiliation(s)
- Silke Busch
- Institut für Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
511
|
Makarova KS, Koonin EV. Comparative genomics of Archaea: how much have we learned in six years, and what's next? Genome Biol 2003; 4:115. [PMID: 12914651 PMCID: PMC193635 DOI: 10.1186/gb-2003-4-8-115] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Archaea comprise one of the three distinct domains of life (with bacteria and eukaryotes). With 16 complete archaeal genomes sequenced to date, comparative genomics has revealed a conserved core of 313 genes that are represented in all sequenced archaeal genomes, plus a variable 'shell' that is prone to lineage-specific gene loss and horizontal gene exchange. The majority of archaeal genes have not been experimentally characterized, but novel functional pathways have been predicted.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
512
|
Mendoza HM, Shen LN, Botting C, Lewis A, Chen J, Ink B, Hay RT. NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J Biol Chem 2003; 278:25637-43. [PMID: 12730221 DOI: 10.1074/jbc.m212948200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ubiquitin-like protein NEDD8 is essential for activity of SCF-like ubiquitin ligase complexes. Here we identify and characterize NEDP1, a human NEDD8-specific protease. NEDP1 is highly conserved throughout evolution and equivalent proteins are present in yeast, plants, insects, and mammals. Bacterially expressed NEDP1 is capable of processing NEDD8 in vitro to expose the diglycine motif required for conjugation and can deconjugate NEDD8 from modified substrates. NEDP1 appears to be specific for NEDD8 as neither ubiquitin nor SUMO bearing COOH-terminal extensions are utilized as substrates. Inhibition studies and mutagenesis indicate that NEDP1 is a cysteine protease with sequence similarities to SUMO-specific proteases and the class of viral proteases typified by the adenovirus protease. In vivo NEDP1 deconjugates NEDD8 from a wide variety of substrates including the cullin component of SCF-like complexes. Thus NEDP1 is likely to play an important role in ubiquitin-mediated proteolysis by controlling the activity of SCF complexes.
Collapse
Affiliation(s)
- Heidi M Mendoza
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, North Haugh, St. Andrews, Fife KY169AL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
513
|
Kikuchi K, Ishii N, Asao H, Sugamura K. Identification of AMSH-LP containing a Jab1/MPN domain metalloenzyme motif. Biochem Biophys Res Commun 2003; 306:637-43. [PMID: 12810066 DOI: 10.1016/s0006-291x(03)01009-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have isolated a cDNA clone encoding a new AMSH (associated molecule with the SH3 domain of STAM) family protein, termed AMSH-like protein (AMSH-LP). AMSH-LP has similar characteristics to AMSH; both AMSH-LP and AMSH are expressed ubiquitously in various human tissues, contain a putative nuclear localization signal (NLS), an Mpr/Pad1/N-terminal (MPN) domain, and a Jab1/MPN domain metalloenzyme (JAMM) motif in their structures, and are excluded from the nucleus when lacking either the NLS or MPN domain. Moreover, we observed an enhancement of interleukin 2 (IL-2)-mediated c-myc induction in AMSH-LP-transfected cells similar to that seen in AMSH-transfected cells, suggesting a functional similarity between AMSH-LP and AMSH. However, the present study demonstrated that AMSH-LP, unlike AMSH, fails to bind to the SH3 domains of STAM1 (signal transducing adaptor molecule 1) and Grb2. These results suggest that AMSH-LP and AMSH may have different functions.
Collapse
Affiliation(s)
- Kazu Kikuchi
- Department of Immunology and Microbiology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, 980-8575, Sendai, Japan
| | | | | | | |
Collapse
|
514
|
Peng Z, Shen Y, Feng S, Wang X, Chitteti BN, Vierstra RD, Deng XW. Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases in vivo. Curr Biol 2003; 13:R504-5. [PMID: 12842023 DOI: 10.1016/s0960-9822(03)00439-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
515
|
Puente XS, Sánchez LM, Overall CM, López-Otín C. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 2003; 4:544-58. [PMID: 12838346 DOI: 10.1038/nrg1111] [Citation(s) in RCA: 639] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The availability of the human and mouse genome sequences has allowed the identification and comparison of their respective degradomes--the complete repertoire of proteases that are produced by these organisms. Because of the essential roles of proteolytic enzymes in the control of cell behaviour, survival and death, degradome analysis provides a useful framework for the global exploration of these protease-mediated functions in normal and pathological conditions.
Collapse
Affiliation(s)
- Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | |
Collapse
|
516
|
Ou CY, Pi H, Chien CT. Control of protein degradation by E3 ubiquitin ligases in Drosophila eye development. Trends Genet 2003; 19:382-9. [PMID: 12850443 DOI: 10.1016/s0168-9525(03)00146-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chan-Yen Ou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
517
|
Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K, Kreike MM, Beyaert R, Blundell TL, Kilshaw PJ. A novel type of deubiquitinating enzyme. J Biol Chem 2003; 278:23180-6. [PMID: 12682062 DOI: 10.1074/jbc.m301863200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previous report from this laboratory described two novel proteins that have sequence similarity to A20, a negative regulator of NF-kappaB (Evans, P. C., Taylor, E. R., Coadwell, J., Heyninck, K., Beyaert, R., and Kilshaw, P. J. (2001) Biochem. J. 357, 617-623). One of these molecules, cellular zinc finger anti-NF-kappaB (Cezanne), a 100-kDa cytoplasmic protein, also suppressed NF-kappaB. Here we demonstrate that Cezanne is a novel deubiquitinating enzyme, distinct from the two known families of deubiquitinases, Types I and II. We show that Cezanne contains an N-terminal catalytic domain that belongs to the recently discovered ovarian tumor protein (OTU) superfamily, a group of proteins displaying structural similarity to cysteine proteases but having no previously described function. Recombinant Cezanne cleaved ubiquitin monomers from linear or branched synthetic ubiquitin chains and from ubiquitinated proteins. Mutation of a conserved cysteine residue in the catalytic site of the proteolytic domain caused Cezanne to co-precipitate polyubiquitinated cellular proteins. We also provide evidence for an additional ubiquitin binding site in the C-terminal part of the molecule. Our data provide the first demonstration of functional activity among OTU proteins.
Collapse
Affiliation(s)
- Paul C Evans
- Molecular Immunology Programme, The Babraham Institute, Cambridge CB2 4AT, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
518
|
Abstract
The biological functions of many proteins are altered by their covalent attachment to polypeptide modifiers. The best-known example of this type of modification is ubiquitination. Ubiquitin has a well-documented role in targeting proteins for degradation by the proteasome, but additional effects of protein ubiquitination are now being uncovered. Furthermore, multiple polypeptides that are distinct from, but related to, ubiquitin are also enzymatically coupled to target macromolecules, and these ubiquitin-like proteins participate in diverse biological processes such as DNA repair, autophagy and signal transduction.
Collapse
Affiliation(s)
- David C Schwartz
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
519
|
Yamamoto T, Kimura S, Mori Y, Uchiyama Y, Ishibashi T, Hashimoto J, Sakaguchi K. Interaction between proliferating cell nuclear antigen and JUN-activation-domain-binding protein 1 in the meristem of rice, Oryza sativa L. PLANTA 2003; 217:175-183. [PMID: 12783325 DOI: 10.1007/s00425-003-0981-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Accepted: 12/30/2002] [Indexed: 05/24/2023]
Abstract
The eukaryotic polymerase processivity factor, proliferating cell nuclear antigen (PCNA), interacts with many cell cycle-regulator proteins and with proteins involved in the mechanisms of DNA replication and repair. In the present study using two-hybrid analysis with PCNA from rice, Oryza sativa L. cv. Nipponbare (OsPCNA), we found that OsPCNA interacted in vitro and in vivo with rice JUN-activation-domain-binding protein 1 (OsJab1), which is known as COP9/signalsome subunit 5. Both OsPCNA and OsJab1 transcripts were expressed strongly in the shoot apical meristem and weakly in young leaves, flag leaves, ears, roots and root tips. No expression was detected in the mature leaves. The OsPCNA and OsJab1 proteins were expressed and accumulated mostly in the shoot apical meristem and ears, suggesting that OsJab1 is involved in cell proliferation in cooperation with OsPCNA. The role of OsPCNA with OsJab1 in plant DNA proliferation is discussed.
Collapse
Affiliation(s)
- Taichi Yamamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, 278-8510, Chiba-ken, Japan
| | | | | | | | | | | | | |
Collapse
|
520
|
Pintard L, Kurz T, Glaser S, Willis JH, Peter M, Bowerman B. Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr Biol 2003; 13:911-21. [PMID: 12781129 DOI: 10.1016/s0960-9822(03)00336-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND SCF (Skp1-Cullin-F-box) complexes are a major class of E3 ligases that are required to selectively target substrates for ubiquitin-dependent degradation by the 26S proteasome. Conjugation of the ubiquitin-like protein Nedd8 to the cullin subunit (neddylation) positively regulates activity of SCF complexes, most likely by increasing their affinity for the E2 conjugated to ubiquitin. The Nedd8 conjugation pathway is required in C. elegans embryos for the ubiquitin-mediated degradation of the microtubule-severing protein MEI-1/Katanin at the meiosis-to-mitosis transition. Genetic experiments suggest that this pathway controls the activity of a CUL-3-based E3 ligase. Counteracting the Nedd8 pathway, the COP9/signalosome has been shown to promote deneddylation of the cullin subunit. However, little is known about the role of neddylation and deneddylation for E3 ligase activity in vivo. RESULTS Here, we identified and characterized the COP9/signalosome in C. elegans and showed that it promotes deneddylation of CUL-3, a critical target of the Nedd8 conjugation pathway. As in other species, the C. elegans signalosome is a macromolecular complex containing at least six subunits that localizes in the nucleus and the cytoplasm. Reducing COP9/signalosome function by RNAi results in a failure to degrade MEI-1, leading to severe defects in microtubule-dependent processes during the first mitotic division. Intriguingly, reducing COP9/signalosome function suppresses a partial defect in the neddylation pathway; this suppression suggests that deneddylation and neddylation antagonize each other. CONCLUSIONS We conclude that both neddylation and deneddylation of CUL-3 is required for MEI-1 degradation and propose that cycles of CUL-3 neddylation and deneddylation are necessary for its ligase activity in vivo.
Collapse
Affiliation(s)
- Lionel Pintard
- Institute of Biochemistry, HPM G.10.1, ETH Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
521
|
Groisman R, Polanowska J, Kuraoka I, Sawada JI, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 2003; 113:357-67. [PMID: 12732143 DOI: 10.1016/s0092-8674(03)00316-7] [Citation(s) in RCA: 539] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nucleotide excision repair (NER) is a major cellular defense against the carcinogenic effects of ultraviolet light from the sun. Mutational inactivation of NER proteins, like DDB and CSA, leads to hereditary diseases such as xeroderma pigmentosum (XP) and Cockayne syndrome (CS). Here, we show that DDB2 and CSA are each integrated into nearly identical complexes via interaction with DDB1. Both complexes contain cullin 4A and Roc1 and display ubiquitin ligase activity. They also contain the COP9 signalosome (CSN), a known regulator of cullin-based ubiquitin ligases. Strikingly, CSN differentially regulates ubiquitin ligase activity of the DDB2 and CSA complexes in response to UV irradiation. Knockdown of CSN with RNA interference leads to defects in NER. These results suggest that the distinct UV response of the DDB2 and CSA complexes is involved in diverse mechanisms of NER.
Collapse
Affiliation(s)
- Regina Groisman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
522
|
Deubiquitinating enzymes--the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol 2003; 35:590-605. [PMID: 12672452 DOI: 10.1016/s1357-2725(02)00392-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitination of proteins is now recognized to target proteins for degradation by the proteasome and for internalization into the lysosomal system, as well as to modify functions of some target proteins. Although much progress has been made in characterizing enzymes that link ubiquitin to proteins, our understanding of deubiquitinating enzymes is less developed. These enzymes are involved in processing the products of ubiquitin genes which all encode fusion proteins, in negatively regulating the functions of ubiquitination (editing), in regenerating free ubiquitin after proteins have been targeted to the proteasome or lysosome (recycling) and in salvaging ubiquitin from possible adducts formed with small molecule nucleophiles in the cell. A large number of genes encode deubiquitinating enzymes suggesting that many have highly specific and regulated functions. Indeed, recent findings provide strong support for the concept that ubiquitination is regulated by both specific pathways of ubiquitination and deubiquitination. Interestingly, many of these enzymes are localized to subcellular structures or to molecular complexes. These localizations play important roles in determining specificity of function and can have major influences on their catalytic activities. Future studies, particularly aimed at characterizing the interacting partners and potential substrates in these complexes as well as at determining the effects of loss of function of specific deubiquitinating enzymes will rapidly advance our understanding of the important roles of these enzymes as biological regulators.
Collapse
|
523
|
Liu C, Powell KA, Mundt K, Wu L, Carr AM, Caspari T. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms. Genes Dev 2003; 17:1130-40. [PMID: 12695334 PMCID: PMC196048 DOI: 10.1101/gad.1090803] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The signalosome is implicated in regulating cullin-dependent ubiquitin ligases. We find that two signalosome subunits, Csn1 and Csn2, are required to regulate ribonucleotide reductase (RNR) through the degradation of a small protein, Spd1, that acts to anchor the small RNR subunit in the nucleus. Spd1 destruction correlates with the nuclear export of the small RNR subunit, which, in turn, correlates with a requirement for RNR in replication and repair. Spd1 degradation is promoted by two separate CSN-dependent mechanisms. During unperturbed S phase, Spd1 degradation is independent of checkpoint proteins. In irradiated G2 cells, Spd1 degradation requires the DNA damage checkpoint. The signalosome copurifies with Pcu4 (cullin 4). Pcu4, Csn1, and Csn2 promote the degradation of Spd1, identifying a new function for the signalosome as a regulator of Pcu4-containing E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Cong Liu
- Genome Damage and Stability Centre, University of Sussex, Falmer, BN1 9RQ, UK
| | | | | | | | | | | |
Collapse
|
524
|
Maytal-Kivity V, Pick E, Piran R, Hofmann K, Glickman MH. The COP9 signalosome-like complex in S. cerevisiae and links to other PCI complexes. Int J Biochem Cell Biol 2003; 35:706-15. [PMID: 12672462 DOI: 10.1016/s1357-2725(02)00378-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The COP9 signalosome (CSN), the lid subcomplex of the proteasome and translational initiation factor 3 (eIF3) share structural similarities and are often referred to as the PCI family of complexes. In multicellular eukaryotes, the CSN is highly conserved as an 8-subunit complex but in Saccharomyces cerevisiae the complex is rather divergent. We further characterize the composition and properties of the CSN in budding yeast and its interactions with these related complexes. Using the generalized profile method we identified CSN candidates, four with PCI domains: Csn9, Csn10, Pci8/Csn11, and Csn12, and one with an MPN domain, Csn5/Rri1. These proteins and an additional interactor, Csi1, were tested for pairwise interactions by yeast two-hybrid and were found to form a cluster surrounding Csn12. Csn5 and Csn12 cofractionate in a complexed form with an apparent molecular weight of roughly 250kDa. However, Csn5 migrates as a monomer in Deltacsn12 supporting the pivotal role of Csn12 in stabilizing the complex. Confocal fluorescence microscopy detects GFP-tagged Csn5 preferentially in the nucleus, whereas in absence of Csn12, Csn10, Pci8/Csn11, or Csi1, Csn5 is delocalized throughout the cell, indicating that multiple subunits are required for nuclear localization of Csn5. Two CSN subunits, Csn9 and Csi1, interact with the proteasome lid subunit Rpn5. Pci8/Csn11 has previously been shown to interact with eIF3. Together, these results point to a network of interactions between these three structurally similar, yet functionally diverse, complexes.
Collapse
Affiliation(s)
- Vered Maytal-Kivity
- Department of Biology and Institute for Catalysis Science and Technology (ICST), Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | | | | | | | | |
Collapse
|
525
|
Doronkin S, Djagaeva I, Beckendorf SK. The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. Dev Cell 2003; 4:699-710. [PMID: 12737805 DOI: 10.1016/s1534-5807(03)00121-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The COP9 signalosome (CSN) is an eight-subunit complex that regulates multiple signaling and cell cycle pathways. Here we link the CSN to the degradation of Cyclin E, which promotes the G1-S transition in the cell cycle and then is rapidly degraded by the ubiquitin-proteasome pathway. Using CSN4 and CSN5/Jab1 mutants, we show that the CSN acts during Drosophila oogenesis to remove Nedd8 from Cullin1, a subunit of the SCF ubiquitin ligase. Overexpression of Cyclin E causes similar defects as mutations in CSN or SCF(Ago) subunits: extra divisions or, in contrast, cell cycle arrest and polyploidy. Because the phenotypes are so similar and because CSN and Cyclin E mutations reciprocally suppress each other, Cyclin E appears to be the major target of the CSN during early oogenesis. Genetic interactions among CSN, SCF, and proteasome subunits further confirm CSN involvement in ubiquitin-mediated Cyclin E degradation.
Collapse
Affiliation(s)
- Sergey Doronkin
- Department of Molecular and Cell Biology, University of California, Berkeley, 401 Barker Hall, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
526
|
Hwang JW, Min KW, Tamura TA, Yoon JB. TIP120A associates with unneddylated cullin 1 and regulates its neddylation. FEBS Lett 2003; 541:102-8. [PMID: 12706828 DOI: 10.1016/s0014-5793(03)00321-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cullin-containing E3 ubiquitin ligases play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. We recently identified TIP120A as a cullin-interacting protein and found that TIP120A functions as a negative regulator of a ubiquitin ligase by interfering with the binding of Skp1 and an F box protein to CUL1. Here we show that TIP120A binds to the unneddylated CUL1 but not the neddylated one. The association of TIP120A with CUL1 requires both the N-terminal stalk and the C-terminal globular domain of CUL1. TIP120A efficiently inhibits neddylation of CUL1 but does not affect substrate-independent ubiquitination by CUL1/Rbx1, implying that it blocks the access of Nedd8 to the conjugation site but does not interfere with the interaction of the ubiquitin-conjugating enzyme with Rbx1. Our data suggest that the association/dissociation of TIP120A coupled to neddylation/deneddylation of CUL1 may play an important role in assembly and disassembly of Skp1-Cdc53/cullin-F box ubiquitin ligases.
Collapse
Affiliation(s)
- Ji-Won Hwang
- Department of Biochemistry, College of Science and Protein Network Research Center, Yonsei University, Seoul, South Korea
| | | | | | | |
Collapse
|
527
|
Oshikawa K, Matsumoto M, Yada M, Kamura T, Hatakeyama S, Nakayama KI. Preferential interaction of TIP120A with Cul1 that is not modified by NEDD8 and not associated with Skp1. Biochem Biophys Res Commun 2003; 303:1209-16. [PMID: 12684064 DOI: 10.1016/s0006-291x(03)00501-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The SCF complex, which consists of the invariable components Skp1, Cul1, and Rbx1 as well as a variable F-box protein, functions as an E3 ubiquitin ligase. The mechanism by which the activity of this complex is regulated, however, has been unclear. The application of tandem affinity purification has now resulted in the identification of a novel Cul1-binding protein: TATA-binding protein-interacting protein 120A (TIP120A, also called CAND1). Immunoprecipitation, immunoblot, and immunofluorescence analyses with mammalian cells revealed that TIP120A physically associates with Cul1 in the nucleus and that this interaction is mediated by a central region of Cul1 distinct from its binding sites for Skp1 and Rbx1. Furthermore, TIP120A was shown to interact selectively with Cul1 that is not modified by NEDD8. The Cul1-TIP120A complex does not include Skp1, raising the possibility that TIP120A competes with Skp1 for binding to Cul1. These observations thus suggest that TIP120A may function as a negative regulator of the SCF complex by binding to nonneddylated Cul1 and thereby preventing assembly of this ubiquitin ligase.
Collapse
Affiliation(s)
- Kiyotaka Oshikawa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
528
|
Mayor T. [A cryptic protease couples deubiquitination and degradation by the proteasome]. Med Sci (Paris) 2003; 19:401-3. [PMID: 12836208 DOI: 10.1051/medsci/2003194401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
529
|
Zhou C, Wee S, Rhee E, Naumann M, Dubiel W, Wolf DA. Fission Yeast COP9/Signalosome Suppresses Cullin Activity through Recruitment of the Deubiquitylating Enzyme Ubp12p. Mol Cell 2003; 11:927-38. [PMID: 12718879 DOI: 10.1016/s1097-2765(03)00136-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The COP9/signalosome (CSN) is known to remove the stimulatory NEDD8 modification from cullins. The activity of the fission yeast cullins Pcu1p and Pcu3p is dramatically stimulated when retrieved from csn mutants but inhibited by purified CSN. This inhibition is independent of cullin deneddylation but mediated by the CSN-associated deubiquitylating enzyme Ubp12p, which forms a complex with Pcu3p in a CSN-dependent manner. In ubp12 mutants, as in csn mutants, Pcu3p activity is stimulated. CSN is required for efficient targeting of Ubp12p to the nucleus, where both cullins reside. Finally, the CSN/Ubp12p pathway maintains the stability of the Pcu1p-associated substrate-specific adaptor protein Pop1p. We propose that CSN/Ubp12p-mediated deubiquitylation creates an environment for the safe de novo assembly of cullin complexes by counteracting the autocatalytic destruction of adaptor proteins.
Collapse
Affiliation(s)
- Chunshui Zhou
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
530
|
Uhle S, Medalia O, Waldron R, Dumdey R, Henklein P, Bech-Otschir D, Huang X, Berse M, Sperling J, Schade R, Dubiel W. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J 2003; 22:1302-12. [PMID: 12628923 PMCID: PMC151059 DOI: 10.1093/emboj/cdg127] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The COP9 signalosome (CSN) purified from human erythrocytes possesses kinase activity that phosphoryl ates proteins such as c-Jun and p53 with consequence for their ubiquitin (Ub)-dependent degradation. Here we show that protein kinase CK2 (CK2) and protein kinase D (PKD) co-purify with CSN. Immunoprecipitation and far-western blots reveal that CK2 and PKD are in fact associated with CSN. As indicated by electron microscopy with gold-labeled ATP, at least 10% of CSN particles are associated with kinases. Kinase activity, most likely due to CK2 and PKD, co-immuno precipitates with CSN from HeLa cells. CK2 binds to DeltaCSN3(111-403) and CSN7, whereas PKD interacts with full-length CSN3. CK2 phosphorylates CSN2 and CSN7, and PKD modifies CSN7. Both CK2 and PKD phosphorylate c-Jun as well as p53. CK2 phosphoryl ates Thr155, which targets p53 to degradation by the Ub system. Curcumin, emodin, DRB and resveratrol block CSN-associated kinases and induce degradation of c-Jun in HeLa cells. Curcumin treatment results in elevated amounts of c-Jun-Ub conjugates. We conclude that CK2 and PKD are recruited by CSN in order to regulate Ub conjugate formation.
Collapse
Affiliation(s)
| | - Ohad Medalia
- Division of Molecular Biology, Department of Surgery, Institutes of
Biochemistry and Pharmacology and Toxicology, Medical Faculty Charité, Humboldt University, Monbijoustrasse 2, D-10117 Berlin, Department of Structural Biology, Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany, Department of Medicine, Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, CA 90095-1786, USA and Department of Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Richard Waldron
- Division of Molecular Biology, Department of Surgery, Institutes of
Biochemistry and Pharmacology and Toxicology, Medical Faculty Charité, Humboldt University, Monbijoustrasse 2, D-10117 Berlin, Department of Structural Biology, Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany, Department of Medicine, Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, CA 90095-1786, USA and Department of Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | | | - Peter Henklein
- Division of Molecular Biology, Department of Surgery, Institutes of
Biochemistry and Pharmacology and Toxicology, Medical Faculty Charité, Humboldt University, Monbijoustrasse 2, D-10117 Berlin, Department of Structural Biology, Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany, Department of Medicine, Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, CA 90095-1786, USA and Department of Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | | | | | | | - Joseph Sperling
- Division of Molecular Biology, Department of Surgery, Institutes of
Biochemistry and Pharmacology and Toxicology, Medical Faculty Charité, Humboldt University, Monbijoustrasse 2, D-10117 Berlin, Department of Structural Biology, Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany, Department of Medicine, Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, CA 90095-1786, USA and Department of Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Rüdiger Schade
- Division of Molecular Biology, Department of Surgery, Institutes of
Biochemistry and Pharmacology and Toxicology, Medical Faculty Charité, Humboldt University, Monbijoustrasse 2, D-10117 Berlin, Department of Structural Biology, Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany, Department of Medicine, Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, CA 90095-1786, USA and Department of Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Wolfgang Dubiel
- Division of Molecular Biology, Department of Surgery, Institutes of
Biochemistry and Pharmacology and Toxicology, Medical Faculty Charité, Humboldt University, Monbijoustrasse 2, D-10117 Berlin, Department of Structural Biology, Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany, Department of Medicine, Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, CA 90095-1786, USA and Department of Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| |
Collapse
|
531
|
Serino G, Su H, Peng Z, Tsuge T, Wei N, Gu H, Deng XW. Characterization of the last subunit of the Arabidopsis COP9 signalosome: implications for the overall structure and origin of the complex. THE PLANT CELL 2003; 15:719-31. [PMID: 12615944 PMCID: PMC150025 DOI: 10.1105/tpc.009092] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Accepted: 12/15/2002] [Indexed: 05/18/2023]
Abstract
The COP9 signalosome (CSN) is an evolutionarily conserved protein complex that resembles the lid subcomplex of proteasomes. Through its ability to regulate specific proteasome-mediated protein degradation events, CSN controls multiple aspects of development. Here, we report the cloning and characterization of AtCSN2, the last uncharacterized CSN subunit from Arabidopsis. We show that the AtCSN2 gene corresponds to the previously identified FUS12 locus and that AtCSN2 copurifies with CSN, confirming that AtCSN2 is an integral component of CSN. AtCSN2 is not only able to interact with the SCF(TIR1) subunit AtCUL1, which is partially responsible for the regulatory interaction between CSN and SCF(TIR1), but also interacts with AtCUL3, suggesting that CSN is able to regulate the activity of other cullin-based E3 ligases through conserved interactions. Phylogenetic analysis indicated that the duplication and subsequent divergence events that led to the genes that encode CSN and lid subunits occurred before the divergence of unicellular and multicellular eukaryotic organisms and that the CSN subunits were more conserved than the lid subunits during evolution. Comparative analyses of the subunit interaction of CSN revealed a set of conserved subunit contacts and resulted in a model of CSN subunit topology, some aspects of which were substantiated by in vivo cross-link tests.
Collapse
Affiliation(s)
- Giovanna Serino
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | | | | | | | | | |
Collapse
|
532
|
Anantharaman V, Aravind L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol 2003; 4:R11. [PMID: 12620121 PMCID: PMC151301 DOI: 10.1186/gb-2003-4-2-r11] [Citation(s) in RCA: 281] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Revised: 12/03/2002] [Accepted: 12/20/2002] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Peptidoglycan is hydrolyzed by a diverse set of enzymes during bacterial growth, development and cell division. The N1pC/P60 proteins define a family of cell-wall peptidases that are widely represented in various bacterial lineages. Currently characterized members are known to hydrolyze D-gamma-glutamyl-meso-diaminopimelate or N-acetylmuramate-L-alanine linkages. RESULTS Detailed analysis of the N1pC/P60 peptidases showed that these proteins define a large superfamily encompassing several diverse groups of proteins. In addition to the well characterized P60-like proteins, this superfamily includes the AcmB/LytN and YaeF/YiiX families of bacterial proteins, the amidase domain of bacterial and kinetoplastid glutathionylspermidine synthases (GSPSs), and several proteins from eukaryotes, phages, poxviruses, positive-strand RNA viruses, and certain archaea. The eukaryotic members include lecithin retinol acyltransferase (LRAT), nematode developmental regulator Egl-26, and candidate tumor suppressor H-rev107. These eukaryotic proteins, along with the bacterial YaeF/poxviral G6R family, show a circular permutation of the catalytic domain. We identified three conserved residues, namely a cysteine, a histidine and a polar residue, that are involved in the catalytic activities of this superfamily. Evolutionary analysis of this superfamily shows that it comprises four major families, with diverse domain architectures in each of them. CONCLUSIONS Several related, but distinct, catalytic activities, such as murein degradation, acyl transfer and amide hydrolysis, have emerged in the N1pC/P60 superfamily. The three conserved catalytic residues of this superfamily are shown to be equivalent to the catalytic triad of the papain-like thiol peptidases. The predicted structural features indicate that the N1pC/P60 enzymes contain a fold similar to the papain-like peptidases, transglutaminases and arylamine acetyltransferases.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
533
|
Abstract
The isopeptide bonds formed by ubiquitin or its relatives are cleaved by hydrolases with active site cysteines. Recent studies have revealed that similar metalloprotease motifs--JAMMs--in the Rpn11 subunit of the 26S proteasome lid and in the Csn5 subunit of the COP9 signalosome are involved in deubiquitination and deneddylation, respectively.
Collapse
Affiliation(s)
- Christoph Berndt
- Department of Surgery, Division of Molecular Biology, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
534
|
Abstract
The foothills of the Rocky Mountains provided a spectacular setting for the American Society for Cell Biology (ASCB) meeting entitled 'Non-traditional functions of ubiquitin and ubiquitin-like proteins', Colorado College, Colorado Springs, CO, USA, on 11-14 August, 2002. Organizers Linda Hicke and Cecile Pickart put together an excellent programme of talks covering functions of ubiquitin other than its well known role in proteasomal targeting. The increasingly diverse biological processes in which the ubiquitin-like proteins (UBLs) are involved, also featured. One of the aims of the meeting was to bring together researchers working directly with ubiquitin and UBLs, and also those who have found that their favourite molecule or process is somehow influenced by these small versatile tags. As a result, delegates were treated to a diverse and highly stimulating meeting.
Collapse
|
535
|
Maytal-Kivity V, Piran R, Pick E, Hofmann K, Glickman MH. COP9 signalosome components play a role in the mating pheromone response of S. cerevisiae. EMBO Rep 2002; 3:1215-21. [PMID: 12446563 PMCID: PMC1308327 DOI: 10.1093/embo-reports/kvf235] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A family of genetically and structurally homologous complexes, the proteasome lid, Cop9 signalosome (CSN) and eukaryotic translation initiation factor 3, mediate different regulatory pathways. The CSN functions in numerous eukaryotes as a regulator of development and signaling, yet until now no evidence for a complex has been found in Saccharomyces cerevisiae. We identified a group of proteins, including a homolog of Csn5/Jab1 and four uncharacterized PCI components, that interact in a manner suggesting they form a complex analogous to the CSN in S. cerevisiae. These newly identified subunits play a role in adaptation to pheromone signaling. Deletants for individual subunits enhance pheromone response and increase mating efficiency. Overexpression of individual subunits or a human homolog mitigates sst2-induced pheromone sensitivity. Csi1, a novel CSN interactor, exhibits opposite phenotypes. Deletants also accumulate Cdc53/cullin in a Rub1-modified form; however, this role of the CSN appears to be distinct from that in the mating pathway.
Collapse
Affiliation(s)
- Vered Maytal-Kivity
- Department of Biology and Institute for Catalysis Science and Technology (ICST), Technion–Israel Institute of Technology, 32000 Haifa, Israel
- V. Maytal-Kivity, R. Piran and E. Golan contributed equally to this work
| | - Ron Piran
- Department of Biology and Institute for Catalysis Science and Technology (ICST), Technion–Israel Institute of Technology, 32000 Haifa, Israel
- V. Maytal-Kivity, R. Piran and E. Golan contributed equally to this work
| | - Elah Pick
- Department of Biology and Institute for Catalysis Science and Technology (ICST), Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Kay Hofmann
- Bioinformatics Group, MEMOREC Stoffel GmbH, D-50829 Köln, Germany
| | - Michael H. Glickman
- Department of Biology and Institute for Catalysis Science and Technology (ICST), Technion–Israel Institute of Technology, 32000 Haifa, Israel
- Tel: +972 4 8294552; Fax: +972 4 8225153;
| |
Collapse
|
536
|
Affiliation(s)
- Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
537
|
Verma R, Aravind L, Oania R, McDonald WH, Yates JR, Koonin EV, Deshaies RJ. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298:611-5. [PMID: 12183636 DOI: 10.1126/science.1075898] [Citation(s) in RCA: 778] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The 26S proteasome mediates degradation of ubiquitin-conjugated proteins. Although ubiquitin is recycled from proteasome substrates, the molecular basis of deubiquitination at the proteasome and its relation to substrate degradation remain unknown. The Rpn11 subunit of the proteasome lid subcomplex contains a highly conserved Jab1/MPN domain-associated metalloisopeptidase (JAMM) motif-EX(n)HXHX(10)D. Mutation of the predicted active-site histidines to alanine (rpn11AXA) was lethal and stabilized ubiquitin pathway substrates in yeast. Rpn11(AXA) mutant proteasomes assembled normally but failed to either deubiquitinate or degrade ubiquitinated Sic1 in vitro. Our findings reveal an unexpected coupling between substrate deubiquitination and degradation and suggest a unifying rationale for the presence of the lid in eukaryotic proteasomes.
Collapse
Affiliation(s)
- Rati Verma
- Department of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
538
|
Wee S, Hetfeld B, Dubiel W, Wolf DA. Conservation of the COP9/signalosome in budding yeast. BMC Genet 2002; 3:15. [PMID: 12186635 PMCID: PMC126249 DOI: 10.1186/1471-2156-3-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 08/20/2002] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The COP9/signalosome (CSN), a multiprotein complex consisting of eight subunits, is implicated in a wide variety of regulatory processes including cell cycle control, signal transduction, transcriptional activation, and plant photomorphogenesis. Some of these functions have been linked to CSN-associated enzymes, including kinases and an activity that removes the ubiquitin-like protein NEDD8/Rub1p from the cullin subunit of E3 ligases. CSN is highly conserved across species from fission yeast to humans, but sequence comparison has failed to identify the complex in budding yeast, except for a putative CSN5 subunit called Rri1p. RESULTS We show that disruption of four budding yeast genes, PCI8 and three previously uncharacterized ORFs, which encode proteins interacting with Rrr1p/Csn5p, each results in the accumulation of the cullin Cdc53p exclusively in the Rub1p-modified state. This phenotype, which resembles that of fission yeast csn mutants, is due to a biochemical defect in deneddylation that is complemented by wild-type cell lysate and by purified human CSN in vitro. Although three of the four genes encode proteins with PCI domains conserved in metazoan CSN proteins, their disruption does not confer the DNA damage sensitivity described in some fission yeast csn mutants. CONCLUSIONS Our studies present unexpected evidence for the conservation of a functional homologue of the metazoan CSN, which mediates control of cullin neddylation in budding yeast.
Collapse
Affiliation(s)
- Susan Wee
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, USA
| | - Bettina Hetfeld
- Department of Surgery, Division of Molecular Biology, Medical Faculty Charité Humboldt University, Germany
| | - Wolfgang Dubiel
- Department of Surgery, Division of Molecular Biology, Medical Faculty Charité Humboldt University, Germany
| | - Dieter A Wolf
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, USA
| |
Collapse
|
539
|
Wee S, Hetfeld B, Dubiel W, Wolf DA. Conservation of the COP9/signalosome in budding yeast. BMC Genet 2002. [DOI: 10.1186/1471-2156-3-41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|