551
|
Zhao G, Zhang H, Xu F, Lu C, Zhu Q, Grossi F, Divisi D, Ma T, Gu J, Ge D. Neoadjuvant pembrolizumab and chemotherapy in resectable clinical stage III non-small-cell lung cancer: a retrospective cohort study. Transl Lung Cancer Res 2023; 12:141-149. [PMID: 36762056 PMCID: PMC9903088 DOI: 10.21037/tlcr-22-871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Background Pembrolizumab has been shown to be effective and safe in improving the survival of patients with advanced non-small-cell lung cancer (NSCLC). However, the effectiveness and safty of pembrolizumab in the induction treatment of patients with potential resectable clinical stage III NSCLC remains undetermined. Methods A total of 25 patients who received neoadjuvant pembrolizumab plus chemotherapy for preoperative stage III NSCLC between August 2020 and November 2021 in Zhongshan Hospital were retrospectively evaluated, and 21 of them were followed by pulmonary resection. The neoadjuvant treatment was as follows: intravenous pembrolizumab (200 mg) on day 1, carboplatin [target area under the curve (AUC) 5 mg/mL] or cisplatin (75 mg/m2) on day 1, and pemetrexed (500 mg/m2 for adenocarcinoma) or nab-paclitaxel (260 mg/m2 for other subtypes) on day 1 of every 21-day cycle up to two or three cycles. Results The mean age of all 25 patients was 65 years, of whom 22 were men and 3 were women. Seventeen were diagnosed before treatment as clinical stage IIIA, seven as IIIB, and one as IIB. All received neoadjuvant immunotherapy plus chemotherapy. Following induction therapy, 21 patients with stable disease or partial response (PR) according to the Response Evaluation Criteria in Solid Tumors (RECIST 1.1) underwent surgical resection without delay. Among the patients who underwent operation, major pathological response (MPR) was achieved in 13 patients, including 6 (28.6%) patients achieved a complete pathological response (CPR). Two patients with partial radiologic remission refused operative treatment, one had progressive disease (PD), and another developed a grade immune pneumonia and could not tolerate surgery. However, none of the adverse events caused surgery delays or deaths. Conclusions Neoadjuvant pembrolizumab plus chemotherapy could be considered reliable for clinical stage III NSCLC, but needs to be validated with more robust clinical trials.
Collapse
Affiliation(s)
- Guangyin Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyu Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Francesco Grossi
- Medical Oncology Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Duilio Divisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Thoracic Surgery Unit, “Giuseppe Mazzini” Hospital of Teramo, Teramo, Italy
| | - Teng Ma
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
552
|
Zhu G, Shi Q, Zhao B, Liu Y, Feng T, Li C, Gao T. Efficacy and safety of interferon-alpha 1b combined with PD-1 monoclonal antibody in patients with unresectable stage IV melanoma: a retrospective study. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04596-3. [PMID: 36717393 DOI: 10.1007/s00432-023-04596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
PURPOSE The low objective response of immune checkpoint inhibitors (ICIs) remains a great challenge in advanced melanoma therapy. Interferon-alpha has been proven to be a promising combination regimen with ICI in a phase Ib/II trial. Herein, we evaluated the efficacy and safety of interferon-alpha 1b plus PD-1 monoantibody in a real-world Chinese metastatic melanoma cohort. METHODS Profiles of patients diagnosed with unresectable stage IV (AJCC 8th Edition) between December 1st, 2018 and February 28th, 2022 from the Department of Dermatology, Xijing Hospital were reviewed. All of them received the combination treatment of interferon-alpha 1b (600 μg every other day) plus PD-1 monoantibody (Pembrolizumab 2 mg/kg or Toripalimab 240 mg or Sintilimab 200 mg, every 3 weeks) for at least 12 weeks. The efficacy was assessed by Response Evaluation Criteria in Solid Tumors (RECIST V1.1). The safety data were identified according to Common Terminology Criteria for Adverse Events (CTC AE) V.5.0. RESULTS In total, 70 patients were included. 50% were females. 52.9% were with ECOG performance status ≥ 1. The fraction of patients receiving Pembrolizumab, Toripalimab, and Sintilimab was 28.6%, 67.1%, and 4.3%, respectively. Acral and mucosal subtypes accounted for 48.6% and 20%. The median follow-up period is 15.1 months. The objective response rate was 32.8%. The median time of overall survival was 18 months (95% CI 14.2-21.8 months), and the median time of PFS was 5.2 months (95% CI 4.2-6.2 months). The incidence of adverse events (any grade) was 98.6%, but only 8.6% of cases experienced grade 3 or 4 adverse reactions. CONCLUSION The combination of interferon-alpha 1b and PD-1 monoantibody demonstrated promising anti-tumor effects and acceptable toxicity in Chinese metastatic melanoma patients with cutaneous, acral, and mucosal subtypes.
Collapse
Affiliation(s)
- Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Bolun Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Yu Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Ting Feng
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
553
|
Knisely A, Seo YD, Wargo JA, Chelvanambi M. Monitoring and Modulating Diet and Gut Microbes to Enhance Response and Reduce Toxicity to Cancer Treatment. Cancers (Basel) 2023; 15:777. [PMID: 36765735 PMCID: PMC9913233 DOI: 10.3390/cancers15030777] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/28/2023] Open
Abstract
The gut microbiome comprises a diverse array of microbial species that have been shown to dynamically modulate host immunity both locally and systemically, as well as contribute to tumorigenesis. In this review, we discuss the scientific evidence on the role that gut microbes and diet play in response and toxicity to cancer treatment. We highlight studies across multiple cancer cohorts that have shown an association between particular gut microbiome signatures and an improved response to immune checkpoint blockade, chemotherapy, and adoptive cell therapies, as well as the role of particular microbes in driving treatment-related toxicity and how the microbiome can be modulated through strategies, such as fecal transplant. We also summarize the current literature that implicate high fiber and ketogenic diets in improved response rates to immunotherapy and chemotherapy, respectively. Finally, we discuss the relevance of these findings in the context of patient care, advocate for a holistic approach to cancer treatment, and comment on the next frontier of targeted gut and tumor microbiome modulation through novel therapeutics, dietary intervention, and precision-medicine approaches.
Collapse
Affiliation(s)
- Anne Knisely
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongwoo David Seo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
554
|
Rodà F, Caraffi R, Picciolini S, Tosi G, Vandelli MA, Ruozi B, Bedoni M, Ottonelli I, Duskey JT. Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization. Int J Mol Sci 2023; 24:ijms24032496. [PMID: 36768820 PMCID: PMC9916841 DOI: 10.3390/ijms24032496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, associated with low long-term survival. Nanoparticles (NPs) developed against GBM are a promising strategy to improve current therapies, by enhancing the brain delivery of active molecules and reducing off-target effects. In particular, NPs hold high potential for the targeted delivery of chemotherapeutics both across the blood-brain barrier (BBB) and specifically to GBM cell receptors, pathways, or the tumor microenvironment (TME). In this review, the most recent strategies to deliver drugs to GBM are explored. The main focus is on how surface functionalizations are essential for BBB crossing and for tumor specific targeting. We give a critical analysis of the various ligand-based approaches that have been used to target specific cancer cell receptors and the TME, or to interfere with the signaling pathways of GBM. Despite the increasing application of NPs in the clinical setting, new methods for ligand and surface characterization are needed to optimize the synthesis, as well as to predict their in vivo behavior. An expert opinion is given on the future of this research and what is still missing to create and characterize a functional NP system for improved GBM targeting.
Collapse
Affiliation(s)
- Francesca Rodà
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Giovanni Tosi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0592058573
| |
Collapse
|
555
|
Wang Q, Li Z, Zhou S, Li Z, Huang X, He Y, Zhang Y, Zhao X, Tang Y, Xu M. NCAPG2 could be an immunological and prognostic biomarker: From pan-cancer analysis to pancreatic cancer validation. Front Immunol 2023; 14:1097403. [PMID: 36776838 PMCID: PMC9911455 DOI: 10.3389/fimmu.2023.1097403] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
More recently, NCAPG2 has emerged as an intrinsically essential participant of the condensin II complex involved in the process of chromosome cohesion and stabilization in mitosis, and its position in particular tumours is now being highlighted. Simultaneously, the genetic properties of NCAPG2 hint that it might have enormous potential to interpret the malignant progression of tumors in a broader perspective, that is, in pan-cancer. Yet, at present, this recognition remains merely superficial and there is a lack of more detailed studies to explore the underlying pathogenesis. To meet this need, the current study was undertaken to comprehensively elucidate the potential functions of NCAPG2 in pan-cancer, based on a combination of existing databases like TCGA and GTEx. NCAPG2 was identified to be overexpressed in almost every tumor and to exhibit significant prognostic and diagnostic efficacy. Furthermore, the correlation between NCAPG2 and selected immune features, namely immune cell infiltration, immune checkpoint genes, TMB, MSI, etc. also indicates that NCAPG2 could potentially be applied in guidance of immunotherapy. Subsequently, in pancreatic cancer, this study further clarified the utility of NCAPG2 that downregulation of its expression could result in reduced proliferation, invasion and metastasis of pancreatic cancer cells, among such phenotypical changes, the epithelial-mesenchymal transition disruption could be at least one of the possible mechanisms raising or enhancing tumorigenesis. Taken above, NCAPG2, as a member of pan-oncogenes, would serve as a biomarker and potential therapeutic target for a range of malignancies, sharing new insights into precision medicine.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Zhangzuo Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yiwei He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Xiaoxian Zhao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
556
|
Han S, Chen X, Li Z. Innate Immune Program in Formation of Tumor-Initiating Cells from Cells-of-Origin of Breast, Prostate, and Ovarian Cancers. Cancers (Basel) 2023; 15:757. [PMID: 36765715 PMCID: PMC9913549 DOI: 10.3390/cancers15030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Tumor-initiating cells (TICs), also known as cancer stem cells (CSCs), are cancer cells that can initiate a tumor, possess self-renewal capacity, and can contribute to tumor heterogeneity. TICs/CSCs are developed from their cells-of-origin. In breast, prostate, and ovarian cancers, progenitor cells for mammary alveolar cells, prostate luminal (secretory) cells, and fallopian tube secretory cells are the preferred cellular origins for their corresponding cancer types. These luminal progenitors (LPs) express common innate immune program (e.g., Toll-like receptor (TLR) signaling)-related genes. Microbes such as bacteria are now found in breast, prostate, and fallopian tube tissues and their corresponding cancer types, raising the possibility that their LPs may sense the presence of microbes and trigger their innate immune/TLR pathways, leading to an inflammatory microenvironment. Crosstalk between immune cells (e.g., macrophages) and affected epithelial cells (e.g., LPs) may eventually contribute to formation of TICs/CSCs from their corresponding LPs, in part via STAT3 and/or NFκB pathways. As such, TICs/CSCs can inherit expression of innate-immunity/TLR-pathway-related genes from their cells-of-origin; the innate immune program may also represent their unique vulnerability, which can be explored therapeutically (e.g., by enhancing immunotherapy via augmenting TLR signaling).
Collapse
Affiliation(s)
- Sen Han
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Chen
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
557
|
Liu Z, Xu T, Chang P, Fu W, Wei J, Xia C, Wang Q, Li M, Pu X, Huang F, Ge C, Gao Y, Gong S, Liu C, Dong L. Efficacy and safety of immune checkpoint inhibitors with or without radiotherapy in metastatic non-small cell lung cancer: A systematic review and meta-analysis. Front Pharmacol 2023; 14:1064227. [PMID: 36762107 PMCID: PMC9902364 DOI: 10.3389/fphar.2023.1064227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Background and purpose: Although immune checkpoint inhibitors (ICIs) have become the first-line treatment for metastatic non-small cell lung cancer (mNSCLC), their efficacy is limited. Meanwhile, recent reports suggest that radiotherapy (RT) can activate the systemic antitumor immune response by increasing the release of antigens from tumor tissues. Therefore, in patients with mNSCLC treated with ICIs, investigations were performed to determine whether the addition of RT improved the outcomes. Furthermore, the adverse events rate was evaluated. Methods and materials: Pubmed, Embase, and Cochrane Library were searched using the keywords "radiotherapy," "immune checkpoint inhibitors," and "non-small cell lung cancer" from the date of inception to 2 May 2022. Randomized controlled trials (RCTs) and nonRCTs (NRCTs) comparing the efficacy and safety of RT combined with ICIs versus ICIs alone in metastatic NSCLC were assessed. The primary outcomes were progression-free survival (PFS) and overall survival (OS), and the secondary outcomes were abscopal response rate (ARR), abscopal control rate (ACR), adverse events rate, and pneumonia rate. The analyses were conducted using the Mantel-Haenszel fixed-effects or random-effects model. The I2 statistic was used to determine heterogeneity, whereas funnel plots and Egger's test were used to assess publication bias. Results: In 15 clinical studies, 713 patients received RT combined with ICIs and 1,275 patients received only ICIs. With regard to PFS and OS, the hazard ratios of RT combined with ICIs were 0.79 (0.70, 0.89) and 0.72 (0.63, 0.82), respectively. In terms of ARR and ACR, the odds ratios (ORs) of RT combined with ICIs were 1.94 (1.19, 3.17) and 1.79 (1.08, 2.97), respectively. Subgroup analyses based on study type (RCT/NRCT), RT target (intracranial/extracranial), number of RT sites (single site), previous ICI resistance (yes/no), and sequencing of RT and ICIs (concurrent/post-RT ICIs) revealed that the addition of RT significantly prolonged PFS and OS. However, subgroup analyses based on radiation dose/fractionation indicated that the addition of hypofractionated RT significantly prolonged OS but not PFS. When grouped according to the level of PD-L1 expression, the addition of RT prolonged PFS only in patients who were PD-L1-negative. Furthermore, subgroup analyses of ARR and ACR signified that the combination therapy resulted in better local control of lesions outside the irradiation field in the hypofractionated RT, extracranial RT, and ICI-naïve subgroups. In terms of adverse events, the addition of RT did not significantly increase the adverse events rate but was associated with a higher pneumonia rate [OR values were 1.24 (0.92, 1.67) and 1.76 (1.12, 2.77), respectively]. Conclusion: Meta-analysis of existing data suggests that the addition of RT can significantly prolong PFS and OS in patients with metastatic NSCLC receiving ICIs. In addition to lesions in the irradiation field, RT can improve the local control rate of lesions outside the irradiation field via immune activation. Combination therapy does not increase the overall risk of adverse reactions, except for pneumonia.
Collapse
Affiliation(s)
- Zijing Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Tiankai Xu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Pengyu Chang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Weijia Fu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jiaying Wei
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Chengcheng Xia
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Qiang Wang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Man Li
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Xiaoyu Pu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Fuxue Huang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Chao Ge
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Yan Gao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Shouliang Gong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Chengjiang Liu
- Department of Gastroenterology/General Practice, Anhui Medical University, He Fei, China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China,*Correspondence: Lihua Dong,
| |
Collapse
|
558
|
Knorr D, Leidner R, Jensen S, Meng R, Jones A, Ballesteros-Merino C, Bell RB, Baez M, Sprott D, Bifulco C, Piening B, Dahan R, Fox BA, Ravetch J. FcyRIIB is a novel immune checkpoint in the tumor microenvironment limiting activity of Treg-targeting antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.522856. [PMID: 36711504 PMCID: PMC9884505 DOI: 10.1101/2023.01.19.522856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite pre-clinical murine data supporting T regulatory (Treg) cell depletion as a major mechanism by which anti-CTLA-4 antibodies function in vivo, the two main antibodies tested in patients (ipilimumab and tremelimumab) have failed to demonstrate similar effects. We report analogous findings in an immunocompetent murine model humanized for CTLA-4 and Fcy receptors (hCTLA-4/hFcyR mice), where both ipilimumab and tremelimumab fail to show appreciable Treg depletion. Immune profiling of the tumor microenvironment (TME) in both mice and human samples revealed upregulation of the inhibitory Fcy receptor, FcyRIIB, which limits the ability of the antibody Fc fragment of human anti-CTLA-4 antibodies to induce effective antibody dependent cellular cytotoxicty/phagocytosis (ADCC/ADCP). Blocking FcyRIIB in humanized mice rescues Treg depleting capacity and anti-tumor activity of ipilimumab. For another target, CC motif chemokine receptor 8 (CCR8), which is selectively expressed on tumor infiltrating Tregs, we show that Fc engineering to enhance binding to activating Fc receptors, while limiting binding to the inhibitory Fc receptor, leads to consistent Treg depletion and single-agent activity across multiple tumor models, including B16, MC38 and MB49. These data reveal the importance of reducing engagement to the inhibitory Fc receptor to optimize Treg depletion by TME targeting antibodies. Our results define the inhibitory FcyRIIB receptor as a novel immune checkpoint limiting antibody-mediated Treg depletion in tumors, and demonstrate Fc variant engineering as a means to overcome this limitation and augment efficacy for a repertoire of antibodies currently in use or under clinical evaluation in oncology.
Collapse
Affiliation(s)
- David Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rom Leidner
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Shawn Jensen
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Ryan Meng
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Andrew Jones
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | | | - R. Bryan Bell
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Maria Baez
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - David Sprott
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Carlo Bifulco
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Brian Piening
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Rony Dahan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Bernard A. Fox
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Jeffrey Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| |
Collapse
|
559
|
Copic D, Direder M, Klas K, Bormann D, Laggner M, Ankersmit HJ, Mildner M. Antithymocyte Globulin Inhibits CD8 + T Cell Effector Functions via the Paracrine Induction of PDL-1 on Monocytes. Cells 2023; 12:cells12030382. [PMID: 36766722 PMCID: PMC9913606 DOI: 10.3390/cells12030382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Antithymocyte globulins (ATG) are T cell-depleting antibodies used in solid organ transplantation for induction therapy in sensitized patients with a high risk of graft rejection. Previously described effects besides the depletion of T cells have suggested additional modes of action and identified further cellular targets. METHODS We examined the transcriptional changes arising in immune cells from human blood after ex vivo stimulation with ATG at the single-cell level to uncover additional mechanisms by which ATG regulates T cell activity and effector functions. FINDINGS Analysis of the paracrine factors present in the plasma of ATG-treated whole blood revealed high levels of chemokines and cytokines, including interferon-γ (IFN-γ). Furthermore, we identified an increase in the surface expression of the programmed death ligand 1 (PDL-1) on monocytes mediated by the released paracrine factors. In addition, we showed that this induction is dependent on the activation of JAK/STAT signaling via the binding of IFN-γ to interferon-γ receptor 1 (IFN-γR1). Lastly, we demonstrated that the modulation of the immune regulatory axis of programmed cell death protein 1 (PD1) on activated CD8+ T cells with PDL-1 found on monocytes mediated by ATG potently inhibits effector functions including the proliferation and granzyme B release of activated T cells. INTERPRETATION Together, our findings represent a novel mode of action by which ATG exerts its immunosuppressive effects.
Collapse
Affiliation(s)
- Dragan Copic
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Martin Direder
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Katharina Klas
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Daniel Bormann
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Maria Laggner
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Correspondence: (H.J.A.); (M.M.); Tel.: +43-(0)1-40400-67770 (H.J.A.); +43-(0)1-40400-73507 (M.M.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
- Correspondence: (H.J.A.); (M.M.); Tel.: +43-(0)1-40400-67770 (H.J.A.); +43-(0)1-40400-73507 (M.M.)
| |
Collapse
|
560
|
Lee EJ, Yang JH, Yang HJ, Cho CK, Choi JG, Chung HS. Antitumor Effect of Korean Red Ginseng through Blockade of PD-1/PD-L1 Interaction in a Humanized PD-L1 Knock-In MC38 Cancer Mouse Model. Int J Mol Sci 2023; 24:ijms24031894. [PMID: 36768213 PMCID: PMC9915403 DOI: 10.3390/ijms24031894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Blocking immune checkpoints, programmed death-1 (PD-1) and its ligand PD-L1, has proven a promising anticancer strategy for enhancing cytotoxic T cell activity. Although we previously demonstrated that ginsenoside Rg3, Rh2, and compound K block the interaction of PD-1 and PD-L1, the antitumor effect through blockade of this interaction by Korean Red Ginseng alone is unknown. Therefore, we determined the effects of Korean Red Ginseng extract (RGE) on the PD-1/PD-L1 interaction and its antitumor effects using a humanized PD-1/PD-L1-expressing colorectal cancer (CRC) mouse model. RGE significantly blocked the interaction between human PD-1 and PD-L1 in a competitive ELISA. The CD8+ T cell-mediated tumor cell killing effect of RGE was evaluated using murine hPD-L1-expressing MC38 cells and tumor-infiltrating hPD-1-expressing CD8+ T cells isolated from hPD-L1 MC38 tumor-bearing hPD-1 mice. RGE also reduced the survival of hPD-L1 MC38 cells in a cell co-culture system using tumor-infiltrating CD8+ T cells as effector cells combined with hPD-L1 MC38 target cells. RGE or Keytruda (positive control) treatment markedly suppressed the growth of hPD-L1 MC38 allograft tumors, increased CD8+ T cell infiltration into tumors, and enhanced the production of Granzyme B. RGE exhibits anticancer effects through the PD-1/PD-L1 blockade, which warrants its further development as an immunotherapy.
Collapse
Affiliation(s)
- Eun-Ji Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Ju-Hye Yang
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hye Jin Yang
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Chong-Kwan Cho
- East-West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon 35235, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
- Correspondence: ; Tel.: +82-53-940-3865
| |
Collapse
|
561
|
Oxygen-carrying nanoplatform to reprogram tumor immunosuppressive microenvironment and enhance photothermal-immunotherapy. Mater Today Bio 2023; 19:100555. [PMID: 36793322 PMCID: PMC9922928 DOI: 10.1016/j.mtbio.2023.100555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Immunotherapy shows great promise on treating tumors. However, insufficient antigen exposure and immunosuppressive tumor microenvironment (TME) caused by hypoxia impose a serial of constraints on the therapeutic efficacy. In this study, we developed an oxygen-carrying nanoplatform loaded with perfluorooctyl bromide (PFOB, a second-generation of perfluorocarbon-based blood substitute), IR780 (a photosensitizer) and imiquimod (R837, an immune adjuvant) to reprogram immunosuppressive TME and reinforce photothermal-immunotherapy. The obtained oxygen-carrying nanoplatforms (abbreviated as IR-R@LIP/PFOB) show highly efficient oxygen release behavior and excellent hyperthermia performance upon laser irradiation, thus achieving the attenuation of the inherent tumor hypoxia and the exposure of tumor associated antigens in situ, and transforming the immunosuppressive TME to an immunosupportive one. We found that the photothermal therapy of IR-R@LIP/PFOB together with anti-programmed cell death protein-1 (anti-PD-1) would elicit a robust antitumor immunity by increasing the tumor-infiltrating frequencies of cytotoxic CD8+ T cells and tumoricidal M1-phenotype macrophages, while reducing immunosuppressive M2-phenotype macrophages and regulatory T cells (Tregs). This study presents these oxygen-carrying IR-R@LIP/PFOB nanoplatforms are potent in removing some negative impacts of immunosuppressive TME caused by hypoxia, and suppressing tumor growth by initiating antitumor immune responses, especially in combination with anti-PD-1 immunotherapy.
Collapse
|
562
|
Huseni MA, Wang L, Klementowicz JE, Yuen K, Breart B, Orr C, Liu LF, Li Y, Gupta V, Li C, Rishipathak D, Peng J, Şenbabaoǧlu Y, Modrusan Z, Keerthivasan S, Madireddi S, Chen YJ, Fraser EJ, Leng N, Hamidi H, Koeppen H, Ziai J, Hashimoto K, Fassò M, Williams P, McDermott DF, Rosenberg JE, Powles T, Emens LA, Hegde PS, Mellman I, Turley SJ, Wilson MS, Mariathasan S, Molinero L, Merchant M, West NR. CD8 + T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy. Cell Rep Med 2023; 4:100878. [PMID: 36599350 PMCID: PMC9873827 DOI: 10.1016/j.xcrm.2022.100878] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
Although immune checkpoint inhibitors (ICIs) are established as effective cancer therapies, overcoming therapeutic resistance remains a critical challenge. Here we identify interleukin 6 (IL-6) as a correlate of poor response to atezolizumab (anti-PD-L1) in large clinical trials of advanced kidney, breast, and bladder cancers. In pre-clinical models, combined blockade of PD-L1 and the IL-6 receptor (IL6R) causes synergistic regression of large established tumors and substantially improves anti-tumor CD8+ cytotoxic T lymphocyte (CTL) responses compared with anti-PD-L1 alone. Circulating CTLs from cancer patients with high plasma IL-6 display a repressed functional profile based on single-cell RNA sequencing, and IL-6-STAT3 signaling inhibits classical cytotoxic differentiation of CTLs in vitro. In tumor-bearing mice, CTL-specific IL6R deficiency is sufficient to improve anti-PD-L1 activity. Thus, based on both clinical and experimental evidence, agents targeting IL-6 signaling are plausible partners for combination with ICIs in cancer patients.
Collapse
Affiliation(s)
| | - Lifen Wang
- Genentech, South San Francisco, CA 94080, USA
| | | | - Kobe Yuen
- Genentech, South San Francisco, CA 94080, USA
| | | | | | - Li-Fen Liu
- Genentech, South San Francisco, CA 94080, USA
| | - Yijin Li
- Genentech, South San Francisco, CA 94080, USA
| | | | - Congfen Li
- Genentech, South San Francisco, CA 94080, USA
| | | | - Jing Peng
- Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | - Ning Leng
- Genentech, South San Francisco, CA 94080, USA
| | | | | | - James Ziai
- Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Powles
- Barts Experimental Cancer Medicine Centre, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Leisha A Emens
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - Ira Mellman
- Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | |
Collapse
|
563
|
Veinalde R, Pidelaserra-Martí G, Moulin C, Tan CL, Schäfer TE, Kang N, Ball CR, Leichsenring J, Stenzinger A, Kaderali L, Jäger D, Ungerechts G, Engeland CE. Virotherapy combined with anti-PD-1 transiently reshapes the tumor immune environment and induces anti-tumor immunity in a preclinical PDAC model. Front Immunol 2023; 13:1096162. [PMID: 36726983 PMCID: PMC9886093 DOI: 10.3389/fimmu.2022.1096162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is largely refractory to cancer immunotherapy with PD-1 immune checkpoint blockade (ICB). Oncolytic virotherapy has been shown to synergize with ICB. In this work, we investigated the combination of anti-PD-1 and oncolytic measles vaccine in an immunocompetent transplantable PDAC mouse model. Methods We characterized tumor-infiltrating T cells by immunohistochemistry, flow cytometry and T cell receptor sequencing. Further, we performed gene expression profiling of tumor samples at baseline, after treatment, and when tumors progressed. Moreover, we analyzed systemic anti-tumor and anti-viral immunity. Results Combination treatment significantly prolonged survival compared to monotherapies. Tumor-infiltrating immune cells were increased after virotherapy. Gene expression profiling revealed a unique, but transient signature of immune activation after combination treatment. However, systemic anti-tumor immunity was induced by virotherapy and remained detectable even when tumors progressed. Anti-PD-1 treatment did not impact anti-viral immunity. Discussion Our results indicate that combined virotherapy and ICB induces anti-tumor immunity and reshapes the tumor immune environment. However, further refinement of this approach may be required to develop its full potential and achieve durable efficacy.
Collapse
Affiliation(s)
- Rūta Veinalde
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gemma Pidelaserra-Martí
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany,Faculty of Health, School of Medicine, Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Coline Moulin
- Faculty of Health, School of Medicine, Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chin Leng Tan
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Theresa E. Schäfer
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Na Kang
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia R. Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany,Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus, Faculty of Medicine and Technische Universität Dresden, Dresden, Germany
| | - Jonas Leichsenring
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Institut für Pathologie, Zytologie und molekulare Diagnostik, Regiomed Klinikum Coburg, Coburg, Germany
| | | | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Christine E. Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany,Faculty of Health, School of Medicine, Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany,Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany,*Correspondence: Christine E. Engeland, ;
| |
Collapse
|
564
|
Wu RQ, Lao XM, Chen DP, Qin H, Mu M, Cao WJ, Deng J, Wan CC, Zhan WY, Wang JC, Xu L, Chen MS, Gao Q, Zheng L, Wei Y, Kuang DM. Immune checkpoint therapy-elicited sialylation of IgG antibodies impairs antitumorigenic type I interferon responses in hepatocellular carcinoma. Immunity 2023; 56:180-192.e11. [PMID: 36563676 DOI: 10.1016/j.immuni.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
The reinvigoration of anti-tumor T cells in response to immune checkpoint blockade (ICB) therapy is well established. Whether and how ICB therapy manipulates antibody-mediated immune response in cancer environments, however, remains elusive. Using tandem mass spectrometric analysis of modification of immunoglobulin G (IgG) from hepatoma tissues, we identified a role of ICB therapy in catalyzing IgG sialylation in the Fc region. Effector T cells triggered sialylation of IgG via an interferon (IFN)-γ-ST6Gal-I-dependent pathway. DC-SIGN+ macrophages represented the main target cells of sialylated IgG. Upon interacting with sialylated IgG, DC-SIGN stimulated Raf-1-elicited elevation of ATF3, which inactivated cGAS-STING pathway and eliminated subsequent type-I-IFN-triggered antitumorigenic immunity. Although enhanced IgG sialylation in tumors predicted improved therapeutic outcomes for patients receiving ICB therapy, impeding IgG sialylation augmented antitumorigenic T cell immunity after ICB therapy. Thus, targeting antibody-based negative feedback action of ICB therapy has potential for improving efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Rui-Qi Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xiang-Ming Lao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Dong-Ping Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ming Mu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Wen-Jie Cao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Jia Deng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Chao-Chao Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Wan-Yu Zhan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Jun-Cheng Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Li Xu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Min-Shan Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yuan Wei
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
| |
Collapse
|
565
|
Li M, Luo Q, Chen X, Qiu F, Tao Y, Sun X, Liu C. Screening of major hepatotoxic components of Tripterygium wilfordii based on hepatotoxic injury patterns. BMC Complement Med Ther 2023; 23:9. [PMID: 36627617 PMCID: PMC9830834 DOI: 10.1186/s12906-023-03836-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Tripterygium wilfordii Hook. F. (TwHF), a traditional Chinese medicine, is widely used in the treatment of rheumatoid arthritis. Due to multiorgan toxicity, particularly hepatotoxicity, the application of TwHF is restricted. To clarify the hepatotoxic substances, zebrafish, hepatocytes and macrophages were used for screening based on hepatotoxic injury patterns. This study provides a basis for further elucidation of the hepatotoxic mechanism of TwHF. METHODS First, 12 compounds were selected according to the chemical categories of TwHF. The fluorescence area and fluorescence intensity of zebrafish livers were observed and calculated. The viability of two hepatocyte lines was detected by CCK8 assay. TNF-α and IL-1β mRNA expression in bone marrow-derived macrophages was used to evaluate macrophage activation, a factor of potential indirect hepatotoxicity. Finally, the hepatotoxic characteristics of 4 representative components were verified in mice in vivo. RESULTS Parthenolide, triptolide, triptonide, triptobenzene H, celastrol, demethylzeylasteral, wilforlide A, triptotriterpenic acid A and regelidine significantly reduced the fluorescence area and fluorescence intensity of zebrafish livers. The viability of L-02 or AML-12 cells was significantly inhibited by parthenolide, triptolide, triptonide, celastrol, demethylzeylasteral, and triptotriterpenic acid A. Parthenolide, triptolide, triptonide, celastrol, demethylzeylasteral and triptobenzene H significantly increased TNF-α and IL-1β mRNA levels in macrophages, while triptophenolide, hypodiolide and wilforine significantly reduced TNF-α and IL-1β mRNA levels. Triptotriterpenic acid A, celastrol and triptobenzene H at a dose of 10 mg/kg significantly increased the levels of mouse serum alanine aminotransferase and aspartate aminotransferase and aggravated liver inflammation. CONCLUSIONS Parthenolide, triptolide, triptonide, celastrol, demethylzeylasteral, triptotriterpenic acid A and triptobenzene H might be the main hepatotoxic components of TwFH. Among them, only triptotriterpenic acid A presents direct hepatotoxicity. Triptobenzene H exerts indirect liver damage by activating macrophages. Parthenolide, triptolide, triptonide, celastrol, and demethylzeylasteral can directly and indirectly cause liver injury.
Collapse
Affiliation(s)
- Meng Li
- grid.412540.60000 0001 2372 7462Institute of Liver Diseases, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, 201203 China
| | - Qiong Luo
- grid.412540.60000 0001 2372 7462Institute of Liver Diseases, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, 201203 China
| | - Xi Chen
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203 China
| | - Furong Qiu
- grid.412540.60000 0001 2372 7462Lab of Clinical Pharmacokinetics, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Yanyan Tao
- grid.412540.60000 0001 2372 7462Institute of Liver Diseases, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, 201203 China
| | - Xin Sun
- grid.412540.60000 0001 2372 7462Institute of Liver Diseases, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, 201203 China ,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203 China
| | - Chenghai Liu
- grid.412540.60000 0001 2372 7462Institute of Liver Diseases, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, 201203 China ,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, 201203 China ,Shanghai Innovation Center of TCM Health Service, Shanghai, 201203 China
| |
Collapse
|
566
|
Wang Y, Qin D, Gao Y, Zhang Y, Liu Y, Huang L. Identification of therapeutic targets for osteosarcoma by integrating single-cell RNA sequencing and network pharmacology. Front Pharmacol 2023; 13:1098800. [PMID: 36686663 PMCID: PMC9853455 DOI: 10.3389/fphar.2022.1098800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Osteosarcoma (OS) is a common primary tumor with extensive heterogeneity. In this study, we used single-cell RNA sequencing (scRNA-seq) and network pharmacology to analyze effective targets for Osteosarcoma treatment. Methods: The cell heterogeneity of the Osteosarcoma single-cell dataset GSE162454 was analyzed using the Seurat package. The bulk-RNA transcriptome dataset GSE36001 was downloaded and analyzed using the CIBERSORT algorithm. The key targets for OS therapy were determined using Pearson's correlation analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on key targets. The DeepDR algorithm was used to predict potential drugs for Osteosarcoma treatment. Molecular docking analysis was performed to verify the binding abilities of the predicted drugs and key targets. qRT-PCR assay was used to detect the expression of key targets in osteoblasts and OS cells. Results: A total of 21 cell clusters were obtained based on the GSE162454 dataset, which were labeled as eight cell types by marker gene tagging. Four cell types (B cells, cancer-associated fibroblasts (CAFs), endothelial cells, and plasmocytes) were identified in Osteosarcoma and normal tissues, based on differences in cell abundance. In total, 17 key targets were identified by Pearson's correlation analysis. GO and KEGG analysis showed that these 17 genes were associated with immune regulation pathways. Molecular docking analysis showed that RUNX2, OMD, and CD4 all bound well to vincristine, dexamethasone, and vinblastine. The expression of CD4, OMD, and JUN was decreased in Osteosarcoma cells compared with osteoblasts, whereas RUNX2 and COL9A3 expression was increased. Conclusion: We identified five key targets (CD4, RUNX2, OMD, COL9A3, and JUN) that are associated with Osteosarcoma progression. Vincristine, dexamethasone, and vinblastine may form a promising drug-target pair with RUNX2, OMD, and CD4 for Osteosarcoma treatment.
Collapse
Affiliation(s)
- Yan Wang
- Science Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Di Qin
- Department of Geriatrics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yiyao Gao
- Science Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yunxin Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yao Liu
- Department of Geriatrics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lihong Huang
- Department of Geriatrics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Lihong Huang,
| |
Collapse
|
567
|
Wang YY, Wang WD, Sun ZJ. Cancer stem cell-immune cell collusion in immunotherapy. Int J Cancer 2023. [PMID: 36602290 DOI: 10.1002/ijc.34421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
Immunotherapy has pioneered a new era of tumor treatment, in which the immune checkpoint blockade (ICB) exerts significant superiority in overcoming tumor immune escape. However, the formation of an immune-suppressive tumor microenvironment (TME) and the lack of effective activation of the immune response have become major obstacles limiting its development. Emerging reports indicate that cancer stem cells (CSCs) potentially play important roles in treatment resistance and progressive relapse, while current research is usually focused on CSCs themselves. In this review, we mainly emphasize the collusions between CSCs and tumor-infiltrating immune cells. We focus on the summary of CSC-immune cell crosstalk signaling pathways in ICB resistance and highlight the application of targeted drugs to improve the ICB response.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wen-Da Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
568
|
Yang F, Shay C, Abousaud M, Tang C, Li Y, Qin Z, Saba NF, Teng Y. Patterns of toxicity burden for FDA-approved immune checkpoint inhibitors in the United States. J Exp Clin Cancer Res 2023; 42:4. [PMID: 36600271 DOI: 10.1186/s13046-022-02568-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Immune-related adverse events (irAEs) are a common phenomenon in cancer patients treated with immune checkpoint inhibitors (ICIs). Surprisingly, the toxicity burdens of these irAEs have not been illustrated clearly. In this study, we analyzed irAEs for seven FDA-approved ICIs in cancer treatment to show the pattern of toxicity burden among cancer patients. METHODS irAEs associated with seven FDA-approved ICIs, including three PD-1 inhibitors (cemiplimab, nivolumab and pembrolizumab), three PD-L1 inhibitors (atezolizumab, avelumab and durvalumab), and one CTLA-4 inhibitor (ipilimumab), were analyzed based on data from 149,303 reported cases (from January 1, 2015 to June 30, 2022) collected from the FDA Adverse Events Reporting System (FAERS) public dashboard. Proportions of serious irAEs and correlations with tumor type, age and sex were assessed via R package and GraphPad software. RESULTS irAEs related to anti-PD-1 ICIs required less hospital care resources compared with anti-PD-L1 and anti-CTLA-4 ICIs. Patients treated with pembrolizumab had relatively fewer serious cases. Treatment with ICIs led to the highest probability of serious irAEs in patients with lung cancer. 'Respiratory, thoracic and mediastinal disorders' and 'gastrointestinal disorders' were the two most common groups of disorders caused by the seven ICIs studied. 'Cardiac disorders' was the main type of disorders caused by these ICIs in cancer patients aged 65-85, while 'reproductive system and breast disease' was the main type of disorder in cancer patients aged 18-64. 'Respiratory, thoracic, mediastinal diseases' and 'reproductive system and breast diseases' were the main types of disorders associated with treatment with these ICIs in male and female patients, respectively. CONCLUSION Tissue and organ toxicities of ICIs are age and sex specific. There are risks of respiratory and urinary system toxicity in male patients and reproductive system toxicity in female patients treated with the ICIs studied. Future studies on the toxicity burden of ICIs should incorporate age and sex differences to better understand the relevance of ICI toxicity burden to human immune function to develop appropriate tumor immune and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Marin Abousaud
- Department of Pharmaceutical Sciences, Emory Healthcare, Atlanta, GA, 30322, USA
| | - Chris Tang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yamin Li
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
569
|
Zhou Y, Gao M, Jing Y, Wang X. Pan-cancer analyses reveal IGSF10 as an immunological and prognostic biomarker. Front Genet 2023; 13:1032382. [PMID: 36685968 PMCID: PMC9845414 DOI: 10.3389/fgene.2022.1032382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Background: IGSF10 is a member of the immunoglobulin superfamily. Over the previous decade, growing proof has validated definitive correlations between individuals of the immunoglobulin superfamily and human diseases. However, the function of IGSF10 in pan-cancer stays unclear. We aimed to analyze the immunological and prognostic value of IGSF10 in pan-cancer. Methods: We utilized a vary of bioinformatic ways to inspect the function of IGSF10 in pan-cancer, including its correlation with prognosis, immune cell infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), DNA methyltransferases, genetic alteration, drug sensitivity, etc. Results: We noticed low expression of IGSF10 in most cancer types. IGSF10 expression in tumor samples correlates with prognosis in most cancers. In most cancer types, IGSF10 expression was strongly related to immune cells infiltration, immune checkpoints, immune modulators, TMB, MSI, MMR, and DNA methyltransferases, among others. Functional enrichment analyses indicated that IGSF10 expression was involved in lymphocyte differentiation, cell molecules adhesion, etc. Furthermore, low IGSF10 expression could increase the drug sensitivity of many drugs. Conclusion: IGSF10 could serve as a novel prognostic marker and attainable immunotherapy target for several malignancies.
Collapse
Affiliation(s)
- Yongxia Zhou
- Department of Hematology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China,Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Manzhi Gao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yaoyao Jing
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China,Day Ward of Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiaofang Wang
- Department of Hematology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China,Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China,*Correspondence: Xiaofang Wang,
| |
Collapse
|
570
|
Deng Z, Sun X, Cao J, Xiao Q. Editorial: Immune modulation in tumor microenvironment: New perspectives for cancer immunotherapy. Front Cell Dev Biol 2023; 10:1103705. [PMID: 36684430 PMCID: PMC9845698 DOI: 10.3389/fcell.2022.1103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Zimu Deng
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | | | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Qian Xiao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
571
|
Gu Y, Lin X, Dong Y, Wood G, Seidah NG, Werstuck G, Major P, Bonert M, Kapoor A, Tang D. PCSK9 facilitates melanoma pathogenesis via a network regulating tumor immunity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:2. [PMID: 36588164 PMCID: PMC9806914 DOI: 10.1186/s13046-022-02584-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND PCSK9 regulates cholesterol homeostasis and promotes tumorigenesis. However, the relevance of these two actions and the mechanisms underlying PCSK9's oncogenic roles in melanoma and other cancers remain unclear. METHODS PCSK9's association with melanoma was analysed using the TCGA dataset. Empty vector (EV), PCSK9, gain-of-function (D374Y), and loss-of-function (Q152H) PCSK9 mutant were stably-expressed in murine melanoma B16 cells and studied for impact on B16 cell-derived oncogenesis in vitro and in vivo using syngeneic C57BL/6 and Pcsk9-/- mice. Intratumoral accumulation of cholesterol was determined. RNA-seq was performed on individual tumor types. Differentially-expressed genes (DEGs) were derived from the comparisons of B16 PCSK9, B16 D374Y, or B16 Q152H tumors to B16 EV allografts and analysed for pathway alterations. RESULTS PCSK9 expression and its network negatively correlated with the survival probability of patients with melanoma. PCSK9 promoted B16 cell proliferation, migration, and growth in soft agar in vitro, formation of tumors in C57BL/6 mice in vivo, and accumulation of intratumoral cholesterol in a manner reflecting its regulation of the low-density lipoprotein receptor (LDLR): Q152H, EV, PCSK9, and D374Y. Tumor-associated T cells, CD8 + T cells, and NK cells were significantly increased in D374Y tumors along with upregulations of multiple immune checkpoints, IFNγ, and 143 genes associated with T cell dysfunction. Overlap of 36 genes between the D374Y DEGs and the PCSK9 DEGs predicted poor prognosis of melanoma and resistance to immune checkpoint blockade (ICB) therapy. CYTH4, DENND1C, AOAH, TBC1D10C, EPSTI1, GIMAP7, and FASL (FAS ligand) were novel predictors of ICB therapy and displayed high level of correlations with multiple immune checkpoints in melanoma and across 30 human cancers. We observed FAS ligand being among the most robust biomarkers of ICB treatment and constructed two novel and effective multigene panels predicting response to ICB therapy. The profiles of allografts produced by B16 EV, PCSK9, D374Y, and Q152H remained comparable in C57BL/6 and Pcsk9-/- mice. CONCLUSIONS Tumor-derived PCSK9 plays a critical role in melanoma pathogenesis. PCSK9's oncogenic actions are associated with intratumoral cholesterol accumulation. PCSK9 systemically affects the immune system, contributing to melanoma immune evasion. Novel biomarkers derived from the PCSK9-network effectively predicted ICB therapy responses.
Collapse
Affiliation(s)
- Yan Gu
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Xiaozeng Lin
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Ying Dong
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Geoffrey Wood
- grid.34429.380000 0004 1936 8198Department of Pathology, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Nabil G. Seidah
- grid.511547.30000 0001 2106 1695Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W 1R7 Canada
| | - Geoff Werstuck
- grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Pierre Major
- grid.25073.330000 0004 1936 8227Department of Oncology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Michael Bonert
- grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Anil Kapoor
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Damu Tang
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
572
|
Zhou J, Du Z, Fu J, Yi X. Blood cell counts can predict adverse events of immune checkpoint inhibitors: A systematic review and meta-analysis. Front Immunol 2023; 14:1117447. [PMID: 36960068 PMCID: PMC10029759 DOI: 10.3389/fimmu.2023.1117447] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Background Cancer is concerning owing to its high mortality rate. Consequently, methods of prolonging the life of patients with cancer have become the primary focus of attention research. In recent years, immune checkpoint inhibitors (ICIs) have achieved good clinical efficacy as antitumor drugs; however, their severe adverse effects have made their use challenging. In order to clarify the predictors of adverse effects, scientists have conducted a series of studies. Blood counts can potentially monitor risk factors associated with the occurrence of immune-related adverse events (irAEs). Herein, a meta-analysis was performed to clarify further the guiding significance of blood counts in the clinical setting. Methods Studies that satisfied the inclusion criteria were obtained by searching the database. Included studies were those in which irAEs had been observed, and evidence of an association between blood counts and irAEs was reported. The included ones were evaluated for quality. In addition to sensitivity analysis and subgroup analysis, a meta-analysis was performed using the odds ratio (OR) and 95% confidence interval (CI) for each study. Results A total of 18 articles were included in our study. The analyses were performed separately according to different blood cell count indicators. The blood cell count metrics associated with irAEs were: absolute eosinophil count, neutrophil: lymphocyte ratio, and platelet: lymphocyte ratio. Conclusion Our review and meta-analysis of studies suggest that absolute eosinophil count, neutrophil: lymphocyte ratio, and platelet: lymphocyte ratio may serve as predictors of the emergence of irAEs. Given the small number of studies focusing on the relationship between patient blood cell counts and the risk of irAEs, future studies need to further explore the mechanisms of occurrence and potential associations.
Collapse
Affiliation(s)
- Juyue Zhou
- Graduate Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhonghai Du
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
- *Correspondence: Zhonghai Du,
| | - Jie Fu
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xiuxiu Yi
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
573
|
Zhao Q, Qian L, Guo Y, Lü J, Li D, Xie H, Wang Q, Ma W, Liu P, Liu Y, Wang T, Wu X, Han J, Yu Z. IL11 signaling mediates piR-2158 suppression of cell stemness and angiogenesis in breast cancer. Theranostics 2023; 13:2337-2349. [PMID: 37153732 PMCID: PMC10157741 DOI: 10.7150/thno.82538] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Emerging evidence has indicated the aberrant expression of PIWI-interacting RNAs (piRNAs) in human cancer cells to regulate tumor development and progression by governing cancer cell stemness. Herein, we identified downregulation of piR-2158 in human breast cancer tumors, especially in ALDH+ breast cancer stem cells (BCSCs) from patients and cell lines, which was further validated in two types of genetically engineered mouse models of breast cancer (MMTV-Wnt and MMTV-PyMT). Enforced overexpression of piR-2158 in basal-like or luminal subtypes of breast cancer cells suppressed cell proliferation, migration, epithelial-mesenchymal transition (EMT) and stemness in vitro. Administration of a dual mammary tumor-targeting piRNA delivery system in mice reduced tumor growth in vivo. RNA-seq, ChIP-seq and luciferase reporter assays demonstrated piR-2158 as a transcriptional repressor of IL11 by competing with AP-1 transcription factor subunit FOSL1 to bind the promoter of IL11. STAT3 signaling mediated piR-2158-IL11 regulation of cancer cell stemness and tumor growth. Moreover, by co-culturing of MDA-MB-231 and HUVECs in vitro and CD31 staining of tumor endothelial cells in vivo, we demonstrated inhibition of angiogenesis by piR-2158-IL11 in breast cancer. In conclusion, the current study not only reveals a novel mechanism through which piR-2158 inhibits mammary gland tumorigenesis via regulating cancer stem cells and tumor angiogenesis, but also provides a novel therapeutic strategy in treatment of breast cancer.
Collapse
Affiliation(s)
- Qian Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Qian
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuefan Guo
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Heying Xie
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- School of Basic Medicine, Jinzhou Medical University, Liaoning, China
| | - Qiong Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjing Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pengfei Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- School of Basic Medicine, Jinzhou Medical University, Liaoning, China
| | - Tao Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuebiao Wu
- Shanghai OE Biotech Co., Ltd., Shanghai, China
| | - Junyi Han
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- ✉ Corresponding authors: Zuoren Yu, Ph.D., Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China; . Or Junyi Han, M.D;
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- ✉ Corresponding authors: Zuoren Yu, Ph.D., Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China; . Or Junyi Han, M.D;
| |
Collapse
|
574
|
Rubio-Pérez L, Lázaro-Gorines R, Harwood SL, Compte M, Navarro R, Tapia-Galisteo A, Bonet J, Blanco B, Lykkemark S, Ramírez-Fernández Á, Ferreras-Gutiérrez M, Domínguez-Alonso C, Díez-Alonso L, Segura-Tudela A, Hangiu O, Erce-Llamazares A, Blanco FJ, Santos C, Rodríguez-Peralto JL, Sanz L, Álvarez-Vallina L. A PD-L1/EGFR bispecific antibody combines immune checkpoint blockade and direct anti-cancer action for an enhanced anti-tumor response. Oncoimmunology 2023; 12:2205336. [PMID: 37114242 PMCID: PMC10128431 DOI: 10.1080/2162402x.2023.2205336] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Immune checkpoint blockade (ICB) with antibodies has shown durable clinical responses in a wide range of cancer types, but the overall response rate is still limited. Other effective therapeutic modalities to increase the ICB response rates are urgently needed. New bispecific antibody (bsAb) formats combining the ICB effect and a direct action on cancer cells could improve the efficacy of current immunotherapies. Here, we report the development of a PD-L1/EGFR symmetric bsAb by fusing a dual-targeting tandem trimmer body with the human IgG1 hinge and Fc regions. The bsAb was characterized in vitro and the antitumor efficacy was evaluated in humanized mice bearing xenografts of aggressive triple-negative breast cancer and lung cancer. The IgG-like hexavalent bsAb, designated IgTT-1E, was able to simultaneously bind both EGFR and PD-L1 antigens, inhibit EGF-mediated proliferation, effectively block PD-1/PD-L1 interaction, and induce strong antigen-specific antibody-dependent cellular cytotoxicity activity in vitro. Potent therapeutic efficacies of IgTT-1E in two different humanized mouse models were observed, where tumor growth control was associated with a significantly increased proportion of CD8+ T cells. These results support the development of IgTT-1E for the treatment of EGFR+ cancers.
Collapse
Affiliation(s)
- Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Seandean L. Harwood
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Antonio Tapia-Galisteo
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jaume Bonet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Simon Lykkemark
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus C, Denmark
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Ainhoa Erce-Llamazares
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Francisco J. Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Cruz Santos
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - José L. Rodríguez-Peralto
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Pathology, Universidad Complutense, Madrid, Spain
- Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Laura Sanz
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- CONTACT Luis Álvarez-Vallina Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Avda. Cordoba s/n, Madrid28041, Spain
| |
Collapse
|
575
|
Chen W, Sheng P, Chen Y, Liang Y, Wu S, Jia L, He X, Zhang CF, Wang CZ, Yuan CS. Hypoxia-responsive Immunostimulatory Nanomedicines Synergize with Checkpoint Blockade Immunotherapy for Potentiating Cancer Immunotherapy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023. [PMID: 37033201 DOI: 10.1016/j.cej.2022.134869] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inducing cell death while simultaneously enhancing antitumor immune responses is a promising therapeutic approach for multiple cancers. Celastrol (Cel) and 7-ethyl-10-hydroxycamptothecin (SN38) have contrasting physicochemical properties, but strong synergy in immunogenic cell death induction and anticancer activity. Herein, a hypoxia-sensitive nanosystem (CS@TAP) was designed to demonstrate effective immunotherapy for colorectal cancer by systemic delivery of an immunostimulatory chemotherapy combination. Furthermore, the combination of CS@TAP with anti-PD-L1 mAb (αPD-L1) exhibited a significant therapeutic benefit of delaying tumor growth and increased local doses of immunogenic signaling and T-cell infiltration, ultimately extending survival. We conclude that CS@TAP is an effective inducer of immunogenic cell death (ICD) in cancer immunotherapy. Therefore, this study provides an encouraging strategy to synergistically induce immunogenic cell death to enhance tumor cytotoxic T lymphocytes (CTLs) infiltration for anticancer immunotherapy.
Collapse
Affiliation(s)
- Weiguo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Sheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujiang Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sixin Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Liying Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
576
|
Wu N, Cao Y, Liu Y, Zhou Y, He H, Tang R, Wan L, Wang C, Xiong X, Zhong L, Li P. Low-intensity focused ultrasound targeted microbubble destruction reduces tumor blood supply and sensitizes anti-PD-L1 immunotherapy. Front Bioeng Biotechnol 2023; 11:1173381. [PMID: 37139047 PMCID: PMC10150078 DOI: 10.3389/fbioe.2023.1173381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Immune checkpoint blockade (ICB) typified by anti-PD-1/PD-L1 antibodies as a revolutionary treatment for solid malignancies has been limited to a subset of patients due to poor immunogenicity and inadequate T cell infiltration. Unfortunately, no effective strategies combined with ICB therapy are available to overcome low therapeutic efficiency and severe side effects. Ultrasound-targeted microbubble destruction (UTMD) is an effective and safe technique holding the promise to decrease tumor blood perfusion and activate anti-tumor immune response based on the cavitation effect. Herein, we demonstrated a novel combinatorial therapeutic modality combining low-intensity focused ultrasound-targeted microbubble destruction (LIFU-TMD) with PD-L1 blockade. LIFU-TMD caused the rupture of abnormal blood vessels to deplete tumor blood perfusion and induced the tumor microenvironment (TME) transformation to sensitize anti-PD-L1 immunotherapy, which markedly inhibited 4T1 breast cancer's growth in mice. We discovered immunogenic cell death (ICD) in a portion of cells induced by the cavitation effect from LIFU-TMD, characterized by the increased expression of calreticulin (CRT) on the tumor cell surface. Additionally, flow cytometry revealed substantially higher levels of dendritic cells (DCs) and CD8+ T cells in draining lymph nodes and tumor tissue, as induced by pro-inflammatory molecules like IL-12 and TNF-α. These suggest that LIFU-TMD as a simple, effective, and safe treatment option provides a clinically translatable strategy for enhancing ICB therapy.
Collapse
Affiliation(s)
- Nianhong Wu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuting Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Ultrasound, The Third People’s Hospital of Chengdu City, Chengdu, China
| | - Ying Zhou
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongye He
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Tang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wan
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Can Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xialin Xiong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Pan Li,
| |
Collapse
|
577
|
He P, Liu J, Xu Q, Ma H, Niu B, Huang G, Wu W. Development and validation of a mutation-based model to predict immunotherapeutic efficacy in NSCLC. Front Oncol 2023; 13:1089179. [PMID: 36910641 PMCID: PMC9998990 DOI: 10.3389/fonc.2023.1089179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Background Immunotherapy has become increasingly important in the perioperative period of non-small-cell lung cancer (NSCLC). In this study, we intended to develop a mutation-based model to predict the therapeutic effificacy of immune checkpoint inhibitors (ICIs) in patients with NSCLC. Methods Random Forest (RF) classifiers were generated to identify tumor gene mutated features associated with immunotherapy outcomes. Then the best classifier with the highest accuracy served for the development of the predictive model. The correlations of some reported biomarkers with the model were analyzed, such as TMB, PD-(L)1, KEAP1-driven co-mutations, and immune subtypes. The training cohort and validation cohorts performed survival analyses to estimate the predictive efficiency independently. Results An 18-gene set was selected using random forest (RF) classififiers. A predictive model was developed based on the number of mutant genes among the candidate genes, and patients were divided into the MT group (mutant gene ≥ 2) and WT group (mutant gene < 2). The MT group (N = 54) had better overall survival (OS) compared to the WT group (N = 290); the median OS was not reached vs. nine months (P < 0.0001, AUC = 0.73). The robust predictive performance was confifirmed in three validation cohorts, with an AUC of 0.70, 0.57, and 0.64 (P < 0.05). The MT group was characterized by high tumor neoantigen burden (TNB), increased immune infifiltration cells such as CD8 T and macrophage cells, and upregulated immune checkpoint molecules, suggesting potential biological advantages in ICIs therapy. Conclusions The predictive model could precisely predict the immunotherapeutic efficacy in NSCLC based on the mutant genes within the model. Furthermore, some immune-related features and cell expression could support robust efficiency.
Collapse
Affiliation(s)
- Ping He
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Liu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qingyuan Xu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaijun Ma
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Wu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
578
|
Chen W, Sheng P, Chen Y, Liang Y, Wu S, Jia L, He X, Zhang CF, Wang CZ, Yuan CS. Hypoxia-responsive Immunostimulatory Nanomedicines Synergize with Checkpoint Blockade Immunotherapy for Potentiating Cancer Immunotherapy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 451:138781. [PMID: 37033201 PMCID: PMC10079280 DOI: 10.1016/j.cej.2022.138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Inducing cell death while simultaneously enhancing antitumor immune responses is a promising therapeutic approach for multiple cancers. Celastrol (Cel) and 7-ethyl-10-hydroxycamptothecin (SN38) have contrasting physicochemical properties, but strong synergy in immunogenic cell death induction and anticancer activity. Herein, a hypoxia-sensitive nanosystem (CS@TAP) was designed to demonstrate effective immunotherapy for colorectal cancer by systemic delivery of an immunostimulatory chemotherapy combination. Furthermore, the combination of CS@TAP with anti-PD-L1 mAb (αPD-L1) exhibited a significant therapeutic benefit of delaying tumor growth and increased local doses of immunogenic signaling and T-cell infiltration, ultimately extending survival. We conclude that CS@TAP is an effective inducer of immunogenic cell death (ICD) in cancer immunotherapy. Therefore, this study provides an encouraging strategy to synergistically induce immunogenic cell death to enhance tumor cytotoxic T lymphocytes (CTLs) infiltration for anticancer immunotherapy.
Collapse
Affiliation(s)
- Weiguo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Sheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujiang Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sixin Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Liying Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
579
|
Wu Q, Xia Y, Xiong X, Duan X, Pang X, Zhang F, Tang S, Su J, Wen S, Mei L, Cannon RD, Ji P, Ou Z. Focused ultrasound-mediated small-molecule delivery to potentiate immune checkpoint blockade in solid tumors. Front Pharmacol 2023; 14:1169608. [PMID: 37180717 PMCID: PMC10173311 DOI: 10.3389/fphar.2023.1169608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, immune checkpoint blockade (ICB) has revolutionized the standard of treatment for solid tumors. Despite success in several immunogenic tumor types evidenced by improved survival, ICB remains largely unresponsive, especially in "cold tumors" with poor lymphocyte infiltration. In addition, side effects such as immune-related adverse events (irAEs) are also obstacles for the clinical translation of ICB. Recent studies have shown that focused ultrasound (FUS), a non-invasive technology proven to be effective and safe for tumor treatment in clinical settings, could boost the therapeutic effect of ICB while alleviating the potential side effects. Most importantly, the application of FUS to ultrasound-sensitive small particles, such as microbubbles (MBs) or nanoparticles (NPs), allows for precise delivery and release of genetic materials, catalysts and chemotherapeutic agents to tumor sites, thus enhancing the anti-tumor effects of ICB while minimizing toxicity. In this review, we provide an updated overview of the progress made in recent years concerning ICB therapy assisted by FUS-controlled small-molecule delivery systems. We highlight the value of different FUS-augmented small-molecules delivery systems to ICB and describe the synergetic effects and underlying mechanisms of these combination strategies. Furthermore, we discuss the limitations of the current strategies and the possible ways that FUS-mediated small-molecule delivery systems could boost novel personalized ICB treatments for solid tumors.
Collapse
Affiliation(s)
- Qiuyu Wu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuanhang Xia
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaohe Xiong
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xinxing Duan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fugui Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Song Tang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Junlei Su
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Shuqiong Wen
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| | - Zhanpeng Ou
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| |
Collapse
|
580
|
Shi Z, Li H, Song W, Zhou Z, Li Z, Zhang M. Emerging roles of the gut microbiota in cancer immunotherapy. Front Immunol 2023; 14:1139821. [PMID: 36911704 PMCID: PMC9992551 DOI: 10.3389/fimmu.2023.1139821] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Gut microbiota represents a hidden treasure vault encompassing trillions of microorganisms that inhabit the intestinal epithelial barrier of the host. In the past decade, numerous in-vitro, animal and clinical studies have revealed the profound roles of gut microbiota in maintaining the homeostasis of various physiological functions, especially immune modulation, and remarkable differences in the configuration of microbial communities between cancers and healthy individuals. In addition, although considerable efforts have been devoted to cancer treatments, there remain many patients succumb to their disease with the incremental cancer burden worldwide. Nevertheless, compared with the stability of human genome, the plasticity of gut microbiota renders it a promising opportunity for individualized treatment. Meanwhile, burgeoning findings indicate that gut microbiota is involved in close interactions with the outcomes of diverse cancer immunotherapy protocols, including immune checkpoint blockade therapy, allogeneic hematopoietic stem cell transplantation, and chimeric antigen receptor T cell therapy. Here, we reviewed the evidence for the capacity of gut microflora to modulate cancer immunotherapies, and highlighted the opportunities of microbiota-based prognostic prediction, as well as microbiotherapy by targeting the microflora to potentiate anticancer efficacy while attenuating toxicity, which will be pivotal to the development of personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyuan Zhou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
581
|
Zhang Y, Zhang M, Zhang J, Zhao K, Yuan X, Di W, Liu Y, Lu P. Sintilimab combined with chemotherapy successfully treated a patient with advanced submandibular gland tumor. Immunotherapy 2023; 15:27-33. [PMID: 36617958 DOI: 10.2217/imt-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Primary submandibular gland tumors are relatively rare. Due to its low incidence and broad spectrum phenotypic, biological and clinical heterogeneity types, a wide range of options have been developed to treat this tumor. To date, however, efficacious standard treatment regimens are lacking. Here, the authors present a case of a patient with an advanced submandibular gland tumor. Histological and imaging results diagnosed the case as stage IV submandibular gland adenocarcinoma with multiple metastases. The patient was subjected to systemic platinum-based chemotherapy combined with sintilimab. A primary lesion complete response was observed after six cycles of treatment. This case affirms the efficacy of the PD-1 inhibitor sintilimab combined with platinum-based chemotherapy as a first-line treatment for advanced submandibular gland tumors.
Collapse
Affiliation(s)
- Yingfang Zhang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Min Zhang
- Department of Oncology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Jing Zhang
- Department of Oncology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Kelei Zhao
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Xiaohan Yuan
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Wenyu Di
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Ping Lu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| |
Collapse
|
582
|
Zang J, Yang Y, Zheng X, Yang Y, Zhao Y, Miao Z, Zhang T, Gu J, Liu Y, Yin W, Ma X, Ding Q, Dong H, Li Y, Li Y. Dynamic tagging to drive arginine nano-assembly to metabolically potentiate immune checkpoint blockade therapy. Biomaterials 2023; 292:121938. [PMID: 36493715 DOI: 10.1016/j.biomaterials.2022.121938] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/08/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
L-arginine metabolism is essential for the activation, survival, and effector function of the T lymphocytes and critical in eliminating tumors via T-cell-mediated immunotherapy, such as immune checkpoint blockade (ICB). Unfortunately, efficient delivery of hydrophilic L-arginine to the tumor microenvironment (TME) has met tremendous difficulties because of the limited loading efficacy and rapid diffusion. Inspired by the small-molecule prodrug nanoassemblies with ultrahigh drug-loading, we screen out aromatic aldehydes compounds to be used as dynamic tags to decorate L-arginine (reversible imine). Nano-Arginine (ArgNP, 104 nm) was created based on dynamic tag-mediated self-assembly. Molecular dynamics simulations indicate that the driving force of this self-assembly process is intermolecular hydrogen bonds, π-π stacking, and cation-π interactions. Notably, ArgNP metabolic synergy with anti-PD-L1 antibody (aPDL1) can promote tumor-infiltrating T cells (3.3-fold than aPDL1), resulting in a tumor inhibition ratio of 2.6-fold than aPDL1. Besides, such a strategy efficiently reduces the myeloid-derived suppressor cells, increases the M1-macrophages against the tumor, and induces the production of memory T cells. Furthermore, this synergistic therapy effectively restrains lung metastasis and prolongs mouse survival (60% survival ratio). The study highlights the dynamic tags strategy with facility and advance to deliver L-arginine that can metabolically promote ICB therapy.
Collapse
Affiliation(s)
- Jie Zang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yushan Yang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiao Zheng
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Yang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuge Zhao
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhe Miao
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tingting Zhang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jingjing Gu
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yiqiong Liu
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Weimin Yin
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoyi Ma
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Quanming Ding
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haiqing Dong
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yongyong Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
583
|
Koning M, Herrema H, Nieuwdorp M, Meijnikman AS. Targeting nonalcoholic fatty liver disease via gut microbiome-centered therapies. Gut Microbes 2023; 15:2226922. [PMID: 37610978 PMCID: PMC10305510 DOI: 10.1080/19490976.2023.2226922] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
Humans possess abundant amounts of microorganisms, including bacteria, fungi, viruses, and archaea, in their gut. Patients with nonalcoholic fatty liver disease (NAFLD) exhibit alterations in their gut microbiome and an impaired gut barrier function. Preclinical studies emphasize the significance of the gut microbiome in the pathogenesis of NAFLD. In this overview, we explore how adjusting the gut microbiome could serve as an innovative therapeutic strategy for NAFLD. We provide a summary of current information on untargeted techniques such as probiotics and fecal microbiota transplantation, as well as targeted microbiome-focused therapies including engineered bacteria, prebiotics, postbiotics, and phages for the treatment of NAFLD.
Collapse
Affiliation(s)
- Mijra Koning
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| | - Hilde Herrema
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| | - Abraham S. Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| |
Collapse
|
584
|
Han J, Zhou Y, Zhang C, Feng J, Wang J, Guo K, Chen W, Li Y. Intratumoral immune heterogeneity of prostate cancer characterized by typing and hub genes. J Cell Mol Med 2023; 27:101-112. [PMID: 36524848 PMCID: PMC9806298 DOI: 10.1111/jcmm.17641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Discordant abundances of different immune cell subtypes is regarded to be an essential feature of tumour tissue. Direct studies in Prostate cancer (PC) of intratumoral immune heterogeneity characterized by immune cell subtype, are still lacking. Using the single sample gene set enrichment analysis (ssGSEA) algorithm, the abundance of 28 immune cells infiltration (ICI) were determined for PC. A NMF was performed to determine tumour-sample clustering based on the abundance of ICI and PFS information. Hub genes of clusters were identified via weighted gene co-expression network analysis (WGCNA). The multivariate dimensionality reduction analysis of hub genes expression matrix was carried out via principal component analysis (PCA) to obtain immune score (IS). We analysed the correlation between clustering, IS and clinical phenotype. We divided the 495 patients into clusterA (n = 193) and clusterB (n = 302) on the basis of ICI and PFS via NMF. The progression-free survival (PFS) were better for clusterA than for clusterB (p < 0.001). Each immune cell subtypes was more abundant in clusterA than in clusterB (p < 0.001). The expression levels of CTAL-4 and PD-L1 were lower in clusterB than in clusterA (p < 0.001 and p = 0.006). We obtained 103 hub genes via WGCNA. In the training and validation cohorts, the prognosis of high IS group was worse than that of the low IS group (p < 0.05). IS had good predictive effect on 5-year PFS. The expression of immune checkpoint genes was higher in the low IS group than in the high IS group (p < 0.01). Patients with low IS and receiving hormone therapy had better prognosis than other groups. The combination of IS and clinical characteristics including lymph node metastasis and gleason score can better differentiate patient outcomes than using it alone. IS was a practical algorithm to predict the prognosis of patients. Advanced PC patients with low IS may be more sensitive to hormone therapy. CXCL10, CXCL5, MMP1, CXCL12, CXCL11, CXCL2, STAT1, IL-6 and TLR2 were hub genes, which may drive the homing of immune cells in tumours and promote immune cell differentiation.
Collapse
Affiliation(s)
- Jianpeng Han
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Yan Zhou
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Chundong Zhang
- Department of Function, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Jianyong Feng
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Junhao Wang
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Kuo Guo
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Wenbin Chen
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Yongzhang Li
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
585
|
Liu J, Cheng C, Qi T, Xiao J, Zhou W, Deng D, Dai Y. ACER2 forms a cold tumor microenvironment and predicts the molecular subtype in bladder cancer: Results from real-world cohorts. Front Genet 2023; 14:1148437. [PMID: 36936425 PMCID: PMC10014737 DOI: 10.3389/fgene.2023.1148437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Background: ACER2 is a critical gene regulating cancer cell growth and migration, whereas the immunological role of ACER2 in the tumor microenvironment (TME) is scarcely reported. Thus, we lucubrate the potential performance of ACER2 in bladder cancer (BLCA). Methods: We initially compared ACER2 expressions in BLCA with normal urothelium tissues based on data gathered from the Cancer Genome Atlas (TCGA) and our Xiangya cohort. Subsequently, we systematically explored correlations between ACER2 with immunomodulators, anti-cancer immune cycles, tumor-infiltrating immune cells, immune checkpoints and the T-cell inflamed score (TIS) to further confirm its immunological role in BLCA TME. In addition, we performed ROC analysis to illustrate the accuracy of ACER2 in predicting BLCA molecular subtypes and explored the response to several cancer-related treatments. Finally, we validated results in an immunotherapy cohort and Xiangya cohort to ensure the stability of our study. Results: Compared with normal urinary epithelium, ACER2 was significantly overexpressed in several cell lines and the tumor tissue of BLCA. ACER2 can contribute to the formation of non-inflamed BLCA TME supported by its negative correlations with immunomodulators, anti-cancer immune cycles, tumor-infiltrating immune cells, immune checkpoints and the TIS. Moreover, BLCA patients with high ACER2 expression were inclined to the luminal subtype, which were characterized by insensitivity to neoadjuvant chemotherapy, chemotherapy and radiotherapy but not to immunotherapy. Results in the IMvigor210 and Xiangya cohort were consistent. Conclusion: ACER2 could accurately predict the TME and clinical outcomes for BLCA. It would be served as a promising target for precision treatment in the future.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunliang Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tiezheng Qi
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weimin Zhou
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dingshan Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dingshan Deng, ; Yuanqing Dai,
| | - Yuanqing Dai
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dingshan Deng, ; Yuanqing Dai,
| |
Collapse
|
586
|
Mao S, Zeng L, Yang Y, Liu Z, Zhang L. Receptor-ligand pair typing and prognostic risk model of response or resistance to immune checkpoint inhibitors in lung adenocarcinoma. Front Oncol 2023; 13:1170942. [PMID: 37152010 PMCID: PMC10154538 DOI: 10.3389/fonc.2023.1170942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Currently, programmed cell death-1 (PD-1)-targeted treatment is ineffective for a sizable minority of patients, and drug resistance still cannot be overcome. Methods To explore the mechanisms of immunotherapy and identify new therapeutic opportunities in lung adenocarcinoma (LUAD), data from patients who did and did not respond to the anti-PD-1 treatment were evaluated using single-cell RNA sequencing, and bulk RNA sequencing were collected. Results We investigated the gene expression that respond or not respond to immunotherapy in diverse cell types and revealed transcriptional characteristics at the single-cell level. To ultimately explore the molecular response or resistance to anti-PD-1 therapy, cell-cell interactions were carried out to identify the different LRIs (ligand-receptor interactions) between untreated patients vs. no-responders, untreated patients vs. responders, and responders vs. non-responders. Next, two molecular subgroups were proposed based on 73 LRI genes, and subtype 1 had a poor survival status and was likely to be the immunosuppressive tumor subtype. Furthermore, based on the LASSO Cox regression analysis results, we found that TNFSF13, AXL, KLRK1, FAS, PROS1, and CDH1 can be distinct prognostic biomarkers, immune infiltration levels, and responses to immunotherapy in LUAD. Discussion Altogether, the effects of immunotherapy were connected to LRIs scores, indicating that potential medications targeting these LRIs could contribute to the clinical benefit of immunotherapy. Our integrative omics analysis revealed the mechanisms underlying the anti-PD-1 therapy response and offered abundant clues for potential strategies to improve precise diagnosis and immunotherapy.
Collapse
|
587
|
Madjar K, Mohindra R, Durán-Pacheco G, Rasul R, Essioux L, Maiya V, Chandler GS. Baseline risk factors associated with immune related adverse events and atezolizumab. Front Oncol 2023; 13:1138305. [PMID: 36925916 PMCID: PMC10011463 DOI: 10.3389/fonc.2023.1138305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer patients in the last decade, but immune-related adverse events (irAEs) pose significant clinical challenges. Despite advances in the management of these unique toxicities, there remains an unmet need to further characterize the patient-level drivers of irAEs in order to optimize the benefit/risk balance in patients receiving cancer immunotherapy. Methods An individual-patient data post-hoc meta-analysis was performed using data from 10,344 patients across 15 Roche sponsored clinical trials with atezolizumab in five different solid tumor types to assess the association between baseline risk factors and the time to onset of irAE. In this study, the overall analysis was conducted by treatment arm, indication, toxicity grade and irAE type, and the study design considered confounder adjustment to assess potential differences in risk factor profiles. Results This analysis demonstrates that the safety profile of atezolizumab is generally consistent across indications in the 15 studies evaluated. In addition, our findings corroborate with prior reviews which suggest that reported rates of irAEs with PD-(L)1 inhibitors are nominally lower than CTLA-4 inhibitors. In our analysis, there were no remarkable differences in the distribution of toxicity grades between indications, but some indication-specific differences regarding the type of irAE were seen across treatment arms, where pneumonitis mainly occurred in lung cancer, and hypothyroidism and rash had a higher prevalence in advanced renal cell carcinoma compared to all other indications. Results showed consistency of risk factors across indications and by toxicity grade. The strongest and most consistent risk factors were mostly organ-specific such as elevated liver enzymes for hepatitis and thyroid stimulating hormone (TSH) for thyroid toxicities. Another strong but non-organ-specific risk factor was ethnicity, which was associated with rash, hepatitis and pneumonitis. Further understanding the impact of ethnicity on ICI associated irAEs is considered as an area for future research. Conclusions Overall, this analysis demonstrated that atezolizumab safety profile is consistent across indications, is clinically distinguishable from comparator regimens without checkpoint inhibition, and in line with literature, seems to suggest a nominally lower reported rates of irAEs vs CTLA-4 inhibitors. This analysis demonstrates several risk factors for irAEs by indication, severity and location of irAE, and by patient ethnicity. Additionally, several potential irAE risk factors that have been published to date, such as demographic factors, liver enzymes, TSH and blood cell counts, are assessed in this large-scale meta-analysis, providing a more consistent picture of their relevance. However, given the small effects size, changes to clinical management of irAEs associated with the use of Anti-PDL1 therapy are not warranted.
Collapse
Affiliation(s)
- Katrin Madjar
- Product Development (PD), F. Hoffmann-La Roche, Basel, Switzerland
| | - Rajat Mohindra
- Product Development (PD), F. Hoffmann-La Roche, Basel, Switzerland
| | | | - Rashad Rasul
- Statistical Programming and Technology, Bristol Myers Squibb, Basel, Switzerland
| | - Laurent Essioux
- Product Development (PD), F. Hoffmann-La Roche, Basel, Switzerland
| | - Vidya Maiya
- Product Development (PD), Genentech, Inc., South San Francisco, CA, United States
| | - G Scott Chandler
- Product Development (PD), F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|
588
|
Zhao S, Wang L, Ding W, Ye B, Cheng C, Shao J, Liu J, Zhou H. Crosstalk of disulfidptosis-related subtypes, establishment of a prognostic signature and immune infiltration characteristics in bladder cancer based on a machine learning survival framework. Front Endocrinol (Lausanne) 2023; 14:1180404. [PMID: 37152941 PMCID: PMC10154596 DOI: 10.3389/fendo.2023.1180404] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Background Bladder cancer (BLCA) is the most common malignancy of the urinary tract. On the other hand, disulfidptosis, a mechanism of disulfide stress-induced cell death, is closely associated with tumorigenesis and progression. Here, we investigated the impact of disulfidptosis-related genes (DRGs) on the prognosis of BLCA, identified various DRG clusters, and developed a risk model to assess patient prognosis, immunological profile, and treatment response. Methods The expression and mutational characteristics of four DRGs were first analyzed in bulk RNA-Seq and single-cell RNA sequencing data, IHC staining identified the role of DRGs in BLCA progression, and two DRG clusters were identified by consensus clustering. Using the differentially expressed genes (DEGs) from these two clusters, we transformed ten machine learning algorithms into more than 80 combinations and finally selected the best algorithm to construct a disulfidptosis-related prognostic signature (DRPS). We based this selection on the mean C-index of three BLCA cohorts. Furthermore, we explored the differences in clinical characteristics, mutational landscape, immune cell infiltration, and predicted efficacy of immunotherapy between high and low-risk groups. To visually depict the clinical value of DRPS, we employed nomograms. Additionally, we verified whether DRPS predicts response to immunotherapy in BLCA patients by utilizing the Tumour Immune Dysfunction and Rejection (TIDE) and IMvigor 210 cohorts. Results In the integrated cohort, we identified several DRG clusters and DRG gene clusters that differed significantly in overall survival (OS) and tumor microenvironment. After the integration of clinicopathological features, DRPS showed robust predictive power. Based on the median risk score associated with disulfidptosis, BLCA patients were divided into low-risk (LR) and high-risk (HR) groups, with patients in the LR group having a better prognosis, a higher tumor mutational load and being more sensitive to immunotherapy and chemotherapy. Conclusion Our study, therefore, provides a valuable tool to further guide clinical management and tailor the treatment of BLCA patients, offering new insights into individualized treatment.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Lanyu Wang
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wei Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bicheng Ye
- School of Clinical Medicine, Yangzhou Polytechnic College, Yangzhou, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jianfeng Shao
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
- *Correspondence: Jianfeng Shao, ; Jinhui Liu, ; Hongyi Zhou,
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jianfeng Shao, ; Jinhui Liu, ; Hongyi Zhou,
| | - Hongyi Zhou
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
- *Correspondence: Jianfeng Shao, ; Jinhui Liu, ; Hongyi Zhou,
| |
Collapse
|
589
|
Yan B, Wang S, Liu C, Wen N, Li H, Zhang Y, Wang H, Xi Z, Lv Y, Fan H, Liu X. Engineering magnetic nano-manipulators for boosting cancer immunotherapy. J Nanobiotechnology 2022; 20:547. [PMID: 36587223 PMCID: PMC9805281 DOI: 10.1186/s12951-022-01760-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy has shown promising therapeutic results in the clinic, albeit only in a limited number of cancer types, and its efficacy remains less than satisfactory. Nanoparticle-based approaches have been shown to increase the response to immunotherapies to address this limitation. In particular, magnetic nanoparticles (MNPs) as a powerful manipulator are an appealing option for comprehensively regulating the immune system in vivo due to their unique magnetically responsive properties and high biocompatibility. This review focuses on assessing the potential applications of MNPs in enhancing tumor accumulation of immunotherapeutic agents and immunogenicity, improving immune cell infiltration, and creating an immunotherapy-sensitive environment. We summarize recent progress in the application of MNP-based manipulators to augment the efficacy of immunotherapy, by MNPs and their multiple magnetically responsive effects under different types of external magnetic field. Furthermore, we highlight the mechanisms underlying the promotion of antitumor immunity, including magnetically actuated delivery and controlled release of immunotherapeutic agents, tracking and visualization of immune response in real time, and magnetic regulation of innate/adaptive immune cells. Finally, we consider perspectives and challenges in MNP-based immunotherapy.
Collapse
Affiliation(s)
- Bin Yan
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Siyao Wang
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Chen Liu
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Nana Wen
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Hugang Li
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yihan Zhang
- grid.412262.10000 0004 1761 5538College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 Shaanxi China
| | - Hao Wang
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Ziyi Xi
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yi Lv
- grid.452438.c0000 0004 1760 8119Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China ,grid.452438.c0000 0004 1760 8119National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiming Fan
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 Shaanxi China
| | - Xiaoli Liu
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China ,grid.452438.c0000 0004 1760 8119Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China ,grid.452438.c0000 0004 1760 8119National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
590
|
Functional Gene Expression Signatures from On-Treatment Tumor Specimens Predict Anti-PD1 Blockade Response in Metastatic Melanoma. Biomolecules 2022; 13:biom13010058. [PMID: 36671443 PMCID: PMC9855743 DOI: 10.3390/biom13010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Functional gene expression signatures (FGES) from pretreatment biopsy samples have been used to predict the responses of metastatic melanoma to immune checkpoint blockade (ICB) therapies. However, there are no predictive FGE signatures from patients receiving treatment. Here, using the Elastic Net Regression (ENLR) algorithm, we analyzed transcriptomic and matching clinical data from a dataset of patients with metastatic melanoma treated with ICB therapies and produced an FGE signature for pretreatment (FGES-PRE) and on-treatment (FGES-ON). Both the FGES-PRE and FGES-ON signatures are validated in three independent datasets of metastatic melanoma as the validation set, achieving area under the curve (AUC) values of 0.44-0.81 and 0.82-0.83, respectively. Then, we combined all test samples and obtained AUCs of 0.71 and 0.82 for the FGES-PRE and FGES-ON signatures, respectively. The FGES-ON signatures had a higher predictive value for prognosis than the FGES-PRE signatures. The FGES-PRE and FGES-ON signatures were divided into high- and low-risk scores using the signature score mean value. Patients with a high FGE signature score had better survival outcomes than those with low scores. Overall, we determined that the FGES-ON signature is an effective biomarker for metastatic melanoma patients receiving ICB therapy. This work would provide an important theoretical basis for applying FGE signatures derived from on-treatment tumor samples to predict patients' therapeutic response to ICB therapies.
Collapse
|
591
|
Fu S, Liu Y, Zhang Z, Mei M, Chen Q, Wang S, Yang X, Sun T, Ma M, Xie W. Identification of a Novel Myc-Regulated Gene Signature for Patients with Kidney Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3487859. [PMID: 37342680 PMCID: PMC10279501 DOI: 10.1155/2022/3487859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 07/24/2023]
Abstract
Given that myc was known to be a cancer-causing gene in several cancers including kidney renal clear cell carcinoma (KIRC). We aimed to construct myc-regulated genes (MRGs)-based prognostic signature. We obtained the mRNA expression and clinical data of KIRC from The Cancer Genome Atlas (TCGA) database and MRGs from the Molecular Signature Database (MSigDB). Then, a prognostic signature consisting of 8 MRGs (IRF9, UBE2C, YBX3, CDKN2B, CKAP2L, CYFIP2, FBLN5, and PDLIM7) was developed by differential expression analysis, cox regression analysis, and least absolute shrinkage and selection operator (lasso) analysis. Patients with KIRC were divided into high- and low-risk groups based on risk scores of MRGs-based signatures. Patients in the high-risk group showed inferior clinical characteristics and survival. In addition, the risk score was an independent prognostic factor for KIRC, and the risk score=based nomogram displayed satisfactory performance to predict the survival of KIRC. The MRGs-based signature is also correlated with immune cell infiltration and the mRNA expression of important immune checkpoints (IDO2, PDCD1, LAG3, FOXP3, and TIGIT). The tumor mutation burden (TMB) landscape between the high- and low-risk groups showed higher levels of TMB in the high-risk group than in the low-risk group and that higher levels of TMB predicted a poorer prognosis in KIRC. Furthermore, patients with KIRC in the high-risk group are more likely to experience immune escape. At last, we found patients with KIRC in the high-risk group were more sensitive to several chemotherapy drugs such as sunitinib, gefitinib, nilotinib, and rapamycin than patients with KIRC in the low-risk group. Our study successfully constructed and validated an MRGs-based signature that can predict clinical characteristics, prognosis, level of immune infiltration, and responsiveness to immunotherapy and chemotherapy drugs in patients with KIRC.
Collapse
Affiliation(s)
- Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ming Mei
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qiang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Siyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiaorong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wenjie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
592
|
Hu T, Chen X, Lu S, Zeng H, Guo L, Han Y. Biological Role and Mechanism of Lipid Metabolism Reprogramming Related Gene ECHS1 in Cancer. Technol Cancer Res Treat 2022; 21:15330338221140655. [PMID: 36567598 PMCID: PMC9806408 DOI: 10.1177/15330338221140655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cancer is a major threat to human health today. Although the existing anticancer treatments have effectively improved the prognosis of some patients, there are still other patients who cannot benefit from these well-established strategies. Reprogramming of lipid metabolism is one of the typical features of cancers. Recent studies have revealed that key enzymes involved in lipid metabolism may be effective anticancer therapeutic targets, but the development of therapeutic lipid metabolism targets is still insufficient. ECHS1 (enoyl-CoA hydratase, short chain 1) is a key enzyme mediating the hydration process of mitochondrial fatty acid β-oxidation and has been observed to be abnormally expressed in a variety of cancers. Therefore, with ECHS1 and cancer as the main keywords, we searched the relevant studies of ECHS1 in the field of cancer in Pubmed, summarized the research status and functions of ECHS1 in different cancer contexts, and explored its potential regulatory mechanisms, with a view to finding new therapeutic targets for anti-metabolic therapy. By reviewing and summarizing the retrieved literatures, we found that ECHS1 regulates malignant biological behaviors such as cell proliferation, metastasis, apoptosis, autophagy, and drug resistance by remodeling lipid metabolism and regulating intercellular oncogenic signaling pathways. Not only that, ECHS1 exhibits early diagnostic and prognostic value in clear cell renal cell carcinoma, and small-molecule inhibitors that regulate ECHS1 also show therapeutic significance in preclinical studies. Taken together, we propose that ECHS1 has the potential to serve as a therapeutic target of lipid metabolism.
Collapse
Affiliation(s)
- Teng Hu
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Xiaojing Chen
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Simin Lu
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Hao Zeng
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Lu Guo
- Department of Ophthalmology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China,Yunwei Han, Department of Oncology, The
Affiliated Hospital of Southwest Medical University, Taiping Street, No. 25,
Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
593
|
Wang S, Shi Y. Exosomes Derived from Immune Cells: The New Role of Tumor Immune Microenvironment and Tumor Therapy. Int J Nanomedicine 2022; 17:6527-6550. [PMID: 36575698 PMCID: PMC9790146 DOI: 10.2147/ijn.s388604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Exosomes are small vesicles secreted by living cells, with a typical lipid bilayer structure. They carry a variety of proteins, lipids, RNA and other important information, play an important role in the transmission of substances and information between cells, and gradually become a marker for early diagnosis of many diseases and an important tool in drug delivery system. Immune cells are an important part of tumor microenvironment, and they can affect tumor progression by secreting a variety of immunoreactive substances. This review focuses on the effects of various immune cell-derived exosomes on tumor cells, different immune cells and other stromal cells in tumor microenvironment. Exosomes derived from different immune cells can not only reshape a pro-inflammatory microenvironment to inhibit tumor progression, but also promote tumor progression by inhibiting the killing effect of NK cells, CD8+T cells and other cells or promoting tumor cells and immunosuppressive immune cells. In addition, we also discussed that some exosomes derived from immune cells (such as DC, M1 macrophages and neutrophils) play a tumor inhibitory role after being engineered.
Collapse
Affiliation(s)
- Shiyang Wang
- Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Yue Shi
- Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China,Correspondence: Yue Shi, Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China, Tel +86-13842073309, Email
| |
Collapse
|
594
|
Yang J, Han L, Sha Y, Jin Y, Li Z, Gong B, Li J, Liu Y, Wang Y, Zhao Q. A novel ganglioside-related risk signature can reveal the distinct immune landscape of neuroblastoma and predict the immunotherapeutic response. Front Immunol 2022; 13:1061814. [PMID: 36605200 PMCID: PMC9807785 DOI: 10.3389/fimmu.2022.1061814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Gangliosides play an essential role in cancer development and progression. However, the involvement of gangliosides in the prognosis and tumor microenvironment (TME) of neuroblastoma is not entirely understood. Methods Consensus clustering analysis was performed to identify ganglioside-mediated molecular subtypes. LASSO-Cox analysis was conducted to identify independent prognostic genes, and a novel risk signature was constructed. The risk signature was validated internally and externally. We further explored the independent prognosis value, immune landscape, drug susceptibility, and tumor dedifferentiation of the risk signature. The role of the signature gene B3GALT4 in neuroblastoma was explored in vitro. Results Seventeen ganglioside-related genes were differentially expressed between INSS stage 4 and other stages, and two ganglioside-related clusters with distinct prognoses were identified. A novel risk signature integrating ten ganglioside-related prognostic genes was established. Across the train set and external validation sets, the risk signature presented high predictive accuracy and discrimination. The risk signature was an independent prognostic factor and constructed a nomogram combining multiple clinical characteristics. In the high-score group, the deficiency in antigen processing and presenting machinery, lack of immune cell infiltration, and escaping NK cells contributed substantially to immune escape. The low-score group was more responsive to immune checkpoint blockade therapy, while the high-score group showed substantial sensitivity to multiple chemotherapeutic drugs. Besides, the risk score was significantly positively correlated with the stemness index and reduced considerably in all-trans retinoic acid-treated neuroblastoma cell lines, indicating high dedifferentiation in the high-score group. Additionally, neuroblastoma cells with downregulation of B3GALT4 present with increased proliferation, invasion, and metastasis abilities in vitro. Conclusion The novel ganglioside-related risk signature highlights the role of ganglioside in neuroblastoma prognosis and immune landscape and helps optimize chemotherapy and immunotherapy for neuroblastoma.
Collapse
Affiliation(s)
- Jiaxing Yang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongliang Sha
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhongyuan Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Baocheng Gong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jie Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yangyang Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
595
|
Welty NE, Gill SI. Cancer Immunotherapy Beyond Checkpoint Blockade: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:563-578. [PMID: 36636439 PMCID: PMC9830230 DOI: 10.1016/j.jaccao.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022] Open
Abstract
Avoidance of immune destruction is recognized as one of the hallmarks of cancer development. Although first predicted as a potential antitumor treatment modality more than 50 years ago, the widespread clinical use of cancer immunotherapies has only recently become a reality. Cancer immunotherapy works by reactivation of a stalled pre-existing immune response or by eliciting a de novo immune response, and its toolkit comprises antibodies, vaccines, cytokines, and cell-based therapies. The treatment paradigm in some malignancies has completely changed over the past 10 to 15 years. Massive efforts in preclinical development have led to a surge of clinical trials testing innovative therapeutic approaches as monotherapy and, increasingly, in combination. Here we provide an overview of approved and emerging antitumor immune therapies, focusing on the rich landscape of therapeutic approaches beyond those that block the canonical PD-1/PD-L1 and CTLA-4 axes and placing them in the context of the latest understanding of tumor immunology.
Collapse
Key Words
- BiTE, bispecific T cell engager
- CAR, chimeric antigen receptor
- CRS, cytokine-release syndrome
- FDA, U.S. Food and Drug Administration
- HLA, human leukocyte antigen
- ICI, immune checkpoint inhibitor
- IL, interleukin
- NK, natural killer
- NSCLC, non–small cell lung cancer
- TIL, tumor-infiltrating lymphocyte
- alloHCT, allogeneic hematopoietic stem cell transplantation
- cancer
- immune therapy
- immunotherapy
- innovation
- mAb, monoclonal antibody
- treatment
Collapse
Affiliation(s)
- Nathan E. Welty
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar I. Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Address for correspondence: Dr Saar I. Gill, Smilow Center for Translational Research, Room 8-101, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
596
|
Pancancer Analysis of the Prognostic and Immunotherapeutic Value of Progestin and AdipoQ Receptor 4. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2528164. [PMID: 36573110 PMCID: PMC9789910 DOI: 10.1155/2022/2528164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
AdipoQ receptor 4 (PAQR4) belongs to the family of progestin and AdipoQ receptors. PAQR4 plays an oncogenic role in lung and breast cancer. However, systematic pancancer analyses of PAQR4 have not been performed. The purpose was to investigate the prognostic and immunological significance of PAQR4 across 31 tumor types. Data were obtained from the following sources: TCGA, GEO, UALCAN, TIMER, GEPIA2, KM plotter, and TISIDB databases. The results proved that PAQR4 expression was significantly elevatory in most cancer types. We then explored the utility of PAQR4 as a prognostic indicator across all cancers. Using Cox proportional risk regression models, it has been demonstrated that PAQR4 is an independent risk factor in. High PAQR4 expression was not associated with other prognostic indicators, including overall survival, disease-free interval, disease-specific survival, and progression-free period. Subsequently, we explored the immunological value of PAQR4 and found that PAQR4 expression significantly correlated with tumor mutational burden, microsatellite instability, neoantigen, and immune checkpoint genes in tumors. It also significantly negatively correlated with most tumors' ESTIMATE scores, indicating that PAQR4 can influence the cellular composition of the tumor microenvironment. Our findings suggest the immunotherapeutic potential of PAQR4 in tumors. Finally, we explored the role of PAQR4 in tumor drug resistance and found that PAQR4 expression affected the sensitivity to multiple chemotherapeutic agents. A significant role for PAQR4 in tumor immunity is evident in these studies, as well as its potential role in cancer diagnosis, prognosis, and treatment precision.
Collapse
|
597
|
Li C, Liu D, Yang S, Hua K. Integrated single-cell transcriptome analysis of the tumor ecosystems underlying cervical cancer metastasis. Front Immunol 2022; 13:966291. [PMID: 36569924 PMCID: PMC9780385 DOI: 10.3389/fimmu.2022.966291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) is one of the most frequent female malignancies worldwide. However, the molecular mechanism of lymph node metastasis in CC remains unclear. In this study, we investigated the transcriptome profile of 51,507 single cells from primary tumors, positive lymph nodes (P-LN), and negative lymph nodes (N-LN) using single-cell sequencing. Validation experiments were performed using bulk transcriptomic datasets and immunohistochemical assays. Our results indicated that epithelial cells in metastatic LN were associated with cell- cycle-related signaling pathways, such as E2F targets, and mitotic spindle, and immune response-related signaling pathways, such as allograft rejection, IL2_STAT5_signaling, and inflammatory response. However, epithelial cells in primary tumors exhibited high enrichment of epithelial-mesenchymal translation (EMT), oxidative phosphorylation, and interferon alpha response. Our analysis then indicated that metastasis LN exhibited an early activated tumor microenvironment (TME) characterized by the decrease of naive T cells and an increase of cytotoxicity CD8 T cells, NK cells, FOXP3+ Treg cells compared with normal LN. By comparing the differently expressed gene of macrophages between tumor and metastatic LN, we discovered that C1QA+ MRC1low macrophages were enriched in a tumor, whereas C1QA+ MRC1high macrophages were enriched in metastatic LN. Finally, we demonstrated that cancer-associated fibroblasts (CAFs) in P-LN were associated with immune regulation, while CAFs in tumor underwent EMT. Our findings offered novel insights into the mechanisms of research, diagnosis, and therapy of CC metastasis.
Collapse
Affiliation(s)
- Chunbo Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Danyang Liu
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shimin Yang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Keqin Hua
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China,*Correspondence: Keqin Hua,
| |
Collapse
|
598
|
Li H, Zhao A, Li M, Shi L, Han Q, Hou Z. Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy. Front Immunol 2022; 13:1046755. [PMID: 36569893 PMCID: PMC9768337 DOI: 10.3389/fimmu.2022.1046755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown promising therapeutic effects in the treatment of advanced solid cancers, but their overall response rate is still very low for certain tumor subtypes, limiting their clinical scope. Moreover, the high incidence of drug resistance (including primary and acquired) and adverse effects pose significant challenges to the utilization of these therapies in the clinic. ICIs enhance T cell activation and reverse T cell exhaustion, which is a complex and multifactorial process suggesting that the regulatory mechanisms of ICI therapy are highly heterogeneous. Recently, metabolic reprogramming has emerged as a novel means of reversing T-cell exhaustion in the tumor microenvironment; there is increasing evidence that T cell metabolic disruption limits the therapeutic effect of ICIs. This review focuses on the crosstalk between T-cell metabolic reprogramming and ICI therapeutic efficacy, and summarizes recent strategies to improve drug tolerance and enhance anti-tumor effects by targeting T-cell metabolism alongside ICI therapy. The identification of potential targets for altering T-cell metabolism can significantly contribute to the development of methods to predict therapeutic responsiveness in patients receiving ICI therapy, which are currently unknown but would be of great clinical significance.
Collapse
Affiliation(s)
- Haohao Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Alison Zhao
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve School of Medicine, Cleveland, OH, United States
| | - Menghua Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Lizhi Shi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China,*Correspondence: Qiuju Han, ; Zhaohua Hou,
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States,*Correspondence: Qiuju Han, ; Zhaohua Hou,
| |
Collapse
|
599
|
Lu Y, Huntoon K, Lee D, Wang Y, Ha J, Qie Y, Li X, Schrank BR, Dong S, Gallup TD, Kang M, Zhao H, An Y, Yang Z, Li J, Kim BYS, Jiang W. Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy. NATURE NANOTECHNOLOGY 2022; 17:1332-1341. [PMID: 36357792 PMCID: PMC10036139 DOI: 10.1038/s41565-022-01245-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/23/2022] [Indexed: 05/06/2023]
Abstract
Solid tumours display a limited response to immunotherapies. By contrast, haematological malignancies exhibit significantly higher response rates to immunotherapies as compared with solid tumours. Among several microenvironmental and biological disparities, the differential expression of unique immune regulatory molecules contributes significantly to the interaction of blood cancer cells with immune cells. The self-ligand receptor of the signalling lymphocytic activation molecule family member 7 (SLAMF7), a molecule that is critical in promoting the body's innate immune cells to detect and engulf cancer cells, is expressed nearly exclusively on the cell surface of haematologic tumours, but not on solid ones. Here we show that a bispecific nanobioconjugate that enables the decoration of SLAMF7 on the surface of solid tumours induces robust phagocytosis and activates the phagocyte cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway, sensitizing the tumours to immune checkpoint blockade. Our findings support an immunological conversion strategy that uses nano-adjuvants to improve the effectiveness of immunotherapies for solid tumours.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaqing Qie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas D Gallup
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hai Zhao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi An
- Department of Therapeutic Radiology, Yale New Haven Hospital, New Haven, CT, USA
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
600
|
Wang M, Deng S, Cao Y, Zhou H, Wei W, Yu K, Cao Y, Liang B. Injectable versatile liquid-solid transformation implants alliance checkpoint blockade for magnetothermal dynamic-immunotherapy. Mater Today Bio 2022; 16:100442. [PMID: 36199558 PMCID: PMC9527946 DOI: 10.1016/j.mtbio.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
The ongoing circulating energy loss, low reactive oxygen species (ROS) accumulation and poor immunogenicity of tumors make it difficult to induce sufficient immunogenic cell death (ICD) in the tumor immunosuppressive microenvironment (TIME), resulting in unsatisfactory immunotherapy efficacy. Furthermore, for highly malignant tumors, simply enhancing ICD is insufficient for exhaustively eliminating the tumor and inhibiting metastasis. Herein, we propose a unique magnetothermal-dynamic immunotherapy strategy based on liquid-solid transformation porous versatile implants (Fe3O4/AIPH@PLGA) that takes advantage of less energy loss and avoids ongoing circulating losses by minimally invasive injection into tumors. In addition, the magnetothermal effect regresses and eliminates tumors that are not limited by penetration to simultaneously trigger 2,2′-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) decomposition and generate a large amount of oxygen-irrelevant free radicals and heat shock protein (HSP) accumulation by heating, evoking both intracellular oxidative stress and endoplasmic reticulum (ER) stress to induce large-scale ICD and enhance tumor immunogenicity. More importantly, in orthotopic bilateral breast tumor models, a significant therapeutic effect was obtained after combining amplified ICD with CTLA4 checkpoint blockade. The 21-day primary and distant tumor inhibition rates reached 90%, and the underlying mechanism of the effective synergetic strategy of inducing the T-cell-related response, the immune memory effect and TIME reprogramming in vivo was verified by immune cell analyses. This remarkable therapeutic effect provides a new direction for antitumor immunotherapy based on magnetothermally controlled oxygen-independent free radical release. Injectable versatile liquid-solid phase transformation Fe3O4/AIPH@PLGA gel implants are constructed for the first time. The implants triggered magnetothermal dynamic therapy and successfully addressed two key barriers limiting the efficacy of immunogenic cell death (ICD): low reactive oxygen species (ROS) accumulation and poor immunogenicity. The implants promoting DC maturation, recognition and presentation of antigens. Combined with CTLA4 blockade, the function of Treg cells was inhibited to transform the “cold” TIME into “hot”.
Collapse
Affiliation(s)
- Mengna Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
- Institute of Ultrasound Imaging of Chongqing Medical University; The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, PR China
| | - Siyu Deng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yijia Cao
- Department of Digestion, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, PR China
| | - Hang Zhou
- Institute of Ultrasound Imaging of Chongqing Medical University; The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, PR China
| | - Wei Wei
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, PR China
- Corresponding author. Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, PR China.
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400042, PR China
- Corresponding author. Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, PR China.
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400042, PR China
- Corresponding author. Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, PR China.
| |
Collapse
|