551
|
Rottscholl R, Haegele M, Jainsch B, Xu H, Respondek G, Höllerhage M, Rösler TW, Bony E, Le Ven J, Guérineau V, Schmitz-Afonso I, Champy P, Oertel WH, Yamada ES, Höglinger GU. Chronic consumption ofAnnona muricatajuice triggers and aggravates cerebral tau phosphorylation in wild-type andMAPTtransgenic mice. J Neurochem 2016; 139:624-639. [DOI: 10.1111/jnc.13835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | - Marlen Haegele
- Experimental Neurology; University of Marburg; Marburg Germany
| | - Britta Jainsch
- Experimental Neurology; University of Marburg; Marburg Germany
| | - Hong Xu
- Experimental Neurology; University of Marburg; Marburg Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
| | - Gesine Respondek
- Experimental Neurology; University of Marburg; Marburg Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Department of Neurology; Technical University Munich; Munich Germany
| | - Matthias Höllerhage
- Experimental Neurology; University of Marburg; Marburg Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Department of Neurology; Technical University Munich; Munich Germany
| | - Thomas W. Rösler
- Experimental Neurology; University of Marburg; Marburg Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
| | - Emilie Bony
- Laboratoire de Pharmacognosie; BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; UFR Pharmacie; Châtenay-Malabry France
| | - Jessica Le Ven
- Laboratoire de Pharmacognosie; BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; UFR Pharmacie; Châtenay-Malabry France
| | - Vincent Guérineau
- Centre de recherche de Gif; Institut de Chimie des Substances Naturelles; CNRS; Gif-sur-Yvette France
| | - Isabelle Schmitz-Afonso
- Centre de recherche de Gif; Institut de Chimie des Substances Naturelles; CNRS; Gif-sur-Yvette France
- Normandie Université; COBRA; UMR 6014 et FR3038; Université de Rouen; INSA de Rouen; CNRS; IRCOF; Mont-Saint-Aignan Cedex France
| | - Pierre Champy
- Laboratoire de Pharmacognosie; BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; UFR Pharmacie; Châtenay-Malabry France
| | | | - Elizabeth S. Yamada
- Experimental Neurology; University of Marburg; Marburg Germany
- Laboratory of Experimental Neuropathology-ICB; João de Barros Barreto University Hospital; Federal University of Pará; Belém Brazil
| | - Günter U. Höglinger
- Experimental Neurology; University of Marburg; Marburg Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Department of Neurology; Technical University Munich; Munich Germany
| |
Collapse
|
552
|
Yuan A, Nixon RA. Specialized roles of neurofilament proteins in synapses: Relevance to neuropsychiatric disorders. Brain Res Bull 2016; 126:334-346. [PMID: 27609296 PMCID: PMC5079776 DOI: 10.1016/j.brainresbull.2016.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/05/2023]
Abstract
Neurofilaments are uniquely complex among classes of intermediate filaments in being composed of four subunits (NFL, NFM, NFH and alpha-internexin in the CNS) that differ in structure, regulation, and function. Although neurofilaments have been traditionally viewed as axonal structural components, recent evidence has revealed that distinctive assemblies of neurofilament subunits are integral components of synapses, especially at postsynaptic sites. Within the synaptic compartment, the individual subunits differentially modulate neurotransmission and behavior through interactions with specific neurotransmitter receptors. These newly uncovered functions suggest that alterations of neurofilament proteins not only underlie axonopathy in various neurological disorders but also may play vital roles in cognition and neuropsychiatric diseases. Here, we review evidence that synaptic neurofilament proteins are a sizable population in the CNS and we advance the concept that changes in the levels or post-translational modification of individual NF subunits contribute to synaptic and behavioral dysfunction in certain neuropsychiatric conditions.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, 10962, United States; Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States.
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, 10962, United States; Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
553
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
554
|
BDNF trafficking and signaling impairment during early neurodegeneration is prevented by moderate physical activity. IBRO Rep 2016; 1:19-31. [PMID: 30135925 PMCID: PMC6084862 DOI: 10.1016/j.ibror.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
Physical exercise can attenuate the effects of aging on the central nervous system by increasing the expression of neurotrophins such as brain-derived neurotrophic factor (BDNF), which promotes dendritic branching and enhances synaptic machinery, through interaction with its receptor TrkB. TrkB receptors are synthesized in the cell body and are transported to the axonal terminals and anchored to plasma membrane, through SLP1, CRMP2 and Rab27B, associated with KIF1B. Retrograde trafficking is made by EDH-4 together with dynactin and dynein molecular motors. In the present study it was found that early neurodegeneration is accompanied by decrease in BDNF signaling, in the absence of hyperphosphorylated tau aggregation, in hippocampus of 11 months old Lewis rats exposed to rotenone. It was also demonstrated that moderate physical activity (treadmill running, during 6 weeks, concomitant to rotenone exposure) prevents the impairment of BDNF system in aged rats, which may contribute to delay neurodegeneration. In conclusion, decrease in BDNF and TrkB vesicles occurs before large aggregate-like p-Tau are formed and physical activity applied during early neurodegeneration may be of relevance to prevent BDNF system decay.
Collapse
|
555
|
Voelzmann A, Okenve-Ramos P, Qu Y, Chojnowska-Monga M, del Caño-Espinel M, Prokop A, Sanchez-Soriano N. Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking. eLife 2016; 5:e14694. [PMID: 27501441 PMCID: PMC4977155 DOI: 10.7554/elife.14694] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer's disease.
Collapse
Affiliation(s)
- Andre Voelzmann
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Pilar Okenve-Ramos
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yue Qu
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Monika Chojnowska-Monga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Manuela del Caño-Espinel
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Natalia Sanchez-Soriano
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
556
|
Bodea L, Eckert A, Ittner LM, Piguet O, Götz J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J Neurochem 2016; 138 Suppl 1:71-94. [PMID: 27306859 PMCID: PMC5094566 DOI: 10.1111/jnc.13600] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/31/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines with subsequent degeneration of synapses and synaptic loss. Thus, by providing a mechanistic explanation for the observations made in FTLD-tau cases, arises a possibility for therapeutic interventions. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anne Eckert
- Neurobiology LaboratoryPsychiatric University Clinics BaselUniversity of BaselBaselSwitzerland
| | - Lars Matthias Ittner
- Dementia Research UnitSchool of Medical SciencesFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia
| | | | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
557
|
Ghosal K, Fan Q, Dawson HN, Pimplikar SW. Tau Protein Mediates APP Intracellular Domain (AICD)-Induced Alzheimer's-Like Pathological Features in Mice. PLoS One 2016; 11:e0159435. [PMID: 27459671 PMCID: PMC4961442 DOI: 10.1371/journal.pone.0159435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/01/2016] [Indexed: 11/20/2022] Open
Abstract
Amyloid precursor protein (APP) is cleaved by gamma-secretase to simultaneously generate amyloid beta (Aβ) and APP Intracellular Domain (AICD) peptides. Aβ plays a pivotal role in Alzheimer's disease (AD) pathogenesis but recent studies suggest that amyloid-independent mechanisms also contribute to the disease. We previously showed that AICD transgenic mice (AICD-Tg) exhibit AD-like features such as tau pathology, aberrant neuronal activity, memory deficits and neurodegeneration in an age-dependent manner. Since AD is a tauopathy and tau has been shown to mediate Aβ-induced toxicity, we examined the role of tau in AICD-induced pathological features. We report that ablating endogenous tau protects AICD-Tg mice from deficits in adult neurogenesis, seizure severity, short-term memory deficits and neurodegeneration. Deletion of tau restored abnormal phosphorylation of NMDA receptors, which is likely to underlie hyperexcitability and associated excitotoxicity in AICD-Tg mice. Conversely, overexpression of wild-type human tau aggravated receptor phosphorylation, impaired adult neurogenesis, memory deficits and neurodegeneration. Our findings show that tau is essential for mediating the deleterious effects of AICD. Since tau also mediates Aβ-induced toxic effects, our findings suggest that tau is a common downstream factor in both amyloid-dependent and-independent pathogenic mechanisms and therefore could be a more effective drug target for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Kaushik Ghosal
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| | - Hana N. Dawson
- Department of Neurology, Duke University, Durham, North Carolina, 27710, United States of America
| | - Sanjay W. Pimplikar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| |
Collapse
|
558
|
Regan P, Whitcomb DJ, Cho K. Physiological and Pathophysiological Implications of Synaptic Tau. Neuroscientist 2016; 23:137-151. [DOI: 10.1177/1073858416633439] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tauopathies encompass a broad range of neurodegenerative diseases featuring extensive neuronal death and cognitive decline. However, research over the past 30 years has failed to significantly advance our understanding of how tau causes dementia, limiting the design of rational therapeutics. It has become evident that we need to expand our understanding of tau in physiology, in order to delineate how tau may contribute to pathology. This review discusses recent evidence that has uncovered a novel aspect of tau function, based on its previously uncharacterized localization to the synapse. Here, multiple streams of evidence support a critical role for synaptic tau in the regulation of synapse physiology. In particular, long-term depression, a form of synaptic weakening, is dependent on the presence of tau in hippocampal neurons. The regulation of tau by specific phosphorylation events downstream of GSK-3β activation appears to be integral to this signaling role. We also describe how the regulation of synapse physiology by tau and its phosphorylation may inform our understanding of tauopathies and comorbid diseases. This work should provide a platform for future tau biology research in addition to therapeutic design.
Collapse
Affiliation(s)
- Philip Regan
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (HW-LINE), Bristol, UK
| | - Daniel J. Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (HW-LINE), Bristol, UK
- Centre for Synaptic Plasticity, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (HW-LINE), Bristol, UK
- Centre for Synaptic Plasticity, Faculty of Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
559
|
Mobility and subcellular localization of endogenous, gene-edited Tau differs from that of over-expressed human wild-type and P301L mutant Tau. Sci Rep 2016; 6:29074. [PMID: 27378256 PMCID: PMC4932628 DOI: 10.1038/srep29074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/09/2016] [Indexed: 11/09/2022] Open
Abstract
Alzheimer’s disease (AD) and a subset of frontotemporal dementia termed FTLD-Tau are characterized by a massive, yet incompletely characterized and understood redistribution of Tau. To establish a framework for understanding this pathology, we used the genome-editing tool TALEN and generated Tau-mEOS2 knock-in mice to determine the mobility and subcellular localization of endogenous Tau in hippocampal cultures. We analysed Tau in axons, dendrites and spines at three stages of maturation using live-cell imaging, photo-conversion and FRAP assays. Tau-mEOS2 cultures were compared with those over-expressing EGFP-tagged forms of human wild-type (hWT-Tau) and P301L mutant Tau (hP301L-Tau), modelling Tau accumulation in AD and FTLD-Tau, respectively. In developing neurons, Tau-mEOS2 followed a proximo-distal gradient in axons and a subcellular distribution similar to that of endogenous Tau in neurons obtained from wild-type mice, which were abolished, when either hWT-Tau or hP301L-Tau was over-expressed. For the three conditions, FRAP analysis revealed a similar mobility in dendrites compared with axons; however, Tau-mEOS2 was less mobile than hWT-Tau and hP301L-Tau and the mobile fraction was smaller, possibly reflecting less efficient microtubule binding of Tau when over-expressed. Together, our study presents Tau-mEOS2 mice as a novel tool for the study of Tau in a physiological and a pathological context.
Collapse
|
560
|
Henstridge CM, Pickett E, Spires-Jones TL. Synaptic pathology: A shared mechanism in neurological disease. Ageing Res Rev 2016; 28:72-84. [PMID: 27108053 DOI: 10.1016/j.arr.2016.04.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Synaptic proteomes have evolved a rich and complex diversity to allow the exquisite control of neuronal communication and information transfer. It is therefore not surprising that many neurological disorders are associated with alterations in synaptic function. As technology has advanced, our ability to study the anatomical and physiological function of synapses in greater detail has revealed a critical role for both central and peripheral synapses in neurodegenerative disease. Synapse loss has a devastating effect on cellular communication, leading to wide ranging effects such as network disruption within central neural systems and muscle wastage in the periphery. These devastating effects link synaptic pathology to a diverse range of neurological disorders, spanning Alzheimer's disease to multiple sclerosis. This review will highlight some of the current literature on synaptic integrity in animal models of disease and human post-mortem studies. Synaptic changes in normal brain ageing will also be discussed and finally the current and prospective treatments for neurodegenerative disorders will be summarised.
Collapse
Affiliation(s)
| | - Eleanor Pickett
- Centre for Cognitive and Neural Systems, 1 George Square, University of Edinburgh, EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, 1 George Square, University of Edinburgh, EH8 9JZ, UK; Euan MacDonald Centre for Motor Neurone Disease Research, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, EH16 4SB, UK; Centre for Dementia Prevention, University of Edinburgh Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF, UK.
| |
Collapse
|
561
|
Zhang Y, Li P, Feng J, Wu M. Dysfunction of NMDA receptors in Alzheimer's disease. Neurol Sci 2016; 37:1039-47. [PMID: 26971324 PMCID: PMC4917574 DOI: 10.1007/s10072-016-2546-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/02/2016] [Indexed: 11/05/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a pivotal role in the synaptic transmission and synaptic plasticity thought to underlie learning and memory. NMDARs activation has been recently implicated in Alzheimer's disease (AD) related to synaptic dysfunction. Synaptic NMDARs are neuroprotective, whereas overactivation of NMDARs located outside of the synapse cause loss of mitochondrial membrane potential and cell death. NMDARs dysfunction in the glutamatergic tripartite synapse, comprising presynaptic and postsynaptic neurons and glial cells, is directly involved in AD. This review discusses that both beta-amyloid (Aβ) and tau perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of NMDARs as a possible convergence point for Aβ and tau toxicity and possible reversible stages of the AD through preventive and/or disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Peiyao Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China.
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China.
| |
Collapse
|
562
|
Abstract
UNLABELLED Tauopathies are neurodegenerative diseases characterized by intraneuronal inclusions of hyperphosphorylated tau protein and abnormal expression of brain-derived neurotrophic factor (BDNF), a key modulator of neuronal survival and function. The severity of both these pathological hallmarks correlate with the degree of cognitive impairment in patients. However, how tau pathology specifically modifies BDNF signaling and affects neuronal function during early prodromal stages of tauopathy remains unclear. Here, we report that the mild tauopathy developing in retinal ganglion cells (RGCs) of the P301S tau transgenic (P301S) mouse induces functional retinal changes by disrupting BDNF signaling via the TrkB receptor. In adult P301S mice, the physiological visual response of RGCs to pattern light stimuli and retinal acuity decline significantly. As a consequence, the activity-dependent secretion of BDNF in the vitreous is impaired in P301S mice. Further, in P301S retinas, TrkB receptors are selectively upregulated, but uncoupled from downstream extracellular signal-regulated kinase (ERK) 1/2 signaling. We also show that the impairment of TrkB signaling is triggered by tau pathology and mediates the tau-induced dysfunction of visual response. Overall our results identify a neurotrophin-mediated mechanism by which tau induces neuronal dysfunction during prodromal stages of tauopathy and define tau-driven pathophysiological changes of potential value to support early diagnosis and informed therapeutic decisions. SIGNIFICANCE STATEMENT This work highlights the potential molecular mechanisms by which initial tauopathy induces neuronal dysfunction. Combining clinically used electrophysiological techniques (i.e., electroretinography) and molecular analyses, this work shows that in a relevant model of early tauopathy, the retina of the P301S mutant human tau transgenic mouse, mild tau pathology results in functional changes of neuronal activity, likely due to selective impairment of brain-derived neurotrophic factor signaling via its receptor, TrkB. These findings may have important translational implications for early diagnosis in a subset of Alzheimer's disease patients with early visual symptoms and emphasize the need to clarify the pathophysiological changes associated with distinct tauopathy stages to support informed therapeutic decisions and guide drug discovery.
Collapse
|
563
|
Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci U S A 2016; 113:E3773-81. [PMID: 27298345 DOI: 10.1073/pnas.1604519113] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Intracellular accumulation of wild-type tau is a hallmark of sporadic Alzheimer's disease (AD), but the molecular mechanisms underlying tau-induced synapse impairment and memory deficit are poorly understood. Here we found that overexpression of human wild-type full-length tau (termed hTau) induced memory deficits with impairments of synaptic plasticity. Both in vivo and in vitro data demonstrated that hTau accumulation caused remarkable dephosphorylation of cAMP response element binding protein (CREB) in the nuclear fraction. Simultaneously, the calcium-dependent protein phosphatase calcineurin (CaN) was up-regulated, whereas the calcium/calmodulin-dependent protein kinase IV (CaMKIV) was suppressed. Further studies revealed that CaN activation could dephosphorylate CREB and CaMKIV, and the effect of CaN on CREB dephosphorylation was independent of CaMKIV inhibition. Finally, inhibition of CaN attenuated the hTau-induced CREB dephosphorylation with improved synapse and memory functions. Together, these data indicate that the hTau accumulation impairs synapse and memory by CaN-mediated suppression of nuclear CaMKIV/CREB signaling. Our findings not only reveal new mechanisms underlying the hTau-induced synaptic toxicity, but also provide potential targets for rescuing tauopathies.
Collapse
|
564
|
Abstract
Exposure to chronic stress is frequently accompanied by cognitive and affective disorders in association with neurostructural adaptations. Chronic stress was previously shown to trigger Alzheimer's-like neuropathology, which is characterized by Tau hyperphosphorylation and missorting into dendritic spines followed by memory deficits. Here, we demonstrate that stress-driven hippocampal deficits in wild-type mice are accompanied by synaptic missorting of Tau and enhanced Fyn/GluN2B-driven synaptic signaling. In contrast, mice lacking Tau [Tau knockout (Tau-KO) mice] do not exhibit stress-induced pathological behaviors and atrophy of hippocampal dendrites or deficits of hippocampal connectivity. These findings implicate Tau as an essential mediator of the adverse effects of stress on brain structure and function.
Collapse
|
565
|
Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J, Bjorklund N, Taglialatela G, Bennett DA, De Jager PL, Shulman JM, Bellen HJ, Lu HC. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol 2016; 14:e1002472. [PMID: 27254664 PMCID: PMC4890852 DOI: 10.1371/journal.pbio.1002472] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is neuroprotective in numerous preclinical models of neurodegeneration. Here, we show that brain nmnat2 mRNA levels correlate positively with global cognitive function and negatively with AD pathology. In AD brains, NMNAT2 mRNA and protein levels are reduced. NMNAT2 shifts its solubility and colocalizes with aggregated Tau in AD brains, similar to chaperones, which aid in the clearance or refolding of misfolded proteins. Investigating the mechanism of this observation, we discover a novel chaperone function of NMNAT2, independent from its enzymatic activity. NMNAT2 complexes with heat shock protein 90 (HSP90) to refold aggregated protein substrates. NMNAT2’s refoldase activity requires a unique C-terminal ATP site, activated in the presence of HSP90. Furthermore, deleting NMNAT2 function increases the vulnerability of cortical neurons to proteotoxic stress and excitotoxicity. Interestingly, NMNAT2 acts as a chaperone to reduce proteotoxic stress, while its enzymatic activity protects neurons from excitotoxicity. Taken together, our data indicate that NMNAT2 exerts its chaperone or enzymatic function in a context-dependent manner to maintain neuronal health. This study reveals NMNAT2 to be a dual-function neuronal maintenance factor that not only generates NAD to protect neurons from excitotoxicity but also moonlights as a chaperone to combat protein toxicity. Pathological protein aggregates are found in many neurodegenerative diseases, and it has been hypothesized that these protein aggregates are toxic and cause neuronal death. Little is known about how neurons protect against pathological protein aggregates to maintain their health. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a newly identified neuronal maintenance factor. We found that in humans, levels of NMNAT2 transcript are positively correlated with cognitive function and are negatively correlated with pathological features of neurodegenerative disease like plaques and tangles. In this study, we demonstrate that NMNAT2 can act as a chaperone to reduce protein aggregates, and this function is independent from its known function in the enzymatic synthesis of nicotinamide adenine dinucleotide (NAD). We find that NMNAT2 interacts with heat shock protein 90 (HSP90) to refold protein aggregates, and that deleting NMNAT2 in cortical neurons renders them vulnerable to protein stress or excitotoxicity. Interestingly, the chaperone function of NMNAT2 protects neurons from protein toxicity, while its enzymatic function is required to defend against excitotoxicity. Our work here suggests that NMNAT2 uses either its chaperone or enzymatic function to combat neuronal insults in a context-dependent manner. In Alzheimer disease brains, NMNAT2 levels are less than 50% of control levels, and we propose that enhancing NMNAT2 function may provide an effective therapeutic intervention to reserve cognitive function.
Collapse
Affiliation(s)
- Yousuf O. Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hunter M. Allen
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Lei Yu
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dena Bakhshizadehmahmoudi
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Asante Hatcher
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristin McCabe
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Jishu Xu
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Nicole Bjorklund
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua M. Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute (HHMI), Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
566
|
Hunsberger HC, Hickman JE, Reed MN. Riluzole rescues alterations in rapid glutamate transients in the hippocampus of rTg4510 mice. Metab Brain Dis 2016; 31:711-5. [PMID: 26744018 PMCID: PMC4864118 DOI: 10.1007/s11011-015-9783-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 01/18/2023]
Abstract
Those at risk for Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability in the years preceding diagnosis. Our previous work with the rTg(TauP301L)4510 tau mouse model of AD suggests that this increase in hyperexcitability is likely mediated by an increase in depolarization-evoked glutamate release and a decrease in glutamate uptake, alterations of which correlate with learning and memory deficits. Treatment with riluzole restored glutamate regulation and rescued memory deficits in the TauP301L model. Here, we used enzyme-based ceramic microelectrode array technology to measure real-time phasic glutamate release and uptake events in the hippocampal subregions of TauP301L mice. For the first time, we demonstrate that perturbations in glutamate transients (rapid, spontaneous bursts of glutamate) exist in a tau mouse model of AD mouse model and that riluzole mitigates these alterations. These results help to inform our understanding of how glutamate signaling is altered in the disease process and also suggest that riluzole may serve as a clinically applicable therapeutic approach in AD.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, 26506, WV, USA
- Drug Discovery & Development Department, School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - James E Hickman
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, 26506, WV, USA
| | - Miranda N Reed
- Drug Discovery & Development Department, School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| |
Collapse
|
567
|
Electrical and Network Neuronal Properties Are Preferentially Disrupted in Dorsal, But Not Ventral, Medial Entorhinal Cortex in a Mouse Model of Tauopathy. J Neurosci 2016; 36:312-24. [PMID: 26758825 DOI: 10.1523/jneurosci.2845-14.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The entorhinal cortex (EC) is one of the first areas to be disrupted in neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. The responsiveness of individual neurons to electrical and environmental stimuli varies along the dorsal-ventral axis of the medial EC (mEC) in a manner that suggests this topographical organization plays a key role in neural encoding of geometric space. We examined the cellular properties of layer II mEC stellate neurons (mEC-SCs) in rTg4510 mice, a rodent model of neurodegeneration. Dorsoventral gradients in certain intrinsic membrane properties, such as membrane capacitance and afterhyperpolarizations, were flattened in rTg4510 mEC-SCs, while other cellular gradients [e.g., input resistance (Ri), action potential properties] remained intact. Specifically, the intrinsic properties of rTg4510 mEC-SCs in dorsal aspects of the mEC were preferentially affected, such that action potential firing patterns in dorsal mEC-SCs were altered, while those in ventral mEC-SCs were unaffected. We also found that neuronal oscillations in the gamma frequency band (30-80 Hz) were preferentially disrupted in the dorsal mEC of rTg4510 slices, while those in ventral regions were comparatively preserved. These alterations corresponded to a flattened dorsoventral gradient in theta-gamma cross-frequency coupling of local field potentials recorded from the mEC of freely moving rTg4510 mice. These differences were not paralleled by changes to the dorsoventral gradient in parvalbumin staining or neurodegeneration. We propose that the selective disruption to dorsal mECs, and the resultant flattening of certain dorsoventral gradients, may contribute to disturbances in spatial information processing observed in this model of dementia. SIGNIFICANCE STATEMENT The medial entorhinal cortex (mEC) plays a key role in spatial memory and is one of the first areas to express the pathological features of dementia. Neurons of the mEC are anatomically arranged to express functional dorsoventral gradients in a variety of neuronal properties, including grid cell firing field spacing, which is thought to encode geometric scale. We have investigated the effects of tau pathology on functional dorsoventral gradients in the mEC. Using electrophysiological approaches, we have shown that, in a transgenic mouse model of dementia, the functional properties of the dorsal mEC are preferentially disrupted, resulting in a flattening of some dorsoventral gradients. Our data suggest that neural signals arising in the mEC will have a reduced spatial content in dementia.
Collapse
|
568
|
Vanderweyde T, Apicco DJ, Youmans-Kidder K, Ash PEA, Cook C, Lummertz da Rocha E, Jansen-West K, Frame AA, Citro A, Leszyk JD, Ivanov P, Abisambra JF, Steffen M, Li H, Petrucelli L, Wolozin B. Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity. Cell Rep 2016; 15:1455-1466. [PMID: 27160897 PMCID: PMC5325702 DOI: 10.1016/j.celrep.2016.04.045] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/18/2016] [Accepted: 04/07/2016] [Indexed: 01/29/2023] Open
Abstract
Dendritic mislocalization of microtubule associated protein tau is a hallmark of tauopathies, but the role of dendritic tau is unknown. We now report that tau interacts with the RNA-binding protein (RBP) TIA1 in brain tissue, and we present the brain-protein interactome network for TIA1. Analysis of the TIA1 interactome in brain tissue from wild-type (WT) and tau knockout mice demonstrates that tau is required for normal interactions of TIA1 with proteins linked to RNA metabolism, including ribosomal proteins and RBPs. Expression studies show that tau regulates the distribution of TIA1, and tau accelerates stress granule (SG) formation. Conversely, TIA1 knockdown or knockout inhibits tau misfolding and associated toxicity in cultured hippocampal neurons, while overexpressing TIA1 induces tau misfolding and stimulates neurodegeneration. Pharmacological interventions that prevent SG formation also inhibit tau pathophysiology. These studies suggest that the pathophysiology of tauopathy requires an intimate interaction with RNA-binding proteins.
Collapse
Affiliation(s)
- Tara Vanderweyde
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Daniel J Apicco
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Katherine Youmans-Kidder
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Peter E A Ash
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Casey Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Edroaldo Lummertz da Rocha
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Allison Citro
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - John D Leszyk
- Department of Biochemistry and Molecular Pathology, University of Massachusetts Medical School, Shrewsbury, MA 01545, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jose F Abisambra
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Martin Steffen
- Department of Pathology and Laboratory Medicine, Boston University, Boston, MA 02118, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Benjamin Wolozin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
569
|
Altered Intrinsic Pyramidal Neuron Properties and Pathway-Specific Synaptic Dysfunction Underlie Aberrant Hippocampal Network Function in a Mouse Model of Tauopathy. J Neurosci 2016; 36:350-63. [PMID: 26758828 DOI: 10.1523/jneurosci.2151-15.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. SIGNIFICANCE STATEMENT Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention.
Collapse
|
570
|
Diabetes and Alzheimer’s disease crosstalk. Neurosci Biobehav Rev 2016; 64:272-87. [DOI: 10.1016/j.neubiorev.2016.03.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/26/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
|
571
|
|
572
|
Medina M, Hernández F, Avila J. New Features about Tau Function and Dysfunction. Biomolecules 2016; 6:biom6020021. [PMID: 27104579 PMCID: PMC4919916 DOI: 10.3390/biom6020021] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/09/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022] Open
Abstract
Tau is a brain microtubule-associated protein that directly binds to a microtubule and dynamically regulates its structure and function. Under pathological conditions, tau self-assembles into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary pathology is a common feature in a number of neurodegenerative disorders, collectively referred to as tauopathies, the most common of which is Alzheimer’s disease (AD). Beyond its classical role as a microtubule-associated protein, recent advances in our understanding of tau cellular functions have revealed novel insights into their important role during pathogenesis and provided potential novel therapeutic targets. Regulation of tau behavior and function under physiological and pathological conditions is mainly achieved through post-translational modifications, including phosphorylation, glycosylation, acetylation, and truncation, among others, indicating the complexity and variability of factors influencing regulation of tau toxicity, all of which have significant implications for the development of novel therapeutic approaches in various neurodegenerative disorders. A more comprehensive understanding of the molecular mechanisms regulating tau function and dysfunction will provide us with a better outline of tau cellular networking and, hopefully, offer new clues for designing more efficient approaches to tackle tauopathies in the near future.
Collapse
Affiliation(s)
- Miguel Medina
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Valderrebollo 5, 28031 Madrid, Spain.
- CIEN Foundation, Valderrebollo 5, 28041 Madrid, Spain.
| | - Félix Hernández
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Valderrebollo 5, 28031 Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás cabrera 1, 28049 Madrid, Spain.
| | - Jesús Avila
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Valderrebollo 5, 28031 Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
573
|
Tracy TE, Sohn PD, Minami SS, Wang C, Min SW, Li Y, Zhou Y, Le D, Lo I, Ponnusamy R, Cong X, Schilling B, Ellerby LM, Huganir RL, Gan L. Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss. Neuron 2016; 90:245-60. [PMID: 27041503 DOI: 10.1016/j.neuron.2016.03.005] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/17/2016] [Accepted: 02/22/2016] [Indexed: 11/27/2022]
Abstract
Tau toxicity has been implicated in the emergence of synaptic dysfunction in Alzheimer's disease (AD), but the mechanism by which tau alters synapse physiology and leads to cognitive decline is unclear. Here we report abnormal acetylation of K274 and K281 on tau, identified in AD brains, promotes memory loss and disrupts synaptic plasticity by reducing postsynaptic KIdney/BRAin (KIBRA) protein, a memory-associated protein. Transgenic mice expressing human tau with lysine-to-glutamine mutations to mimic K274 and K281 acetylation (tauKQ) exhibit AD-related memory deficits and impaired hippocampal long-term potentiation (LTP). TauKQ reduces synaptic KIBRA levels and disrupts activity-induced postsynaptic actin remodeling and AMPA receptor insertion. The LTP deficit was rescued by promoting actin polymerization or by KIBRA expression. In AD patients with dementia, we found enhanced tau acetylation is linked to loss of KIBRA. These findings suggest a novel mechanism by which pathogenic tau causes synaptic dysfunction and cognitive decline in AD pathogenesis.
Collapse
Affiliation(s)
- Tara E Tracy
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 91458, USA
| | - Peter Dongmin Sohn
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 91458, USA
| | - S Sakura Minami
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 91458, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 91458, USA
| | - Sang-Won Min
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 91458, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA
| | - David Le
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA
| | | | - Xin Cong
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA 91458, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 91458, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 91458, USA.
| |
Collapse
|
574
|
Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity. PLoS Genet 2016; 12:e1005917. [PMID: 27023670 PMCID: PMC4811436 DOI: 10.1371/journal.pgen.1005917] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Abnormal accumulation of the microtubule-interacting protein tau is associated with neurodegenerative diseases including Alzheimer’s disease (AD). β-amyloid (Aβ) lies upstream of abnormal tau behavior, including detachment from microtubules, phosphorylation at several disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the mechanisms underlying the initial events of tau mismetabolism. Currently, however, these mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing human tau and Aβ, we found that tau phosphorylation at AD-related Ser262/356 stabilized microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegeneration. Aβ increased the level of tau detached from microtubules, independent of the phosphorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-1/MARK. Levels of Ser262 phosphorylation were increased by Aβ42, and blocking this stabilization of tau suppressed Aβ42-mediated augmentation of tau toxicity and an increase in the levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocalization to the cytosol, or diminish Aβ-mediated augmentation of tau toxicity. These results suggest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the PAR-1/MARK may act in the initial steps of tau mismetabolism in AD pathogenesis, and that such tau species may represent a potential therapeutic target for AD. Alzheimer’s disease (AD) is the most common cause of dementia resulting from progressive neuron loss. Two proteins, β-amyloid (Aβ) and tau, accumulate in AD brains and are involved in AD pathogenesis. In healthy neurons, tau binds to microtubules to regulate its stability; in AD brains, however, tau is detached from microtubules and phosphorylated at multiple sites. Such abnormal tau behavior, which is likely to be triggered by Aβ, results in generation of pathological tau species that mediate neuron loss. However, the detailed mechanisms underlying this event remain incompletely understood. Using transgenic flies expressing human tau and Aβ as a model system, we found that tau phosphorylation at specific AD-related sites stabilized microtubule-unbound tau in the early phase of tau mismetabolism to generate toxic tau species. Moreover, this process is critical for Aβ to promote subsequent tau phosphorylation and neurodegeneration. Our results reveal a critical step in the initiation of tau mismetabolism, and this process may represent a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Kanae Ando
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KA); (KMI)
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Yosuke Ohtake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Motoki Hayashishita
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail: (KA); (KMI)
| |
Collapse
|
575
|
Guntupalli S, Widagdo J, Anggono V. Amyloid-β-Induced Dysregulation of AMPA Receptor Trafficking. Neural Plast 2016; 2016:3204519. [PMID: 27073700 PMCID: PMC4814684 DOI: 10.1155/2016/3204519] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/28/2016] [Indexed: 01/22/2023] Open
Abstract
Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aβ) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer's disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aβ levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aβ-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aβ.
Collapse
Affiliation(s)
- Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
576
|
Zheng BW, Yang L, Dai XL, Jiang ZF, Huang HC. Roles of O-GlcNAcylation on amyloid-β precursor protein processing, tau phosphorylation, and hippocampal synapses dysfunction in Alzheimer’s disease. Neurol Res 2016; 38:177-86. [DOI: 10.1080/01616412.2015.1133485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
577
|
Koss DJ, Robinson L, Drever BD, Plucińska K, Stoppelkamp S, Veselcic P, Riedel G, Platt B. Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology. Neurobiol Dis 2016; 91:105-23. [PMID: 26949217 DOI: 10.1016/j.nbd.2016.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022] Open
Abstract
Models of Tau pathology related to frontotemporal dementia (FTD) are essential to determine underlying neurodegenerative pathologies and resulting tauopathy relevant behavioural changes. However, existing models are often limited in their translational value due to Tau overexpression, and the frequent occurrence of motor deficits which prevent comprehensive behavioural assessments. In order to address these limitations, a forebrain-specific (CaMKIIα promoter), human mutated Tau (hTauP301L+R406W) knock-in mouse was generated out of the previously characterised PLB1Triple mouse, and named PLB2Tau. After confirmation of an additional hTau species (~60kDa) in forebrain samples, we identified age-dependent progressive Tau phosphorylation which coincided with the emergence of FTD relevant behavioural traits. In line with the non-cognitive symptomatology of FTD, PLB2Tau mice demonstrated early emerging (~6months) phenotypes of heightened anxiety in the elevated plus maze, depressive/apathetic behaviour in a sucrose preference test and generally reduced exploratory activity in the absence of motor impairments. Investigations of cognitive performance indicated prominent dysfunctions in semantic memory, as assessed by social transmission of food preference, and in behavioural flexibility during spatial reversal learning in a home cage corner-learning task. Spatial learning was only mildly affected and task-specific, with impairments at 12months of age in the corner learning but not in the water maze task. Electroencephalographic (EEG) investigations indicated a vigilance-stage specific loss of alpha power during wakefulness at both parietal and prefrontal recording sites, and site-specific EEG changes during non-rapid eye movement sleep (prefrontal) and rapid eye movement sleep (parietal). Further investigation of hippocampal electrophysiology conducted in slice preparations indicated a modest reduction in efficacy of synaptic transmission in the absence of altered synaptic plasticity. Together, our data demonstrate that the transgenic PLB2Tau mouse model presents with a striking behavioural and physiological face validity relevant for FTD, driven by the low level expression of mutant FTD hTau.
Collapse
Affiliation(s)
- David J Koss
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Benjamin D Drever
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kaja Plucińska
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sandra Stoppelkamp
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter Veselcic
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gernot Riedel
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Bettina Platt
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
578
|
Schöll M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, Baker SL, Vogel JW, Faria J, Schwimmer HD, Rabinovici GD, Jagust WJ. PET Imaging of Tau Deposition in the Aging Human Brain. Neuron 2016; 89:971-982. [PMID: 26938442 PMCID: PMC4779187 DOI: 10.1016/j.neuron.2016.01.028] [Citation(s) in RCA: 802] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/12/2015] [Accepted: 01/13/2016] [Indexed: 01/09/2023]
Abstract
Tau pathology is a hallmark of Alzheimer's disease (AD) but also occurs in normal cognitive aging. Using the tau PET agent (18)F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid and was associated with decline in global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. The present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition.
Collapse
Affiliation(s)
- Michael Schöll
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, 94720, USA
- MedTech West and the Department of Clinical Neuroscience and Rehabilitation, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Samuel N. Lockhart
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, 94720, USA
| | - Daniel R. Schonhaut
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, 94158, USA
| | - James P. O’Neil
- Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Mustafa Janabi
- Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Rik Ossenkoppele
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, 94720, USA
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, 94158, USA
- Department of Neurology & Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Suzanne L. Baker
- Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Jacob W. Vogel
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, 94720, USA
| | - Jamie Faria
- Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Henry D. Schwimmer
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, 94720, USA
| | - Gil D. Rabinovici
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, 94720, USA
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, 94158, USA
- Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - William J. Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| |
Collapse
|
579
|
Decker JM, Krüger L, Sydow A, Dennissen FJ, Siskova Z, Mandelkow E, Mandelkow EM. The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR2B receptor-mediated excitotoxicity. EMBO Rep 2016; 17:552-69. [PMID: 26931569 DOI: 10.15252/embr.201541439] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/28/2016] [Indexed: 12/14/2022] Open
Abstract
We report on a novel transgenic mouse model expressing human full-length Tau with the Tau mutation A152T (hTau(AT)), a risk factor for FTD-spectrum disorders including PSP and CBD Brain neurons reveal pathological Tau conformation, hyperphosphorylation, mis-sorting, aggregation, neuronal degeneration, and progressive loss, most prominently in area CA3 of the hippocampus. The mossy fiber pathway shows enhanced basal synaptic transmission without changes in short- or long-term plasticity. In organotypic hippocampal slices, extracellular glutamate increases early above control levels, followed by a rise in neurotoxicity. These changes are normalized by inhibiting neurotransmitter release or by blocking voltage-gated sodium channels. CA3 neurons show elevated intracellular calcium during rest and after activity induction which is sensitive to NR2B antagonizing drugs, demonstrating a pivotal role of extrasynaptic NMDA receptors. Slices show pronounced epileptiform activity and axonal sprouting of mossy fibers. Excitotoxic neuronal death is ameliorated by ceftriaxone, which stimulates astrocytic glutamate uptake via the transporter EAAT2/GLT1. In summary, hTau(AT) causes excitotoxicity mediated by NR2B-containing NMDA receptors due to enhanced extracellular glutamate.
Collapse
Affiliation(s)
| | - Lars Krüger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Astrid Sydow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, Hamburg, Germany
| | | | - Zuzana Siskova
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, Hamburg, Germany Caesar Research Center, Bonn, Germany
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, Hamburg, Germany Caesar Research Center, Bonn, Germany
| |
Collapse
|
580
|
Schroeder SK, Joly-Amado A, Gordon MN, Morgan D. Tau-Directed Immunotherapy: A Promising Strategy for Treating Alzheimer's Disease and Other Tauopathies. J Neuroimmune Pharmacol 2016; 11:9-25. [PMID: 26538351 PMCID: PMC4746105 DOI: 10.1007/s11481-015-9637-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
Immunotherapy directed against tau is a promising treatment strategy for Alzheimer's Disease (AD) and tauopathies. We review initial studies on tau-directed immunotherapy, and present data from our laboratory testing antibodies using the rTg4510 mouse model, which deposits tau in forebrain neurons. Numerous antibodies have been tested for their efficacy in treating both pathology and cognitive function, in different mouse models, by different routes of administration, and at different ages or durations. We report, here, that the conformation-specific antibody MC-1 produces some degree of improvement to both cognition and pathology in rTg4510. Pathological improvements as measured by Gallyas staining for fully formed tangles and phosphorylated tau appeared 4 days after intracranial injection into the hippocampus. We also examined markers for microglial activation, which did not appear impacted from treatment. Behavioral effects were noted after continuous infusion of antibodies into the lateral ventricle for approximately 2 weeks. We examined basic motor skills, which were not impacted by treatment, but did note cognitive improvements with both novel object and radial arm water maze testing. Our results support earlier reports in the initial review presented here, and collectively show promise for this strategy of treatment. The general absence of extracellular tau deposits may avoid the opsonization and phagocytosis mechanisms activated by antibodies against amyloid, and make anti tau approaches a safer method of immunotherapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Sulana K Schroeder
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Byrd Alzheimer's Institute, 4001 E. Fletcher Avenue, Tampa, FL, 33613, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Byrd Alzheimer's Institute, 4001 E. Fletcher Avenue, Tampa, FL, 33613, USA
| | - Marcia N Gordon
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Byrd Alzheimer's Institute, 4001 E. Fletcher Avenue, Tampa, FL, 33613, USA
| | - Dave Morgan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Byrd Alzheimer's Institute, 4001 E. Fletcher Avenue, Tampa, FL, 33613, USA.
| |
Collapse
|
581
|
Chen CL, Chang KY, Pan TM. Monascus purpureus NTU 568 fermented product improves memory and learning ability in rats with aluminium-induced Alzheimer's disease. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
582
|
Herms J, Dorostkar MM. Dendritic Spine Pathology in Neurodegenerative Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:221-50. [PMID: 26907528 DOI: 10.1146/annurev-pathol-012615-044216] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models.
Collapse
Affiliation(s)
- Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany; .,Munich Cluster for Systems Neurology, Ludwig Maximilian University, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases, 81377 Munich, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany;
| |
Collapse
|
583
|
Khan SS, Bloom GS. Tau: The Center of a Signaling Nexus in Alzheimer's Disease. Front Neurosci 2016; 10:31. [PMID: 26903798 PMCID: PMC4746348 DOI: 10.3389/fnins.2016.00031] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/25/2016] [Indexed: 12/04/2022] Open
Abstract
Tau is a microtubule-associated protein whose misfolding, hyper-phosphorylation, loss of normal function and toxic gain of function are linked to several neurodegenerative disorders, including Alzheimer's disease (AD). This review discusses the role of tau in amyloid-β (Aβ) induced toxicity in AD. The consequences of tau dysfunction, starting from the axon and concluding at somadendritic compartments, will be highlighted.
Collapse
Affiliation(s)
- Shahzad S Khan
- Department of Biology, University of Virginia Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
584
|
Liu C, Song X, Nisbet R, Götz J. Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease. J Biol Chem 2016; 291:8173-88. [PMID: 26861879 PMCID: PMC4825019 DOI: 10.1074/jbc.m115.641902] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 01/24/2023] Open
Abstract
Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, “cell-to-cell signaling and interaction” and “neurological disease.” The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue.
Collapse
Affiliation(s)
- Chang Liu
- From the Sydney Medical School, Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050
| | - Xiaomin Song
- the Australian Proteome Analysis Facility, Macquarie University (Sydney), New South Wales 2109, and
| | - Rebecca Nisbet
- the Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, St. Lucia Campus (Brisbane), Queensland 4072, Australia
| | - Jürgen Götz
- the Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, St. Lucia Campus (Brisbane), Queensland 4072, Australia
| |
Collapse
|
585
|
Thirstrup K, Sotty F, Montezinho LCP, Badolo L, Thougaard A, Kristjánsson M, Jensen T, Watson S, Nielsen SM. Linking HSP90 target occupancy to HSP70 induction and efficacy in mouse brain. Pharmacol Res 2016; 104:197-205. [DOI: 10.1016/j.phrs.2015.12.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022]
|
586
|
|
587
|
Bukar Maina M, Al-Hilaly YK, Serpell LC. Nuclear Tau and Its Potential Role in Alzheimer's Disease. Biomolecules 2016; 6:9. [PMID: 26751496 PMCID: PMC4808803 DOI: 10.3390/biom6010009] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022] Open
Abstract
Tau protein, found in both neuronal and non-neuronal cells, forms aggregates in neurons that constitutes one of the hallmarks of Alzheimer’s disease (AD). For nearly four decades, research efforts have focused more on tau’s role in physiology and pathology in the context of the microtubules, even though, for over three decades, tau has been localised in the nucleus and the nucleolus. Its nuclear and nucleolar localisation had stimulated many questions regarding its role in these compartments. Data from cell culture, mouse brain, and the human brain suggests that nuclear tau could be essential for genome defense against cellular distress. However, its nature of translocation to the nucleus, its nuclear conformation and interaction with the DNA and other nuclear proteins highly suggest it could play multiple roles in the nucleus. To find efficient tau-based therapies, there is a need to understand more about the functional relevance of the varied cellular distribution of tau, identify whether specific tau transcripts or isoforms could predict tau’s localisation and function and how they are altered in diseases like AD. Here, we explore the cellular distribution of tau, its nuclear localisation and function and its possible involvement in neurodegeneration.
Collapse
Affiliation(s)
- Mahmoud Bukar Maina
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
- Department of Human Anatomy, College of Medical Science, Gombe State University, Gombe 760, Nigeria.
| | - Youssra K Al-Hilaly
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
- Chemistry Department, College of Sciences, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
| |
Collapse
|
588
|
Huang Y, Wu Z, Zhou B. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity. Cell Mol Life Sci 2016; 73:1-21. [PMID: 26403791 PMCID: PMC11108533 DOI: 10.1007/s00018-015-2042-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/22/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
Abstract
tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
589
|
Zempel H, Mandelkow EM. Tau missorting and spastin-induced microtubule disruption in neurodegeneration: Alzheimer Disease and Hereditary Spastic Paraplegia. Mol Neurodegener 2015; 10:68. [PMID: 26691836 PMCID: PMC4687341 DOI: 10.1186/s13024-015-0064-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022] Open
Abstract
In Alzheimer Disease (AD), the mechanistic connection of the two major pathological hallmarks, namely deposition of Amyloid-beta (Aβ) in the form of extracellular plaques, and the pathological changes of the intracellular protein Tau (such as phosphorylation, missorting, aggregation), is not well understood. Genetic evidence from AD and Down Syndrome (Trisomy 21), and animal models thereof, suggests that aberrant production of Aβ is upstream of Tau aggregation, but also points to Tau as a critical effector in the pathological process. Yet, the cascade of events leading from increased levels of Aβ to Tau-dependent toxicity remains a matter of debate. Using primary neurons exposed to oligomeric forms of Aβ, we have found that Tau becomes mislocalized (missorted) into the somatodendritic compartment. Missorting of Tau correlates with loss of microtubules and downstream consequences such as loss of mature spines, loss of synaptic activity, and mislocalization of mitochondria. In this cascade, missorting of Tau induces mislocalization of TTLL6 (Tubulin-Tyrosine-Ligase-Like 6) into the dendrites. TTLL6 induces polyglutamylation of microtubules, which acts as a trigger for spastin mediated severing of dendritic microtubules. Loss of microtubules makes cells unable to maintain transport of mitochondria, which in turn results in synaptic dysfunction and loss of mature spines. These pathological changes are absent in TauKO derived primary neurons. Thus, Tau mediated mislocalization of TTLL6 and spastin activation reveals a pathological gain of function for Tau and spastin in this cellular model system of AD. In contrast, in hereditary spastic paraplegia (HSP) caused by mutations of the gene encoding spastin (spg4 alias SPAST), spastin function in terms of microtubule severing is decreased at least for the gene product of the mutated allele, resulting in overstable microtubules in disease model systems. Whether total spastin severing activity or microtubule stability in human disease is also affected is not yet clear. No human disease has been associated so far with the long-chain polyglutamylation enzyme TTLL6, or the other TTLLs (1,5,11) possibly involved. Here we review the findings supporting a role for Tau, spastin and TTLL6 in AD and other tauopathies, HSP and neurodegeneration, and summarize possible therapeutic approaches for AD and HSP.
Collapse
Affiliation(s)
- Hans Zempel
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. .,MPI for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany.
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. .,CAESAR Research Center, Bonn, Germany. .,MPI for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany.
| |
Collapse
|
590
|
Abstract
Tau is a microtubule-associated protein that has a role in stabilizing neuronal microtubules and thus in promoting axonal outgrowth. Structurally, tau is a natively unfolded protein, is highly soluble and shows little tendency for aggregation. However, tau aggregation is characteristic of several neurodegenerative diseases known as tauopathies. The mechanisms underlying tau pathology and tau-mediated neurodegeneration are debated, but considerable progress has been made in the field of tau research in recent years, including the identification of new physiological roles for tau in the brain. Here, we review the expression, post-translational modifications and functions of tau in physiology and in pathophysiology.
Collapse
Affiliation(s)
- Yipeng Wang
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany.,Max Planck Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany
| |
Collapse
|
591
|
Guerrero-Muñoz MJ, Gerson J, Castillo-Carranza DL. Tau Oligomers: The Toxic Player at Synapses in Alzheimer's Disease. Front Cell Neurosci 2015; 9:464. [PMID: 26696824 PMCID: PMC4667007 DOI: 10.3389/fncel.2015.00464] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive disorder in which the most noticeable symptoms are cognitive impairment and memory loss. However, the precise mechanism by which those symptoms develop remains unknown. Of note, neuronal loss occurs at sites where synaptic dysfunction is observed earlier, suggesting that altered synaptic connections precede neuronal loss. The abnormal accumulation of amyloid-β (Aβ) and tau protein is the main histopathological feature of the disease. Several lines of evidence suggest that the small oligomeric forms of Aβ and tau may act synergistically to promote synaptic dysfunction in AD. Remarkably, tau pathology correlates better with the progression of the disease than Aβ. Recently, a growing number of studies have begun to suggest that missorting of tau protein from the axon to the dendrites is required to mediate the detrimental effects of Aβ. In this review we discuss the novel findings regarding the potential mechanisms by which tau oligomers contribute to synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Marcos J Guerrero-Muñoz
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston TX, USA ; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| | - Julia Gerson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston TX, USA ; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| | - Diana L Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston TX, USA ; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| |
Collapse
|
592
|
Dani M, Brooks DJ, Edison P. Tau imaging in neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2015; 43:1139-50. [PMID: 26572762 PMCID: PMC4844651 DOI: 10.1007/s00259-015-3231-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
Aggregated tau protein is a major neuropathological substrate central to the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and chronic traumatic encephalopathy. In AD, it has been shown that the density of hyperphosphorylated tau tangles correlates closely with neuronal dysfunction and cell death, unlike β-amyloid. Until now, diagnostic and pathologic information about tau deposition has only been available from invasive techniques such as brain biopsy or autopsy. The recent development of selective in-vivo tau PET imaging ligands including [(18)F]THK523, [(18)F]THK5117, [(18)F]THK5105 and [(18)F]THK5351, [(18)F]AV1451(T807) and [(11)C]PBB3 has provided information about the role of tau in the early phases of neurodegenerative diseases, and provided support for diagnosis, prognosis, and imaging biomarkers to track disease progression. Moreover, the spatial and longitudinal relationship of tau distribution compared with β - amyloid and other pathologies in these diseases can be mapped. In this review, we discuss the role of aggregated tau in tauopathies, the challenges posed in developing selective tau ligands as biomarkers, the state of development in tau tracers, and the new clinical information that has been uncovered, as well as the opportunities for improving diagnosis and designing clinical trials in the future.
Collapse
Affiliation(s)
- M Dani
- Neurology Imaging Unit, Division of Neuroscience, Imperial College London, 1st Floor, B Block, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - D J Brooks
- Neurology Imaging Unit, Division of Neuroscience, Imperial College London, 1st Floor, B Block, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - P Edison
- Neurology Imaging Unit, Division of Neuroscience, Imperial College London, 1st Floor, B Block, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
593
|
Sotiropoulos I, Sousa N. Tau as the Converging Protein between Chronic Stress and Alzheimer's Disease Synaptic Pathology. NEURODEGENER DIS 2015; 16:22-5. [DOI: 10.1159/000440844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
|
594
|
Li YQ, Tan MS, Yu JT, Tan L. Frontotemporal Lobar Degeneration: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2015; 53:6091-6105. [PMID: 26537902 DOI: 10.1007/s12035-015-9507-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is characterized by progressive deterioration of frontal and anterior temporal lobes of the brain and often exhibits frontotemporal dementia (FTD) on clinic, in <65-year-old patients at the time of diagnosis. Interdisciplinary approaches combining genetics, molecular and cell biology, and laboratory animal science have revealed some of its potential molecular mechanisms. Although there is still no effective treatment to delay, prevent, and reverse the progression of FTD, emergence of agents targeting molecular mechanisms has been beginning to promote potential pharmaceutical development. Our review summarizes the latest new findings of FTLD and challenges in FTLD therapy.
Collapse
Affiliation(s)
- Ya-Qing Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
595
|
Jadhav S, Cubinkova V, Zimova I, Brezovakova V, Madari A, Cigankova V, Zilka N. Tau-mediated synaptic damage in Alzheimer's disease. Transl Neurosci 2015; 6:214-226. [PMID: 28123806 PMCID: PMC4936631 DOI: 10.1515/tnsci-2015-0023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/04/2015] [Indexed: 12/16/2022] Open
Abstract
Synapses are the principal sites for chemical communication between neurons and are essential for performing the dynamic functions of the brain. In Alzheimer’s disease and related tauopathies, synapses are exposed to disease modified protein tau, which may cause the loss of synaptic contacts that culminate in dementia. In recent decades, structural, transcriptomic and proteomic studies suggest that Alzheimer’s disease represents a synaptic disorder. Tau neurofibrillary pathology and synaptic loss correlate well with cognitive impairment in these disorders. Moreover, regional distribution and the load of neurofibrillary lesions parallel the distribution of the synaptic loss. Several transgenic models of tauopathy expressing various forms of tau protein exhibit structural synaptic deficits. The pathological tau proteins cause the dysregulation of synaptic proteome and lead to the functional abnormalities of synaptic transmission. A large body of evidence suggests that tau protein plays a key role in the synaptic impairment of human tauopathies.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic
| | - Veronika Cubinkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic; Axon Neuroscience SE, Grosslingova 45, Bratislava, Slovak Republic
| | - Ivana Zimova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic; Axon Neuroscience SE, Grosslingova 45, Bratislava, Slovak Republic
| | - Veronika Brezovakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic
| | - Aladar Madari
- Small animal clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, Kosice, Slovak Republic
| | - Viera Cigankova
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovak Republic
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic; Axon Neuroscience SE, Grosslingova 45, Bratislava, Slovak Republic
| |
Collapse
|
596
|
Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:151979. [PMID: 26576216 PMCID: PMC4630413 DOI: 10.1155/2015/151979] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/08/2015] [Indexed: 12/14/2022]
Abstract
Hyperphosphorylation and aggregation of the microtubule-associated protein tau in brain, are pathological hallmarks of a large family of neurodegenerative disorders, named tauopathies, which include Alzheimer's disease. It has been shown that increased phosphorylation of tau destabilizes tau-microtubule interactions, leading to microtubule instability, transport defects along microtubules, and ultimately neuronal death. However, although mutations of the MAPT gene have been detected in familial early-onset tauopathies, causative events in the more frequent sporadic late-onset forms and relationships between tau hyperphosphorylation and neurodegeneration remain largely elusive. Oxidative stress is a further pathological hallmark of tauopathies, but its precise role in the disease process is poorly understood. Another open question is the source of reactive oxygen species, which induce oxidative stress in brain neurons. Mitochondria have been classically viewed as a major source for oxidative stress, but microglial cells were recently identified as reactive oxygen species producers in tauopathies. Here we review the complex relationships between tau pathology and oxidative stress, placing emphasis on (i) tau protein function, (ii) origin and consequences of reactive oxygen species production, and (iii) links between tau phosphorylation and oxidative stress. Further, we go on to discuss the hypothesis that tau hyperphosphorylation and oxidative stress are two key components of a vicious circle, crucial in neurodegenerative tauopathies.
Collapse
|
597
|
Bullmann T, Seeger G, Stieler J, Hanics J, Reimann K, Kretzschmann TP, Hilbrich I, Holzer M, Alpár A, Arendt T. Tau phosphorylation-associated spine regression does not impair hippocampal-dependent memory in hibernating golden hamsters. Hippocampus 2015; 26:301-18. [DOI: 10.1002/hipo.22522] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 08/12/2015] [Accepted: 08/31/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Torsten Bullmann
- Department of Molecular and Cellular Mechanisms of Neurodegeneration; Paul Flechsig Institute of Brain Research, University of Leipzig; Leipzig Germany
- Frey Initiative Research Unit, RIKEN Quantitative Biology Center; Japan
| | - Gudrun Seeger
- Department of Molecular and Cellular Mechanisms of Neurodegeneration; Paul Flechsig Institute of Brain Research, University of Leipzig; Leipzig Germany
| | - Jens Stieler
- Department of Molecular and Cellular Mechanisms of Neurodegeneration; Paul Flechsig Institute of Brain Research, University of Leipzig; Leipzig Germany
| | - János Hanics
- MTA-SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences; Budapest Hungary
- Department of Anatomy; Semmelweis University; Budapest Hungary
| | - Katja Reimann
- Department of Molecular and Cellular Mechanisms of Neurodegeneration; Paul Flechsig Institute of Brain Research, University of Leipzig; Leipzig Germany
| | - Tanja Petra Kretzschmann
- Department of Molecular and Cellular Mechanisms of Neurodegeneration; Paul Flechsig Institute of Brain Research, University of Leipzig; Leipzig Germany
| | - Isabel Hilbrich
- Department of Molecular and Cellular Mechanisms of Neurodegeneration; Paul Flechsig Institute of Brain Research, University of Leipzig; Leipzig Germany
| | - Max Holzer
- Department of Molecular and Cellular Mechanisms of Neurodegeneration; Paul Flechsig Institute of Brain Research, University of Leipzig; Leipzig Germany
| | - Alán Alpár
- MTA-SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences; Budapest Hungary
- Department of Anatomy; Semmelweis University; Budapest Hungary
| | - Thomas Arendt
- Department of Molecular and Cellular Mechanisms of Neurodegeneration; Paul Flechsig Institute of Brain Research, University of Leipzig; Leipzig Germany
| |
Collapse
|
598
|
Takeda S, Wegmann S, Cho H, DeVos SL, Commins C, Roe AD, Nicholls SB, Carlson GA, Pitstick R, Nobuhara CK, Costantino I, Frosch MP, Müller DJ, Irimia D, Hyman BT. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat Commun 2015; 6:8490. [PMID: 26458742 PMCID: PMC4608380 DOI: 10.1038/ncomms9490] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/27/2015] [Indexed: 12/04/2022] Open
Abstract
Tau pathology is known to spread in a hierarchical pattern in Alzheimer's disease (AD) brain during disease progression, likely by trans-synaptic tau transfer between neurons. However, the tau species involved in inter-neuron propagation remains unclear. To identify tau species responsible for propagation, we examined uptake and propagation properties of different tau species derived from postmortem cortical extracts and brain interstitial fluid of tau-transgenic mice, as well as human AD cortices. Here we show that PBS-soluble phosphorylated high-molecular-weight (HMW) tau, though very low in abundance, is taken up, axonally transported, and passed on to synaptically connected neurons. Our findings suggest that a rare species of soluble phosphorylated HMW tau is the endogenous form of tau involved in propagation and could be a target for therapeutic intervention and biomarker development. In Alzheimer's disease, tau spreads throughout the brain, however the nature of the tau species propagating from one neuron to another is not known. Here, Takeda et al. identify a rare, high-molecular-weight tau as the primary species taken up and transferred between synaptically connected neurons.
Collapse
Affiliation(s)
- Shuko Takeda
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Susanne Wegmann
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Hansang Cho
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Sarah L DeVos
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Caitlin Commins
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Allyson D Roe
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Samantha B Nicholls
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, Montana 59405, USA
| | - Chloe K Nobuhara
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Isabel Costantino
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Matthew P Frosch
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4058 Basel, Switzerland
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Bradley T Hyman
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
599
|
Burlot MA, Braudeau J, Michaelsen-Preusse K, Potier B, Ayciriex S, Varin J, Gautier B, Djelti F, Audrain M, Dauphinot L, Fernandez-Gomez FJ, Caillierez R, Laprévote O, Bièche I, Auzeil N, Potier MC, Dutar P, Korte M, Buée L, Blum D, Cartier N. Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like Tau pathology. Hum Mol Genet 2015; 24:5965-76. [PMID: 26358780 DOI: 10.1093/hmg/ddv268] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by both amyloid and Tau pathologies. The amyloid component and altered cholesterol metabolism are closely linked, but the relationship between Tau pathology and cholesterol is currently unclear. Brain cholesterol is synthesized in situ and cannot cross the blood-brain barrier: to be exported from the central nervous system into the blood circuit, excess cholesterol must be converted to 24S-hydroxycholesterol by the cholesterol 24-hydroxylase encoded by the CYP46A1 gene. In AD patients, the concentration of 24S-hydroxycholesterol in the plasma and the cerebrospinal fluid are lower than in healthy controls. The THY-Tau22 mouse is a model of AD-like Tau pathology without amyloid pathology. We used this model to investigate the potential association between Tau pathology and CYP46A1 modulation. The amounts of CYP46A1 and 24S-hydroxycholesterol in the hippocampus were lower in THY-Tau22 than control mice. We used an adeno-associated virus (AAV) gene transfer strategy to increase CYP46A1 expression in order to investigate the consequences on THY-Tau22 mouse phenotype. Injection of the AAV-CYP46A1 vector into the hippocampus of THY-Tau22 mice led to CYP46A1 and 24S-hydroxycholesterol content normalization. The cognitive deficits, impaired long-term depression and spine defects that characterize the THY-Tau22 model were completely rescued, whereas Tau hyperphosphorylation and associated gliosis were unaffected. These results argue for a causal link between CYP46A1 protein content and memory impairments that result from Tau pathology. Therefore, CYP46A1 may be a relevant therapeutic target for Tauopathies and especially for AD.
Collapse
Affiliation(s)
- Marie-Anne Burlot
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France, Université Paris Descartes, Paris 75006, France
| | - Jérôme Braudeau
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
| | - Kristin Michaelsen-Preusse
- Division of Cellular Neurobiology, Zoological Institute, University of Braunschweig, Braunschweig 38106, Germany, AG NIND, HZI, Inhoffenstraße 7, Braunschweig D-38124, Germany
| | - Brigitte Potier
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS894, Paris 75014, France
| | | | - Jennifer Varin
- EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris 75006, France
| | - Benoit Gautier
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
| | - Fathia Djelti
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France, Université Paris Descartes, Paris 75006, France
| | - Mickael Audrain
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France, Université Paris Descartes, Paris 75006, France
| | - Luce Dauphinot
- ICM, Hopital Pitie-Salpetriere, CNRS UMR7225, INSERM UMRS975, UPMC, Paris 75013, France
| | - Francisco-Jose Fernandez-Gomez
- Université de Lille, UDSL, Lille 59045, France, INSERM UMR1172, Jean-Pierre Aubert Research Centre, Lille 59045, France and
| | - Raphaëlle Caillierez
- Université de Lille, UDSL, Lille 59045, France, INSERM UMR1172, Jean-Pierre Aubert Research Centre, Lille 59045, France and
| | | | - Ivan Bièche
- EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris 75006, France
| | - Nicolas Auzeil
- Chimie-Toxicologie Analytique et Cellulaire, EA 4463 and
| | - Marie-Claude Potier
- ICM, Hopital Pitie-Salpetriere, CNRS UMR7225, INSERM UMRS975, UPMC, Paris 75013, France
| | - Patrick Dutar
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS894, Paris 75014, France
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, University of Braunschweig, Braunschweig 38106, Germany, AG NIND, HZI, Inhoffenstraße 7, Braunschweig D-38124, Germany
| | - Luc Buée
- Université de Lille, UDSL, Lille 59045, France, INSERM UMR1172, Jean-Pierre Aubert Research Centre, Lille 59045, France and CHRU-Lille, Faculté de Médecine, Lille 59037, France
| | - David Blum
- Université de Lille, UDSL, Lille 59045, France, INSERM UMR1172, Jean-Pierre Aubert Research Centre, Lille 59045, France and CHRU-Lille, Faculté de Médecine, Lille 59037, France
| | - Nathalie Cartier
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France,
| |
Collapse
|
600
|
Zhao Y, Tseng IC, Heyser CJ, Rockenstein E, Mante M, Adame A, Zheng Q, Huang T, Wang X, Arslan PE, Chakrabarty P, Wu C, Bu G, Mobley WC, Zhang YW, St George-Hyslop P, Masliah E, Fraser P, Xu H. Appoptosin-Mediated Caspase Cleavage of Tau Contributes to Progressive Supranuclear Palsy Pathogenesis. Neuron 2015; 87:963-75. [PMID: 26335643 PMCID: PMC4575284 DOI: 10.1016/j.neuron.2015.08.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/14/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Progressive supranuclear palsy (PSP) is a movement disorder characterized by tau neuropathology where the underlying mechanism is unknown. An SNP (rs1768208 C/T) has been identified as a strong risk factor for PSP. Here, we identified a much higher T-allele occurrence and increased levels of the pro-apoptotic protein appoptosin in PSP patients. Elevations in appoptosin correlate with activated caspase-3 and caspase-cleaved tau levels. Appoptosin overexpression increased caspase-mediated tau cleavage, tau aggregation, and synaptic dysfunction, whereas appoptosin deficiency reduced tau cleavage and aggregation. Appoptosin transduction impaired multiple motor functions and exacerbated neuropathology in tau-transgenic mice in a manner dependent on caspase-3 and tau. Increased appoptosin and caspase-3-cleaved tau were also observed in brain samples of patients with Alzheimer's disease and frontotemporal dementia with tau inclusions. Our findings reveal a novel role for appoptosin in neurological disorders with tau neuropathology, linking caspase-3-mediated tau cleavage to synaptic dysfunction and behavioral/motor defects.
Collapse
MESH Headings
- Age Factors
- Aged
- Aged, 80 and over
- Alzheimer Disease/metabolism
- Animals
- Apoptosis/genetics
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Brain/metabolism
- Brain/pathology
- Caspase 3/genetics
- Caspase 3/metabolism
- Cells, Cultured
- Disease Models, Animal
- Embryo, Mammalian
- Female
- Gene Expression Regulation/genetics
- Hand Strength/physiology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle Aged
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Polymorphism, Single Nucleotide/genetics
- Rats
- Supranuclear Palsy, Progressive/genetics
- Supranuclear Palsy, Progressive/pathology
- Supranuclear Palsy, Progressive/physiopathology
- tau Proteins/genetics
- tau Proteins/metabolism
Collapse
Affiliation(s)
- Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - I-Chu Tseng
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Charles J Heyser
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Edward Rockenstein
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Mante
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Anthony Adame
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Qiuyang Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Timothy Huang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Pharhad E Arslan
- Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada
| | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Chengbiao Wu
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - William C Mobley
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada; Department of Medical Biophysics and Medicine (Neurology), University of Toronto, Toronto, ON M5S 3H2, Canada; Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Eliezer Masliah
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada; Department of Medical Biophysics and Medicine (Neurology), University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|