551
|
Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J 2000. [DOI: 10.1096/fasebj.14.10.1432] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vincenzo Marzo
- School of Biological SciencesUniversity of Manchester Manchester M13 9PT United Kingdom
| | | | - Tiziana Bisogno
- Istituto per la Chimica di Molecole di Interesse BiologicoConsiglio Nazionale delle Ricerche Arco Felice Naples 80072 Italy
| | - Alan R. Crossman
- Istituto per la Chimica di Molecole di Interesse BiologicoConsiglio Nazionale delle Ricerche Arco Felice Naples 80072 Italy
| | - Jonathan M. Brotchie
- Istituto per la Chimica di Molecole di Interesse BiologicoConsiglio Nazionale delle Ricerche Arco Felice Naples 80072 Italy
| |
Collapse
|
552
|
Abstract
We characterized the pharmacological properties of the anandamide transport inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404) in rats and investigated the effects of this drug on behavioral responses associated with activation of dopamine D(2) family receptors. Rat brain slices accumulated [(3)H]anandamide via a high-affinity transport mechanism that was blocked by AM404. When administered alone in vivo, AM404 caused a mild and slow-developing hypokinesia that was significant 60 min after intracerebroventricular injection of the drug and was reversed by the CB1 cannabinoid receptor antagonist SR141716A. AM404 produced no significant catalepsy or analgesia, two typical effects of direct-acting cannabinoid agonists. However, AM404 prevented the stereotypic yawning produced by systemic administration of a low dose of apomorphine, an effect that was dose-dependent and blocked by SR141716A. Furthermore, AM404 reduced the stimulation of motor behaviors elicited by the selective D(2) family receptor agonist quinpirole. Finally, AM404 reduced hyperactivity in juvenile spontaneously hypertensive rats, a putative model of attention deficit hyperactivity disorder. The results support a primary role of the endocannabinoid system in the regulation of psychomotor activity and point to anandamide transport as a potential target for neuropsychiatric medicines.
Collapse
|
553
|
Piomelli D, Giuffrida A, Calignano A, Rodríguez de Fonseca F. The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol Sci 2000; 21:218-24. [PMID: 10838609 DOI: 10.1016/s0165-6147(00)01482-6] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cannabinoid receptors, the molecular targets of the cannabis constituent Delta9-tetrahydrocannabinol, are present throughout the body and are normally bound by a family of endogenous lipids - the endocannabinoids. Release of endocannabinoids is stimulated in a receptor-dependent manner by neurotransmitters and requires the enzymatic cleavage of phospholipid precursors present in the membranes of neurons and other cells. Once released, the endocannabinoids activate cannabinoid receptors on nearby cells and are rapidly inactivated by transport and subsequent enzymatic hydrolysis. These compounds might act near their site of synthesis to serve a variety of regulatory functions, some of which are now beginning to be understood. Recent advances in the biochemistry and pharmacology of the endocannabinoid system in relation to the opportunities that this system offers for the development of novel therapeutic agents will be discussed.
Collapse
Affiliation(s)
- D Piomelli
- University of California, Irvine, 92697-4625, USA.
| | | | | | | |
Collapse
|
554
|
Abstract
To successfully negotiate the developmental transition between youth and adulthood, adolescents must maneuver this often stressful period while acquiring skills necessary for independence. Certain behavioral features, including age-related increases in social behavior and risk-taking/novelty-seeking, are common among adolescents of diverse mammalian species and may aid in this process. Reduced positive incentive values from stimuli may lead adolescents to pursue new appetitive reinforcers through drug use and other risk-taking behaviors, with their relative insensitivity to drugs supporting comparatively greater per occasion use. Pubertal increases in gonadal hormones are a hallmark of adolescence, although there is little evidence for a simple association of these hormones with behavioral change during adolescence. Prominent developmental transformations are seen in prefrontal cortex and limbic brain regions of adolescents across a variety of species, alterations that include an apparent shift in the balance between mesocortical and mesolimbic dopamine systems. Developmental changes in these stressor-sensitive regions, which are critical for attributing incentive salience to drugs and other stimuli, likely contribute to the unique characteristics of adolescence.
Collapse
Affiliation(s)
- L P Spear
- Department of Psychology and Center for Developmental Psychobiology, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
555
|
Auclair N, Otani S, Soubrie P, Crepel F. Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J Neurophysiol 2000; 83:3287-93. [PMID: 10848548 DOI: 10.1152/jn.2000.83.6.3287] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cannabinoids receptors have been reported to modulate synaptic transmission in many structures of the CNS, but yet little is known about their role in the prefrontal cortex where type I cannabinoid receptor (CB-1) are expressed. In this study, we tested first the acute effects of selective agonists and antagonist of CB-1 on glutamatergic excitatory postsynaptic currents (EPSCs) in slices of rat prefrontal cortex (PFC). EPSCs were evoked in patch-clamped layer V pyramidal cells by stimulation of layer V afferents. Monosynaptic EPSCs were strongly depressed by bath application (1 microM) of the cannabinoid receptors agonists WIN55212-2 (-50.4 +/- 8.8%) and CP55940 (-42.4 +/- 10.9%). The CB-1 antagonist SR141716A reversed these effects. Unexpectedly, SR141716A alone produced a significant increase of glutamatergic synaptic transmission (+46.9 +/- 11.2%), which could be partly reversed by WIN55212-2. In the presence of strontium in the bath, the frequency but not the amplitude of asynchronous synaptic events evoked in layer V pyramidal cells by stimulating layer V afferents, was markedly decreased (-54.2 +/- 8%), indicating a presynaptic site of action of cannabinoids at these synapses. Tetanic stimulation (100 pulses at 100 Hz, 4 trains) induced in control condition, no changes (n = 7/18), long-term depression (LTD; n = 6/18), or long-term potentiation (LTP; n = 5/18) of monosynaptic EPSCs evoked by stimulation of layer V afferents. When tetanus was applied in the presence of WIN 55,212-2 or SR141716-A (1 microM) in the bath, the proportion of "nonplastic" cells were not significantly changed (n = 7/15 in both cases). For the plastic ones (n = 8 in both cases), WIN 55,212-2 strongly favored LTD (n = 7/8) at the apparent expense of LTP (n = 1/8), whereas the opposite effect was observed with SR141716-A (7/8 LTP; 1/8 LTD). These results demonstrate that cannabinoids influence glutamatergic synaptic transmission and plasticity in the PFC of rodent.
Collapse
Affiliation(s)
- N Auclair
- Laboratoire de Neurobiologie et Neuropharmacologie du Developpement, Institut des Neurosciences, Centre National de la Recherche Scientifique-Université Paris VI, 75005 Paris, France
| | | | | | | |
Collapse
|
556
|
Nava F, Carta G, Gessa GL. Permissive role of dopamine D(2) receptors in the hypothermia induced by delta(9)-tetrahydrocannabinol in rats. Pharmacol Biochem Behav 2000; 66:183-7. [PMID: 10837859 DOI: 10.1016/s0091-3057(00)00231-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cannabinoids produce analgesia, hypomotility, catalepsy, cognitive deficits and positive reinforcement. Moreover, Delta(9)-tetrahydrocannabinol (9-THC) and synthetic cannabinoids stimulate dopaminergic neurons and increase dopamine release in different brain areas. In order to clarify the role of endogenously released dopamine in the hypothermic response to cannabinoids, the effect of D(1) and D(2) dopamine receptor agonists and antagonists on Delta(9)-THC-induced hypothermia was studied in rats. Delta(9)-THC (2.5 and 5 mg/kg intraperitoneally [IP]) decreased body temperature in a dose-related manner. This effect was antagonized not only as expected by the CB(1) cannabinoid receptor antagonist SR 141716A (0.5 mg/kg, IP) but also, unexpectedly, by the dopaminergic D(2) receptor antagonists S(-)-sulpiride (5 and 10 mg/kg, IP) and S(-)-raclopride (1 and 3 mg/kg, IP). Conversely, the hypothermic effect of Delta(9)-tetrahydrocannabinol was potentiated by the D(2) dopamine receptor agonists (-)-quinpirole (0.025 and 0.500 mg/kg, SC) and (+)-bromocriptine (0.5 and 1 mg/kg, IP). In contrast, the Delta(9)-THC-induced hypothermic effect was not modified by either by the D(1) dopamine agonist SKF 38393 (10 mg/kg SC) or by the D(1) dopamine antagonist SCH 23390 (0.5 mg/kg SC). These results suggest that the D(2) dopamine receptors have a permissive role in the hypothermic action of cannabinoids.
Collapse
Affiliation(s)
- F Nava
- Department of Neuoroscience B.B. Brodie, University of Cagliari and Neuroscience S.c.a.r.l., Cagliari, Italy
| | | | | |
Collapse
|
557
|
Giuffrida A, Rodríguez de Fonseca F, Piomelli D. Quantification of bioactive acylethanolamides in rat plasma by electrospray mass spectrometry. Anal Biochem 2000; 280:87-93. [PMID: 10805525 DOI: 10.1006/abio.2000.4509] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed a high-performance liquid chromatography/mass spectrometry (HPLC/MS) method for the identification and quantification of anandamide, an endogenous cannabinoid substance, and other fatty acid ethanolamides (AEs) in biological samples. Using a mobile-phase system of methanol/water and gradient elution, we achieved satisfactory resolution of all major AEs, including anandamide, palmitylethanolamide (PEA), and oleylethanolamide (OEA). Electrospray-generated quasi-molecular species were used as diagnostic ions and detected by selected ion monitoring (SIM). Synthetic deuterium-labeled AEs were used as internal standards, and quantification was carried out by isotope dilution. A linear correlation (r2 = 0.99) was observed in the calibration curves for standard AEs over the range 0-0.5 nmol. Detection limits between 0.1 and 0.3 pmol per sample and quantification limits between 0.5 and 1.2 pmol per sample were obtained. The method was applied to the quantification of anandamide, PEA, and OEA in plasma prepared from rat blood collected either by cardiac puncture or by decapitation. After cardiac puncture, AE levels were in the low-nanomolar range: anandamide, 3.1 +/- 0.6 pmol/ml; PEA, 9.4 +/- 1.6 pmol/ml; OEA, 9.2 +/- 1.8 pmol/ml (mean +/- SE, n = 9). By contrast, after decapitation AEs were dramatically elevated (anandamide, 144 +/- 13 pmol/ml; PEA, 255 +/- 55 pmol/ml; OEA, 175 +/- 48 pmol/ml). Thus, disruptive procedures of blood collection may result in gross overestimates in the concentrations of circulating AEs.
Collapse
Affiliation(s)
- A Giuffrida
- Department of Pharmacology, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
558
|
González S, Bisogno T, Wenger T, Manzanares J, Milone A, Berrendero F, Di Marzo V, Ramos JA, Fernández-Ruiz JJ. Sex steroid influence on cannabinoid CB(1) receptor mRNA and endocannabinoid levels in the anterior pituitary gland. Biochem Biophys Res Commun 2000; 270:260-6. [PMID: 10733937 DOI: 10.1006/bbrc.2000.2406] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have demonstrated the occurrence of endocannabinoid synthesis and of gene expression and immunoreactivity for the cannabinoid CB(1) receptor in the anterior pituitary gland. Since the activity of this gland is under the influence of circulating sex steroids, the present study was designed to elucidate whether expression of the CB(1) receptor gene in the anterior pituitary gland is also under the influence of these steroids. To this aim, we first examined the possible changes in the levels of CB(1) receptor-mRNA transcripts in the anterior pituitary gland of intact male rats and normal cycling female rats at the different stages of the ovarian cycle. We observed that males had higher levels of CB(1) receptor-mRNA transcripts than females. In addition, these transcripts fluctuated in females during the different phases of the ovarian cycle, with the highest values observed on the second day of diestrus and the lowest on estrus. In these animals, we also measured the content of endocannabinoids in the anterior pituitary gland and the hypothalamus. We observed that females had higher contents of anandamide than males in both cases. The content of anandamide in females also fluctuated during the ovarian cycle in both the anterior pituitary gland and the hypothalamus. The highest values in the anterior pituitary gland were found in the estrus and the lowest on the first day of diestrus and proestrus, whereas the inverse tendency was found in the hypothalamus. No changes were observed in the other major endocannabinoid, 2-arachidonoyl-glycerol, between males and females and during the ovarian cycle. To further explore the potential influence of circulating sex steroids on CB(1) receptor gene expression in the anterior pituitary gland, as a second objective, we examined the possible changes in the amount of transcripts for this receptor in gonadectomized and sex steroid-replaced gonadectomized rats of both sexes. We observed that orchidectomy (ORCHX) in males reduced CB(1) receptor-mRNA levels, whereas replacement with dihydrotestosterone also maintained low levels of this messenger. In females, estradiol-replaced ovariectomized (OVX) rats exhibited significantly lower CB(1) receptor-mRNA levels than OVX animals that had not been replaced with this estrogen. In this experiment, we also examined if the previously reported response of the CB(1) receptor gene in the anterior pituitary lobe to chronic administration of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) is under sex steroid influence. We observed that chronic Delta(9)-THC treatment decreased CB(1) receptor-mRNA levels in intact and ORCHX males, but not in dihydrotestosterone-replaced ORCHX males. In females, Delta(9)-THC treatment produced no effect in both OVX- and estradiol-replaced OVX rats. In summary, these data collectively support that expression of the CB(1) receptor gene in the anterior pituitary gland is regulated by sex steroids in both males and females. Furthermore, gonadal steroids appear to affect the response of this gene to chronic cannabinoid administration. We have also observed that anandamide contents in the anterior pituitary gland and the hypothalamus might be controlled by circulating sex steroids. The functional implications of these data are discussed.
Collapse
Affiliation(s)
- S González
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, 28040-, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
559
|
Di Marzo V, Berrendero F, Bisogno T, González S, Cavaliere P, Romero J, Cebeira M, Ramos JA, Fernández-Ruiz JJ. Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of delta9-tetrahydrocannabinol-tolerant rats. J Neurochem 2000; 74:1627-35. [PMID: 10737621 DOI: 10.1046/j.1471-4159.2000.0741627.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies have shown that the pharmacological tolerance observed after prolonged exposure to synthetic or plant-derived cannabinoids in adult rats is accompanied by down-regulation/desensitization of brain cannabinoid receptors. However, no evidence exists on possible changes in the contents of the endogenous ligands of cannabinoid receptors in the brain of cannabinoid-tolerant rats. The present study was designed to elucidate this possibility by measuring, by means of isotope dilution gas chromatography/mass spectrometry, the contents of both anandamide (arachidonoylethanolamide; AEA) and its biosynthetic precursor, N-arachidonoylphosphatidylethanolamine (NArPE), and 2-arachidonoylglycerol (2-AG) in several brain regions of adult male rats treated daily with delta9-tetrahydrocannabinol (delta9-THC) for a period of 8 days. The areas analyzed included cerebellum, striatum, limbic forebrain, hippocampus, cerebral cortex, and brainstem. The same regions were also analyzed for cannabinoid receptor binding and WIN-55,212-2-stimulated guanylyl-5'-O-(gamma-[35S]thio)-triphosphate ([35S]GTPgammaS) binding to test the development of the well known down-regulation/desensitization phenomenon. Results were as follows: As expected, cannabinoid receptor binding and WIN-55,212-2-stimulated [35S]GTPgammaS binding decreased in most of the brain areas of delta9-THC-tolerant rats. The only region exhibiting no changes in both parameters was the limbic forebrain. This same region exhibited a marked (almost fourfold) increase in the content of AEA after 8 days of delta9-THC treatment. By contrast, the striatum exhibited a decrease in AEA contents, whereas no changes were found in the brainstem, hippocampus, cerebellum, or cerebral cortex. The increase in AEA contents observed in the limbic forebrain was accompanied by a tendency of NArPE levels to decrease, whereas in the striatum, no significant change in NArPE contents was found. The contents of 2-AG were unchanged in brain regions from delta9-THC-tolerant rats, except for the striatum where they dropped significantly. In summary, the present results show that prolonged activation of cannabinoid receptors leads to decreased endocannabinoid contents and signaling in the striatum and to increased AEA formation in the limbic forebrain. The pathophysiological implications of these findings are discussed in view of the proposed roles of endocannabinoids in the control of motor behavior and emotional states.
Collapse
Affiliation(s)
- V Di Marzo
- Istituto per la Chimica di Molecole di Interesse Biologico, CNR, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
560
|
Giuffrida A, Désarnaud F, Piomelli D. Endogenous cannabinoid signaling and psychomotor disorders. Prostaglandins Other Lipid Mediat 2000; 61:63-70. [PMID: 10785542 DOI: 10.1016/s0090-6980(00)00055-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The effects of cannabinoids on motor behaviors and cognitive functions are well documented. The discovery of the CB1 cannabinoid receptor and the mapping of its distribution in the central nervous system have provided a rationale to elucidate the molecular and cellular mechanisms of cannabinoid actions. The identification of naturally occurring ligands for these receptors, anandamide and 2-arachidonylglycerol, has prompted a large research effort aimed at investigating the physiological role of the endogenous cannabinoid system, as well as its potential use as a target for novel therapeutic interventions. This mini-review discusses the participation of the endogenous cannabinoid system in the regulation of motor behaviors, pointing out its possible involvement in the pathophysiology of psychomotor disorders.
Collapse
Affiliation(s)
- A Giuffrida
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA, USA.
| | | | | |
Collapse
|
561
|
Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Huffman JW, Layward L. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 2000; 404:84-7. [PMID: 10716447 DOI: 10.1038/35003583] [Citation(s) in RCA: 389] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic relapsing experimental allergic encephalomyelitis (CREAE) is an autoimmune model of multiple sclerosis. Although both these diseases are typified by relapsing-remitting paralytic episodes, after CREAE induction by sensitization to myelin antigens Biozzi ABH mice also develop spasticity and tremor. These symptoms also occur during multiple sclerosis and are difficult to control. This has prompted some patients to find alternative medicines, and to perceive benefit from cannabis use. Although this benefit has been backed up by small clinical studies, mainly with non-quantifiable outcomes, the value of cannabis use in multiple sclerosis remains anecdotal. Here we show that cannabinoid (CB) receptor agonism using R(+)-WIN 55,212, delta9-tetrahydrocannabinol, methanandamide and JWH-133 (ref. 8) quantitatively ameliorated both tremor and spasticity in diseased mice. The exacerbation of these signs after antagonism of the CB1 and CB2 receptors, notably the CB1 receptor, using SR141716A and SR144528 (ref. 8) indicate that the endogenous cannabinoid system may be tonically active in the control of tremor and spasticity. This provides a rationale for patients' indications of the therapeutic potential of cannabis in the control of the symptoms of multiple sclerosis, and provides a means of evaluating more selective cannabinoids in the future.
Collapse
Affiliation(s)
- D Baker
- Department of Neurochemistry, Institute of Neurology, University College London, UK.
| | | | | | | | | | | | | |
Collapse
|
562
|
Marsicano G, Lutz B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 1999; 11:4213-25. [PMID: 10594647 DOI: 10.1046/j.1460-9568.1999.00847.x] [Citation(s) in RCA: 706] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cannabinoids can modulate motor behaviour, learning and memory, cognition and pain perception. These effects correlate with the expression of the cannabinoid receptor 1 (CB1) and with the presence of endogenous cannabinoids in the brain. In trying to obtain further insights into the mechanisms underlying the modulatory effects of cannabinoids, CB1-positive neurons were determined in the murine forebrain at a single cell resolution. We performed a double in situ hybridization study to detect mRNA of CB1 in combination with mRNA of glutamic acid decarboxylase 65k, neuropeptide cholecystokinin (CCK), parvalbumin, calretinin and calbindin D28k, respectively. Our results revealed that CB1-expressing cells can be divided into distinct neuronal subpopulations. There is a clear distinction between neurons containing CB1 mRNA either at high levels or low levels. The majority of high CB1-expressing cells are GABAergic (gamma-aminobutyric acid) neurons belonging mainly to the cholecystokinin-positive and parvalbumin-negative type of interneurons (basket cells) and, to a lower extent, to the calbindin D28k-positive mid-proximal dendritic inhibitory interneurons. Only a fraction of low CB1-expressing cells is GABAergic. In the hippocampus, amygdala and entorhinal cortex area, CB1 mRNA is present at low but significant levels in many non-GABAergic cells that can be considered as projecting principal neurons. Thus, a complex mechanism appears to underlie the modulatory effects of cannabinoids. They might act on principal glutamatergic circuits as well as modulate local GABAergic inhibitory circuits. CB1 is very highly coexpressed with CCK. It is known that cannabinoids and CCK often have opposite effects on behaviour and physiology. Therefore, we suggest that a putative cross-talk between cannabinoids and CCK might exist and will be relevant to better understanding of physiology and pharmacology of the cannabinoid system.
Collapse
Affiliation(s)
- G Marsicano
- Max-Planck-Institute of Psychiatry, Munich, Germany
| | | |
Collapse
|
563
|
Walker JM, Huang SM, Strangman NM, Tsou K, Sañudo-Peña MC. Pain modulation by release of the endogenous cannabinoid anandamide. Proc Natl Acad Sci U S A 1999; 96:12198-203. [PMID: 10518599 PMCID: PMC18435 DOI: 10.1073/pnas.96.21.12198] [Citation(s) in RCA: 356] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/1999] [Accepted: 08/10/1999] [Indexed: 11/18/2022] Open
Abstract
Synthetic cannabinoids produce behavioral analgesia and suppress pain neurotransmission, raising the possibility that endogenous cannabinoids serve naturally to modulate pain. Here, the development of a sensitive method for measuring cannabinoids by atmospheric pressure-chemical ionization mass spectrometry permitted measurement of the release of the endogenous cannabinoid anandamide in the periaqueductal gray (PAG) by in vivo microdialysis in the rat. Electrical stimulation of the dorsal and lateral PAG produced CB1 cannabinoid receptor-mediated analgesia accompanied by a marked increase in the release of anandamide in the PAG, suggesting that endogenous anandamide mediates the behavioral analgesia. Furthermore, pain triggered by subcutaneous injections of the chemical irritant formalin substantially increased the release of anandamide in the PAG. These findings indicate that the endogenous cannabinoid anandamide plays an important role in a cannabinergic pain-suppression system existing within the dorsal and lateral PAG. The existence of a cannabinergic pain-modulatory system may have relevance for the treatment of pain, particularly in instances where opiates are ineffective.
Collapse
Affiliation(s)
- J M Walker
- Department of Psychology, Brown University, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
564
|
Rodríguez de Fonseca F, Wenger T, Navarro M, Murphy LL. Effects of delta9-THC on VIP-induced prolactin secretion in anterior pituitary cultures: evidence for the presence of functional cannabinoid CB1 receptors in pituitary cells. Brain Res 1999; 841:114-22. [PMID: 10546994 DOI: 10.1016/s0006-8993(99)01809-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peripheral administration of cannabinoid CB1 receptor agonists to laboratory rats induce a brief rise in plasma prolactin (PRL) levels followed by a prolonged decrease in PRL secretion from the pituitary. While the inhibitory component of this biphasic response depends on the cannabinoid-induced activation of dopamine release from hypothalamic terminals located in the median eminence, the neurobiological mechanisms underlying the activation phase of PRL release remains to be explained. In the present study the possible direct effect of the cannabinoid receptor agonist delta9-Tetrahydrocannabinol (THC) on prolactin secretion and cAMP accumulation was examined in anterior pituitary cultures. THC (0.1 and 1 microM) increased cAMP levels, and induced PRL release (1 and 10 mu). THC did not affect vasoactive intestinal peptide (VIP, 0.5 microM) induced cAMP accumulation in pituitary cultures, showing additive effects at THC 1 microM concentration. However, THC did prevent VIP-dependent increases in prolactin secretion. These results indicate that THC, through a direct pituitary action, activates both the synthesis of cAMP and PRL release and interferes with intracellular mechanisms involved in PRL secretion by VIP. These actions could be mediated through cannabinoid CB1 receptors which were found to be present in anterior pituitary cells, including lactotrophs, as revealed by immunocytochemistry with a specific polyclonal antibody raised against the CB1 receptor protein.
Collapse
Affiliation(s)
- F Rodríguez de Fonseca
- Instituto Complutense de Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain.
| | | | | | | |
Collapse
|
565
|
|