551
|
Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS. Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol 2009; 45:324-34. [PMID: 18805044 PMCID: PMC2743485 DOI: 10.1016/j.oraloncology.2008.07.011] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple genetic and epigenetic events, including the aberrant expression and function of molecules regulating cell signaling, growth, survival, motility, angiogenesis, and cell cycle control, underlie the progressive acquisition of a malignant phenotype in squamous carcinomas of the head and neck (HNSCC). In this regard, there has been a recent explosion in our understanding on how extracellular components, cell surface molecules, and a myriad of intracellular proteins and second messenger systems interact with each other, and are organized in pathways and networks to control cellular and tissue functions and cell fate decisions. This emerging ability to understand the basic mechanism controlling inter- and intra-cellular communication has provided an unprecedented opportunity to understand how their dysregulation contributes to the growth and dissemination of human cancers. Here, we will discuss the emerging information on how the use of modern technologies, including gene array and proteomic studies, combined with the molecular dissection of aberrant signaling networks, including the EGFR, ras, NFkappaB, Stat, Wnt/beta-catenin, TGF-beta, and PI3K-AKT-mTOR signaling pathways, can help elucidate the molecular mechanisms underlying HNSCC progression. Ultimately, we can envision that this knowledge may provide tremendous opportunities for the diagnosis of premalignant squamous lesions, and for the development of novel molecular-targeted strategies for the prevention and treatment of HNSCC.
Collapse
Affiliation(s)
- Alfredo A. Molinolo
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Panomwat Amornphimoltham
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Cristiane H. Squarize
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Rogerio M. Castilho
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Vyomesh Patel
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - J. Silvio Gutkind
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
552
|
Abstract
TOR complex 1 (TORC1), an oligomer of the mTOR (mammalian target of rapamycin) protein kinase, its substrate binding subunit raptor, and the polypeptide Lst8/GbetaL, controls cell growth in all eukaryotes in response to nutrient availability and in metazoans to insulin and growth factors, energy status, and stress conditions. This review focuses on the biochemical mechanisms that regulate mTORC1 kinase activity, with special emphasis on mTORC1 regulation by amino acids. The dominant positive regulator of mTORC1 is the GTP-charged form of the ras-like GTPase Rheb. Insulin, growth factors, and a variety of cellular stressors regulate mTORC1 by controlling Rheb GTP charging through modulating the activity of the tuberous sclerosis complex, the Rheb GTPase activating protein. In contrast, amino acids, especially leucine, regulate mTORC1 by controlling the ability of Rheb-GTP to activate mTORC1. Rheb binds directly to mTOR, an interaction that appears to be essential for mTORC1 activation. In addition, Rheb-GTP stimulates phospholipase D1 to generate phosphatidic acid, a positive effector of mTORC1 activation, and binds to the mTOR inhibitor FKBP38, to displace it from mTOR. The contribution of Rheb's regulation of PL-D1 and FKBP38 to mTORC1 activation, relative to Rheb's direct binding to mTOR, remains to be fully defined. The rag GTPases, functioning as obligatory heterodimers, are also required for amino acid regulation of mTORC1. As with amino acid deficiency, however, the inhibitory effect of rag depletion on mTORC1 can be overcome by Rheb overexpression, whereas Rheb depletion obviates rag's ability to activate mTORC1. The rag heterodimer interacts directly with mTORC1 and may direct mTORC1 to the Rheb-containing vesicular compartment in response to amino acid sufficiency, enabling Rheb-GTP activation of mTORC1. The type III phosphatidylinositol kinase also participates in amino acid-dependent mTORC1 activation, although the site of action of its product, 3'OH-phosphatidylinositol, in this process is unclear.
Collapse
Affiliation(s)
- Joseph Avruch
- Department of Molecular Biology and Diabetes Research Unit, Medical Service, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Simches Research Center, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
553
|
Kim E. Mechanisms of amino acid sensing in mTOR signaling pathway. Nutr Res Pract 2009; 3:64-71. [PMID: 20016704 PMCID: PMC2788159 DOI: 10.4162/nrp.2009.3.1.64] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/06/2009] [Accepted: 03/10/2009] [Indexed: 12/19/2022] Open
Abstract
Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including cancer, diabetes, and tissue hypertrophy. Although amino acids are the most potent activator of mTORC1, how amino acids activate mTOR signaling pathway is still largely unknown. This is partly because of the diversity of amino acids themselves including structure and metabolism. In this review, current proposed amino acid sensing mechanisms to regulate mTORC1 and the evidences pro/against the proposed models are discussed.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Food Sciences and Nutrition, Catholic University of Daegu, 330 Geumnak 1-ri, Hayang-eup, Gyeongsan 712-702, Korea
| |
Collapse
|
554
|
Zhou L, Huang Y, Li J, Wang Z. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol 2009; 27:255-61. [PMID: 19301157 DOI: 10.1007/s12032-009-9201-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/06/2009] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The mammalian target of rapamycin (mTOR) pathway, an important regulator of multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis, is up-regulated in many cancers. It has achieved considerable importance. This study was conducted to determine the status of the mTOR pathway in human hepatocellular carcinoma (HCC) and to investigate its relationship with the prognosis of HCC. METHODS PTEN, pAkt, p27, and pS6 expression in cryo-sections gathered from 528 cases with HCC by the method of immunohistochemistry. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognosis of HCC. RESULTS The mTOR pathway was more significantly altered in high-grade tumors, and tumors with poor prognostic features. Especially, pAkt and cytoplasmic p27 expression showed the strongest associations with pathological parameters of HCC. Statistical analysis showed that HCC patients expressing pAkt, PTEN, cytoplasmic p27, and pS6 have different overall survival rates relative to those not expressing these proteins. Cox multi-factor analysis showed that tumor differentiation (P = 0.006), vascular invasion (P = 0.028), TNM stage (P = 0.005), pAkt (P = 0.021), PTEN (P = 0.003), p27 (P = 0.018) and pS6 (P = 0.002) were independent prognosis factors for HCC. CONCLUSION Expression of the mTOR pathway components, which are related with the transferability and invasive capacity of HCC cells, may be used as prognostic indicators in HCC.
Collapse
Affiliation(s)
- Ledu Zhou
- General Surgery Department of XiangYa Hosptial, Central South University, Changsha, Hunan 410078, China
| | | | | | | |
Collapse
|
555
|
Teachey DT, Grupp SA, Brown VI. Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br J Haematol 2009; 145:569-80. [PMID: 19344392 DOI: 10.1111/j.1365-2141.2009.07657.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that functions as a key regulator of cell growth, protein synthesis, and cell-cycle progression through interactions with a number of signalling pathways, including PI3K/AKT, ras, TCL1, and BCR/ABL. Many haematological malignancies have aberrant activation of the mTOR and related signalling pathways. Accordingly, mTOR inhibitors, a class of signal transduction inhibitors that were originally developed as immunosuppressive agents, are being investigated in preclinical models and clinical trials for a number of haematological malignancies. Sirolimus and second-generation mTOR inhibitors, such as temsirolimus and everolimus, are safe and relatively well-tolerated, making them potentially attractive as single agents or in combination with conventional cytotoxics and other targeted therapies. Promising early clinical data suggests activity of mTOR inhibitors in a number of haematological diseases, including acute lymphoblastic leukaemia, chronic myeloid leukaemia, mantle cell lymphoma, anaplastic large cell lymphoma, and lymphoproliferative disorders. This review describes the rationale for using mTOR inhibitors in a variety of haematological diseases with a focus on their use in leukaemia.
Collapse
Affiliation(s)
- David T Teachey
- Division of Paediatric Hematology, Children's Hospital of Philadelphia, 3615 Civic Centre Boulevard, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
556
|
Brown VI, Seif AE, Reid GSD, Teachey DT, Grupp SA. Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunol Res 2009; 42:84-105. [PMID: 18716718 DOI: 10.1007/s12026-008-8038-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
While the outcome for pediatric patients with lymphoproliferative disorders (LPD) or lymphoid malignancies, such as acute lymphoblastic leukemia (ALL), has improved dramatically, patients often suffer from therapeutic sequelae. Additionally, despite intensified treatment, the prognosis remains dismal for patients with refractory or relapsed disease. Thus, novel biologically targeted treatment approaches are needed. These targets can be identified by understanding how a loss of lymphocyte homeostasis can result in LPD or ALL. Herein, we review potential molecular and cellular therapeutic strategies that (i) target key signaling networks (e.g., PI3K/AKT/mTOR, JAK/STAT, Notch1, and SRC kinase family-containing pathways) which regulate lymphocyte growth, survival, and function; (ii) block the interaction of ALL cells with stromal cells or lymphoid growth factors secreted by the bone marrow microenvironment; or (iii) stimulate innate and adaptive immune responses.
Collapse
Affiliation(s)
- Valerie I Brown
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, ARC 902, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | | | | | | | | |
Collapse
|
557
|
Han S, Polizzano C, Nielsen GP, Hornicek FJ, Rosenberg AE, Ramesh V. Aberrant hyperactivation of akt and Mammalian target of rapamycin complex 1 signaling in sporadic chordomas. Clin Cancer Res 2009; 15:1940-6. [PMID: 19276265 DOI: 10.1158/1078-0432.ccr-08-2364] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Chordomas are rare, malignant bone neoplasms in which the pathogenic mechanisms remain unknown. Interestingly, tuberous sclerosis complex (TSC) is the only syndrome in which the incidence of chordomas has been described. We previously reported the pathogenic role of the TSC genes in TSC-associated chordomas. In this study, we investigated whether aberrant TSC/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway is associated with sporadic chordomas. EXPERIMENTAL DESIGN We assessed the status of mTORC1 signaling in primary tumors/cell lines of sacral chordomas and further examined upstream of mTORC1 signaling, including the PTEN (phosphatase and tensin homologue deleted on chromosome ten) tumor suppressor. We also tested the efficacy of the mTOR inhibitor rapamycin on signaling and growth of chordoma cell lines. RESULTS Sporadic sacral chordoma tumors and cell lines examined commonly displayed hyperactivated Akt and mTORC1 signaling. Strikingly, expression of PTEN, a negative regulator of mTORC1 signaling, was not detected or significantly reduced in chordoma-derived cell lines and primary tumors. Furthermore, rapamycin inhibited mTORC1 activation and suppressed proliferation of chordoma-derived cell line. CONCLUSIONS Our results suggest that loss of PTEN as well as other genetic alterations that result in constitutive activation of Akt/mTORC1 signaling may contribute to the development of sporadic chordomas. More importantly, a combination of Akt and mTORC1 inhibition may provide clinical benefits to chordoma patients.
Collapse
Affiliation(s)
- Sangyeul Han
- Center for Human Genetic Research, Massachusetts General Hospital, Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
558
|
Plas DR, Thomas G. Tubers and tumors: rapamycin therapy for benign and malignant tumors. Curr Opin Cell Biol 2009; 21:230-6. [PMID: 19237273 DOI: 10.1016/j.ceb.2008.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/30/2008] [Indexed: 02/08/2023]
Abstract
Rapamycin and its derivatives represent a unique set of pharmaceutical agents being employed across a broad range of therapeutic indications including organ transplantation, cardiovascular disease, the treatment of harmartomas, and cancer. In cancer this family of drugs is unique as it exploits tumor-associated changes in cell metabolism. mTOR complex 1 (mTORC1), a protein kinase complex, is the major target of rapamycin, and is a key element of evolutionarily conserved pathways that regulate cellular metabolism in response to environmental nutrients and intracellular energy status. Upstream mTOR regulatory proteins -- the TSC tumor suppressor, the Rheb proto-oncogene, the hVps34 phophatidylinositol kinase, and the Rag GTPases -- determine tumor growth, metabolism, and apoptosis susceptibility. Novel compounds that target mTOR and PI3K enzymes may further enhance the efficacy in inhibiting this pathway in a number of human pathologies, particularly cancer.
Collapse
Affiliation(s)
- David R Plas
- Department of Cancer and Cell Biology, Genome Research Institute, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
559
|
Halapas A, Armakolas A, Koutsilieris M. Autophagy: a target for therapeutic interventions in myocardial pathophysiology. Expert Opin Ther Targets 2009; 12:1509-22. [PMID: 19007320 DOI: 10.1517/14728220802555554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Autophagy is a major degradative and highly conserved process in eukaryotic cells that is activated by stress signals. This self-cannibalisation is activated as a response to changing environmental conditions, cellular remodelling during development and differentiation, and maintenance of homeostasis. OBJECTIVE To review autophagy regarding its process, molecular mechanisms and regulation in mammalian cells, and its role in myocardial pathophysiology. RESULTS/CONCLUSION Autophagy is a multistep process regulated by diverse, intracellular and/or extracellular signalling complexes and pathways. In the heart, normally, autophagy occurs at low basal levels, where it represents a homeostatic mechanism for the maintenance of cardiac function and morphology. However, in the diseased heart the functional role of the enhanced autophagy is unclear and studies have yielded conflicting results. Recently, it was shown that during myocardial ischemia autophagy promotes survival by maintaining energy homeostasis. Also, rapamycin was demonstrated to prevent cardiac hypertrophy. In heart failure, upregulation of autophagy acts as an adaptive response that protects cells from hemodynamic stress. In addition, sirolimus-eluting stents have been shown to lower re-stenosis rates in patients with coronary artery disease after angioplasty. Thus, this mechanism can become a major target for therapeutic intervention in heart pathophysiology.
Collapse
Affiliation(s)
- Antonis Halapas
- National and Kapodistrian University of Athens, Medical School, Department of Experimental Physiology, Goudi-Athens, Greece
| | | | | |
Collapse
|
560
|
Abstract
Dysregulated activity of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin complex 1 (mTORC1) is characteristic feature of hamartoma syndromes. Hamartoma syndromes, dominantly inherited cancer predisposition disorders, affect multiple organs and are manifested by benign tumors consisting of various cell types native to the tissues in which they arise. In the past few years, three inherited hamartoma syndromes, Cowden syndrome (CS), tuberous sclerosis complex (TSC) syndrome, and Peutz-Jeghens syndrome (PJS), have all been linked to a common biochemical pathway: the hyperactivation of PI3K/mTORC1 intracellular signaling. Three tumor suppressors, PTEN (phosphatases and tensin homolog), tuberous sclerosis complex TSC1/TSC2, and LKB1, are negative regulators of PI3K/mTORC1 signaling; disease-related inactivation of these tumor suppressors results in the development of PTEN-associated hamartoma syndromes, TSC and PJS, respectively. The goal of this review is to provide a roadmap for navigating the inherently complex regulation of PI3K/mTORC1 signaling while highlighting the progress that has been made in elucidating the cellular and molecular mechanisms of hamartoma syndromes and identificating potential therapeutic targets for their treatment. Importantly, because the PI3K/mTORC1 pathway is activated in the majority of common human cancers, the identification of novel molecular target(s) for the treatment of hamartoma syndromes may have a broader translational potential, and is critically important not only for therapeutic intervention in hamartoma disorders, but also for the treatment of cancers.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Department of Medicine, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-3403, USA.
| | | |
Collapse
|
561
|
Richter JD, Klann E. Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev 2009; 23:1-11. [PMID: 19136621 DOI: 10.1101/gad.1735809] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synaptic transmission in neurons is a measure of communication at synapses, the points of contact between axons and dendrites. The magnitude of synaptic transmission is a reflection of the strength of these synaptic connections, which in turn can be altered by the frequency with which the synapses are stimulated, the arrival of stimuli from other neurons in the appropriate temporal window, and by neurotrophic factors and neuromodulators. The ability of synapses to undergo lasting biochemical and morphological changes in response to these types of stimuli and neuromodulators is known as synaptic plasticity, which likely forms the cellular basis for learning and memory, although the relationship between any one form synaptic plasticity and a particular type of memory is unclear. RNA metabolism, particularly translational control at or near the synapse, is one process that controls long-lasting synaptic plasticity and, by extension, several types of memory formation and consolidation. Here, we review recent studies that reflect the importance and challenges of investigating the role of mRNA translation in synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine University of Massachusetts Medical School Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
562
|
Fischer DC, Jacoby U, Pape L, Ward CJ, Kuwertz-Broeking E, Renken C, Nizze H, Querfeld U, Rudolph B, Mueller-Wiefel DE, Bergmann C, Haffner D. Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD). Nephrol Dial Transplant 2009; 24:1819-27. [DOI: 10.1093/ndt/gfn744] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
563
|
Heaney JD, Michelson MV, Youngren KK, Lam MYJ, Nadeau JH. Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice. Hum Mol Genet 2009; 18:1395-404. [PMID: 19168544 DOI: 10.1093/hmg/ddp045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The agouti-yellow (A(y)) deletion is the only genetic modifier known to suppress testicular germ cell tumor (TGCT) susceptibility in mice or humans. The A(y) mutation deletes Raly and Eif2s2, and induces the ectopic expression of agouti, all of which are potential TGCT-modifying mutations. Here we report that the reduced TGCT incidence of heterozygous A(y) males and the recessive embryonic lethality of A(y) are caused by the deletion of Eif2s2, the beta subunit of translation initiation factor eIF2. We found that the incidence of affected males was reduced 2-fold in mice that were partially deficient for Eif2s2 and that embryonic lethality occurred near the time of implantation in mice that were fully deficient for Eif2s2. In contrast, neither reduced expression of Raly in gene-trap mice nor ectopic expression of agouti in transgenic or viable-yellow (A(vy)) mutants affected TGCT incidence or embryonic viability. In addition, we provide evidence that partial deficiency of Eif2s2 attenuated germ cell proliferation and differentiation, both of which are important to TGCT formation. These results show that germ cell development and TGCT pathogenesis are sensitive to the availability of the eIF2 translation initiation complex and to changes in the rate of translation.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Genetics, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44120, USA.
| | | | | | | | | |
Collapse
|
564
|
Jin H, Xu CX, Lim HT, Park SJ, Shin JY, Chung YS, Park SC, Chang SH, Youn HJ, Lee KH, Lee YS, Ha YC, Chae CH, Beck GR, Cho MH. High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am J Respir Crit Care Med 2009; 179:59-68. [PMID: 18849498 PMCID: PMC2615662 DOI: 10.1164/rccm.200802-306oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/09/2008] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Phosphate (Pi) is an essential nutrient to living organisms. Recent surveys indicate that the intake of Pi has increased steadily. Our previous studies have indicated that elevated Pi activates the Akt signaling pathway. An increased knowledge of the response of lung cancer tissue to high dietary Pi may provide an important link between diet and lung tumorigenesis. OBJECTIVES The current study was performed to elucidate the potential effects of high dietary Pi on lung cancer development. METHODS Experiments were performed on 5-week-old male K-ras(LA1) lung cancer model mice and 6-week-old male urethane-induced lung cancer model mice. Mice were fed a diet containing 0.5% Pi (normal Pi) and 1.0% Pi (high Pi) for 4 weeks. At the end of the experiment, all mice were killed. Lung cancer development was evaluated by diverse methods. MEASUREMENT AND MAIN RESULTS A diet high in Pi increased lung tumor progression and growth compared with normal diet. High dietary Pi increased the sodium-dependent inorganic phosphate transporter-2b protein levels in the lungs. High dietary consumption of Pi stimulated pulmonary Akt activity while suppressing the protein levels of tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 as well as Akt binding partner carboxyl-terminal modulator protein, resulting in facilitated cap-dependent protein translation. In addition, high dietary Pi significantly stimulated cell proliferation in the lungs of K-ras(LA1) mice. CONCLUSIONS Our results showed that high dietary Pi promoted tumorigenesis and altered Akt signaling, thus suggesting that careful regulation of dietary Pi may be critical for lung cancer prevention as well as treatment.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
565
|
Boura-Halfon S, Zick Y. Serine kinases of insulin receptor substrate proteins. VITAMINS AND HORMONES 2009; 80:313-49. [PMID: 19251043 DOI: 10.1016/s0083-6729(08)00612-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling of insulin and insulin-like growth factor-I (IGF-1) at target tissues is essential for growth, development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative-feedback control mechanism, whereby downstream components inhibit upstream elements along the insulin and IGF-1 signaling pathway or by signals from other pathways that inhibit insulin/IGF-1 signaling thus leading to insulin/IGF-1 resistance. Phosphorylation of insulin receptor substrates (IRS) proteins on serine residues has emerged as a key step in these control processes both under physiological and pathological conditions. The list of IRS kinases is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on selected domains. The specificity of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin/IGF-1 signaling, insulin/IGF-1 resistance and diabetes, an emerging epidemic of the twenty-first century are outlined.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
566
|
Sebbagh M, Santoni MJ, Hall B, Borg JP, Schwartz MA. Regulation of LKB1/STRAD localization and function by E-cadherin. Curr Biol 2008; 19:37-42. [PMID: 19110428 DOI: 10.1016/j.cub.2008.11.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 01/06/2023]
Abstract
LKB1 kinase is a tumor suppressor that is causally linked to Peutz-Jeghers syndrome. In complex with the pseudokinase STRAD and the scaffolding protein MO25, LKB1 phosphorylates and activates AMPK family kinases, which mediate many cellular processes. The prototypical family member AMPK regulates cell energy metabolism and epithelial apicobasal polarity. This latter event is also dependent on E-cadherin-mediated adherens junctions (AJs) at lateral borders. Strikingly, overexpression of LKB1/STRAD can also trigger establishment of epithelial polarity in the absence of cell-cell or cell-matrix contacts. However, the upstream factors that normally govern LKB1/STRAD function are unknown. Here we show by immunostaining and fluorescence resonance energy transfer that active LKB1/STRAD kinase complex colocalizes with E-cadherin at AJs. LKB1/STRAD localization and AMPK phosphorylation require E-cadherin-dependent maturation of AJs. However, LKB1/STRAD complex kinase activity is E-cadherin independent. These data suggest that in polarized epithelial cells, E-cadherin regulates AMPK phosphorylation by controlling the localization of the LKB1 complex. The LKB1 complex therefore appears to function downstream of E-cadherin in tumor suppression.
Collapse
Affiliation(s)
- Michael Sebbagh
- Cardiovascular Research Center and Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
567
|
van Oostrum J, Calonder C, Rechsteiner D, Ehrat M, Mestan J, Fabbro D, Voshol H. Tracing pathway activities with kinase inhibitors and reverse phase protein arrays. Proteomics Clin Appl 2008; 3:412-22. [PMID: 21136968 DOI: 10.1002/prca.200800070] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Controlling aberrant protein kinase activity is a promising strategy for a variety of diseases, particularly cancer. Hence, the development of kinase inhibitors is currently a focal point for pharmaceutical research. In this study we utilize a chip-based reverse phase protein array (RPA) platform for profiling of kinase inhibitors in cell-based assays. In combination with the planar wave-guide technology the assay system has an absolute LOD down to the low zeptomole range. A431 cell lysates were analyzed for the activation state of key effectors in the epidermal growth factor (EGF) and insulin signaling pathways to validate this model for compound screening. A microtiter-plate format for growing, treating, and lysing cells was shown to be suitable for this approach, establishing the value of the technology as a screening tool for characterization of large numbers of kinase inhibitors against a wide variety of cellular signaling pathways. Moreover, the reverse array format allows rapid development of site-specific phosphorylation assays, since in contrast to ELISA type systems only a single antigen-specific antibody is required.
Collapse
Affiliation(s)
- Jan van Oostrum
- Zeptosens - a Division of Bayer (Schweiz) AG, Witterswil, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
568
|
The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol 2008; 29:640-9. [PMID: 19047368 DOI: 10.1128/mcb.00980-08] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The stimulatory effect of insulin on protein synthesis is due to its ability to activate various translation factors. We now show that insulin can increase protein synthesis capacity also by translational activation of TOP mRNAs encoding various components of the translation machinery. This translational activation involves the tuberous sclerosis complex (TSC), as the knockout of TSC1 or TSC2 rescues TOP mRNAs from translational repression in mitotically arrested cells. Similar results were obtained upon overexpression of Rheb, an immediate TSC1-TSC2 target. The role of mTOR, a downstream effector of Rheb, in translational control of TOP mRNAs has been extensively studied, albeit with conflicting results. Even though rapamycin fully blocks mTOR complex 1 (mTORC1) kinase activity, the response of TOP mRNAs to this drug varies from complete resistance to high sensitivity. Here we show that mTOR knockdown blunts the translation efficiency of TOP mRNAs in insulin-treated cells, thus unequivocally establishing a role for mTOR in this mode of regulation. However, knockout of the raptor or rictor gene has only a slight effect on the translation efficiency of these mRNAs, implying that mTOR exerts its effect on TOP mRNAs through a novel pathway with a minor, if any, contribution of the canonical mTOR complexes mTORC1 and mTORC2. This conclusion is further supported by the observation that raptor knockout renders the translation of TOP mRNAs rapamycin hypersensitive.
Collapse
|
569
|
Abstract
TSC-mTOR signaling plays a crucial role in the regulation of cell growth and survival control. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that forms two distinct functional complexes, termed TOR complex 1 (TORC1) and TORC2, respectively. TORC1 is a rapamycin-sensitive complex and regulates a wide array of cellular processes including translation, transcription, and autophagy. Tuberous sclerosis complex (TSC) gene products, TSC1 and TSC2 are tumor suppressors and specifically suppress TORC1 activity. Mutation of either TSC1 or TSC2 causes TSC disease, which is characterized by formation of hamartomas in multiple organs. Although the role of TSC-mTOR pathway in tumor and cancer development has been extensively studied, more recent studies have indicated a role for mTOR function in appetite, memory, aging, and energy metabolism. Dysregulation of the TSC-mTOR pathway may cause not only tumor development but also metabolic disorders such as diabetes and its complications.
Collapse
Affiliation(s)
- Ken Inoki
- Life Sciences Institute, University of Michigan, 210 Washtenaw #6115, Ann Arbor, MI 48108-2216, USA.
| |
Collapse
|
570
|
Knödler A, Schmidt SM, Bringmann A, Weck MM, Brauer KM, Holderried TAW, Heine AK, Grünebach F, Brossart P. Post-transcriptional regulation of adapter molecules by IL-10 inhibits TLR-mediated activation of antigen-presenting cells. Leukemia 2008; 23:535-44. [PMID: 19005481 DOI: 10.1038/leu.2008.301] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Toll-like receptors (TLRs) act to sense the environment for microbial products and submit danger signals to antigen-presenting cells (APCs) resulting in activation of complex immune responses. In this study, we analyzed the function of human monocyte-derived APCs generated in vitro in the presence of interleukin (IL)-10 upon activation by TLR ligands. Exposure of these APCs to IL-10 resulted in a skewed phenotypic maturation in response to stimuli provided by the TLR ligands, a reduced cytokine production, such as IL-12, IL-6 or tumor necrosis factor-alpha, and impaired capacity to stimulate T-cell activation. Furthermore, CCR7 upregulation in APCs exposed to TLR stimulation as well as migration towards CCL19/MIP-3beta were strongly reduced. IL-10 was found to downregulate MyD88, IRAK1 (IL-1 receptor-associated kinase) and tumor necrosis factor receptor-associated factor 6, essential adaptor molecules for TLR signaling, and to decrease TLR-induced nuclear expression of the nuclear factor-kappaB transcription factors c-Rel and Rel-B as well as interferon regulatory factor (IRF)-3 and IRF-8. This was not due to the inhibition of the mitogen-activated protein kinase pathway, but was rather mediated by the blockage of the PI3K signaling cascade. Interestingly, the inhibition of proteins involved in TLR signaling, such as MyD88, IRAK1 and mammalian target of rapamycin, was due to a selective post-transcriptional regulation.
Collapse
Affiliation(s)
- A Knödler
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
571
|
Chen J, Futami K, Petillo D, Peng J, Wang P, Knol J, Li Y, Khoo SK, Huang D, Qian CN, Zhao P, Dykyma K, Zhang R, Cao B, Yang XJ, Furge K, Williams BO, Teh BT. Deficiency of FLCN in mouse kidney led to development of polycystic kidneys and renal neoplasia. PLoS One 2008; 3:e3581. [PMID: 18974783 PMCID: PMC2570491 DOI: 10.1371/journal.pone.0003581] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/09/2008] [Indexed: 11/19/2022] Open
Abstract
The Birt–Hogg–Dubé (BHD) disease is a genetic cancer syndrome. The responsible gene, BHD, has been identified by positional cloning and thought to be a novel tumor suppressor gene. BHD mutations cause many types of diseases including renal cell carcinomas, fibrofolliculomas, spontaneous pneumothorax, lung cysts, and colonic polyps/cancers. By combining Gateway Technology with the Ksp-Cre gene knockout system, we have developed a kidney-specific BHD knockout mouse model. BHDflox/flox/Ksp-Cre mice developed enlarged kidneys characterized by polycystic kidneys, hyperplasia, and cystic renal cell carcinoma. The affected BHDflox/flox/Ksp-Cre mice died of renal failure at approximate three weeks of age, having blood urea nitrogen levels over tenfold higher than those of BHD flox/+/Ksp-Cre and wild-type littermate controls. We further demonstrated that these phenotypes were caused by inactivation of BHD and subsequent activation of the mTOR pathway. Application of rapamycin, which inhibits mTOR activity, to the affected mice led to extended survival and inhibited further progression of cystogenesis. These results provide a correlation of kidney-targeted gene inactivation with renal carcinoma, and they suggest that the BHD product FLCN, functioning as a cyst and tumor suppressor, like other hamartoma syndrome–related proteins such as PTEN, LKB1, and TSC1/2, is a component of the mTOR pathway, constituting a novel FLCN-mTOR signaling branch that regulates cell growth/proliferation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carrier Proteins/metabolism
- Cloning, Molecular
- Embryo, Mammalian
- Genes, Lethal
- Genes, Tumor Suppressor/physiology
- Kidney/metabolism
- Kidney/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Organ Specificity/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Polycystic Kidney Diseases/genetics
- Polycystic Kidney Diseases/metabolism
- Polycystic Kidney Diseases/pathology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- TOR Serine-Threonine Kinases
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Jindong Chen
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * E-mail: (BTT); (J-DC)
| | - Kunihiko Futami
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Course of Applied Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo, Japan
| | - David Petillo
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Jun Peng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Pengfei Wang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jared Knol
- Laboratory of Cell Signaling and Cancinogenesis, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Yan Li
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Sok-Kean Khoo
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Laboratory of Germline Modification and Cytogenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Dan Huang
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Chao-Nan Qian
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ping Zhao
- Laboratory of Antibody Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Karl Dykyma
- Laboratory of Computational Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Racheal Zhang
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Brian Cao
- Laboratory of Antibody Technology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Ximing J. Yang
- Surgical Pathology, Northwestern University Feinberg School of Medicine, Feinberg, Chicago, Illinois, United States of America
| | - Kyle Furge
- Laboratory of Computational Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Bart O. Williams
- Laboratory of Cell Signaling and Cancinogenesis, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Bin Tean Teh
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- NCCS-VARI Translational Cancer Research Laboratory, National Cancer Centre, Singapore
- * E-mail: (BTT); (J-DC)
| |
Collapse
|
572
|
Abstract
Tuberous sclerosis complex (TSC) is characterised by seizures, mental retardation and the development of hamartomas in a variety of organs and tissues. The disease is caused by mutations in either the TSC1 gene or the TSC2 gene. The TSC1 and TSC2 gene products, TSC1 and TSC2, form a protein complex that inhibits signal transduction to the downstream effectors of the mammalian target of rapamycin (mTOR). We have developed a straightforward, semiautomated in-cell western (ICW) assay to investigate the effects of amino acid changes on the TSC1-TSC2-dependent inhibition of mTOR activity. Using this assay, we have characterised 20 TSC2 variants identified in individuals with TSC or suspected of having the disease. In 12 cases, we concluded that the identified variant was pathogenic. The ICW is a rapid, reproducible assay, which can be applied to the characterisation of the effects of novel TSC2 variants on the activity of the TSC1-TSC2 complex.
Collapse
|
573
|
Li YH, Werner H, Püschel AW. Rheb and mTOR regulate neuronal polarity through Rap1B. J Biol Chem 2008; 283:33784-92. [PMID: 18842593 DOI: 10.1074/jbc.m802431200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of polarized hippocampal neurons with a single axon and multiple dendrites depends on the activity of phosphoinositide 3-kinase (PI3K) and the GTPase Rap1B. Here we show that PI3K regulates axon specification and elongation through the GTPase Rheb and its target mammalian target of rapamycin (mTOR). Overexpression of Rheb induces the formation of multiple axons, whereas its suppression by RNA interference blocks axon specification. mTOR is a central regulator of translation that phosphorylates eIF4E-binding proteins like 4E-BP1. Axon formation was suppressed by inhibition of mTOR and expression of mTOR-insensitive 4E-BP1 mutants. Inhibition of PI3K or mTOR reduced the level of Rap1B, which acts downstream of Rheb and mTOR. The ubiquitin E3 ligase Smurf2 mediates the restriction of Rap1B by initiating its degradation. Suppression of Smruf2 by RNA interference is able to compensate the loss of Rheb. These results indicate that the mTOR pathway is required to counteract the Smurf2-initiated degradation of Rap1B during the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Ying-Hua Li
- Abteilung Molekularbiologie, Institut für Allgemeine Zoologie und Genetik, Westfälische Wilhelms-Universität Münster, Schlossplatz 5, D-48149 Münster, Germany
| | | | | |
Collapse
|
574
|
Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008. [PMID: 18725988 DOI: 10.1172/jci34739;] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule-dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.
Collapse
Affiliation(s)
- Arkaitz Carracedo
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
575
|
Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118:3065-74. [PMID: 18725988 DOI: 10.1172/jci34739] [Citation(s) in RCA: 755] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 06/25/2008] [Indexed: 01/10/2023] Open
Abstract
Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule-dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.
Collapse
Affiliation(s)
- Arkaitz Carracedo
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
576
|
Sarikas A, Xu X, Field LJ, Pan ZQ. The cullin7 E3 ubiquitin ligase: a novel player in growth control. Cell Cycle 2008; 7:3154-61. [PMID: 18927510 PMCID: PMC2637179 DOI: 10.4161/cc.7.20.6922] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cullin7 (CUL7) is a molecular scaffold that organizes an E3 ubiquitin ligase containing the F-box protein Fbw8, Skp1 and the ROC1 RING finger protein. Dysregulation of the CUL7 E3 Ligase has been directly linked to hereditary human diseases as cul7 germline mutations were found in patients with autosomal-recessive 3-M and Yakuts short stature syndromes, which are characterized by profound pre- and postnatal growth retardation. In addition, genetic ablation of CUL7 in mice resulted in intrauterine growth retardation and perinatal lethality, underscoring its importance for growth regulation. The recent identification of insulin receptor substrate 1, a critical mediator of insulin and insulin-like growth factor-1 signaling, as the proteolytic target of the CUL7 E3 ligase, provided a molecular link between CUL7 and a well-established growth regulatory pathway. This result, coupled with other studies demonstrating interactions between CUL7 and the p53 tumor suppressor protein, as well as the simian virus 40 large T antigen oncoprotein, further implicated CUL7 as a novel player in growth control and suggested pathomechanistic insights into CUL7-linked growth retardation syndromes.
Collapse
Affiliation(s)
- Antonio Sarikas
- Department of Oncological Sciences; The Mount Sinai School of Medicine; New York, New York USA
| | - Xinsong Xu
- Department of Oncological Sciences; The Mount Sinai School of Medicine; New York, New York USA
| | - Loren J. Field
- Indiana University School of Medicine; Wells Center for Pediatric Research and Krannert Institute of Cardiology; Indianapolis, Indiana USA
| | - Zhen-Qiang Pan
- Department of Oncological Sciences; The Mount Sinai School of Medicine; New York, New York USA
| |
Collapse
|
577
|
Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y, Zheng P. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. ACTA ACUST UNITED AC 2008; 205:2397-408. [PMID: 18809716 PMCID: PMC2556783 DOI: 10.1084/jem.20081297] [Citation(s) in RCA: 543] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The tuberous sclerosis complex (TSC)–mammalian target of rapamycin (mTOR) pathway is a key regulator of cellular metabolism. We used conditional deletion of Tsc1 to address how quiescence is associated with the function of hematopoietic stem cells (HSCs). We demonstrate that Tsc1 deletion in the HSCs drives them from quiescence into rapid cycling, with increased mitochondrial biogenesis and elevated levels of reactive oxygen species (ROS). Importantly, this deletion dramatically reduced both hematopoiesis and self-renewal of HSCs, as revealed by serial and competitive bone marrow transplantation. In vivo treatment with an ROS antagonist restored HSC numbers and functions. These data demonstrated that the TSC–mTOR pathway maintains the quiescence and function of HSCs by repressing ROS production. The detrimental effect of up-regulated ROS in metabolically active HSCs may explain the well-documented association between quiescence and the “stemness” of HSCs.
Collapse
Affiliation(s)
- Chong Chen
- Program of Cell and Developmental Biology, Division of Immunotherapy, Department of Surgery, University of Michigan Medical School and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
578
|
|
579
|
Roca H, Varsos Z, Pienta KJ. CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 2008; 283:25057-73. [PMID: 18611860 PMCID: PMC2529129 DOI: 10.1074/jbc.m801073200] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/08/2008] [Indexed: 01/19/2023] Open
Abstract
Resistance to cell death is a hallmark of cancer. Autophagy is a survival mechanism activated in response to nutrient deprivation; however, excessive autophagy will ultimately induce cell death in a nonapoptotic manner. The present study demonstrates that CCL2 protects prostate cancer PC3 cells from autophagic death, allowing prolonged survival in serum-free conditions. Upon serum starvation, CCL2 induced survivin up-regulation in PC3, DU 145, and C4-2B prostate cancer cells. Both cell survival and survivin expression were stunted in CCL2-stimulated PC3 cells when treated either with the phosphatidylinositol 3-kinase inhibitor LY294002 (2 microm) or the Akt-specific inhibitor-X (Akti-X; 2.5 microm). Furthermore, CCL2 significantly reduced light chain 3-II (LC3-II) in serum-starved PC3; in contrast, treatment with LY294002 or Akti-X reversed the effect of CCL2 on LC3-II levels, suggesting that CCL2 signaling limits autophagy in these cells. Upon serum deprivation, the analysis of LC3 localization by immunofluorescence revealed a remarkable reduction in LC3 punctate after CCL2 stimulation. CCL2 treatment also resulted in a higher sustained mTORC1 activity as measured by an increase in phospho-p70S6 kinase (Thr389). Rapamycin, an inducer of autophagy, both down-regulated survivin and decreased PC3 cell viability in serum-deprived conditions. Treatment with CCL2, however, allowed cells to partially resist rapamycin-induced death, which correlated with survivin protein levels. In two stable transfectants expressing survivin-specific short hairpin RNA, generated from PC3, survivin protein levels controlled both cell viability and LC3 localization in response to CCL2 treatment. Altogether, these findings indicate that CCL2 protects prostate cancer PC3 cells from autophagic death via the phosphatidylinositol 3-kinase/Akt/survivin pathway and reveal survivin as a critical molecule in this survival mechanism.
Collapse
Affiliation(s)
- Hernan Roca
- Department of Urology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
580
|
Scheper MA, Chaisuparat R, Nikitakis NG, Sauk JJ. Expression and alterations of the PTEN / AKT / mTOR pathway in ameloblastomas. Oral Dis 2008; 14:561-8. [DOI: 10.1111/j.1601-0825.2007.01421.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
581
|
Squarize CH, Castilho RM, Gutkind JS. Chemoprevention and Treatment of Experimental Cowden's Disease by mTOR Inhibition with Rapamycin. Cancer Res 2008; 68:7066-72. [DOI: 10.1158/0008-5472.can-08-0922] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
582
|
Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, Lu B. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 2008; 27:2432-43. [PMID: 18701920 DOI: 10.1038/emboj.2008.163] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 07/25/2008] [Indexed: 11/09/2022] Open
Abstract
Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent molecular lesions so far found in Parkinson's disease (PD), an age-dependent neurodegenerative disorder affecting dopaminergic (DA) neuron. The molecular mechanisms by which mutations in LRRK2 cause DA degeneration in PD are not understood. Here, we show that both human LRRK2 and the Drosophila orthologue of LRRK2 phosphorylate eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP), a negative regulator of eIF4E-mediated protein translation and a key mediator of various stress responses. Although modulation of the eIF4E/4E-BP pathway by LRRK2 stimulates eIF4E-mediated protein translation both in vivo and in vitro, it attenuates resistance to oxidative stress and survival of DA neuron in Drosophila. Our results suggest that chronic inactivation of 4E-BP by LRRK2 with pathogenic mutations deregulates protein translation, eventually resulting in age-dependent loss of DA neurons.
Collapse
Affiliation(s)
- Yuzuru Imai
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
583
|
Abstract
N-Glycan branching in the medial-Golgi generates ligands for lattice-forming lectins (e.g., galectins) that regulate surface levels of glycoproteins including epidermal growth factor (EGF) and transforming growth factor-beta (TGF-beta) receptors. Moreover, functional classes of glycoproteins differ in N-glycan multiplicities (number of N-glycans/peptide), a genetically encoded feature of glycoproteins that interacts with metabolic flux (UDP-GlcNAc) and N-glycan branching to differentially regulate surface levels. Oncogenesis increases beta1,6-N-acetylglucosaminyltransferase V (encoded by Mgat5) expression, and its high-affinity galectin ligands promote surface retention of growth receptors with a reduced dependence on UDP-GlcNAc. Mgat5(-/-) tumor cells are less metastatic in vivo and less responsive to cytokines in vitro, but undergo secondary changes that support tumor cell proliferation. These include loss of Caveolin-1, a negative regulator of EGF signaling, and increased reactive oxygen species, an inhibitor of phosphotyrosine phosphatases. These studies suggest a systems approach to cancer treatment where the surface distribution of receptors is targeted through metabolism and N-glycan branching to induce growth arrest.
Collapse
Affiliation(s)
- Ken S Lau
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | |
Collapse
|
584
|
Hursting SD, Lashinger LM, Wheatley KW, Rogers CJ, Colbert LH, Nunez NP, Perkins SN. Reducing the weight of cancer: mechanistic targets for breaking the obesity-carcinogenesis link. Best Pract Res Clin Endocrinol Metab 2008; 22:659-69. [PMID: 18971125 DOI: 10.1016/j.beem.2008.08.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity, an established epidemiologic risk factor for many cancers, has risen steadily for the past several decades in the US. The increasing rates of obesity among children are especially alarming and suggest continuing increases in the rates of obesity-related cancers for many years to come. Unfortunately, the mechanisms underlying the association between obesity and cancer are not well understood. In particular, the effects on the carcinogenesis process and mechanistic targets of interventions that modulate energy balance, such as reduced-calorie diets and physical activity, have not been well characterized. The purpose of this review is to provide a strong foundation for the translation of mechanism-based research in this area by describing key animal and human studies of energy balance modulations involving diet or physical activity and by focusing on the interrelated pathways affected by alterations in energy balance. Particular attention is placed on signaling through the insulin and insulin-like growth factor-1 receptors, including components of the Akt and mammalian target of rapamycin (mTOR) signaling pathways downstream of these growth factor receptors. These pathways have emerged as potential targets for disrupting the obesity-cancer link. The ultimate goal of this work is to provide the missing mechanistic information necessary to identify targets for the prevention and control of cancers related to or caused by excess body weight.
Collapse
Affiliation(s)
- Stephen D Hursting
- Department of Nutritional Sciences, University of Texas, Austin, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
585
|
Boer K, Troost D, Timmermans W, Gorter JA, Spliet WGM, Nellist M, Jansen F, Aronica E. Cellular localization of metabotropic glutamate receptors in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Neuroscience 2008; 156:203-15. [PMID: 18706978 DOI: 10.1016/j.neuroscience.2008.06.073] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/22/2008] [Accepted: 06/26/2008] [Indexed: 11/27/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder associated with cortical malformations (cortical tubers) and the development of glial tumors (subependymal giant-cell tumors, SGCTs). Expression of metabotropic glutamate receptor (mGluR) subtypes is developmentally regulated and several studies suggest an involvement of mGluR-mediated glutamate signaling in the regulation of proliferation and survival of neural stem-progenitor cells, as well as in the control of tumor growth. In the present study, we have investigated the expression and cell-specific distribution of group I (mGluR1, mGluR5), group II (mGluR2/3) and group III (mGluR4 and mGluR8) mGluR subtypes in human TSC specimens of both cortical tubers and SGCTs, using immunocytochemistry. Strong group I mGluR immunoreactivity (IR) was observed in the large majority of TSC specimens in dysplastic neurons and in giant cells within cortical tubers, as well as in tumor cells within SGCTs. In particular mGluR5 appeared to be most frequently expressed, whereas mGluR1alpha was detected in a subpopulation of neurons and giant cells. Cells expressing mGluR1alpha and mGluR5, demonstrate IR for phospho-S6 ribosomal protein (PS6), which is a marker of the mammalian target of rapamycin (mTOR) pathway activation. Group II and particularly group III mGluR IR was less frequently observed than group I mGluRs in dysplastic neurons and giant cells of tubers and tumor cells of SGCTs. Reactive astrocytes were mainly stained with mGluR5 and mGluR2/3. These findings expand our knowledge concerning the cellular phenotype in cortical tubers and in SGCTs and highlight the role of group I mGluRs as important mediators of glutamate signaling in TSC brain lesions. Individual mGluR subtypes may represent potential pharmacological targets for the treatment of the neurological manifestations associated with TSC brain lesions.
Collapse
Affiliation(s)
- K Boer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
586
|
Rosner M, Hengstschläger M. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 2008; 17:2934-48. [PMID: 18614546 DOI: 10.1093/hmg/ddn192] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is part of two distinct complexes, mTORC1, containing raptor and mLST8, and mTORC2, containing rictor, mLST8 and sin1. Although great endeavors have already been made to elucidate the function and regulation of mTOR, the cytoplasmic nuclear distribution of the mTOR complexes is unknown. Upon establishment of the proper experimental conditions, we found mTOR, mLST8, rictor and sin1 to be less abundant in the nucleus than in the cytoplasm of non-transformed, non-immortalized, diploid human primary fibroblasts. Although raptor is also high abundant in the nucleus, the mTOR/raptor complex is predominantly cytoplasmic, whereas the mTOR/rictor complex is abundant in both compartments. Rapamycin negatively regulates the formation of both mTOR complexes, but the molecular mechanism of its effects on mTORC2 remained elusive. We describe that in primary cells short-term treatment with rapamycin triggers dephosphorylation of rictor and sin1 exclusively in the cytoplasm, but does not affect mTORC2 assembly. Prolonged drug treatment leads to complete dephosphorylation and cytoplasmic translocation of nuclear rictor and sin1 accompanied by inhibition of mTORC2 assembly. The distinct cytoplasmic and nuclear upstream and downstream effectors of mTOR are involved in many cancers and human genetic diseases, such as tuberous sclerosis, Peutz-Jeghers syndrome, von Hippel-Lindau disease, neurofibromatosis type 1, polycystic kidney disease, Alzheimer's disease, cardiac hypertrophy, obesity and diabetes. Accordingly, analogs of rapamycin are currently tested in many different clinical trials. Our data allow new insights into the molecular consequences of mTOR dysregulation under pathophysiological conditions and should help to optimize rapamycin treatment of human diseases.
Collapse
Affiliation(s)
- Margit Rosner
- Medical Genetics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | | |
Collapse
|
587
|
Roca H, Varsos Z, Pienta KJ. CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 2008. [PMID: 18611860 DOI: 10.1074/jbc.m801073200)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Resistance to cell death is a hallmark of cancer. Autophagy is a survival mechanism activated in response to nutrient deprivation; however, excessive autophagy will ultimately induce cell death in a nonapoptotic manner. The present study demonstrates that CCL2 protects prostate cancer PC3 cells from autophagic death, allowing prolonged survival in serum-free conditions. Upon serum starvation, CCL2 induced survivin up-regulation in PC3, DU 145, and C4-2B prostate cancer cells. Both cell survival and survivin expression were stunted in CCL2-stimulated PC3 cells when treated either with the phosphatidylinositol 3-kinase inhibitor LY294002 (2 microm) or the Akt-specific inhibitor-X (Akti-X; 2.5 microm). Furthermore, CCL2 significantly reduced light chain 3-II (LC3-II) in serum-starved PC3; in contrast, treatment with LY294002 or Akti-X reversed the effect of CCL2 on LC3-II levels, suggesting that CCL2 signaling limits autophagy in these cells. Upon serum deprivation, the analysis of LC3 localization by immunofluorescence revealed a remarkable reduction in LC3 punctate after CCL2 stimulation. CCL2 treatment also resulted in a higher sustained mTORC1 activity as measured by an increase in phospho-p70S6 kinase (Thr389). Rapamycin, an inducer of autophagy, both down-regulated survivin and decreased PC3 cell viability in serum-deprived conditions. Treatment with CCL2, however, allowed cells to partially resist rapamycin-induced death, which correlated with survivin protein levels. In two stable transfectants expressing survivin-specific short hairpin RNA, generated from PC3, survivin protein levels controlled both cell viability and LC3 localization in response to CCL2 treatment. Altogether, these findings indicate that CCL2 protects prostate cancer PC3 cells from autophagic death via the phosphatidylinositol 3-kinase/Akt/survivin pathway and reveal survivin as a critical molecule in this survival mechanism.
Collapse
Affiliation(s)
- Hernan Roca
- Department of Urology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
588
|
Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 2008; 412:211-21. [PMID: 18387000 DOI: 10.1042/bj20080557] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The LKB1 tumour suppressor phosphorylates and activates AMPK (AMP-activated protein kinase) when cellular energy levels are low, thereby suppressing growth through multiple pathways, including inhibiting the mTORC1 (mammalian target of rapamycin complex 1) kinase that is activated in the majority of human cancers. Blood glucose-lowering Type 2 diabetes drugs also induce LKB1 to activate AMPK, indicating that these compounds could be used to suppress growth of tumour cells. In the present study, we investigated the importance of the LKB1-AMPK pathway in regulating tumorigenesis in mice resulting from deficiency of the PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor, which drives cell growth through overactivation of the Akt and mTOR (mammalian target of rapamycin) kinases. We demonstrate that inhibition of AMPK resulting from a hypomorphic mutation that decreases LKB1 expression does not lead to tumorigenesis on its own, but markedly accelerates tumour development in PTEN(+/-) mice. In contrast, activating the AMPK pathway by administration of metformin, phenformin or A-769662 to PTEN(+/-) mice significantly delayed tumour onset. We demonstrate that LKB1 is required for activators of AMPK to inhibit mTORC1 signalling as well as cell growth in PTEN-deficient cells. Our findings highlight, using an animal model relevant to understanding human cancer, the vital role that the LKB1-AMPK pathway plays in suppressing tumorigenesis resulting from loss of the PTEN tumour suppressor. They also suggest that pharmacological inhibition of LKB1 and/or AMPK would be undesirable, at least for the treatment of cancers in which the mTORC1 pathway is activated. Most importantly, our results demonstrate the potential of AMPK activators, such as clinically approved metformin, as anticancer agents, which will suppress tumour development by triggering a physiological signalling pathway that potently inhibits cell growth.
Collapse
|
589
|
Protiva P, Hopkins ME, Baggett S, Yang H, Lipkin M, Holt PR, Kennelly EJ, Bernard WI. Growth inhibition of colon cancer cells by polyisoprenylated benzophenones is associated with induction of the endoplasmic reticulum response. Int J Cancer 2008; 123:687-94. [PMID: 18470880 DOI: 10.1002/ijc.23515] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Polyisoprenylated benzophenones derived from Garcinia xanthochymus have cytotoxic activity in vitro and antitumor activity in rodent models, but the mechanism is unknown. The purpose of our study was to examine in parallel molecular pathways that are targeted by 3 Garcinia-derived benzophenones-xanthochymol (X), guttiferone E (GE) and guttiferone H (GH), in 3 human colon cancer cell lines, HCT116, HT29 and SW480. The IC50 concentrations were determined and the cells were then treated with X, GE or GH at their respective IC50 or IC50x2 concentrations. Effects on the cell cycle, mitochondrial membrane potential and apoptosis were assessed by flow cytometry and caspase activation. Changes in gene expression were assessed with Illumina 24 K gene arrays. We found that X, GE and GH induced loss of mitochondrial membrane potential and G1 arrest at their IC50 concentrations and induced caspase activation at IC50 x 2 concentrations. An analysis of the changes in gene expression revealed that with all 3 compounds and all 3 cell lines there was a marked increase in expression of several genes, including XBP1, ATF4 and DDIT3/CHOP, which are components of the endoplasmic reticulum stress response. The DDIT4/REDD1 gene, an inhibitor of the mTOR survival pathway, was also up-regulated. Therefore, X, GE and GH appear to inhibit the growth of human colon cancer cells, at least in part, by activating the endoplasmic reticulum stress response and inhibiting the mTOR cell survival pathway. These combined effects may contribute to the anticancer activity of these novel compounds.
Collapse
Affiliation(s)
- Petr Protiva
- Division of Gastroenterology, University of Connecticut Health Center, Farmington, CT 06030-2817, USA.
| | | | | | | | | | | | | | | |
Collapse
|
590
|
Abstract
Amino acids are not only substrates for various metabolic pathways, but can also serve as signaling molecules controlling signal transduction pathways. One of these signaling pathways is mTOR-dependent and is activated by amino acids (leucine in particular) in synergy with insulin. Activation of this pathway inhibits autophagy. Because activation of mTOR-mediated signaling also stimulates protein synthesis, it appears that protein synthesis and autophagic protein degradation are reciprocally controlled by the same signaling pathway. Recent developments indicate that amino acid-stimulated mTOR-dependent signaling is subject to complex regulation. The mechanism by which amino acids stimulate mTORdependent signaling (and other signaling pathways), and its molecular connection with the autophagic machinery, is still unknown.
Collapse
|
591
|
Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 2008; 28:5422-32. [PMID: 18495876 DOI: 10.1523/jneurosci.0955-08.2008] [Citation(s) in RCA: 382] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tuberous sclerosis (TSC) is a hamartoma syndrome attributable to mutations in either TSC1 or TSC2 in which brain involvement causes epilepsy, mental retardation, and autism. We have reported recently (Meikle et al., 2007) a mouse neuronal model of TSC in which Tsc1 is ablated in most neurons during cortical development. We have tested rapamycin and RAD001 [40-O-(2-hydroxyethyl)-rapamycin], both mammalian target of rapamycin mTORC1 inhibitors, as potential therapeutic agents in this model. Median survival is improved from 33 d to more than 100 d; behavior, phenotype, and weight gain are all also markedly improved. There is brain penetration of both drugs, with accumulation over time with repetitive treatment, and effective reduction of levels of phospho-S6, a downstream target of mTORC1. In addition, there is restoration of phospho-Akt and phospho-glycogen synthase kinase 3 levels in the treated mice, consistent with restoration of Akt function. Neurofilament abnormalities, myelination, and cell enlargement are all improved by the treatment. However, dysplastic neuronal features persist, and there are only modest changes in dendritic spine density and length. Strikingly, mice treated with rapamycin or RAD001 for 23 d only (postnatal days 7-30) displayed a persistent improvement in phenotype, with median survival of 78 d. In summary, rapamycin/RAD001 are highly effective therapies for this neuronal model of TSC, with benefit apparently attributable to effects on mTORC1 and Akt signaling and, consequently, cell size and myelination. Although caution is appropriate, the results suggest the possibility that rapamycin/RAD001 may have benefit in the treatment of TSC brain disease, including infantile spasms.
Collapse
|
592
|
Hu J, Zacharek S, He YJ, Lee H, Shumway S, Duronio RJ, Xiong Y. WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase. Genes Dev 2008; 22:866-71. [PMID: 18381890 DOI: 10.1101/gad.1624008] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tuberous sclerosis (TSC) is an autosomal dominant disease characterized by hamartoma formation in various organs and is caused by mutations targeting either the TSC1 or TSC2 genes. TSC1 and TSC2 proteins form a functionally interdependent dimeric complex. Phosphorylation of either TSC subunit by different kinases regulates the function of TSC and represents a major mechanism to integrate various signals into a centralized cell growth pathway. The majority of disease-associated mutations targeting either TSC1 or TSC2 results in a substantial decrease in protein level, suggesting that protein turnover also plays a critical role in TSC regulation. Here we report that TSC2 protein binds to FBW5, a DDB1-binding WD40 (DWD) protein, and is recruited by FBW5 to the DDB1-CUL4-ROC1 E3 ubiquitin ligase. Overexpression of FBW5 or CUL4A promotes TSC2 protein degradation, and this is abrogated by the coexpression of TSC1. Conversely, depletion of FBW5, DDB1, or CUL4A/B stabilizes TSC2. Ddb1 or Cul4 mutations in Drosophila result in Gigas/TSC2 protein accumulation and cause growth defects that can be partially rescued by Gigas/Tsc2 reduction. These results indicate that FBW5-DDB1-CUL4-ROC1 is an E3 ubiquitin ligase regulating TSC2 protein stability and TSC complex turnover.
Collapse
Affiliation(s)
- Jian Hu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
593
|
Goncharova EA, Krymskaya VP. Pulmonary lymphangioleiomyomatosis (LAM): progress and current challenges. J Cell Biochem 2008; 103:369-82. [PMID: 17541983 DOI: 10.1002/jcb.21419] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lymphangioleiomyomatosis (LAM), a rare lung disease, is characterized by the progressive proliferation, migration, and differentiation of smooth muscle (SM)-like LAM cells, which lead to the cystic destruction of the lung parenchyma, obstruction of airways and lymphatics, and loss of pulmonary function. LAM is a disease predominantly affecting women and is exacerbated by pregnancy; only a lung transplant can save the life of a patient. It has been discovered that in LAM, somatic or genetic mutations of tumor suppressor genes tuberous sclerosis complex 1 (TSC1) or TSC2 occur and the TSC1/TSC2 protein complex functions as a negative regulator of the mTOR/S6K1 signaling pathway. These two pivotal observations paved the way for the first rapamycin clinical trial for LAM. The recent discoveries that TSC1/TSC2 complex functions as an integrator of signaling networks regulated by growth factors, insulin, nutrients, and energy heightened the interest regarding this rare disease because the elucidation of disease-relevant mechanisms of LAM will promote a better understanding of other metabolic diseases such as diabetes, cancer, and cardiovascular diseases. In this review, we will summarize the progress made in our understanding of TSC1/TSC2 cellular signaling and the molecular mechanisms of LAM; we will also highlight some of the lesser explored directions and challenges in LAM research.
Collapse
|
594
|
Lu KH, Wu W, Dave B, Slomovitz BM, Burke TW, Munsell MF, Broaddus RR, Walker CL. Loss of tuberous sclerosis complex-2 function and activation of mammalian target of rapamycin signaling in endometrial carcinoma. Clin Cancer Res 2008; 14:2543-50. [PMID: 18451215 DOI: 10.1158/1078-0432.ccr-07-0321] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The involvement of phosphatase and tensin homologue deleted on chromosome ten (PTEN) in endometrial carcinoma has implicated phosphatidylinositol 3-kinase signaling and mammalian target of rapamycin (mTOR) activation in this disease. Understanding the extent of mTOR involvement and the mechanism responsible for activation is important, as mTOR inhibitors are currently being evaluated in clinical trials for endometrial carcinoma. Although tuberous sclerosis complex 2 (TSC2) is the "gatekeeper" for mTOR activation, little is known about defects in the TSC2 tumor suppressor or signaling pathways that regulate TSC2, such as LKB1/AMP-activated protein kinase, in the development of endometrial carcinoma. EXPERIMENTAL DESIGN We determined the frequency of mTOR activation in endometrial carcinoma (primary tumors and cell lines) and investigated PTEN, LKB1, and TSC2 defects as underlying cause(s) of mTOR activation, and determined the ability of rapamycin to reverse these signaling defects in endometrial carcinoma cells. RESULTS Activation of mTOR was a consistent feature in endometrial carcinomas and cell lines. In addition to PTEN, loss of TSC2 and LKB1 expression occurred in a significant fraction of primary tumors (13% and 21%, respectively). In tumors that retained TSC2 expression, phosphorylation of tuberin at S939 was observed with a high frequency, indicating that mTOR repression by TSC2 had been relieved via AKT phosphorylation of this tumor suppressor. In PTEN-null and LKB1-null endometrial carcinoma cell lines with functional inactivation of TSC2, phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 were able to inhibit AKT and mTOR signaling and reverse TSC2 phosphorylation. In contrast, although rapamycin inhibited mTOR signaling, it did not relieve phosphorylation of TSC2 at S939. CONCLUSIONS Inactivation of TSC2 via loss of expression or phosphorylation occurred frequently in endometrial carcinoma to activate mTOR signaling. High-frequency mTOR activation supports mTOR as a rational therapeutic target for endometrial carcinoma. However, whereas rapamycin and its analogues may be efficacious at inhibiting mTOR activity, these drugs do not reverse the functional inactivation of TSC2 that occurs in these tumors.
Collapse
Affiliation(s)
- Karen H Lu
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | | | | | | | |
Collapse
|
595
|
Ozcan U, Ozcan L, Yilmaz E, Düvel K, Sahin M, Manning BD, Hotamisligil GS. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 2008; 29:541-51. [PMID: 18342602 DOI: 10.1016/j.molcel.2007.12.023] [Citation(s) in RCA: 346] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 10/23/2007] [Accepted: 12/26/2007] [Indexed: 12/24/2022]
Abstract
Mammalian target of rapamycin, mTOR, is a major sensor of nutrient and energy availability in the cell and regulates a variety of cellular processes, including growth, proliferation, and metabolism. Loss of the tuberous sclerosis complex genes (TSC1 or TSC2) leads to constitutive activation of mTOR and downstream signaling elements, resulting in the development of tumors, neurological disorders, and at the cellular level, severe insulin/IGF-1 resistance. Here, we show that loss of TSC1 or TSC2 in cell lines and mouse or human tumors causes endoplasmic reticulum (ER) stress and activates the unfolded protein response (UPR). The resulting ER stress plays a significant role in the mTOR-mediated negative-feedback inhibition of insulin action and increases the vulnerability to apoptosis. These results demonstrate ER stress as a critical component of the pathologies associated with dysregulated mTOR activity and offer the possibility to exploit this mechanism for new therapeutic opportunities.
Collapse
Affiliation(s)
- Umut Ozcan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Harvard University, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
596
|
Jiang BH, Liu LZ. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat 2008; 11:63-76. [PMID: 18440854 DOI: 10.1016/j.drup.2008.03.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 03/12/2008] [Accepted: 03/14/2008] [Indexed: 02/06/2023]
Abstract
The mammalian target of rapamycin (mTOR) pathway plays a central role in regulating protein synthesis, ribosomal protein translation, and cap-dependent translation. Deregulations in mTOR signaling are frequently associated with tumorigenesis, angiogenesis, tumor growth and metastasis. This review highlights the role of the mTOR in anticancer drug resistance. We discuss the network of signaling pathways in which the mTOR kinase is involved, including the structure and activation of the mTOR complex and the pathways upstream and downstream of mTOR as well as other molecular interactions of mTOR. Major upstream signaling components in control of mTOR activity are PI3K/PTEN/AKT and Ras/Raf/MEK/ERK pathways. We discuss the central role of mTOR in mediating the translation of mRNAs of proteins related to cell cycle progression, those involved in cell survival such as c-myc, hypoxia inducible factor 1* (HIF-1*) and vascular endothelial growth factor (VEGF), cyclin A, cyclin dependent kinases (cdk1/2), cdk inhibitors (p21(Cip1) and p27(Kip1)), retinoblastoma (Rb) protein, and RNA polymerases I and III. We then discuss the potential therapeutic opportunities for using mTOR inhibitors rapamycin, CCI-779, RAD001, and AP-23573 in cancer therapy as single agents or in combinations to reverse drug resistance.
Collapse
Affiliation(s)
- Bing-Hua Jiang
- Department of Microbiology, Mary Babb Randolph Cancer Center, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA.
| | | |
Collapse
|
597
|
The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008; 28:4104-15. [PMID: 18411301 DOI: 10.1128/mcb.00289-08] [Citation(s) in RCA: 391] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that forms two functionally distinct complexes important for nutrient and growth factor signaling. Both complexes phosphorylate a hydrophobic motif on downstream protein kinases, which contributes to the activation of these kinases. mTOR complex 1 (mTORC1) phosphorylates S6K1, while mTORC2 phosphorylates Akt. The TSC1-TSC2 complex is a critical negative regulator of mTORC1. However, how mTORC2 is regulated and whether the TSC1-TSC2 complex is involved are unknown. We find that mTORC2 isolated from a variety of cells lacking a functional TSC1-TSC2 complex is impaired in its kinase activity toward Akt. Importantly, the defect in mTORC2 activity in these cells can be separated from effects on mTORC1 signaling and known feedback mechanisms affecting insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Our data also suggest that the TSC1-TSC2 complex positively regulates mTORC2 in a manner independent of its GTPase-activating protein activity toward Rheb. Finally, we find that the TSC1-TSC2 complex can physically associate with mTORC2 but not mTORC1. These data demonstrate that the TSC1-TSC2 complex inhibits mTORC1 and activates mTORC2, which through different mechanisms promotes Akt activation.
Collapse
|
598
|
Harvey KF, Mattila J, Sofer A, Bennett FC, Ramsey MR, Ellisen LW, Puig O, Hariharan IK. FOXO-regulated transcription restricts overgrowth of Tsc mutant organs. ACTA ACUST UNITED AC 2008; 180:691-6. [PMID: 18299344 PMCID: PMC2265581 DOI: 10.1083/jcb.200710100] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
FOXO is thought to function as a repressor of growth that is, in turn, inhibited by insulin signaling. However, inactivating mutations in Drosophila melanogaster FOXO result in viable flies of normal size, which raises a question over the involvement of FOXO in growth regulation. Previously, a growth-suppressive role for FOXO under conditions of increased target of rapamycin (TOR) pathway activity was described. Here, we further characterize this phenomenon. We show that tuberous sclerosis complex 1 mutations cause increased FOXO levels, resulting in elevated expression of FOXO-regulated genes, some of which are known to antagonize growth-promoting pathways. Analogous transcriptional changes are observed in mammalian cells, which implies that FOXO attenuates TOR-driven growth in diverse species.
Collapse
Affiliation(s)
- Kieran F Harvey
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
599
|
Yilmaz OH, Morrison SJ. The PI-3kinase pathway in hematopoietic stem cells and leukemia-initiating cells: a mechanistic difference between normal and cancer stem cells. Blood Cells Mol Dis 2008; 41:73-6. [PMID: 18387833 DOI: 10.1016/j.bcmd.2008.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
The identification of cancer stem cells in leukemia, breast, brain, colon, and other cancers suggests that many tumors are maintained by stem cells in much the same way as normal tissues are maintained. Because cancer stem cells share remarkable phenotypic and functional similarities with normal stem cells, it may be difficult to identify therapeutic approaches to kill cancer stem cells without killing the normal stem cells in the same tissue. Yet in certain tissues, like the hematopoietic system and gut epithelium, this will be critical as regenerative capacity in these tissues is acutely required for life. Components of the PI-3kinase pathway, including Akt, mTor and FoxO are critical regulators of both normal stem cell function and tumorigenesis. Intriguingly, inactivation of some pathway components, like Pten, has opposite effects on normal hematopoietic stem cells (HSCs) and leukemia-initiating cells. This raises the possibility that drugs targeting this pathway could be more effective at eliminating cancer stem cells while being less toxic against normal stem cells.
Collapse
Affiliation(s)
- Omer H Yilmaz
- Howard Hughes Medical Institute, Department of Internal Medicine, and Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109-2216, USA
| | | |
Collapse
|
600
|
Jeon YJ, Kim IK, Hong SH, Nan H, Kim HJ, Lee HJ, Masuda ES, Meyuhas O, Oh BH, Jung YK. Ribosomal protein S6 is a selective mediator of TRAIL-apoptotic signaling. Oncogene 2008; 27:4344-52. [DOI: 10.1038/onc.2008.73] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|