551
|
Repetto E, Russo C, Venezia V, Nizzari M, Nitsch RM, Schettini G. BACE1 Overexpression Regulates Amyloid Precursor Protein Cleavage and Interaction with the ShcA Adapter. Ann N Y Acad Sci 2004; 1030:330-8. [PMID: 15659814 DOI: 10.1196/annals.1329.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The amyloid precursor protein (APP) is a cell surface protein with a large extracellular N-terminal domain, a single transmembrane segment, and a short cytoplasmic tail. Its location and structural features are characteristic of a receptor for signal transduction. Yet, the physiological function of APP is unclear, although it is well documented that APP's proteolytic processing, through the formation of membrane-bound C-terminal fragments (CTFs) and of beta-amyloid peptides, likely influences the development of Alzheimer's disease (AD). There is evidence that BACE1 is the enzyme responsible for beta-site cleavage of the APP and for the generation of CTFs. BACE1 expression is upregulated in AD brain, and we have recently shown in human brain and in vitro that BACE product CTFs, when phosphorylated in tyrosine residues, interact with the adaptor proteins ShcA and Grb2, which usually are involved in signal transduction pathways. We investigated the interaction between ShcA, APP, and CTFs in the H4 human cell line that overexpresses BACE1 to clarify the significance of such interactions in vitro and for AD generation. Our result show that the APP, CTF, and ShcA interaction is induced only upon overexpression of BACE1 either transiently or in stable cell lines. In particular, although BACE1 drives the formation of C99 and C89 CTFs, only C99 interacts with the ShcA adaptor protein. Therefore, our data suggest that BACE1 activity influences APP processing and its intracellular signaling through the ShcA adaptor protein.
Collapse
Affiliation(s)
- Emanuela Repetto
- Farmacologia e Neuroscienze, Department of Oncology, Biology and Genetics, Università di Genova, Italy
| | | | | | | | | | | |
Collapse
|
552
|
Westmeyer GG, Willem M, Lichtenthaler SF, Lurman G, Multhaup G, Assfalg-Machleidt I, Reiss K, Saftig P, Haass C. Dimerization of beta-site beta-amyloid precursor protein-cleaving enzyme. J Biol Chem 2004; 279:53205-12. [PMID: 15485862 DOI: 10.1074/jbc.m410378200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cleavage of the beta-amyloid precursor protein (APP) by the aspartyl protease beta-site APP-cleaving enzyme (BACE) is the first step in the generation of the amyloid beta-peptide, which is deposited in the brain of Alzheimer's disease patients. Whereas the subsequent cleavage by gamma-secretase was shown to originate from the cooperation of a multicomponent complex, it is currently unknown whether in a cellular environment BACE is enzymatically active as a monomer or in concert with other proteins. Using blue native gel electrophoresis we found that endogenous and overexpressed BACE has a molecular mass of 140 kDa instead of the expected mass of 70 kDa under denaturing conditions. This suggests that under native conditions BACE exists as a homodimer. Homodimerization was confirmed by co-immunoprecipitation of full-length BACE carrying different epitope tags. In contrast, the soluble active BACE ectodomain was exclusively present as a monomer both under native and denaturing conditions. A domain analysis revealed that the BACE ectodomain dimerized as long as it was attached to the membrane, whereas the cytoplasmic domain and the transmembrane domain were dispensable for dimerization. By adding a KKXX-endoplasmic reticulum retention signal to BACE, we demonstrate that dimerization of BACE occurs already before full maturation and pro-peptide cleavage. Furthermore, kinetic analysis of the purified native BACE dimer revealed a higher affinity and turnover rate in comparison to the monomeric soluble BACE. Dimerization of BACE might, thus, facilitate binding and cleavage of physiological substrates.
Collapse
Affiliation(s)
- Gil G Westmeyer
- Adolf Butenandt Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Schillerstrasse 44, Ludwig Maximilians University, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
553
|
Chiocco MJ, Kulnane LS, Younkin L, Younkin S, Evin G, Lamb BT. Altered amyloid-beta metabolism and deposition in genomic-based beta-secretase transgenic mice. J Biol Chem 2004; 279:52535-42. [PMID: 15452128 PMCID: PMC2659546 DOI: 10.1074/jbc.m409680200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid-beta (Abeta) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by beta-secretase followed by gamma-secretase cleavage. Identification of the primary beta-secretase gene, BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Abeta metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating beta-secretase expression and activity alters APP processing and Abeta metabolism in vivo. Genomic-based BACE1 transgenic mice were generated that overexpress human BACE1 mRNA and protein. The highest expressing BACE1 transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing both BACE1 and APP show specific alterations in APP processing and age-dependent Abeta deposition. We observed elevated levels of Abeta isoforms as well as significant increases of Abeta deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for beta-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation of BACE1 activity may play a significant role in AD pathogenesis in vivo.
Collapse
Affiliation(s)
- Matthew J Chiocco
- Department of Genetics, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
554
|
Abstract
Treating Alzheimer's disease (AD) is the biggest unmet medical need in neurology. Current drugs improve symptoms, but do not have profound disease-modifying effects. Three main classes of disease-modification approaches can be defined: one that is broadly neurotrophic or neuroprotective, one that targets specific aspects of AD pathology, and one that is based on epidemiological observation. This review discusses all three approaches, with particular emphasis on anti-amyloid strategies - currently the most active area of investigation. The approaches that are reviewed include secretase inhibition, amyloid-beta aggregation inhibition, immunotherapy and strategies that might indirectly affect the amyloid pathway.
Collapse
Affiliation(s)
- Martin Citron
- Amgen Incorporated, Department of Neuroscience, M/S 29-2-B, One Amgen Center Drive, Thousand Oaks, California 91320, USA.
| |
Collapse
|
555
|
Schmechel A, Strauss M, Schlicksupp A, Pipkorn R, Haass C, Bayer TA, Multhaup G. Human BACE Forms Dimers and Colocalizes with APP. J Biol Chem 2004; 279:39710-7. [PMID: 15247262 DOI: 10.1074/jbc.m402785200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Beta-site APP-cleaving enzyme (BACE) is a membrane-bound aspartyl protease with no strict primary preference for cleavage. The molecular mechanisms that link the gamma-secretase multicomponent amyloid precursor protein (APP) processing complex to biochemical properties of BACE generating the N terminus of the amyloid beta-peptide have not, as yet, been identified. We found that in human brain tissue, BACE occurred as a dimer. The overall stability of the BACE homodimer was based on intermolecular interactions that were not affected by high salt, nonionic detergents or reducing conditions. BACE homodimers could only partially be separated even under strong denaturing conditions and revealed dramatic differences in the surface charge distribution compared with the monomer. In contrast, the soluble ectodomain of truncated BACE revealed a seemingly lower avidity to the prototypic aspartate protease inhibitor pepstatin and exclusively occurred in the monomeric form. Immunocytochemical studies colocalized APP and BACE in the plasma membrane of cells expressing endogenous levels of BACE and overexpressing APP. In cells that were cotransfected with APP and a putative active site D289A mutant of BACE, colocalization persisted. Remaining enzyme activity was found to be attributable to the mutant protease. Accordingly, inactivation of the carboxyl-terminal active site motif of BACE without an impairment of overall enzyme activity suggests that the enzyme may act as a dimer. Thus, homodimerization of BACE may help the enzyme to acquire specific mechanisms to associate with its substrates to exert catalytic activity.
Collapse
Affiliation(s)
- Ariane Schmechel
- Freie Universitaet Berlin, Institut fuer Chemie/Biochemie, Thielallee 63, Berlin D-14195, Germany
| | | | | | | | | | | | | |
Collapse
|
556
|
Qing H, Zhou W, Christensen MA, Sun X, Tong Y, Song W. Degradation of BACE by the ubiquitin‐proteasome pathway. FASEB J 2004; 18:1571-3. [PMID: 15289451 DOI: 10.1096/fj.04-1994fje] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The amyloid beta protein (Abeta) is derived from beta-amyloid precursor protein (APP). Cleavage of APP by beta-secretase generates a C-terminal fragment (APPCTFbeta or C99), which is subsequently cleaved by gamma-secretase to produce Abeta. BACE (or BACE1), the major beta-secretase involved in cleaving APP, has been identified as a Type 1 membrane-associated aspartyl protease. In this study, we found that treatment with proteasome inhibitors resulted in an increase in APP C99 levels, suggesting that APP processing at the beta-secretase site may be affected by the ubiquitin-proteasome pathway. To investigate whether the degradation of BACE is mediated by the proteasome pathway, cells stably transfected with BACE were treated with lactacystin. We found that BACE protein degradation was inhibited by lactacystin in a time- and dose-dependent manner. Non-proteasome protease inhibitors had no effect on BACE degradation. BACE protein is ubiquitinated. Furthermore, lactacystin increased APP C99 production and Abeta generation. Our data demonstrate that the degradation of BACE proteins and APP processing are regulated by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Hong Qing
- Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
557
|
He W, Lu Y, Qahwash I, Hu XY, Chang A, Yan R. Reticulon family members modulate BACE1 activity and amyloid-β peptide generation. Nat Med 2004; 10:959-65. [PMID: 15286784 DOI: 10.1038/nm1088] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/01/2004] [Indexed: 11/09/2022]
Abstract
Inhibiting the activity of the beta-amyloid converting enzyme 1 (BACE1) or reducing levels of BACE1 in vivo decreases the production of amyloid-beta. The reticulon family of proteins has four members, RTN1, RTN2, RTN3 and RTN4 (also known as Nogo), the last of which is well known for its role in inhibiting neuritic outgrowth after injury. Here we show that reticulon family members are binding partners of BACE1. In brain, BACE1 mainly colocalizes with RTN3 in neurons, whereas RTN4 is more enriched in oligodendrocytes. An increase in the expression of any reticulon protein substantially reduces the production of Abeta. Conversely, lowering the expression of RTN3 by RNA interference increases the secretion of Abeta, suggesting that reticulon proteins are negative modulators of BACE1 in cells. Our data support a mechanism by which reticulon proteins block access of BACE1 to amyloid precursor protein and reduce the cleavage of this protein. Thus, changes in the expression of reticulon proteins in the human brain are likely to affect cellular amyloid-beta and the formation of amyloid plaques.
Collapse
Affiliation(s)
- Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
558
|
Holsinger RMD, McLean CA, Collins SJ, Masters CL, Evin G. Increased beta-Secretase activity in cerebrospinal fluid of Alzheimer's disease subjects. Ann Neurol 2004; 55:898-9. [PMID: 15174031 DOI: 10.1002/ana.20144] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
559
|
Lammich S, Schöbel S, Zimmer AK, Lichtenthaler SF, Haass C. Expression of the Alzheimer protease BACE1 is suppressed via its 5'-untranslated region. EMBO Rep 2004; 5:620-5. [PMID: 15167888 PMCID: PMC1299076 DOI: 10.1038/sj.embor.7400166] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 03/12/2004] [Accepted: 03/31/2004] [Indexed: 11/09/2022] Open
Abstract
The aspartyl protease BACE1 has a pivotal role in the pathogenesis of Alzheimer's disease. Recently, it was shown that in Alzheimer's disease patients, BACE1 levels were elevated although mRNA levels were not changed compared with controls. Here, we demonstrate that the 5'-untranslated region (5'UTR) of BACE1 controls the rate of BACE1 translation. In the presence of the 5'UTR, we observed more than 90% reduction of BACE1 protein levels in HEK293, COS7 and H4 cells, and a similar reduction of BACE1 activity in vitro. mRNA levels were not affected, demonstrating that the 5'UTR repressed the translation but not the transcription of BACE1. The 3'UTR did not affect BACE1 expression. An extensive mutagenesis analysis predicts that the GC-rich region of the 5'UTR forms a constitutive translation barrier, which may prevent the ribosome from efficiently translating the BACE1 mRNA. Our data therefore demonstrate translational repression as a new mechanism controlling BACE1 expression.
Collapse
Affiliation(s)
- Sven Lammich
- Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Adolf Butenandt Institute, Ludwig Maximilians University, Schillerstrasse 44, 80336 Munich, Germany
| | - Susanne Schöbel
- Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Adolf Butenandt Institute, Ludwig Maximilians University, Schillerstrasse 44, 80336 Munich, Germany
| | - Ann-Katrin Zimmer
- Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Adolf Butenandt Institute, Ludwig Maximilians University, Schillerstrasse 44, 80336 Munich, Germany
| | - Stefan F Lichtenthaler
- Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Adolf Butenandt Institute, Ludwig Maximilians University, Schillerstrasse 44, 80336 Munich, Germany
- Tel: +49 89 5996 453; Fax: +49 5996 415; E-mail:
| | - Christian Haass
- Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Adolf Butenandt Institute, Ludwig Maximilians University, Schillerstrasse 44, 80336 Munich, Germany
- Tel: +49 89 5996 471; Fax: +49 5996 415; E-mail:
| |
Collapse
|
560
|
Citron M. Beta-secretase inhibition for the treatment of Alzheimer's disease--promise and challenge. Trends Pharmacol Sci 2004; 25:92-7. [PMID: 15102495 DOI: 10.1016/j.tips.2003.12.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As the number of cases of Alzheimer's disease (AD) rises in all developed countries, the unmet medical need for disease-modifying pharmacotherapy continues to grow. Much of AD research has been focused on the amyloid cascade hypothesis, which states that amyloid-beta-42 (A beta 42), a proteolytic derivative of the large transmembrane protein amyloid precursor protein (APP), plays an early and crucial role in all cases of AD. Consequently, blocking the production of A beta 42 by specific inhibition of the key proteases required for A beta 42 generation is a major focus of research into AD therapy. The identification of beta-secretase, the aspartic protease that generates the N-terminus of A beta 42, has triggered a race to develop drug-like inhibitors of this enzyme, which has become one of the major AD targets. Although the biology of beta-secretase holds great promise, it will be challenging to generate drug-like inhibitors of this unusual enzyme.
Collapse
Affiliation(s)
- Martin Citron
- Amgen, Department of Neuroscience, M/S 29-2-B, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
561
|
De Pietri Tonelli D, Mihailovich M, Di Cesare A, Codazzi F, Grohovaz F, Zacchetti D. Translational regulation of BACE-1 expression in neuronal and non-neuronal cells. Nucleic Acids Res 2004; 32:1808-17. [PMID: 15034149 PMCID: PMC390341 DOI: 10.1093/nar/gkh348] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As the main beta-secretase of the central nervous system, BACE-1 is a key protein in the pathogenesis of Alzheimer's disease. Excessive expression of the protein might cause an overproduction of the neurotoxic beta-amyloid peptide. Therefore, a tight regulation of BACE-1 expression is expected in vivo. In addition to a possible transcriptional control, the BACE-1 transcript leader contains features that might constitute mechanisms of translational regulation of protein expression. Moreover, recent work has revealed an increase of BACE-1 protein and beta-secretase activity in some Alzheimer's disease patients, although a corresponding increase of transcript has not been reported. Here we show that BACE-1 translation could be modulated at multiple stages. The presence of several upstream ATGs strongly reduces the translation of the main open reading frame. This inhibition could be overcome with conditions that favour skipping of upstream ATGs. We also report an alternative splicing of the BACE-1 transcript leader that reduces the number of upstream ATGs. Finally, we show that translation driven by the BACE-1 transcript leader is increased in activated astrocytes independently of the splicing event, indicating yet another mechanism of translational control. Our findings might explain why increases in BACE-1 protein or activity are reported in the brain of Alzheimer's disease patients even in the absence of changes in transcript levels.
Collapse
Affiliation(s)
- Davide De Pietri Tonelli
- Cellular Neurophysiology Unit, Department of Neuroscience, San Raffaele Scientific InstituteMilano, Italy
| | | | | | | | | | | |
Collapse
|
562
|
Rogers GW, Edelman GM, Mauro VP. Differential utilization of upstream AUGs in the beta-secretase mRNA suggests that a shunting mechanism regulates translation. Proc Natl Acad Sci U S A 2004; 101:2794-9. [PMID: 14981268 PMCID: PMC365699 DOI: 10.1073/pnas.0308576101] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
beta-Secretase [also known as the beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1)] is an enzyme involved in the production of A beta-amyloid plaques in the brains of patients with Alzheimer's disease. The enhanced production of this enzyme occurs without corresponding changes in BACE1 mRNA levels. The complex 5' leader of BACE1 mRNA contains three upstream ORFs (uORFs) preceding the BACE1 initiation codon. In this study, we investigated how this 5' leader affects translation efficiency as a first step in understanding the enhanced production of the enzyme in the disease. Using reporter constructs in transfected mammalian cell lines and cell-free lysates, we showed that the translation mediated by the BACE1 5' leader is cap-dependent and inhibited by cis-acting segments contained within the 5' leader. Disruption of the uORFs had no effect on translation in B104 cells, which was surprising because the first two AUGs reside in contexts able to function as initiation codons. Possible mechanisms to explain how ribosomes bypass the uORFs, including reinitiation, leaky scanning, and internal initiation of translation were found to be inconsistent with the data. The data are most consistent with a model in which ribosomes shunt uORF-containing segments of the 5' leader as the ribosomes move from the 5' end of the mRNA to the initiation codon. In PC12 cells, however, the second uORF appears to be translated. We hypothesize that the translation efficiency of the BACE1 initiation codon may be increased in patients with Alzheimer's disease by molecular mechanisms that enhance shunting or increase the relative accessibility the BACE1 initiation codon.
Collapse
Affiliation(s)
- George W Rogers
- Department of Neurobiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
563
|
Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H, Wong P, Price D, Shen Y. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients. Proc Natl Acad Sci U S A 2004; 101:3632-7. [PMID: 14978286 PMCID: PMC373514 DOI: 10.1073/pnas.0205689101] [Citation(s) in RCA: 403] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether elevated beta-secretase (BACE) activity is related to plaque formation or amyloid beta peptide (Abeta) production in Alzheimer's disease (AD) brains remains inconclusive. Here, we report that we used sandwich enzyme-linked immunoabsorbent assay to quantitate various Abeta species in the frontal cortex of AD brains homogenized in 70% formic acid. We found that most of the Abeta species detected in rapidly autopsied brains (<3 h) with sporadic AD were Abeta(1-x) and Abeta(1-42), as well as Abeta(x-42). To establish a linkage between Abeta levels and BACE, we examined BACE protein, mRNA expression and enzymatic activity in the same brain region of AD brains. We found that both BACE mRNA and protein expression is elevated in vivo in the frontal cortex. The elevation of BACE enzymatic activity in AD is correlated with brain Abeta(1-x) and Abeta(1-42) production. To examine whether BACE elevation was due to mutations in the BACE-coding region, we sequenced the entire ORF region of the BACE gene in these same AD and nondemented patients and performed allelic association analysis. We found no mutations in the ORF of the BACE gene. Moreover, we found few changes of BACE protein and mRNA levels in Swedish mutated amyloid precursor protein-transfected cells. These findings demonstrate correlation between Abeta loads and BACE elevation and also suggest that as a consequence, BACE elevation may lead to increased Abeta production and enhanced deposition of amyloid plaques in sporadic AD patients.
Collapse
Affiliation(s)
- Rena Li
- Haldeman Laboratory of Molecular and Cellular Neurobiology, L. J. Roberts Center for Alzheimer's Research, Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
564
|
Fukumoto H, Rosene DL, Moss MB, Raju S, Hyman BT, Irizarry MC. Beta-secretase activity increases with aging in human, monkey, and mouse brain. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:719-25. [PMID: 14742275 PMCID: PMC1602259 DOI: 10.1016/s0002-9440(10)63159-8] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2003] [Indexed: 11/29/2022]
Abstract
Amyloid beta protein (A beta) accumulates in the brains of aging humans, amyloid precursor protein (APP) transgenic mouse lines, and rhesus monkeys. We tested the hypothesis that aging was associated with increased activity of the beta-site amyloid precursor protein cleaving enzyme (beta-secretase, BACE) in brain. We evaluated BACE activity, BACE protein, and formic acid-extractable A beta levels in cohorts of young (4 months old) and old (14 to 18 months old) nontransgenic mice (n = 16) and Tg2576 APP transgenic mice (n = 17), young (4.4 to 12.7 years old) and old (20.9 to 30.4 years old) rhesus monkeys (n = 17), and a wide age range (18 to 92 years old) of nondemented human brains (n = 25). Aging was associated with increased brain A beta levels in each cohort. Furthermore BACE activity increased significantly with age in mouse, monkey, and human brains, independent of brain region. BACE protein levels, however, were unchanged with age. BACE activity correlated with formic acid-extractable A beta levels in transgenic mouse, nontransgenic mouse, and human cortex, but not in monkey brain. These data suggest that an age-related increase of BACE activity contributes to the increased production and accumulation of brain A beta, and potentially predisposes to Alzheimer's disease in humans.
Collapse
Affiliation(s)
- Hiroaki Fukumoto
- Department of Neurology, Alzheimer Disease Research Unit, Massachusetts General Hospital-East, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
565
|
Haass C. Take five--BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation. EMBO J 2004; 23:483-8. [PMID: 14749724 PMCID: PMC1271800 DOI: 10.1038/sj.emboj.7600061] [Citation(s) in RCA: 419] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 12/09/2003] [Indexed: 11/08/2022] Open
Abstract
In 1959, Dave Brubeck and Paul Desmond revolutionized modern jazz music by composing their unforgettable Take Five in 5/4, one of the most defiant time signatures in all music. Of similar revolutionary importance for biomedical and basic biochemical research is the identification of the minimal set of genes required to obtain a deadly time bomb ticking in all of us: Alzheimer's disease. It now appears that one needs to Take Five genes to produce a deadly peptide by a proteolytic mechanism, which paradoxically is otherwise of pivotal importance for development and cell fate decisions.
Collapse
Affiliation(s)
- Christian Haass
- Department of Biochemistry, Adolf-Butenandt-Institute, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians-University, München, Germany.
| |
Collapse
|
566
|
Tamagno E, Guglielmotto M, Bardini P, Santoro G, Davit A, Di Simone D, Danni O, Tabaton M. Dehydroepiandrosterone reduces expression and activity of BACE in NT2 neurons exposed to oxidative stress. Neurobiol Dis 2004; 14:291-301. [PMID: 14572450 DOI: 10.1016/s0969-9961(03)00131-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recently, we showed that oxidative stress activates the expression and activity of the beta-site AbetaPP-cleaving enzyme (BACE), an aspartyl protease responsible for the beta-secretase cleavage of AbetaPP. The identification of compounds able to prevent the induction of this event is an important goal of therapeutic strategies for Alzheimer's disease (AD). Dehydroepiandrosterone (DHEA) is an adrenal steroid that improves a variety of functions in the central nervous system. Moreover, a series of evidence suggests that DHEA displays antioxidant properties in different experimental models. In the present paper we show that pretreatment with DHEA is able to rescue the increase of mRNA expression, protein levels, and activity of BACE, produced by oxidative stress in NT2 neurons. BACE, being the enzyme that initiates the production of Abeta, is a drug target for AD. Our results imply that DHEA administration may slow down the AD pathological process, lowering Abeta accumulation.
Collapse
Affiliation(s)
- E Tamagno
- Department of Experimental Medicine and Oncology, General Pathology Section, University of Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
567
|
Evin G, Zhu A, Holsinger RMD, Masters CL, Li QX. Proteolytic processing of the Alzheimer's disease amyloid precursor protein in brain and platelets. J Neurosci Res 2003; 74:386-92. [PMID: 14598315 DOI: 10.1002/jnr.10745] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteolytic processing of the amyloid precursor protein by beta -and gamma-secretases results in the production of Alzheimer's disease (AD) Abeta amyloid peptides. Modulation of secretase activity is being investigated as a potential therapeutic approach. Recent studies with human brain have revealed that the beta-secretase protein, BACE, is increased in cortex of AD patients. Analysis of betaCTF (or C99), the amyloid precursor protein (APP) product of BACE cleavage that is the direct precursor to Abeta, shows it is also elevated in AD, underlying the importance of beta-secretase cleavage in AD pathogenesis. The C-terminal product of gamma-secretase cleavage of APP, epsilonCTF (or AICD), is enriched in human brain cortical nuclear fractions, a subcellular distribution appropriate for a putative involvement of APP cytosolic domain in signal transduction. Analysis of AD cortex samples, particularly that of a carrier of a familial APP mutation, suggests that processing of APP transmembrane domain generates an alternative CTF product. All these particularities observed in the AD brain demonstrate that APP processing is altered in AD. The transgenic mouse model Tg2576 seems to be a promising laboratory tool to test potential modulators of Abeta formation. Indeed, C-terminal products of alpha-, beta-, and gamma-secretase cleavage are readily detectable in the brain of these transgenic mice. Finally, the finding of the same secretase products in platelets and neurons make platelets a potentially useful and easily accessible clinical tool to monitor effects of novel therapies based on inhibition of beta- or gamma-secretase.
Collapse
Affiliation(s)
- Geneviève Evin
- Department of Pathology, University of Melbourne, Parkville, Australia.
| | | | | | | | | |
Collapse
|
568
|
Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 2003. [PMID: 14586007 DOI: 10.1523/jneurosci.23-30-09796.2003] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk for Alzheimer's disease (AD). To determine the mechanisms by which inflammation affects AD and how NSAIDs protect against it, we stimulated neuroblastoma cells stably transfected with amyloid precursor protein (APP) with proinflammatory cytokines, which increased the secretion of amyloid-beta and APP ectodomain. Addition of ibuprofen, indomethacin, peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists, or cotransfection with PPARgamma cDNA reversed this effect. The inhibitory action of ibuprofen and indomethacin was suppressed by PPARgamma antagonists. Finally, we observed that the mRNA levels, expression, and enzymatic activity of beta-secretase were increased by immunostimulation and normalized by NSAIDs. In conclusion, proinflammatory cytokines activate beta-secretase, and NSAIDs inhibit this effect through PPARgamma.
Collapse
|
569
|
Chen Y, Liu W, McPhie DL, Hassinger L, Neve RL. APP-BP1 mediates APP-induced apoptosis and DNA synthesis and is increased in Alzheimer's disease brain. ACTA ACUST UNITED AC 2003; 163:27-33. [PMID: 14557245 PMCID: PMC2173435 DOI: 10.1083/jcb.200304003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
APP-BP1, first identified as an amyloid precursor protein (APP) binding protein, is the regulatory subunit of the activating enzyme for the small ubiquitin-like protein NEDD8. We have shown that APP-BP1 drives the S- to M-phase transition in dividing cells, and causes apoptosis in neurons (Chen, Y., D.L. McPhie, J. Hirschberg, and R.L. Neve. 2000. J. Biol. Chem. 275:8929–8935). We now demonstrate that APP-BP1 binds to the COOH-terminal 31 amino acids of APP (C31) and colocalizes with APP in a lipid-enriched fraction called lipid rafts. We show that coexpression of a peptide representing the domain of APP-BP1 that binds to APP, abolishes the ability of overexpressed APP or the V642I mutant of APP to cause neuronal apoptosis and DNA synthesis. A dominant negative mutant of the NEDD8 conjugating enzyme hUbc12, which participates in the ubiquitin-like pathway initiated by APP-BP1, blocks neuronal apoptosis caused by APP, APP(V642I), C31, or overexpression of APP-BP1. Neurons overexpressing APP or APP(V642I) show increased APP-BP1 protein levels in lipid rafts. A similar increase in APP-BP1 in lipid rafts is observed in the Alzheimer's disease brain hippocampus, but not in less-affected areas of Alzheimer's disease brain. This translocation of APP-BP1 to lipid rafts is accompanied by a change in the subcellular localization of the ubiquitin-like protein NEDD8, which is activated by APP-BP1.
Collapse
Affiliation(s)
- Yuzhi Chen
- MRC 223, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
570
|
Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, Neve R, Ahlijanian MK, Tsai LH. APP processing is regulated by cytoplasmic phosphorylation. ACTA ACUST UNITED AC 2003; 163:83-95. [PMID: 14557249 PMCID: PMC2173445 DOI: 10.1083/jcb.200301115] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloid-β peptide (Aβ) aggregate in senile plaque is a key characteristic of Alzheimer's disease (AD). Here, we show that phosphorylation of amyloid precursor protein (APP) on threonine 668 (P-APP) may play a role in APP metabolism. In AD brains, P-APP accumulates in large vesicular structures in afflicted hippocampal pyramidal neurons that costain with antibodies against endosome markers and the β-secretase, BACE1. Western blot analysis reveals increased levels of T668-phosphorylated APP COOH-terminal fragments in hippocampal lysates from many AD but not control subjects. Importantly, P-APP cofractionates with endosome markers and BACE1 in an iodixanol gradient and displays extensive colocalization with BACE1 in rat primary cortical neurons. Furthermore, APP COOH-terminal fragments generated by BACE1 are preferentially phosphorylated on T668 verses those produced by α-secretase. The production of Aβ is significantly reduced when phosphorylation of T668 is either abolished by mutation or inhibited by T668 kinase inhibitors. Together, these results suggest that T668 phosphorylation may facilitate the BACE1 cleavage of APP to increase Aβ generation.
Collapse
Affiliation(s)
- Ming-Sum Lee
- Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
571
|
Kao SC, Krichevsky AM, Kosik KS, Tsai LH. BACE1 suppression by RNA interference in primary cortical neurons. J Biol Chem 2003; 279:1942-9. [PMID: 14600149 DOI: 10.1074/jbc.m309219200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular deposition of amyloid-beta (Abeta) aggregates in the brain represents one of the histopathological hallmarks of Alzheimer's disease (AD). Abeta peptides are generated from proteolysis of the amyloid precursor proteins (APPs) by beta- and gamma-secretases. Beta-secretase (BACE1) is a type I integral membrane glycoprotein that can cleave APP first to generate C-terminal 99- or 89-amino acid membrane-bound fragments containing the N terminus of Abeta peptides (betaCTF). As BACE1 cleavage is an essential step for Abeta generation, it is proposed as a key therapeutic target for treating AD. In this study, we show that small interfering RNA (siRNA) specifically targeted to BACE1 can suppress BACE1 (but not BACE2) protein expression in different cell systems. Furthermore, BACE1 siRNA reduced APP betaCTF and Abeta production in primary cortical neurons derived from both wild-type and transgenic mice harboring the Swedish APP mutant. The subcellular distribution of APP and presenilin-1 did not appear to differ in BACE1 suppressed cells. Importantly, pretreating neurons with BACE1 siRNA reduced the neurotoxicity induced by H2O2 oxidative stress. Our results indicate that BACE1 siRNA specifically impacts on beta-cleavage of APP and may be a potential therapeutic approach for treating AD.
Collapse
Affiliation(s)
- Shih-Chu Kao
- Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, Armenise Building, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
572
|
Kinoshita A, Fukumoto H, Shah T, Whelan CM, Irizarry MC, Hyman BT. Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 2003; 116:3339-46. [PMID: 12829747 DOI: 10.1242/jcs.00643] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amyloid-beta peptide, which accumulates in senile plaques in Alzheimer's disease, is derived from the amyloid precursor protein (APP) by proteolytic processing. beta-secretase (Asp2), which cleaves APP at the N-terminus of amyloid-beta, has recently been identified to be the protease BACE. In the present study, we examined the subcellular localization of interactions between APP and BACE by using both double immunofluorescence and a fluorescence resonance energy transfer (FRET) approach. Cell surface APP and BACE, studied by using antibodies directed against their ectodomains in living H4 neuroglioma cells co-transfected with APP and BACE, showed exquisite co-localization and demonstrated a very close interaction by FRET analysis. The majority of cell surface APP and BACE were internalized after 15 minutes, but they remained strongly co-localized together in the early endosomal compartment, where FRET analysis demonstrated a continued close interaction. By contrast, at later timepoints, almost no co-localization or FRET was observed in lysosomal compartments. To determine whether the APP-BACE interaction on cell surface and endosomes contributed to amyloid-beta synthesis, we labeled cell surface APP and demonstrated detectable levels of labeled amyloid-beta within 30 minutes. APP-Swedish mutant protein enhanced amyloid-beta synthesis from cell surface APP, consistent with the observation that it is a better BACE substrate than wild-type APP. Taken together, these data confirm a close APP-BACE interaction in early endosomes, and highlight the cell surface as an additional potential site of APP-BACE interaction.
Collapse
Affiliation(s)
- Ayae Kinoshita
- Alzheimer Disease Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
573
|
Abstract
Quantitative neuropsychiatry has provided increasingly precise descriptions of behavioral phenotypes associated with neurodegenerative disorders. Degenerative diseases of the brain are disturbances of protein metabolism, with failure of protein degredation by the ubiquitin-proteosome system, production of neurotoxic peptide oligomers, and accumulation of intracellular protein deposits. Abnormalities of amyloid beta peptide, alpha-synuclein protein, and hyperphosphorylated tau protein account for more than 90% of degenerative dementias. Functionally related neuroanatomical systems have shared metabolic characteristics and common vulnerabilities to protein dysmetabolism, providing the basis for phenotypes that reflect the underlying proteotype. Patients with alpha-synuclein disorders are particularly prone to hallucinations, delusions, and rapid eye movement sleep behavior disorder. Patients with tauopathies manifest disproportionate disinhibition and apathy, and may exhibit compulsions. Alzheimer's disease is a triple proteinopathy with abnormalities of A-beta, tau, and alpha-synculein leading to a complex behavioral phenotype. This molecular approach to neuropsychiatry may assist in understanding the mechanisms of degenerative diseases, provide insight into the pathophysiology of neuropsychiatric symptoms, and contribute to monitoring disease-modifying therapies.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
574
|
Andrau D, Dumanchin-Njock C, Ayral E, Vizzavona J, Farzan M, Boisbrun M, Fulcrand P, Hernandez JF, Martinez J, Lefranc-Jullien S, Checler F. BACE1- and BACE2-expressing human cells: characterization of beta-amyloid precursor protein-derived catabolites, design of a novel fluorimetric assay, and identification of new in vitro inhibitors. J Biol Chem 2003; 278:25859-66. [PMID: 12736275 DOI: 10.1074/jbc.m302622200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have set up stably transfected HEK293 cells overexpressing the beta-secretases BACE1 and BACE2 either alone or in combination with wild-type beta-amyloid precursor protein (betaAPP). The characterization of the betaAPP-derived catabolites indicates that cells expressing BACEs produce less genuine Abeta1- 40/42 but higher amounts of secreted sAPPbeta and N-terminal-truncated Abeta species. This was accompanied by a concomitant modulation of the C-terminal counterpart products C89 and C79 for BACE1 and BACE2, respectively. These cells were used to set up a novel BACE assay based on two quenched fluorimetric substrates mimicking the wild-type (JMV2235) and Swedish-mutated (JMV2236) betaAPP sequences targeted by BACE activities. We show that BACEs activities are enhanced by the Swedish mutation and maximal at pH 4.5. The specificity of this double assay for genuine beta-secretase activity was demonstrated by means of cathepsin D, a "false positive" BACE candidate. Thus, cathepsin D was unable to cleave preferentially the JMV2236-mutated substrate. The selectivity of the assay was also emphasized by the lack of JMV cleavage triggered by other "secretases" candidates such as ADAM10 (A disintegrin and metalloprotease 10), tumor necrosis alpha-converting enzyme, and presenilins 1 and 2. Finally, the assay was used to screen for putative in vitro BACE inhibitors. We identified a series of statine-derived sequences that dose-dependently inhibited BACE1 and BACE2 activities with IC50 in the micromolar range, some of which displaying selectivity for either BACE1 or BACE2.
Collapse
Affiliation(s)
- David Andrau
- Institut de Pharmacologie Moléculaire et Cellulaire of Centre National de la Recherche Scientifique, UMR6097, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
575
|
Zohar O, Cavallaro S, D'Agata V, Alkon DL. Quantification and distribution of beta-secretase alternative splice variants in the rat and human brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 115:63-8. [PMID: 12824056 DOI: 10.1016/s0169-328x(03)00182-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beta-amyloid (Abeta) is formed by sequential cleaving of the amyloid precursor protein by two proteolytic enzymes, beta- and gamma-secretases. Beta-secretase (BACE) is a type I transmembrane aspartic proteinase that is highly expressed in the mammalian brain. Four alternative splice variants of BACE are currently known and each encodes for a protein isoform with a different enzymatic activity. In Alzheimer's disease (AD) patients, the enzymatic activity and protein levels of BACE are increased in the neocortex, suggesting their differential expression may have a role in Abeta plaque formation. We have determined the differential expression of BACE mRNA and its splice variants in eight regions of the rat and two of the human brain. In humans, the frontal cortex which shows Abeta deposition in AD, expressed three-fold more BACE than the cerebellum and four fold more than the rats' frontal cortex both of which do not form Abeta plaques. The highest BACE levels of rats were found in the frontal cortex and less in other areas. Although most human and rat brain regions expressed all four BACE variants, the human cerebellum did not express the I-457 BACE variant. Human and rat frontal cortex expressed high levels of the I-501 and I-457 variants, but I-432 was highly expressed only in the rat. Species-specific differences were evident between human and rat brain areas, suggesting that BACE transcript variants may have different evolutionary conservation. Differential expression of BACE variants may explain the broad spectrum of phenotypic abnormalities and possible pathogenetic mechanisms underlying Alzheimer's disease.
Collapse
Affiliation(s)
- Ofer Zohar
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|
576
|
Affiliation(s)
- Richard N Sifers
- Departments of Pathology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
577
|
Saito T, Takaki Y, Iwata N, Trojanowski J, Saido TC. Alzheimer's disease, neuropeptides, neuropeptidase, and amyloid-beta peptide metabolism. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2003; 2003:PE1. [PMID: 12844556 DOI: 10.1126/sageke.2003.3.pe1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Amyloid-beta peptide (Abeta), the pathogenic agent of Alzheimer's disease (AD), is a physiological metabolite in the brain. We have focused our attention and effort on elucidating the unresolved aspect of Abeta metabolism: proteolytic degradation. Among a number of Abeta-degrading enzyme candidates, we used a novel in vivo paradigm to identify a member of the neutral endopeptidase family, neprilysin, as the major Abeta catabolic enzyme. Neprilysin deficiency results in defects in the metabolism of endogenous Abeta 40 and 42 in a gene dose-dependent manner. Our observations suggest that even partial down-regulation of neprilysin activity, which could be caused by aging, can contribute to AD development by promoting Abeta accumulation. Moreover, we discuss the fact that an aging-dependent decline of neprilysin activity, which leads to elevation of Abeta concentrations in the brain, is a natural process that precedes AD pathology. In this Perspective, we hypothesize that neprilysin down-regulation has a role in sporadic AD (SAD) pathogenesis, and we propose that this knowledge be used for developing preventive and therapeutic strategies through use of a G protein-coupled receptor (GPCR).
Collapse
Affiliation(s)
- Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
578
|
Chapter 5. Secretase inhibitors for Alzheimer's disease. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2003. [DOI: 10.1016/s0065-7743(03)38006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|