551
|
Priller C, Mitteregger G, Paluch S, Vassallo N, Staufenbiel M, Kretzschmar HA, Jucker M, Herms J. Excitatory synaptic transmission is depressed in cultured hippocampal neurons of APP/PS1 mice. Neurobiol Aging 2009; 30:1227-37. [DOI: 10.1016/j.neurobiolaging.2007.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/18/2007] [Accepted: 10/25/2007] [Indexed: 01/01/2023]
|
552
|
Reddy PH. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease. Exp Neurol 2009; 218:286-92. [PMID: 19358844 PMCID: PMC2710427 DOI: 10.1016/j.expneurol.2009.03.042] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 03/24/2009] [Accepted: 03/27/2009] [Indexed: 11/29/2022]
Abstract
Mitochondria are the major source of energy for the normal functioning of brain cells. Increasing evidence suggests that the amyloid precursor protein (APP) and amyloid beta (Abeta) accumulate in mitochondrial membranes, cause mitochondrial structural and functional damage, and prevent neurons from functioning normally. Oligomeric Abeta is reported to induce intracellular Ca(2+) levels and to promote the excess accumulation of intracellular Ca(2+) into mitochondria, to induce the mitochondrial permeability transition pore to open, and to damage mitochondrial structure. Based on recent gene expression studies of APP transgenic mice and AD postmortem brains, and APP/Abeta and mitochondrial structural studies, we propose that the overexpression of APP and the increased production of Abeta may cause structural changes of mitochondria, including an increase in the production of defective mitochondria, a decrease in mitochondrial trafficking, and the alteration of mitochondrial dynamics in neurons affected by AD. This article discusses some critical issues of APP/Abeta associated with mitochondria, mitochondrial structural and functional damage, and abnormal intracellular calcium regulation in neurons from AD patients. This article also discusses the link between Abeta and impaired mitochondrial dynamics in AD.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, 97006, USA.
| |
Collapse
|
553
|
Vaisid T, Barnoy S, Kosower NS. Calpain activates caspase-8 in neuron-like differentiated PC12 cells via the amyloid-beta-peptide and CD95 pathways. Int J Biochem Cell Biol 2009; 41:2450-8. [PMID: 19646546 DOI: 10.1016/j.biocel.2009.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/10/2009] [Accepted: 07/19/2009] [Indexed: 01/11/2023]
Abstract
The neurotoxic amyloid-beta-peptide (Abeta) is important in the pathogenesis of Alzheimer's disease (AD). Calpain (Ca(2+)-dependent protease) and caspase-8 (the initiating caspase for the extrinsic, receptor-mediated apoptosis pathway) have been implicated in AD/Abeta toxicity. We previously found that Abeta promoted degradation of calpastatin (the specific endogenous calpain inhibitor); calpastatin degradation was prevented by inhibitors of either calpain or caspase-8. The results implied a cross-talk between the two proteases and suggested that one protease was responsible for the activity of the other one. We now report on the previously unrecognized caspase-8 activation by calpain. In neuron-like differentiated PC12 cells, calpain promotes active caspase-8 formation from procaspase-8 via the Abeta and CD95 pathways, along with degradation of the procaspase-8 processing inhibitor caspase-8 (FLICE)-like inhibitory protein, short isoform (FLIP(S)). Inhibition of calpain (by pharmacological inhibitors and by overexpression of calpastatin) prevents the cleavage of procaspase-8 to mature, active caspase-8, and inhibits FLIP(S) degradation in the Abeta-treated and CD95-triggered cells. Increased cellular Ca(2+) per se results in calpain activation but does not lead to caspase-8 activation or FLIP(S) degradation. The results suggest that procaspase-8 and FLIP(S) association with cell membrane receptor complexes is required for calpain-induced caspase-8 activation. The results presented here add to the understanding of the roles of calpain, caspase-8, and CD95 pathway in AD/Abeta toxicity. Calpain-promoted activation of caspase-8 may have implications for other types of CD95-induced cell damage, and for nonapoptotic functions of caspase-8. Inhibition of calpain may be useful for modulating certain caspase-8-dependent processes.
Collapse
Affiliation(s)
- Tali Vaisid
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
554
|
Abstract
The cause(s) of sporadic Alzheimer’s disease (sAD) are complex and currently poorly understood. They likely result from a combination of genetic, environmental, proteomic and lipidomic factors that crucially occur only in the aged brain. Age-related changes in calcium levels and dynamics have the potential to increase the production and accumulation of both amyloid-β peptide (Aβ) and τ pathologies in the AD brain, although these two pathologies themselves can induce calcium dyshomeostasis, particularly at synaptic membranes. This review discuses the evidence for a role for calcium dyshomeostasis in the initiation of pathology, as well as the evidence for these pathologies themselves disrupting normal calcium homeostasis, which lead to synaptic and neuronal dysfunction, synaptotoxicity and neuronal loss, underlying the dementia associated with the disease.
Collapse
Affiliation(s)
- Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4545, USA.
| |
Collapse
|
555
|
Ahmad A, Muzaffar M, Ingram VM. Ca(2+), within the physiological concentrations, selectively accelerates Abeta42 fibril formation and not Abeta40 in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1537-48. [PMID: 19595795 DOI: 10.1016/j.bbapap.2009.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/06/2009] [Accepted: 06/29/2009] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) in humans is a common progressive neurodegenerative disease, associated with cognitive dysfunction, memory loss and neuronal loss. Alzheimer peptides Abeta40 and Abeta42 are precursors of the amyloid fibers that accumulate in the brain of patients. These peptides misfold and the monomers aggregate to neurotoxic oligomers and fibrils. Thus, the aggregation kinetics of these peptides is central to understanding the etiology of AD. Using size exclusion chromatography as well as filtration methods, we report here that Ca(2+) ions at physiological concentrations greatly accelerate the rate of aggregation of Abeta42 to form intermediate soluble associated species and fibrils. In the presence of 1 or 2 mM Ca(2+), CD spectra indicated that the secondary structure of Abeta42 changed from an unfolded to a predominantly beta-sheet conformation. These concentrations of Ca(2+) greatly decreased the lag time for Abeta42 fibril formation, measured with thioflavin T. However, the elongation rate was apparently unaffected. Ca(2+) appears to predominantly accelerate the nucleation stage of Abeta42 on pathway to the Alzheimer's fibril formation. Unlike Abeta42, Ca(2+) was not observed to trigger similar effect at any stage during the study of fibrillation kinetics of Abeta40 by any techniques. Abeta40 and Abeta42 seem to have distinct aggregation pathways.
Collapse
Affiliation(s)
- Atta Ahmad
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
556
|
Conley YP, Mukherjee A, Kammerer C, DeKosky ST, Kamboh MI, Finegold DN, Ferrell RE. Evidence supporting a role for the calcium-sensing receptor in Alzheimer disease. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:703-9. [PMID: 19035514 PMCID: PMC3062902 DOI: 10.1002/ajmg.b.30896] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The calcium-sensing receptor (CASR) is a G-protein coupled, transmembrane receptor that responds to changes in Ca(2+) levels. We hypothesized that the CASR could have a role in Alzheimer disease (AD) given expression of the CASR in brain, knowledge that calcium dysregulation promotes susceptibility to neuronal cell damage, the important role that the CASR plays in calcium regulation, and the fact that systemic calcium homeostasis and G-protein signal transduction are altered in AD patients. To investigate the association of CASR variation in AD susceptibility, we genotyped a polymorphic dinucleotide repeat marker within intron 4, one SNP within the promoter region and three non-synonymous SNPs within exon 7 of the CASR gene and tested for association analysis, using a well-characterized cohort of AD cases (n = 692) and controls (n = 435). The dinucleotide repeat polymorphism was significantly associated with AD status (OR = 1.62; 95% CI: 1.27-2.07, P = 0.00037, Bonferroni corrected P = 0.0011) and the three non-synonymous SNP haplotype was boarderline associated with AD status (P = 0.032, Bonferroni corrected P = 0.096). Stratifying by APOE4 allele carrier status revealed that the significant association was only in non-APOE4 carriers (OR of 1.90; 95% CI: 1.37-2.62, P = 0.0001). We also investigated whether apoE or beta amyloid could activate the calcium-sensing receptor. The receptor activation assays revealed that apoE as well as beta amyloid activated the CASR and that the level of activation appeared to be isoform dependent for apoE. These data support our hypothesis that the CASR has a role in AD susceptibility, particularly in individuals without an APOE4 allele.
Collapse
Affiliation(s)
- Yvette P. Conley
- Department of Health Promotion and Development, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania,Correspondence to: Dr. Yvette P. Conley, 3500 Victoria St, 440 Victoria Bldg., Pittsburgh, PA, 15261.
| | - Ankur Mukherjee
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Candace Kammerer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven T. DeKosky
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Psychiatry, Neurology and the Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Psychiatry, Neurology and the Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David N. Finegold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert E. Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
557
|
Gao W, Zhu H, Zhang JY, Zhang XJ. Calcium signaling-induced Smad3 nuclear accumulation induces acetylcholinesterase transcription in apoptotic HeLa cells. Cell Mol Life Sci 2009; 66:2181-93. [PMID: 19468687 PMCID: PMC11115644 DOI: 10.1007/s00018-009-0037-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/01/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
Recently, acetylcholinesterase (AChE) has been studied as an important apoptosis regulator. We previously showed that cellular calcium mobilization upregulated AChE expression by modulating promoter activity and mRNA stability. In this study, we have identified a potential Smad3/4 binding element, TGCCAGACA, located within the -601 to -571 bp fragment of the AChE promoter, as an important calcium response motif. Smad2/3 and Smad4 were shown to bind this element. Overexpression of human Smad3 increased AChE transcription activity in a dose-dependent manner in HeLa cells, whereas dominant-negative Smad3 blocked this activation. Upon A23187 and thapsigargin treatment, nuclear Smad3 accumulation was observed, an effect that was blocked by the intracellular Ca(2+) chelator BAPTA-AM. Calcium-induced AChE transcriptional activation was significantly blocked when the nuclear localization signal of Smad3 was destroyed. Taken together, our data suggest Smad3 can regulate AChE transcriptional activation following calcium-induced nuclear accumulation.
Collapse
Affiliation(s)
- Wei Gao
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| | - Hui Zhu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| | - Jing-Ya Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| | - Xue-Jun Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| |
Collapse
|
558
|
Acetylcholine and muscarinic receptor function in cerebral cortex of diabetic young and old male Wistar rats and the role of muscarinic receptors in calcium release from pancreatic islets. Biogerontology 2009; 11:151-66. [DOI: 10.1007/s10522-009-9237-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
|
559
|
Mina EW, Lasagna-Reeves C, Glabe CG, Kayed R. Poloxamer 188 copolymer membrane sealant rescues toxicity of amyloid oligomers in vitro. J Mol Biol 2009; 391:577-85. [PMID: 19524592 DOI: 10.1016/j.jmb.2009.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Amyloid oligomers and protofibrils increase cell membrane permeability, eventually leading to cell death. Here, we demonstrate that amyloid oligomer toxicity and membrane permeabilization can be reversed using the membrane sealant copolymer poloxamer 188. The data indicate that amyloid oligomer toxicity is caused by defects in the lipid bilayer of the type that are sealed by poloxamer 188. Our results also suggest the possibility of using polymer-based membrane sealants to prevent or reverse amyloid oligomer toxicity in vivo. Because the ability to permeabilize membranes is a generic property of amyloid oligomers, this therapeutic approach may be effective for the treatment of many degenerative diseases caused in part by the interaction of misfolded proteins with cell membranes, as in Alzheimer's disease, type II diabetes, and a host of others.
Collapse
Affiliation(s)
- Erene W Mina
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
560
|
Conditional forebrain inactivation of nicastrin causes progressive memory impairment and age-related neurodegeneration. J Neurosci 2009; 29:7290-301. [PMID: 19494151 PMCID: PMC2719251 DOI: 10.1523/jneurosci.1320-09.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Loss of presenilin function in adult mouse brains causes memory loss and age-related neurodegeneration. Since presenilin possesses gamma-secretase-dependent and -independent activities, it remains unknown which activity is required for presenilin-dependent memory formation and neuronal survival. To address this question, we generated postnatal forebrain-specific nicastrin conditional knock-out (cKO) mice, in which nicastrin, a subunit of gamma-secretase, is inactivated selectively in mature excitatory neurons of the cerebral cortex. nicastrin cKO mice display progressive impairment in learning and memory and exhibit age-dependent cortical neuronal loss, accompanied by astrocytosis, microgliosis, and hyperphosphorylation of the microtubule-associated protein Tau. The neurodegeneration observed in nicastrin cKO mice likely occurs via apoptosis, as evidenced by increased numbers of apoptotic neurons. These findings demonstrate an essential role of nicastrin in the execution of learning and memory and the maintenance of neuronal survival in the brain and suggest that presenilin functions in memory and neuronal survival via its role as a gamma-secretase subunit.
Collapse
|
561
|
Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int J Mol Sci 2009; 10:2510-2557. [PMID: 19582217 PMCID: PMC2705504 DOI: 10.3390/ijms10062510] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 04/28/2009] [Accepted: 05/05/2009] [Indexed: 12/11/2022] Open
Abstract
The term neurodegenerative disorders, encompasses a variety of underlying conditions, sporadic and/or familial and are characterized by the persistent loss of neuronal subtypes. These disorders can disrupt molecular pathways, synapses, neuronal subpopulations and local circuits in specific brain regions, as well as higher-order neural networks. Abnormal network activities may result in a vicious cycle, further impairing the integrity and functions of neurons and synapses, for example, through aberrant excitation or inhibition. The most common neurodegenerative disorders are Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and Huntington’s disease. The molecular features of these disorders have been extensively researched and various unique neurotherapeutic interventions have been developed. However, there is an enormous coercion to integrate the existing knowledge in order to intensify the reliability with which neurodegenerative disorders can be diagnosed and treated. The objective of this review article is therefore to assimilate these disorders’ in terms of their neuropathology, neurogenetics, etiology, trends in pharmacological treatment, clinical management, and the use of innovative neurotherapeutic interventions.
Collapse
|
562
|
Goñi-Oliver P, Avila J, Hernández F. Calpain-mediated truncation of GSK-3 in post-mortem brain samples. J Neurosci Res 2009; 87:1156-61. [PMID: 19006085 DOI: 10.1002/jnr.21932] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
GSK-3 activity can be regulated by phosphorylation and through interaction with GSK-3-binding proteins. In addition, we have recently demonstrated that calpain activation produces a truncation of GSK-3 that removes the N-terminal inhibitory domain (Goñi-Oliver et al. [2007] J. Biol. Chem. 282:22406). Given that calpain is involved in post-mortem proteolysis in brain samples, the objective of this investigation was to test whether GSK-3 is truncated in post-mortem samples. To achieve this objective, we first investigated the degradation of GSK-3 during different post-mortem intervals in mouse brains and found that the conversion of GSK-3 to proteolytic fragments of 40 and 30 kDa takes place in a way similar that of to p35-CDK-5 subunit and spectrin, two well-known calpain substrates. In addition, we demonstrated that this truncation is mediated by calpain, insofar as pretreatment with MDL 28170, a permeable blood-brain barrier calpain inhibitor, partially inhibited that degradation. When human brain extracts were exposed to calcium, GSK-3 was truncated, generating two fragments of approximately 40 and 30 kDa, a proteolytic process that was inhibited by calpeptin, a specific calpain inhibitor. Thus, this is the first report of calcium-dependent truncation of human GSK-3. These data demonstrate that control samples with similar post-mortem delay are essential to interpret correctly the changes observed in GSK-3 levels in human post-mortem brain, especially when studying human neurodegenerative diseases.
Collapse
Affiliation(s)
- Paloma Goñi-Oliver
- Centro de Biología Molecular "Severo Ochoa," CSIC/UAM, Fac. Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
563
|
Abstract
An increase in L-type voltage-gated calcium channel (LTCC) current is a prominent biomarker of brain aging and is believed to contribute to cognitive decline and vulnerability to neuropathologies. Studies examining age-related changes in LTCCs have focused primarily on males, although estrogen (17beta-estradiol, E2) affects calcium-dependent activities associated with cognition. Therefore, to better understand brain aging in females, the effects of chronic E2 replacement on LTCC current activity in hippocampal neurons of young and aged ovariectomized rats were determined. The zipper slice preparation was used to expose cornu ammonis 1 (CA1) pyramidal neurons for recording LTCC currents using the cell-attached patch-clamp technique. We found that an age-related increase in LTCC current in neurons from control animals was prevented by E2 treatment. In addition, in situ hybridization revealed that within stratum pyramidale of the CA1 area, mRNA expression of the Ca(v)1.2 LTCC subunit, but not the Ca(v)1.3 subunit, was decreased in aged E2-treated rats. Thus, the reported benefits of E2 on cognition and neuronal health may be attributed, at least in part, to its age-related decrease in LTCC current.
Collapse
|
564
|
Pancani T, Phelps JT, Searcy JL, Kilgore MW, Chen KC, Porter NM, Thibault O. Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-gamma agonists in cultured hippocampal neurons. J Neurochem 2009; 109:1800-11. [PMID: 19453298 DOI: 10.1111/j.1471-4159.2009.06107.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes mellitus is a metabolic disorder characterized by hyperglycemia and is especially prevalent in the elderly. Because aging is a risk factor for type 2 diabetes mellitus, and insulin resistance may contribute to the pathogenesis of Alzheimer's disease (AD), anti-diabetic agents (thiazolidinediones-TZDs) are being studied for the treatment of cognitive decline associated with AD. These agents normalize insulin sensitivity in the periphery and can improve cognition and verbal memory in AD patients. Based on evidence that Ca(2+) dysregulation is a pathogenic factor of brain aging/AD, we tested the hypothesis that TZDs could impact Ca(2+) signaling/homeostasis in neurons. We assessed the effects of pioglitazone and rosiglitazone (TZDs) on two major sources of Ca(2+) influx in primary hippocampal cultured neurons, voltage-gated Ca(2+) channel (VGCC) and the NMDA receptor (NMDAR). VGCC- and NMDAR-mediated Ca(2+) currents were recorded using patch-clamp techniques, and Ca(2+) intracellular levels were monitored with Ca(2+) imaging techniques. Rosiglitazone, but not pioglitazone reduced VGCC currents. In contrast, NMDAR-mediated currents were significantly reduced by pioglitazone but not rosiglitazone. These results show that TZDs modulate Ca(2+)-dependent pathways in the brain and have different inhibitory profiles on two major Ca(2+) sources, potentially conferring neuroprotection to an area of the brain that is particularly vulnerable to the effects of aging and/or AD.
Collapse
Affiliation(s)
- Tristano Pancani
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, 800 Rose Street, MS 310, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
565
|
Marambaud P, Dreses-Werringloer U, Vingtdeux V. Calcium signaling in neurodegeneration. Mol Neurodegener 2009; 4:20. [PMID: 19419557 PMCID: PMC2689218 DOI: 10.1186/1750-1326-4-20] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/06/2009] [Indexed: 12/16/2022] Open
Abstract
Calcium is a key signaling ion involved in many different intracellular and extracellular processes ranging from synaptic activity to cell-cell communication and adhesion. The exact definition at the molecular level of the versatility of this ion has made overwhelming progress in the past several years and has been extensively reviewed. In the brain, calcium is fundamental in the control of synaptic activity and memory formation, a process that leads to the activation of specific calcium-dependent signal transduction pathways and implicates key protein effectors, such as CaMKs, MAPK/ERKs, and CREB. Properly controlled homeostasis of calcium signaling not only supports normal brain physiology but also maintains neuronal integrity and long-term cell survival. Emerging knowledge indicates that calcium homeostasis is not only critical for cell physiology and health, but also, when deregulated, can lead to neurodegeneration via complex and diverse mechanisms involved in selective neuronal impairments and death. The identification of several modulators of calcium homeostasis, such as presenilins and CALHM1, as potential factors involved in the pathogenesis of Alzheimer's disease, provides strong support for a role of calcium in neurodegeneration. These observations represent an important step towards understanding the molecular mechanisms of calcium signaling disturbances observed in different brain diseases such as Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, North Shore-LIJ, Manhasset, New York 11030, USA.
| | | | | |
Collapse
|
566
|
Qin ZX, Zhu HY, Hu YH. Effects of lysophosphatidylcholine on beta-amyloid-induced neuronal apoptosis. Acta Pharmacol Sin 2009; 30:388-95. [PMID: 19343059 DOI: 10.1038/aps.2009.25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM We have investigated the effects of lysophosphatidylcholine (LPC), a product of lipid peroxidation, on Abeta(1-42)-induced SH-SY5Y cell apoptosis. METHODS The viability of cultured SH-SY5Y cells was measured using a CCK-8 kit. Apoptosis was determined by Chip-based flow cytometric assay. The mRNA transcription of Bcl-2, Bax, and caspase-3 were detected by using reverse transcription and real-time quantitative PCR and the protein levels of Bax and caspase-3 were analyzed by Western blotting. The cytosolic calcium concentration of SH-SY5Y cells was tested by calcium influx assay. G2A expression in SH-SY5Y cells was silenced by small interfering RNA. RESULTS Long-term exposure of SH-SY5Y cells to LPC augmented the neurotoxicity of Abeta(1-42). Furthermore, after LPC treatment, the Bax/Bcl-x(L) ratio and the expression levels, as well as the activity of caspase-3 were, elevated, whereas the expression level of TRAF1 was reduced. Because LPC was reported to be a specific ligand for the orphan G-protein coupled receptor, G2A, we investigated LPC-mediated changes in calcium levels in SH-SY5Y cells. Our results demonstrated that LPC can enhance the Abeta(1-42)-induced elevation of intracellular calcium. Interestingly, Abeta(1-42) significantly increased the expression of G2A in SH-SY5Y cells, whereas knockdown of G2A using siRNA reduced the effects of LPC on Abeta(1-42)-induced neurotoxicity. CONCLUSION The effects of LPC on Abeta(1-42)-induced apoptosis may occur through the signal pathways of the orphan G-protein coupled receptor.
Collapse
|
567
|
Brunello L, Zampese E, Florean C, Pozzan T, Pizzo P, Fasolato C. Presenilin-2 dampens intracellular Ca2+ stores by increasing Ca2+ leakage and reducing Ca2+ uptake. J Cell Mol Med 2009; 13:3358-69. [PMID: 19382908 PMCID: PMC4516491 DOI: 10.1111/j.1582-4934.2009.00755.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have previously shown that familial Alzheimer’s disease mutants of presenilin-2 (PS2) and, to a lesser extent, of presenilin-1 (PS1) lower the Ca2+ concentration of intracellular stores. We here examined the mechanism by which wild-type and mutant PS2 affect store Ca2+ handling. By using HeLa, SH-SY5Y and MEFs as model cells, and recombinant aequorins as Ca2+ probes, we show evidence that transient expression of either wild-type or mutant PS2 increases the passive Ca2+ leakage: both ryanodine- and IP3-receptors contribute to Ca2+ exit out of the ER, whereas the ribosome translocon complex is not involved. In SH-SY5Y cells and MEFs, wild-type and mutant PS2 potently reduce the uptake of Ca2+ inside the stores, an effect that can be counteracted by over-expression of SERCA-2B. On this line, in wild-type MEFs, lowering the endogenous level of PS2 by RNA interference, increases the Ca2+-loading capability of intracellular stores. Furthermore, we show that in PS double knockout MEFs, reduction of Ca2+ stores is mimicked by the expression of PS2-D366A, a loss-of-function mutant, uncleaved because also devoid of presenilinase activity but not by co-expression of the two catalytic active fragments of PS2. In summary, both physiological and increased levels of wild-type and mutant PS2 reduce the Ca2+ uptake by intracellular stores. To exert this newly described function, PS2 needs to be in its full-length form, even if it can subsequently be cleaved.
Collapse
Affiliation(s)
- Lucia Brunello
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | |
Collapse
|
568
|
Hwang SL, Yen GC. Modulation of Akt, JNK, and p38 activation is involved in citrus flavonoid-mediated cytoprotection of PC12 cells challenged by hydrogen peroxide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:2576-2582. [PMID: 19222219 DOI: 10.1021/jf8033607] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The physiological benefits of dietary flavonoids have been attributed to their antioxidant and signaling properties. Our previous study revealed that hesperetin exhibits neuroprotection in PC12 cells by diverse mechanisms. Biological activities of flavonoids might be determined by their chemical structures. Here, we further studied the effects of hesperetin and its structural counterparts, isorhamnetin and isosakuranetin, on kinases related to survival signaling as well as other cytoprotective actions. Pretreatment with flavonoids (0.8 or 50 microM) increased cell viability and catalase activity (CA) and decreased membrane damage, reactive oxygen species (ROS) generation, intracellular calcium level ([Ca2+]i), and caspase-3 activity in H2O2-treated PC12 cells. Increased CA, [Ca2+]i, and ROS levels, but lower caspase-3 activities, were obtained upon treatment with 50 microM isorhamnetin or isosakuranetin. Based on their structural differences and the concentrations used, these flavonoids differentially activated pro-survival signaling molecules, including Akt/protein kinase B, p38 mitogen-activated protein kinase, and inhibited the activation of c-jun N-terminal kinase, which triggers apoptosis. Our results demonstrate that signaling actions of thses flavonoids are involved in their neuroprotection against oxidative stress and that they act more as signaling molecules than antioxidants.
Collapse
Affiliation(s)
- Sam-Long Hwang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | |
Collapse
|
569
|
Chan CS, Gertler TS, Surmeier DJ. Calcium homeostasis, selective vulnerability and Parkinson's disease. Trends Neurosci 2009; 32:249-56. [PMID: 19307031 DOI: 10.1016/j.tins.2009.01.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/21/2008] [Accepted: 01/05/2009] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of which the core motor symptoms are attributable to the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Recent work has revealed that the engagement of L-type Ca(2+) channels during autonomous pacemaking renders SNc DA neurons susceptible to mitochondrial toxins used to create animal models of PD, indicating that homeostatic Ca(2+) stress could be a determinant of their selective vulnerability. This view is buttressed by the central role of mitochondria and the endoplasmic reticulum (linchpins of current theories about the origins of PD) in Ca(2+) homeostasis. Here, we summarize this evidence and suggest the dual roles had by these organelles could compromise their function, leading to accelerated aging of SNc DA neurons, particularly in the face of genetic or environmental stress. We conclude with a discussion of potential therapeutic strategies for slowing the progression of PD.
Collapse
Affiliation(s)
- C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
570
|
Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, Rizzuto R. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:335-44. [PMID: 19268425 DOI: 10.1016/j.bbabio.2009.02.021] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 12/17/2022]
Abstract
Mitochondrial Ca(2+) accumulation is a tightly controlled process, in turn regulating functions as diverse as aerobic metabolism and induction of cell death. The link between Ca(2+) (dys)regulation, mitochondria and cellular derangement is particularly evident in neurodegenerative disorders, in which genetic models and environmental factors allowed to identify common traits in the pathogenic routes. We will here summarize: i) the current view of mechanisms and functions of mitochondrial Ca(2+) homeostasis, ii) the basic principles of organelle Ca(2+) transport, iii) the role of Ca(2+) in neuronal cell death, and iv) the new information on the pathogenesis of Alzheimer's, Huntington's and Parkinson's diseases, highlighting the role of Ca(2+) and mitochondria.
Collapse
Affiliation(s)
- Fulvio Celsi
- Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation, Italy
| | | | | | | | | | | | | |
Collapse
|
571
|
Niu Y, Su Z, Zhao C, Song B, Zhang X, Zhao N, Shen X, Gong Y. Effect of amyloid β on capacitive calcium entry in neural 2a cells. Brain Res Bull 2009; 78:152-7. [DOI: 10.1016/j.brainresbull.2008.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 12/28/2022]
|
572
|
Osada N, Kosuge Y, Kihara T, Ishige K, Ito Y. Apolipoprotein E-deficient mice are more vulnerable to ER stress after transient forebrain ischemia. Neurochem Int 2009; 54:403-9. [PMID: 19428781 DOI: 10.1016/j.neuint.2009.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/15/2009] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
Abstract
Apolipoprotein E-deficient (apoE(-/-)) mice have been shown to have increased vulnerability to neuronal damage induced by cerebral ischemia; however, the mechanism of this increased vulnerability remains unclear. In order to define the role of the apoE protein against ischemia-induced ER stress and cell death, experiments were performed to compare ER stress-associated chaperones and signal proteins in the hippocampus of apoE(-/-) mice to those of WT mice after being subjected to forebrain ischemia and reperfusion. Although neuronal loss in area CA1-CA3 of the hippocampus was observed 3 days after ischemia in both types of mice, the damage in apoE(-/-) mice was more severe. In apoE(-/-) mice, a more extensive increase in 78-kDa glucose-regulated protein (GRP78) was observed after the insult, whereas the level of GRP94 was not changed. The expression of both C/EBP homologous protein (CHOP) and caspase-12 was increased in the hippocampus in both WT and apoE(-/-) mice after ischemia. The increased levels of CHOP in apoE(-/-) mice were significantly higher than those in WT mice, whereas the levels of caspase-12 in the two were comparable. Furthermore, whereas the levels of c-Jun N-terminal kinase (JNK), p-JNK1 and p-JNK2 in WT mice were unchanged after ischemia, they were significantly increased in apoE(-/-) mice 24h and 48h after ischemia. These results suggest that increased vulnerability of the hippocampus to forebrain ischemia and reperfusion in apoE(-/-) mice is at least partly attributable to perturbed induction of an ER chaperone, GRP 94, and enhancement of the CHOP- and JNK-dependent apoptotic pathway in the hippocampus.
Collapse
Affiliation(s)
- Nobuhiro Osada
- Research Unit of Pharmacology, Department of Clinical Pharmacy, College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | | | | | | | | |
Collapse
|
573
|
Lambert JC, Campagne F, Marambaud P. [CALHM1, a novel gene to blame in Alzheimer disease]. Med Sci (Paris) 2009; 24:923-4. [PMID: 19038093 DOI: 10.1051/medsci/20082411923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
574
|
Piacentini R, Ripoli C, Leone L, Misiti F, Clementi ME, D'Ascenzo M, Giardina B, Azzena GB, Grassi C. Role of methionine 35 in the intracellular Ca2+ homeostasis dysregulation and Ca2+-dependent apoptosis induced by amyloid beta-peptide in human neuroblastoma IMR32 cells. J Neurochem 2009; 107:1070-82. [PMID: 18990116 DOI: 10.1111/j.1471-4159.2008.05680.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Amyloid beta-peptide (Abeta) plays a fundamental role in the pathogenesis of Alzheimer's disease. We recently reported that the redox state of the methionine residue in position 35 of amyloid beta-peptide (Abeta) 1-42 (Met35) strongly affects the peptide's ability to trigger apoptosis and is thus a major determinant of its neurotoxicity. Dysregulation of intracellular Ca(2+) homeostasis resulting in the activation of pro-apoptotic pathways has been proposed as a mechanism underlying Abeta toxicity. Therefore, we investigated correlations between the Met35 redox state, Abeta toxicity, and altered intracellular Ca(2+) signaling in human neuroblastoma IMR32 cells. Cells incubated for 6-24 h with 10 microM Abeta1-42 exhibited significantly increased KCl-induced Ca(2+) transient amplitudes and resting free Ca(2+) concentrations. Nifedipine-sensitive Ca(2+) current densities and Ca(v)1 channel expression were markedly enhanced by Abeta1-42. None of these effects were observed when cells were exposed to Abeta containing oxidized Met35 (Abeta1-42(Met35-Ox)). Cell pre-treatment with the intracellular Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (1 microM) or the Ca(v)1 channel blocker nifedipine (5 microM) significantly attenuated Abeta1-42-induced apoptosis but had no effect on Abeta1-42(Met35-Ox) toxicity. Collectively, these data suggest that reduced Met35 plays a critical role in Abeta1-42 toxicity by rendering the peptide capable of disrupting intracellular Ca(2+) homeostasis and thereby provoking apoptotic cell death.
Collapse
Affiliation(s)
- Roberto Piacentini
- Institute of Human Physiology, Medical School, Catholic University S Cuore, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
575
|
Sørensen IF, Purup S, Ehrich M. Modulation of neurotoxicant-induced increases in intracellular calcium by phytoestrogens differ for amyloid beta peptide (Aβ) and 1-methyl-4-phenyl-pyridine (MPP+). J Appl Toxicol 2009; 29:84-9. [DOI: 10.1002/jat.1376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
576
|
Shtifman A, Ward CW, Laver DR, Bannister ML, Lopez JR, Kitazawa M, LaFerla FM, Ikemoto N, Querfurth HW. Amyloid-β protein impairs Ca2+ release and contractility in skeletal muscle. Neurobiol Aging 2008; 31:2080-90. [PMID: 19108934 DOI: 10.1016/j.neurobiolaging.2008.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/03/2008] [Accepted: 11/07/2008] [Indexed: 11/18/2022]
Abstract
Inclusion body myositis (IBM), the most common muscle disorder in the elderly, is partly characterized by dysregulation of β-amyloid precursor protein (βAPP) expression and abnormal, intracellular accumulation of full-length βAPP and β-amyloid epitopes. The present study examined the effects of β-amyloid accumulation on force generation and Ca(2+) release in skeletal muscle from transgenic mice harboring human βAPP and assessed the consequence of Aβ(1-42) modulation of the ryanodine receptor Ca(2+) release channels (RyRs). β-Amyloid laden muscle produced less peak force and exhibited Ca(2+) transients with smaller amplitude. To determine whether modification of RyRs by β-amyloid underlie the effects observed in muscle, in vitro Ca(2+) release assays and RyR reconstituted in planar lipid bilayer experiments were conducted in the presence of Aβ(1-42). Application of Aβ(1-42) to RyRs in bilayers resulted in an increased channel open probability and changes in gating kinetics, while addition of Aβ(1-42) to the rabbit SR vesicles resulted in RyR-mediated Ca(2+) release. These data may relate altered βAPP metabolism in IBM to reductions in RyR-mediated Ca(2+) release and muscle contractility.
Collapse
Affiliation(s)
- Alexander Shtifman
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, 736 Cambridge St., Boston, MA 02135, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
577
|
Bojarski L, Pomorski P, Szybinska A, Drab M, Skibinska-Kijek A, Gruszczynska-Biegala J, Kuznicki J. Presenilin-dependent expression of STIM proteins and dysregulation of capacitative Ca2+ entry in familial Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1050-7. [PMID: 19111578 DOI: 10.1016/j.bbamcr.2008.11.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/07/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Mutations in presenilin 1 (PS1), which are the major cause of familial Alzheimer's disease (FAD), are involved in perturbations of cellular Ca2+ homeostasis. Attenuation of capacitative Ca2+ entry (CCE) is the most often observed alteration of Ca2+ homeostasis in cells bearing FAD PS1 mutations. However, molecular mechanisms underlying this CCE impairment remains elusive. We demonstrate that cellular levels of STIM1 and STIM2 proteins, which are key players in CCE, depend on presenilins. We found increased level of STIM1 and decreased level of STIM2 proteins in mouse embryonic fibroblasts lacking presenilins. Fura-2 ratiometric assays revealed that CCE is enhanced in these cells after Ca2+ stores depletion by thapsigargin treatment. In turn, overexpression of PS1 with FAD mutations in HEK293 cells led to an attenuation of CCE. Although, no changes in STIM protein levels were observed in these HEK293 cells, FAD mutations in endogenous PS1 in human B lymphocytes resulted in a decreased expression of STIM2 in parallel to an attenuation of CCE. Our experiments showing that knock-out of presenilins in MEF cells and FAD mutations in endogenous PS1 in lymphocytes affect both CCE and the cellular level of STIM proteins open new perspectives for studies on CCE in FAD.
Collapse
Affiliation(s)
- Lukasz Bojarski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
578
|
Wojda U, Salinska E, Kuznicki J. Calcium ions in neuronal degeneration. IUBMB Life 2008; 60:575-90. [PMID: 18478527 DOI: 10.1002/iub.91] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal Ca(2+) homeostasis and Ca(2+) signaling regulate multiple neuronal functions, including synaptic transmission, plasticity, and cell survival. Therefore disturbances in Ca(2+) homeostasis can affect the well-being of the neuron in different ways and to various degrees. Ca(2+) homeostasis undergoes subtle dysregulation in the physiological ageing. Products of energy metabolism accumulating with age together with oxidative stress gradually impair Ca(2+) homeostasis, making neurons more vulnerable to additional stress which, in turn, can lead to neuronal degeneration. Neurodegenerative diseases related to aging, such as Alzheimer's disease, Parkinson's disease, or Huntington's disease, develop slowly and are characterized by the positive feedback between Ca(2+) dyshomeostasis and the aggregation of disease-related proteins such as amyloid beta, alfa-synuclein, or huntingtin. Ca(2+) dyshomeostasis escalates with time eventually leading to neuronal loss. Ca(2+) dyshomeostasis in these chronic pathologies comprises mitochondrial and endoplasmic reticulum dysfunction, Ca(2+) buffering impairment, glutamate excitotoxicity and alterations in Ca(2+) entry routes into neurons. Similar changes have been described in a group of multifactorial diseases not related to ageing, such as epilepsy, schizophrenia, amyotrophic lateral sclerosis, or glaucoma. Dysregulation of Ca(2+) homeostasis caused by HIV infection or by sudden accidents, such as brain stroke or traumatic brain injury, leads to rapid neuronal death. The differences between the distinct types of Ca(2+) dyshomeostasis underlying neuronal degeneration in various types of pathologies are not clear. Questions that should be addressed concern the sequence of pathogenic events in an affected neuron and the pattern of progressive degeneration in the brain itself. Moreover, elucidation of the selective vulnerability of various types of neurons affected in the diseases described here will require identification of differences in the types of Ca(2+) homeostasis and signaling among these neurons. This information will be required for improved targeting of Ca(2+) homeostasis and signaling components in future therapeutic strategies, since no effective treatment is currently available to prevent neuronal degeneration in any of the pathologies described here.
Collapse
Affiliation(s)
- Urszula Wojda
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland.
| | | | | |
Collapse
|
579
|
Wakabayashi T, De Strooper B. Presenilins: members of the gamma-secretase quartets, but part-time soloists too. Physiology (Bethesda) 2008; 23:194-204. [PMID: 18697993 DOI: 10.1152/physiol.00009.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presenilins in combination with other proteins generate different gamma-secretases, which are involved in the regulated intramembrane proteolysis of a variety of proteins. Understanding the specificity and regulation of these proteases will potentially lead to novel therapeutics for Alzheimer's disease and cancer. Presenilins appear also to exert additional functions outside of the gamma-secretase quartets, which needs further investigation.
Collapse
|
580
|
Mirnics K, Norstrom EM, Garbett K, Choi SH, Zhang X, Ebert P, Sisodia SS. Molecular signatures of neurodegeneration in the cortex of PS1/PS2 double knockout mice. Mol Neurodegener 2008; 3:14. [PMID: 18834536 PMCID: PMC2569036 DOI: 10.1186/1750-1326-3-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/03/2008] [Indexed: 11/10/2022] Open
Abstract
Background Familial Alzheimer's disease-linked variants of presenilin (PSEN1 and PSEN2) contribute to the pathophysiology of disease by both gain-of-function and loss-of-function mechanisms. Deletions of PSEN1 and PSEN2 in the mouse forebrain result in a strong and progressive neurodegenerative phenotype which is characterized by both anatomical and behavioral changes. Results To better understand the molecular changes associated with these morphological and behavioral phenotypes, we performed a DNA microarray transcriptome profiling of the hippocampus and the frontal cortex of the PSEN1/PSEN2 double knock-out mice and littermate controls at five different ages ranging from 2–8 months. Our data suggest that combined deficiencies of PSEN1 and PSEN2 results in a progressive, age-dependent transcriptome signature related to neurodegeneration and neuroinflammation. While these events may progress differently in the hippocampus and frontal cortex, the most critical expression signatures are common across the two brain regions, and involve a strong upregulation of cathepsin and complement system transcripts. Conclusion The observed neuroinflammatory expression changes are likely to be causally linked to the neurodegenerative phenotype observed in mice with compound deletions of PSEN1 and PSEN2. Furthermore, our results suggest that the evaluation of inhibitors of PS/γ-secretase activity for treatment of Alzheimer's Disease must include close monitoring for signs of calpain-cathepsin system activation.
Collapse
Affiliation(s)
- Károly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN37232, USA.
| | | | | | | | | | | | | |
Collapse
|
581
|
Matos M, Augusto E, Oliveira C, Agostinho P. Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: Involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 2008; 156:898-910. [DOI: 10.1016/j.neuroscience.2008.08.022] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 01/03/2023]
|
582
|
Kloskowska E, Bruton JD, Winblad B, Benedikz E. The APP670/671 mutation alters calcium signaling and response to hyperosmotic stress in rat primary hippocampal neurons. Neurosci Lett 2008; 444:275-9. [DOI: 10.1016/j.neulet.2008.08.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/07/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
|
583
|
Drago D, Cavaliere A, Mascetra N, Ciavardelli D, Di Ilio C, Zatta P, Sensi SL. Aluminum Modulates Effects of βAmyloid1–42 on Neuronal Calcium Homeostasis and Mitochondria Functioning and Is Altered in a Triple Transgenic Mouse Model of Alzheimer's Disease. Rejuvenation Res 2008; 11:861-71. [DOI: 10.1089/rej.2008.0761] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Denise Drago
- CNR-Institute for Biomedical Technologies, Padua “Metalloproteins” Unit, Department of Biology, University of Padua, Padua, Italy
| | - Alessandra Cavaliere
- CNR-Institute for Biomedical Technologies, Padua “Metalloproteins” Unit, Department of Biology, University of Padua, Padua, Italy
| | - Nicola Mascetra
- Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
| | - Domenico Ciavardelli
- Department of Biochemistry, Biochemistry Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
| | - Carmine Di Ilio
- Department of Biochemistry, Biochemistry Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
| | - Paolo Zatta
- CNR-Institute for Biomedical Technologies, Padua “Metalloproteins” Unit, Department of Biology, University of Padua, Padua, Italy
| | - Stefano L. Sensi
- Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
- Department of Neurology, University of California–Irvine, Irvine, California
| |
Collapse
|
584
|
|
585
|
Brinton RD. The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci 2008; 31:529-37. [PMID: 18774188 PMCID: PMC10124615 DOI: 10.1016/j.tins.2008.07.003] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 01/18/2023]
Abstract
The 'healthy cell bias of estrogen action' hypothesis examines the role that regulating mitochondrial function and bioenergetics play in promoting neural health and the mechanistic crossroads that lead to divergent outcomes following estrogen exposure. Estrogen-induced signaling pathways in hippocampal and cortical neurons converge upon the mitochondria to enhance aerobic glycolysis coupled to the citric acid cycle, mitochondrial respiration and ATP generation. Convergence of estrogen-induced signaling onto mitochondria is also a point of vulnerability when activated in diseased neurons which exacerbates degeneration through increased load on dysregulated calcium homeostasis. As the continuum of neurological health progresses from healthy to unhealthy so too do the benefits of estrogen or hormone therapy. The healthy cell bias of estrogen action hypothesis provides a lens through which to assess disparities in outcomes across basic and clinical science and on which to predict outcomes of estrogen interventions for sustaining neurological health and preventing age-associated neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy Pharmaceutical Sciences Center, Los Angeles, CA 90033, USA.
| |
Collapse
|
586
|
Kang S, Kang J, Kwon H, Frueh D, Yoo SH, Wagner G, Park S. Effects of Redox Potential and Ca2+ on the Inositol 1,4,5-Trisphosphate Receptor L3-1 Loop Region. J Biol Chem 2008; 283:25567-25575. [DOI: 10.1074/jbc.m803321200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
587
|
Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu HY, Hyman BT, Bacskai BJ. Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 2008; 59:214-25. [PMID: 18667150 DOI: 10.1016/j.neuron.2008.06.008] [Citation(s) in RCA: 477] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 04/14/2008] [Accepted: 06/03/2008] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease is characterized by the deposition of senile plaques and progressive dementia. The molecular mechanisms that couple plaque deposition to neural system failure, however, are unknown. Using transgenic mouse models of AD together with multiphoton imaging, we measured neuronal calcium in individual neurites and spines in vivo using the genetically encoded calcium indicator Yellow Cameleon 3.6. Quantitative imaging revealed elevated [Ca(2+)]i (calcium overload) in approximately 20% of neurites in APP mice with cortical plaques, compared to less than 5% in wild-type mice, PS1 mutant mice, or young APP mice (animals without cortical plaques). Calcium overload depended on the existence and proximity to plaques. The downstream consequences included the loss of spinodendritic calcium compartmentalization (critical for synaptic integration) and a distortion of neuritic morphologies mediated, in part, by the phosphatase calcineurin. Together, these data demonstrate that senile plaques impair neuritic calcium homeostasis in vivo and result in the structural and functional disruption of neuronal networks.
Collapse
Affiliation(s)
- Kishore V Kuchibhotla
- Massachusetts General Hospital, Department of Neurology/Alzheimer's Disease Research Laboratory, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
588
|
Abstract
Recent developments point to a critical role for calcium dysregulation in the pathogenesis of Alzheimer's disease. A novel calcium-conducting channel called CALHM1 is genetically linked to the disorder and modulates Abeta production. Calcium homeostasis has also been shown to be perturbed in dendritic spines adjacent to amyloid plaques. Finally, new studies have elucidated the role by which presenilins modulate calcium signaling, including effects on SERCA2b and gating of the IP(3) receptor, and lead to Abeta production.
Collapse
|
589
|
Efficiency of histidine-associating compounds for blocking the alzheimer's Abeta channel activity and cytotoxicity. Biophys J 2008; 95:4879-89. [PMID: 18723589 DOI: 10.1529/biophysj.108.135517] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The opening of the Alzheimer's Abeta channel permits the flux of calcium into the cell, thus critically disturbing intracellular ion homeostasis. Peptide segments that include the characteristic histidine (His) diad, His(13) and His(14), efficiently block the Abeta channel activity, blocking Abeta cytotoxicity. We hypothesize that the vicinal His-His peptides coordinate with the rings of His in the mouth of the pore, thus blocking the flow of calcium ions through the channel, with consequent blocking of Abeta cytotoxicity. To test this hypothesis, we studied Abeta ion channel activity and cytotoxicity after the addition of compounds that are known to have His association capacity, such as Ni(2+), imidazole, His, and a series of His-related compounds. All compounds were effective at blocking both Abeta channel and preventing Abeta cytotoxicity. The efficiency of protection of His-related compounds was correlated with the number of imidazole side chains in the blocker compounds. These data reinforce the premise that His residues within the Abeta channel sequence are in the pathway of ion flow. Additionally, the data confirm the contribution of the Abeta channel to the cytotoxicity of exogenous Abeta.
Collapse
|
590
|
Qin Z, Sun Z, Huang J, Hu Y, Wu Z, Mei B. Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-beta peptide (1-42). Neurosci Lett 2008; 444:217-21. [PMID: 18760331 DOI: 10.1016/j.neulet.2008.08.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 12/19/2022]
Abstract
Accumulation and deposition of amyloid beta peptide (Abeta) in the brain causes neuronal apoptosis and eventually leads to Alzheimer's disease (AD). A therapeutic target for AD is to block the cascade reaction induced by Abeta. It has been demonstrated that glucagon-like peptide-1 (GLP-1), which is an endogenous insulinotropic peptide secreted from the gut, binds to its receptor in the brain and possesses neuroprotective effects. Using site-directed mutagenesis and gene recombination techniques, we generated a mutated recombinant human glucagon-like peptide-1 (mGLP-1) which has longer half-life as compared with native GLP-1. This present work aims to examine whether mGLP-1 attenuates Abeta(1-42)-mediated cytotoxicity in SH-SY5Y cells and to explore the possible mechanisms. Our data indicate that > or = 0.02 ng/ml of mGLP-1 facilitated cell proliferation and 0.1 ng/ml and 0.5 ng/ml of mGLP-1 rescued SH-SY5Y cells from Abeta(1-42)-induced apoptosis. Moreover, Abeta(1-42) treatment dramatically stimulated the release of Ca(2+) from internal calcium stores in SH-SY5Y cells, while mGLP-1 helped to maintain the intracellular Ca(2+) homeostasis. Abeta(1-42) also significantly increased the expression level of TP53 and Bax genes which are involved in apoptotic pathways, and mGLP-1 decreased Abeta(1-42)-induced up-regulation of TP53 and Bax. Since mGLP-1 treatment elevated cytosolic cAMP concentration in SH-SY5Y cells, we postulate that mGLP-1 may exert its influence via binding to GLP-1 receptors in SH-SY5Y cells and stimulating the production of cAMP. These results suggest that mGLP-1 exhibited neuronal protection properties, and could potentially be a novel therapeutic agent for intervention in Alzheimer's disease.
Collapse
Affiliation(s)
- Zhenxia Qin
- Shanghai Institute of Brain Functional Genomics, and Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, No. 3663 North Zhongshan Road, Shanghai 200062, China
| | | | | | | | | | | |
Collapse
|
591
|
Yoshiike Y, Kimura T, Yamashita S, Furudate H, Mizoroki T, Murayama M, Takashima A. GABA(A) receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS One 2008; 3:e3029. [PMID: 18716656 PMCID: PMC2515633 DOI: 10.1371/journal.pone.0003029] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 08/03/2008] [Indexed: 02/06/2023] Open
Abstract
Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9-15 months) transgenic APP/PS1 mice and old (19-25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABA(A) receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABA(A) receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABA(A) receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABA(A) receptor alpha1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABA(A) receptor alpha1 subunit and improvement of cognitive functions by long term GABA(A) receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABA(A) receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Abeta and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice.
Collapse
Affiliation(s)
- Yuji Yoshiike
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Tetsuya Kimura
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Shunji Yamashita
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Hiroyuki Furudate
- Laboratory of Endocrinology and Neuro-ethology, Department of Regulation Biology, Faculty of Science, Saitama University, Saitama-shi, Saitama, Japan
| | - Tatsuya Mizoroki
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Miyuki Murayama
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| |
Collapse
|
592
|
Vaisid T, Barnoy S, Kosower NS. Calpastatin overexpression attenuates amyloid-beta-peptide toxicity in differentiated PC12 cells. Neuroscience 2008; 156:921-31. [PMID: 18786620 DOI: 10.1016/j.neuroscience.2008.07.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 12/16/2022]
Abstract
Amyloid beta peptide (Abeta) plays a major role in the pathogenesis of Alzheimer's disease (AD). Abeta is toxic to neurons, possibly through causing initial synaptic dysfunction and neuronal membrane dystrophy, promoted by increased cellular Ca(2+). Calpain (Ca(2+)-dependent protease) and caspase have been implicated in AD. Previously, we used calpain and caspase pharmacological inhibitors to study effects of Abeta25-35 (sAbeta) on neuronal-like differentiated PC12 cells. We reported that sAbeta-treated cells exhibited calpain activation and protein degradation (due to both calpain and caspase-8). We have now found that overexpression of the calpain specific inhibitor calpastatin in differentiated PC12 cells significantly inhibited the sAbeta-induced calpain activation and decreased the protease activity. Calpastatin overexpression inhibited the sAbeta-promoted degradation of fodrin, protein kinase Cepsilon, beta-catenin (membrane structural proteins and proteins involved in signal transduction pathways), and prevented the sAbeta-induced alteration of neurite structure (manifested by varicosities). Overexpression of calpastatin also inhibited Ca(2+)-promoted calpain activation and protein degradation; this is consistent with the notion that the Abeta-induced increase in calpain activity results from a rise in cellular Ca(2+), provided the calpastatin level is not so high as to strongly inhibit calpain. Carrying out transfection without selection allowed the comparison in the same culture of calpastatin-overexpressing with non-overexpressing cells. In cultures transfected with green fluorescent protein (GFP)-calpastatin plasmid, calpastatin overexpression (indicated by GFP-labeling) led to inhibition in sAbeta-induced membrane propidium iodide (PI) permeability, whereas non-transfected, GFP-unlabeled cells exhibited PI permeability. Overall, the results demonstrate that the effects of Abeta-toxicity studied here were attenuated to a large extent by calpastatin overexpression, indicating that the protease calpain is involved in Abeta-toxicity (obviating a primary, direct role for caspases). Increased expression of calpastatin and/or decrease in calpain may serve as one of the means for ameliorating some of the early symptoms of AD.
Collapse
Affiliation(s)
- T Vaisid
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | | | |
Collapse
|
593
|
Mu TW, Fowler DM, Kelly JW. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis. PLoS Biol 2008; 6:e26. [PMID: 18254660 PMCID: PMC2225441 DOI: 10.1371/journal.pbio.0060026] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 12/14/2007] [Indexed: 12/22/2022] Open
Abstract
A lysosomal storage disease (LSD) results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum–associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil—both US Food and Drug Administration–approved hypertension drugs—partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient–derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely α-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety. Lysosomes are organelles that contain more than 50 hydrolytic enzymes that break down macromolecules in a cell. A lysosomal storage disease results from deficient activity of one or more of these enzymes, leading to the accumulation of corresponding substrate(s). Currently, lysosomal storage diseases are treated by enzyme replacement therapy, which can be challenging because the enzyme has to enter the cell and the lysosome to function; in neuropathic diseases, enzyme replacement is not useful because recombinant enzymes do not enter the brain. We have shown that diltiazem and verapamil, potent US Food and Drug Administration–approved L-type Ca2+ channel blocker drugs, increased the endoplasmic reticulum (ER) folding capacity, trafficking, and activity of mutant lysosomal enzymes associated with three distinct lysosomal storage diseases. These compounds appear to function through a Ca2+ ion–mediated up-regulation of a subset of cytoplasmic and ER lumenal chaperones, possibly by activating signaling pathways that mitigate cellular stress. We have shown that increasing ER calcium levels appears to be a relatively selective strategy to partially restore mutant lysosomal enzyme homeostasis in diseases caused by the misfolding and degradation of nonhomologous mutant enzymes. Because diltiazem crosses the blood–brain barrier, it may be useful for the treatment of neuropathic lysosomal storage diseases, and possibly other loss-of-function diseases, although efficacy needs to be demonstrated. By adapting the protein homeostasis network, altering calcium homeostasis can restore the cell's ability to fold and traffic proteins prone to misfolding, offering a new strategy to ameliorate loss-of-function diseases.
Collapse
Affiliation(s)
- Ting-Wei Mu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Douglas M Fowler
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeffery W Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
594
|
Abstract
End-stage heart failure is characterized by a number of abnormalities at the cellular level, which include changes in excitation-contraction coupling, alterations in contractile proteins and activation/deactivation of signaling pathways. Even though many of these changes are adaptive to the high workload and stress in heart failure, a significant number of these alterations are deeply deleterious to the cardiac cell. In this article, we will review the changes in calcium cycling that occur in myopathic hearts and how they can be effectively targeted. We will also focus on protein misfolding in the setting of cardiac dysfunction.
Collapse
|
595
|
Vaisid T, Kosower NS, Elkind E, Barnoy S. Amyloid β peptide toxicity in differentiated PC12 cells: Calpain‐calpastatin, caspase, and membrane damage. J Neurosci Res 2008; 86:2314-25. [DOI: 10.1002/jnr.21670] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
596
|
Canellada A, Ramirez BG, Minami T, Redondo JM, Cano E. Calcium/calcineurin signaling in primary cortical astrocyte cultures: Rcan1-4 and cyclooxygenase-2 as NFAT target genes. Glia 2008; 56:709-22. [PMID: 18293408 DOI: 10.1002/glia.20647] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway mediates important cell responses to calcium, but its activity and function in astrocytes have remained unclear. We show that primary cortical astrocyte cultures express the regulatory and catalytic subunits of the phosphatase calcineurin as well as the calcium-regulated NFAT family members (NFATc1, c2, c3, and c4). NFATs are activated by calcium-mobilizing agents in astrocytes, and this activation is blocked by the calcineurin inhibitor cyclosporine A. Microarray screening identified cyclooxygenase-2 (Cox-2), which is implicated in brain injury, and Rcan 1-4, an endogenous calcineurin inhibitor, as genes up-regulated by calcineurin-dependent calcium signals in astrocytes. Mobilization of intracellular calcium with ionophore potently augments the promoter activity and mRNA and protein expression of Rcan 1-4 and Cox-2 induced by combined treatment with phorbol esters. Moreover, Rcan 1-4 expression is efficiently induced by calcium mobilization alone. For both the genes, the calcium signal component is dependent on calcineurin and is replicated by exogenous expression of a constitutively active NFAT, strongly suggesting that the calcium-induced gene activation is mediated by NFATs. Finally, we report that calcineurin-dependent expression of Cox-2 and Rcan 1-4 is induced by physiological calcium mobilizing agents, such as thrombin, agonists of purinergic and glutamate receptors, and L-type voltage-gated calcium channels. These findings provide insights into calcium-initiated gene transcription in astrocytes, and have implications for the regulation of calcium responses in astrocytes.
Collapse
Affiliation(s)
- Andrea Canellada
- Department of Vascular Biology and Inflammation. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
597
|
Valerio M, Porcelli F, Zbilut JP, Giuliani A, Manetti C, Conti F. pH effects on the conformational preferences of amyloid beta-peptide (1-40) in HFIP aqueous solution by NMR spectroscopy. ChemMedChem 2008; 3:833-43. [PMID: 18228239 DOI: 10.1002/cmdc.200700324] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The structure and aggregation state of amyloid beta-peptide (Abeta) in membrane-like environments are important determinants of pathological events in Alzheimer's disease. In fact, the neurotoxic nature of amyloid-forming peptides and proteins is associated with specific conformational transitions proximal to the membrane. Under certain conditions, the Abeta peptide undergoes a conformational change that brings the peptide in solution to a "competent state" for aggregation. Conversion can be obtained at medium pH (5.0-6.0), and in vivo this appears to take place in the endocytic pathway. The combined use of (1)H NMR spectroscopy and molecular dynamics-simulated annealing calculations in aqueous hexafluoroisopropanol simulating the membrane environment, at different pH conditions, enabled us to get some insights into the aggregation process of Abeta, confirming our previous hypotheses of a relationship between conformational flexibility and aggregation propensity. The conformational space of the peptide was explored by means of an innovative use of principal component analysis as applied to residue-by-residue root-mean-square deviations values from a reference structure. This procedure allowed us to identify the aggregation-prone regions of the peptide.
Collapse
Affiliation(s)
- Mariacristina Valerio
- Dipartimento di Chimica, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italia
| | | | | | | | | | | |
Collapse
|
598
|
Sanz-Blasco S, Valero RA, Rodríguez-Crespo I, Villalobos C, Núñez L. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 2008; 3:e2718. [PMID: 18648507 PMCID: PMC2447871 DOI: 10.1371/journal.pone.0002718] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/20/2008] [Indexed: 12/01/2022] Open
Abstract
Dysregulation of intracellular Ca2+ homeostasis may underlie amyloid β peptide (Aβ) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Aβ1–42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Aβ fibrils, induce a massive entry of Ca2+ in neurons and promote mitochondrial Ca2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Aβ oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca2+ overload, cytochrome c release and cell death induced by Aβ oligomers. Our results indicate that i) mitochondrial Ca2+ overload underlies the neurotoxicity induced by Aβ oligomers and ii) inhibition of mitochondrial Ca2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Aβ oligomers and AD.
Collapse
Affiliation(s)
- Sara Sanz-Blasco
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Ruth A. Valero
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Ignacio Rodríguez-Crespo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
- * E-mail:
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
599
|
Cheung KH, Shineman D, Müller M, Cárdenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VMY, Foskett JK. Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 2008; 58:871-83. [PMID: 18579078 DOI: 10.1016/j.neuron.2008.04.015] [Citation(s) in RCA: 359] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 02/05/2008] [Accepted: 04/16/2008] [Indexed: 01/24/2023]
Abstract
Mutations in presenilins (PS) are the major cause of familial Alzheimer's disease (FAD) and have been associated with calcium (Ca2+) signaling abnormalities. Here, we demonstrate that FAD mutant PS1 (M146L)and PS2 (N141I) interact with the inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+ release channel and exert profound stimulatory effects on its gating activity in response to saturating and suboptimal levels of InsP3. These interactions result in exaggerated cellular Ca2+ signaling in response to agonist stimulation as well as enhanced low-level Ca2+signaling in unstimulated cells. Parallel studies in InsP3R-expressing and -deficient cells revealed that enhanced Ca2+ release from the endoplasmic reticulum as a result of the specific interaction of PS1-M146L with the InsP3R stimulates amyloid beta processing,an important feature of AD pathology. These observations provide molecular insights into the "Ca2+ dysregulation" hypothesis of AD pathogenesis and suggest novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- King-Ho Cheung
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
600
|
Green KN, Demuro A, Akbari Y, Hitt BD, Smith IF, Parker I, LaFerla FM. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. ACTA ACUST UNITED AC 2008; 181:1107-16. [PMID: 18591429 PMCID: PMC2442205 DOI: 10.1083/jcb.200706171] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In addition to disrupting the regulated intramembraneous proteolysis of key substrates, mutations in the presenilins also alter calcium homeostasis, but the mechanism linking presenilins and calcium regulation is unresolved. At rest, cytosolic Ca2+ is maintained at low levels by pumping Ca2+ into stores in the endoplasmic reticulum (ER) via the sarco ER Ca2+-ATPase (SERCA) pumps. We show that SERCA activity is diminished in fibroblasts lacking both PS1 and PS2 genes, despite elevated SERCA2b steady-state levels, and we show that presenilins and SERCA physically interact. Enhancing presenilin levels in Xenopus laevis oocytes accelerates clearance of cytosolic Ca2+, whereas higher levels of SERCA2b phenocopy PS1 overexpression, accelerating Ca2+ clearance and exaggerating inositol 1,4,5-trisphosphate–mediated Ca2+ liberation. The critical role that SERCA2b plays in the pathogenesis of Alzheimer's disease is underscored by our findings that modulating SERCA activity alters amyloid β production. Our results point to a physiological role for the presenilins in Ca2+ signaling via regulation of the SERCA pump.
Collapse
Affiliation(s)
- Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|