551
|
Johnson FM, Saigal B, Talpaz M, Donato NJ. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin Cancer Res 2006; 11:6924-32. [PMID: 16203784 DOI: 10.1158/1078-0432.ccr-05-0757] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Epithelial tumors, including non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC), present clinical challenges. One potential target for systemic therapy is Src family nonreceptor tyrosine kinases, which are overexpressed in these tumors and induce pleiotropic effects, including increased proliferation, enhanced survival, stimulation of angiogenesis, and changes in motility. Dasatinib (BMS-354825), an ATP-competitive, small molecule tyrosine kinase inhibitor, suppresses the activity of these kinases at subnanomolar concentrations. Therefore, we tested the antitumor effects of this inhibitor in vitro to determine whether in vivo analyses were warranted. EXPERIMENTAL DESIGN The antitumor effects of dasatinib on HNSCC and NSCLC cells were evaluated using assays to measure cell cycle progression, apoptosis, migration, and invasion. Western blotting was used to monitor its effects on cell signaling. RESULTS Dasatinib inhibited migration and invasion in all cell lines and induced cell cycle arrest (blocking the G1-S transition) and apoptosis in some lines. The effects on migration and invasion correlated with the inhibition of Src and downstream mediators of adhesion [e.g., focal adhesion kinase (FAK), p130, and paxillin], and the cell cycle effects and apoptosis correlated with the induction of p27 and the dephosphorylation of Rb. Dasatinib also induced morphologic changes that were consistent with an upstream role for Src in regulating focal adhesion complexes. CONCLUSIONS This study showed that Src inhibition in HNSCC and NSCLC has antitumor effects in vitro. This suggests that dasatinib would have therapeutic activity against these tumors. Clinical studies in these tumor types are warranted.
Collapse
Affiliation(s)
- Faye M Johnson
- Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA.
| | | | | | | |
Collapse
|
552
|
Hirsch CL, Smith-Windsor EL, Bonham K. Src family kinase members have a common response to histone deacetylase inhibitors in human colon cancer cells. Int J Cancer 2006; 118:547-54. [PMID: 16094635 DOI: 10.1002/ijc.21383] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Histone deacetylase inhibitors (HDIs) induce cell cycle arrest, differentiation and/or apoptosis in numerous cancer cell types and have shown promise in clinical trials. These agents are particularly novel, given their ability to selectively influence gene expression. Previously, we demonstrated that the HDIs butyrate and trichostatin A (TSA) directly repress c-Src proto-oncogene expression in many cancer cell lines. Activation and/or overexpression of c-Src have been frequently observed in numerous malignancies, especially of the colon. Therefore, our observation was particularly interesting since butyrate is a naturally abundant component of the large intestine and has been suggested to be a cancer-preventive agent. However, c-Src is not the only Src family kinase (SFK) member to be implicated in the development of human cancers, including those of the colon. Therefore, the relative expression levels of known SFKs were examined in a panel of human colon cancer cell lines. We found a surprisingly diverse expression pattern but noted that most cell lines expressed relatively high levels of at least 2 SFKs. When the effects of butyrate and TSA were examined in representative cell lines, the expression of all SFKs was repressed in a dose- and time-dependent manner. Further, detailed examination of Lck, Yes and Lyn demonstrated that this repression had a direct effect on transcription and was independent of new protein synthesis. These results mirror our earlier data obtained with c-Src and suggest that SFKs are a major target of HDIs and likely account in part for the anticancer effects of these promising new drugs.
Collapse
Affiliation(s)
- Calley L Hirsch
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
553
|
Delfino FJ, Stevenson H, Smithgall TE. A growth-suppressive function for the c-fes protein-tyrosine kinase in colorectal cancer. J Biol Chem 2006; 281:8829-35. [PMID: 16455651 DOI: 10.1074/jbc.m507331200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human c-fes locus encodes a non-receptor protein-tyrosine kinase implicated in myeloid, vascular endothelial, and neuronal cell differentiation. A recent analysis of the tyrosine kinome in colorectal cancer identified c-fes as one of only seven genes with consistent kinase domain mutations. Although four mutations were identified (M704V, R706Q, V743M, S759F), the consequences of these mutations on Fes kinase activity were not explored. To address this issue, Fes mutants with these substitutions were co-expressed with STAT3 in human 293T cells. Surprisingly, the M704V, R706Q, and V743M mutations substantially reduced Fes autophosphorylation and STAT3 Tyr-705 phosphorylation compared with wild-type Fes, whereas S759F had little effect. These mutations had a similar impact on Fes kinase activity in a yeast expression system, suggesting that they inhibit Fes by affecting kinase domain structure. We have also demonstrated for the first time that endogenous Fes is strongly expressed at the base of colonic crypts where it co-localizes with epithelial cells positive for the progenitor cell marker Musashi-1. In contrast to normal colonic epithelium, Fes expression was reduced or absent in colon tumor sections from most individuals. Fes protein levels were also low or absent in a panel of human colorectal cancer cell lines, including HT-29 and HCT 116 cells. Introduction of Fes into these lines with a recombinant retrovirus suppressed their growth in soft agar. Together, our findings strongly implicate the c-Fes protein-tyrosine kinase as a tumor suppressor rather than a dominant oncogene in colorectal cancer.
Collapse
Affiliation(s)
- Frank J Delfino
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
554
|
Néron S, Suck G, Ma XZ, Sakac D, Roy A, Katsman Y, Dussault N, Racine C, Branch DR. B cell proliferation following CD40 stimulation results in the expression and activation of Src protein tyrosine kinase. Int Immunol 2006; 18:375-87. [PMID: 16415104 DOI: 10.1093/intimm/dxh377] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resting normal human B cells express negligible c-src mRNA or Src protein tyrosine kinase; however, upon induction of proliferation, these cells express high levels of both mRNA and protein and show a concomitant increase in tyrosine kinase activity of immunoprecipitated Src. Src expression was most pronounced upon stimulation with CD154, and to a lesser extent CD70, Staphylococcus aureus, Cowan strain I and phorbol ester, and correlated with the activation of the cells. Transfection of cDNA for human wild-type or kinase-dead Src into Raji B cells resulted in an increase and decrease, respectively, of the cell numbers in culture, showing a direct correlation of proliferation to the expression of Src that was corroborated using anti-sense oligodeoxynucleotides and chemical inhibitors. Furthermore, the human B cell lines, Namalwa, Daudi and Raji express low levels of Src but express very high levels of Src after stimulation with CD154 that showed a correlation with increased activation. This is the first report of Src detectable in normal B cells. The finding that Src expression is inducible and correlates with stimulation by CD154 and the proliferation of the B cells suggests that Src may play a specific role in normal and transformed B cell activation/proliferation pathways mediated primarily through CD40 stimulation.
Collapse
Affiliation(s)
- Sonia Néron
- Héma-Québec, Recherche et Développement, Sainte-Foy, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
555
|
Ryan PE, Davies GC, Nau MM, Lipkowitz S. Regulating the regulator: negative regulation of Cbl ubiquitin ligases. Trends Biochem Sci 2006; 31:79-88. [PMID: 16406635 DOI: 10.1016/j.tibs.2005.12.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 11/16/2005] [Accepted: 12/20/2005] [Indexed: 11/29/2022]
Abstract
Cbl proteins are regulators of signal transduction through many pathways and, consequently, regulate cell function and development. They are ubiquitin ligases that ubiquitinate and target many signaling molecules for degradation. The Cbl proteins themselves are regulated by an increasingly complex network of interactions that fine-tune the effects that Cbl proteins have on signaling. The negative regulation of Cbl protein function can occur via cis-acting structural elements that prevent inappropriate ubiquitin ligase activity, degradation of the Cbl proteins, inhibition without degradation owing to interaction with other signaling proteins, deubiquitination of Cbl substrates, and regulation of assembly of the endosomal ESCRT-I complex. Defects in the regulatory mechanisms that control Cbl function are implicated in the development of immunological and malignant diseases.
Collapse
Affiliation(s)
- Philip E Ryan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
556
|
Abstract
c-Src was the first protooncogene described and was among the first molecules in which tyrosine kinase activity was documented. c-Src has been defined as a common modular structure that participates in much of the crosstalk between the cytoplasmic protein tyrosine kinases and tyrosine kinase receptors. Understanding the structure and function of this important class of protein kinases and elucidating the molecular signaling events mediated by c-Src are important not only for identifying the critical pathways but also for designing new strategies to block or inhibit the action of these kinases. Despite the large amount of information available on c-Src, its precise functions in cancer remain to be elucidated. Recently, there has been renewed interest in c-Src as a molecular target for cancer therapy, and multiple c-Src inhibitors are entering clinical trials. In this review, the authors describe the function and expression of c-Src in human malignancies and the novel c-Src inhibitors and their potential applications for cancer treatment.
Collapse
Affiliation(s)
- Ricardo H Alvarez
- Department of Internal Medicine, The University of Texas School of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
557
|
Avizienyte E, Frame MC. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol 2005; 17:542-7. [PMID: 16099634 DOI: 10.1016/j.ceb.2005.08.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 08/02/2005] [Indexed: 01/01/2023]
Abstract
Src kinase controls cellular adhesions, including cadherin-based intercellular adhesions and integrin-mediated cell-matrix adhesions. In epithelial cells, Src activation, or increased signalling from migratory growth factor receptors via Src, induces an adhesion switch that enhances dynamic cell-matrix adhesions and migratory capacity while suppressing intercellular contact. Moreover, Src and the associated tyrosine kinase FAK are at the heart of the recently identified crosstalk between integrin- and cadherin-mediated adhesions of epithelial cells, particularly during the epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Egle Avizienyte
- Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Glasgow G61 1BD, United Kingdom.
| | | |
Collapse
|
558
|
|
559
|
Fu SL, Huang YJ, Liang FP, Huang YF, Chuang CF, Wang SW, Yao JW. Malignant transformation of an epithelial cell by v-Src via tv-a-mediated retroviral infection: A new cell model for studying carcinogenesis. Biochem Biophys Res Commun 2005; 338:830-8. [PMID: 16256070 DOI: 10.1016/j.bbrc.2005.10.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 11/24/2022]
Abstract
Most human cancers are of epithelial origin, but many cell culture models for the study of cancer-causing genes use fibroblasts. In addition, efficient delivery and stable expression of foreign genes into non-transformed cell lines are often difficult. To address both questions, we here established a non-transformed rat kidney epithelial RK3E cell line that constitutively expresses tv-a (receptor for subgroup A avian leukosis virus, ALV) for delivery of foreign genes via avian retroviral infection. This cell line (RK3E/tv-a) allows efficient and stable expression of either single or multiple foreign genes. Furthermore, tv-a-mediated delivery of various oncogenes (v-src, H-ras, myc or akt) leads to malignant transformation. v-src-transformed cells exhibited classical cancerous phenotypes in vitro, and induced tumor formation and lung metastasis upon injecting into immunodeficient mice. Expression profiles of downstream molecular effectors (E-cadherin, beta-catenin, cyclin D1, Myc, VEGF, MMP-2, and MMP-9) in these cells correlate with characteristics of cancerous phenotypes. This new cell model serves as a useful tool to study cancer-causing genes in epithelial cell type.
Collapse
MESH Headings
- Animals
- Avian Proteins/genetics
- Avian Proteins/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Oncogene Protein pp60(v-src)/genetics
- Oncogene Protein pp60(v-src)/metabolism
- Rats
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Retroviridae/genetics
- Retroviridae/metabolism
- Transfection/methods
Collapse
Affiliation(s)
- Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, 155, Sec.2, Li-Nong St., Taipei 11221, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
560
|
Ducker CE, Upson JJ, French KJ, Smith CD. Two N-myristoyltransferase isozymes play unique roles in protein myristoylation, proliferation, and apoptosis. Mol Cancer Res 2005; 3:463-76. [PMID: 16123142 PMCID: PMC2908404 DOI: 10.1158/1541-7786.mcr-05-0037] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
N-myristoyltransferases (NMT) add myristate to the NH(2) termini of certain proteins, thereby regulating their localization and/or biological function. Using RNA interference, this study functionally characterizes the two NMT isozymes in human cells. Unique small interfering RNAs (siRNA) for each isozyme were designed and shown to decrease NMT1 or NMT2 protein levels by at least 90%. Ablation of NMT1 inhibited cell replication associated with a loss of activation of c-Src and its target FAK as well as reduction of signaling through the c-Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays showed that depletion of either NMT isozyme induced apoptosis, with NMT2 having a 2.5-fold greater effect than NMT1. Western blot analyses revealed that loss of NMT2 shifted the expression of the BCL family of proteins toward apoptosis. Finally, intratumoral injection of siRNA for NMT1 or for both NMT1 and NMT2 inhibited tumor growth in vivo, whereas the same treatment with siRNA for NMT2 or negative control siRNA did not. Overall, the data indicate that NMT1 and NMT2 have only partially overlapping functions and that NMT1 is critical for tumor cell proliferation.
Collapse
Affiliation(s)
- Charles E. Ducker
- Apogee Biotechnology Corporation, Penn State College of Medicine, Hershey, Pennsylvania
| | - John J. Upson
- Apogee Biotechnology Corporation, Penn State College of Medicine, Hershey, Pennsylvania
| | - Kevin J. French
- Apogee Biotechnology Corporation, Penn State College of Medicine, Hershey, Pennsylvania
| | - Charles D. Smith
- Apogee Biotechnology Corporation, Penn State College of Medicine, Hershey, Pennsylvania
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
561
|
Chiang GJ, Billmeyer BR, Canes D, Stoffel J, Moinzadeh A, Austin CA, Kosakowski M, Rieger-Christ KM, Libertino JA, Summerhayes IC. The src-family kinase inhibitor PP2 suppresses the in vitro invasive phenotype of bladder carcinoma cells via modulation of Akt. BJU Int 2005; 96:416-22. [PMID: 16042741 DOI: 10.1111/j.1464-410x.2005.05642.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To evaluate PP2 as a modulator of the cadherin/catenin complex in late-stage bladder carcinoma cells, and to assess its potential invasion-suppressor activity in this model. MATERIALS AND METHODS A panel of five human bladder carcinoma cells, characterizing late-stage disease, was used to determine the concentration for 50% inhibition of PP2 in cell-proliferation assays. Modulation of cadherin/catenin expression by PP2 was determined in Western blot analysis, with an assessment of the activation status of mitogen-activated protein kinase and Akt signalling pathways. Altered invasive capacity linked to these variables was determined in standard in vitro invasion assays. RESULTS PP2 elicited concentration-dependent growth inhibition in all bladder cell lines within the panel, with growth suppression recorded at 10-35 micromol/L PP2. Distinct morphological changes were recorded in cell lines exposed to PP2, accompanied by up-regulation of plakoglobin expression in a subset of lines. Exposure of cells to PP2 resulted in inactivation of Akt in all cells and a concomitant reduction in in vitro invasive capacity. CONCLUSIONS These results show that PP2 inhibits bladder carcinoma cell growth and can modulate plakoglobin expression in a subset of cell lines. In addition, PP2 can suppress the in vitro invasive capacity of bladder carcinoma cells by modulating the activation status of Akt.
Collapse
Affiliation(s)
- George J Chiang
- Department of Urology, Lahey Clinic Medical Center, Burlington, MA 01805, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
562
|
Chong YP, Ia KK, Mulhern TD, Cheng HC. Endogenous and synthetic inhibitors of the Src-family protein tyrosine kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:210-20. [PMID: 16198159 DOI: 10.1016/j.bbapap.2005.07.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 07/14/2005] [Accepted: 07/15/2005] [Indexed: 12/28/2022]
Abstract
Src-family kinases (SFKs) are protooncogenic enzymes controlling mammalian cell growth and proliferation. The activity of SFKs is primarily regulated by two tyrosine phosphorylation sites: autophosphorylation of a conserved tyrosine (Y(A)) in the kinase domain results in activation while phosphorylation of the regulatory tyrosine (Y(T)) near the C-terminus leads to inactivation. The phosphorylated Y(T) (pY(T)) engages in intramolecular interactions that stabilise the inactive conformation of SFKs. These inhibitory intramolecular interactions include the binding of pY(T) to the SH2 domain and the binding of the SH2-kinase linker to the SH3 domain. Thus, SFKs are active upon (i) disruption of the inhibitory intramolecular interactions, (ii) autophosphorylation of Y(A) and/or (iii) dephosphorylation of pY(T). Since aberrant activation of SFKs contributes to cancer, SFKs in normal cells are kept inactive by multiple endogenous inhibitors classified as catalytic and non-catalytic inhibitors. The catalytic inhibitors include C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) that phosphorylate Y(T) of SFKs, as well as the protein tyrosine phosphatases that dephosphorylate pY(A) of the activated SFKs. The non-catalytic inhibitors inactivate SFKs by direct binding. CHK is unique among these inhibitors because it employs both catalytic and non-catalytic mechanisms to inhibit SFKs. Other known non-catalytic inhibitors include WASP, caveolin and RACK1, which function to down-regulate SFKs in specific subcellular locations. This review discusses how the various endogenous SFK inhibitors cooperate to regulate SFKs in normal cells. As chemical compounds that can selectively inhibit SFKs in vivo are potential anti-cancer therapeutics, this review also discusses how investigation into the inhibitory mechanisms of the endogenous inhibitors will benefit the design and screening of these compounds.
Collapse
Affiliation(s)
- Yuh-Ping Chong
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
563
|
Bhatt AS, Erdjument-Bromage H, Tempst P, Craik CS, Moasser MM. Adhesion signaling by a novel mitotic substrate of src kinases. Oncogene 2005; 24:5333-43. [PMID: 16007225 PMCID: PMC3023961 DOI: 10.1038/sj.onc.1208582] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Src kinases are activated and relocalize to the cytoplasm during mitosis, but their mitotic function has remained elusive. We describe here a novel mitotic substrate of src kinases. Trask (transmembrane and associated with src kinases) is a 140 kDa type I transmembrane glycoprotein unrelated to currently known protein families. Src kinases phosphorylate Trask in vitro and mediate its mitotic hyperphosphorylation in vivo. Trask associates with both yes and src, is localized to the cell membrane during interphase, and undergoes cytoplasmic relocalization during mitosis. Overexpression of Trask leads to cell rounding and a loss of adhesion phenotype. Consistent with a function in cell adhesion, Trask interacts with a number of adhesion and matrix proteins including cadherins, syndecans, and the membrane-type serine protease 1 (MT-SP1), and is proteolytically cleaved by MT-SP1. Trask is unique among cell adhesion molecules in that it is under cell cycle regulation and thus links src kinases with the mitotic regulation of cell adhesion. This suggests a potential pathway by which hyperactive src kinases in tumors can deregulate adhesion signaling and mediate the metastatic phenotype.
Collapse
Affiliation(s)
- Ami S Bhatt
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
564
|
Chong YP, Mulhern TD, Cheng HC. C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)--endogenous negative regulators of Src-family protein kinases. Growth Factors 2005; 23:233-44. [PMID: 16243715 DOI: 10.1080/08977190500178877] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are endogenous inhibitors of the Src-family protein tyrosine kinases (SFKs). Since constitutive activation of SFKs contributes to cancer formation and progression, to prevent excessive activation of SFKs, their activity in normal cells is kept at the basal level by CSK and CHK. CSK and CHK inactivate SFKs by specifically phosphorylating a consensus tyrosine (called Y(T)) near their C-termini. Upon phosphorylation, the phospho-Y(T) engages in intramolecular interactions that lock the SFK molecule in an inactive conformation. SFKs are anchored to the plasma membrane, while CSK and CHK are localized predominantly in the cytosol. To inhibit SFKs, CSK and CHK need to translocate to the plasma membrane. Recruitment of CSK and CHK to the plasma membrane is mediated by the binding of their SH2, SH3 and/or kinase domains to specific transmembrane proteins, G-proteins and adaptor proteins located near the plasma membrane. For CSK, membrane recruitment often accompanies activation. CSK and CHK employ two types of direct interactions with SFKs to achieve efficient Y(T) phosphorylation: (i) short-range interactions involving binding of the active sites of CSK and CHK to specific residues near Y(T), (ii) long-range non-catalytic interactions involving binding of SFKs to motifs located distally from the active sites of CSK and CHK. The interactions between CSK and SFKs are transient in nature. Unlike CSK, CHK binds tightly to SFKs to form stable protein complexes. The binding is non-catalytic as it is independent of Y(T). More importantly, the tight binding alone is sufficient to completely inhibit SFKs. This non-catalytic inhibitory binding represents a novel mechanism employed by CHK to inhibit SFKs. Given that SFKs are implicated in cancer development, compounds mimicking the non-catalytic inhibitory mechanism of CHK are potential anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yuh-Ping Chong
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Department of Biochemistry and Molecular Biology, Parkville, Victoria, Australia
| | | | | |
Collapse
|
565
|
Wymann MP, Marone R. Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol 2005; 17:141-9. [PMID: 15780590 DOI: 10.1016/j.ceb.2005.02.011] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
When PI3Ks are deregulated by aberrant surface receptors or modulators, accumulation of PtdIns(3,4,5)P3 leads to increased cell growth, proliferation and contact-independent survival. The PI3K/PKB/TOR axis controls protein synthesis and growth, while PtdIns(3,4,5)P3-mediated activation of Rho GTPases directs cell motility. PI3K activity has been linked to the formation of tumors, metastasis, chronic inflammation, allergy and cardiovascular disease. Although increased PtdIns(3,4,5)P3 is a well-established cause of disease, it is seldom known which PI3K isoform is implied. Recent work has demonstrated that PI3Kgamma contributes to the control of cAMP levels in the cardiac system, where the protein acts as a scaffold, but not as a lipid kinase.
Collapse
Affiliation(s)
- Matthias P Wymann
- Inst. Biochemistry and Genetics, Dept. Clinical and Biological Sciences, Centre of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel.
| | | |
Collapse
|
566
|
Jeansonne DP, Bordes TJ, Bennett CA, Kothandaraman G, Bush JG, Vaccaro JA. A rapid ATP affinity-based purification for the human non-receptor tyrosine kinase c-Src. Protein Expr Purif 2005; 46:240-7. [PMID: 16325419 DOI: 10.1016/j.pep.2005.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 12/29/2022]
Abstract
The non-receptor tyrosine kinase c-Src plays a central role in a variety of cell signaling pathways that regulate cell growth, differentiation, apoptosis, and other important cellular processes. An 85-amino acid N-terminal deletion construct of c-Src (DeltaN85 c-Src) has been structurally characterized and used extensively in biochemical and biophysical studies. In this report, we have established a relatively rapid, simplified purification of DeltaN85 c-Src from recombinant baculovirus-infected insect cells. Q-Sepharose anion-exchange and aminophenyl-ATP affinity chromatography were used to isolate 5mg of >98% pure DeltaN85 c-Src from 900 mg of total soluble protein. The specific activity of DeltaN85 c-Src (20 U mg(-1)) was found to be >or = 5-fold greater than previously reported values. A lag in the autophosphorylation kinetics of DeltaN85 c-Src was observed, and the reaction occurred with observed first-order rate constants k1=0.20+/-0.01 min(-1) and k2=0.38+/-0.01 min(-1) under the experimental conditions used. Steady-state kinetic analysis of peptide phosphorylation by DeltaN85 c-Src gave Km values of 99+/-23 microM and 190+/-30 microM for the peptide and ATP substrates, respectively, and a value of k(cat)=17+/-2s(-1). Overall, we present a dramatically improved purification strategy that represents a simplified, relatively rapid protocol for the isolation of milligram quantities of DeltaN85 c-Src required for rigorous structure-function and inhibition studies that rely on a pre-steady-state kinetic approach.
Collapse
Affiliation(s)
- Duane P Jeansonne
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Avenue SL 43, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
567
|
Yang CM, Lin MI, Hsieh HL, Sun CC, Ma YH, Hsiao LD. Bradykinin-induced p42/p44 MAPK phosphorylation and cell proliferation via Src, EGF receptors, and PI3-K/Akt in vascular smooth muscle cells. J Cell Physiol 2005; 203:538-46. [PMID: 15573401 DOI: 10.1002/jcp.20250] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
568
|
Karni R, Gus Y, Dor Y, Meyuhas O, Levitzki A. Active Src elevates the expression of beta-catenin by enhancement of cap-dependent translation. Mol Cell Biol 2005; 25:5031-9. [PMID: 15923620 PMCID: PMC1140589 DOI: 10.1128/mcb.25.12.5031-5039.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The proto-oncogene pp60(c-Src) (c-Src) is activated in many types of cancer and contributes to the transformed phenotype of the tumor, although its role is not yet fully understood. Here we report that active Src elevates the levels of beta-catenin by enhancing cap-dependent translation. Src induces phosphorylation of the eukaryotic initiation factor 4E via the Ras/Raf/ERK pathway and the phosphorylation of its inhibitor 4E-BP1 via the PI3K/mTOR pathway. Activated Src enhances the accumulation of nuclear beta-catenin and enhances its transcriptional activity, elevating target genes such as cyclin D1. This novel activation of the Wnt pathway by Src most probably contributes to the oncogenic phenotype of cancer cells.
Collapse
Affiliation(s)
- Rotem Karni
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
569
|
Lee BC, Lee TH, Zagozdzon R, Avraham S, Usheva A, Avraham HK. Carboxyl-terminal Src kinase homologous kinase negatively regulates the chemokine receptor CXCR4 through YY1 and impairs CXCR4/CXCL12 (SDF-1alpha)-mediated breast cancer cell migration. Cancer Res 2005; 65:2840-5. [PMID: 15805285 DOI: 10.1158/0008-5472.can-04-3309] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using microarray gene analysis, we found that carboxyl-terminal Src kinase homologous kinase (CHK) regulated the expression of the chemokine receptor, CXCR4. Northern blot and fluorescence-activated cell-sorting analyses showed that CHK down-regulated CXCR4 mRNA and protein levels, respectively. Mutated CHK, which contains a mutation within the ATP binding site of CHK, failed to inhibit CXCR4 expression, thus suggesting that CHK kinase activity is involved in the regulation of CXCR4. Results from gel shift analysis indicated that CHK regulates CXCR4 transcriptional activity by altering YY1 binding to the CXCR4 promoter. Whereas CHK had no significant effects on the expression of YY1, c-Myc, Max, and other YY1-binding proteins, CHK was found to modulate the YY1/c-Myc association. Furthermore, CHK inhibited CXCR4-positive breast cancer cell migration. Taken together, these studies show a novel mechanism by which CHK down-regulates CXCR4 through the YY1 transcription factor, leading to decreased CXCR4-mediated breast cancer cell motility and migration.
Collapse
Affiliation(s)
- Byeong-Chel Lee
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
570
|
Fujimoto E, Sato H, Shirai S, Nagashima Y, Fukumoto K, Hagiwara H, Negishi E, Ueno K, Omori Y, Yamasaki H, Hagiwara K, Yano T. Connexin32 as a tumor suppressor gene in a metastatic renal cell carcinoma cell line. Oncogene 2005; 24:3684-90. [PMID: 15782139 DOI: 10.1038/sj.onc.1208430] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 12/03/2004] [Accepted: 12/06/2004] [Indexed: 02/07/2023]
Abstract
Connexin genes expressing gap junction proteins have tumor-suppressive effects on primary cancers with certain cell specificity, but the suppressive effects on metastatic cancers are still conflicting. In this study, we show that connexin32 (Cx32) has a strong tumor-suppressive effect on a human metastatic renal cell carcinoma cell line (Caki-1 cell). Cx32 expression in Caki-1 cells reduced in vitro malignant phenotypes of the cells such as anchorage independency and invasion capacity. Furthermore, the Cx32 expression drastically reduced the development of Caki-1 cells in nude mice. We also determined that Cx32 reduced the malignant phenotypes in Caki-1 cells mainly through the inactivation of Src signaling. Especially, Cx32-dependent inactivation of Src decreased the production of vascular epithelial growth factor (VEGF) via the suppression of signal transducers and activators of transcription 3 (Stat3) activation, and we confirmed this result using short interfering RNA. In nude mice, Cx32-transfected Caki-1 cells showed lower serum level of VEGF comparing mock transfectant, and the development of the cells in nude mice positively related to the VEGF level. These data suggest that Cx32 acts as a tumor suppressor gene in Caki-1 cells and that the tumor-suppressive effect partly depends on the inhibition of Src-Stat3-VEGF signal pathway.
Collapse
Affiliation(s)
- Eriko Fujimoto
- Department of Food Science Research for Health, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku, 162-8636 Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
571
|
Roskoski R. Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 2005; 331:1-14. [DOI: 10.1016/j.bbrc.2005.03.012] [Citation(s) in RCA: 385] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Indexed: 02/07/2023]
|
572
|
Zheng R, Yano S, Matsumori Y, Nakataki E, Muguruma H, Yoshizumi M, Sone S. Src Tyrosine Kinase Inhibitor, M475271, Suppresses Subcutaneous Growth and Production of Lung Metastasis Via Inhibition of Proliferation, Invasion, and Vascularization of Human Lung Adenocarcinoma Cells. Clin Exp Metastasis 2005; 22:195-204. [PMID: 16158247 DOI: 10.1007/s10585-005-7768-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
Src, a proto-oncogene, has been strongly implicated in the growth, progression and metastasis of a number of human cancers. Its role in lung cancer is, however, still unknown. In the present study, we assessed the expression of Src in three different human lung adenocarcinoma cell lines (PC-9, PC14PE6, A549), and explored the effect of a novel Src kinase inhibitor, M475271, on the behavior of the cell lines. The three cell lines expressed various levels of auto-phosphorylated Src. While M475271 reduced Src-phosphorylation and invasiveness of all three cell lines, it inhibited the proliferation of PC-9 and A549 cells with highly phosphorylated Src, but not PC14PE6 cells. We further examined the effect of M475271 on subcutaneous tumors and lung metastasis caused by PC-9 and/or A549 cells in NK-cell depleted SCID mice. Daily oral treatment with M475271 inhibited the growth of subcutaneous tumors with PC-9 and A549 cells via inhibition of tumor cells proliferation, VEGF production and/or vascularization in the mice in a dose-dependent manner. In the metastasis model with A549 cells, the lung weight in the M475271 (50 mg/kg)-treated group was less than that of the control group, despite no difference in the number of metastatic nodules. Our results suggest that inhibition of tyrosine kinase Src by M475271 could reduce the growth, invasion and VEGF-mediated neovascularization of lung adenocarcinoma cells, resulting in inhibition of growth of subcutaneous tumors and lung metastasis. Therefore, a novel Src tyrosine kinase inhibitor, M475271, might be helpful for controlling the progression of human lung adenocarcinoma.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Internal Medicine and Molecular Therapeutics, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
573
|
Fujimoto E, Sato H, Nagashima Y, Negishi E, Shirai S, Fukumoto K, Hagiwara H, Hagiwara K, Ueno K, Yano T. A Src family inhibitor (PP1) potentiates tumor-suppressive effect of connexin 32 gene in renal cancer cells. Life Sci 2005; 76:2711-20. [PMID: 15792837 DOI: 10.1016/j.lfs.2004.10.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 10/07/2004] [Indexed: 11/21/2022]
Abstract
Connexin (Cx) genes exert negative growth effects on tumor cells with certain cell specificity. We have recently reported that Cx32 acts as a tumor suppressor gene in renal cancer cells due to the inhibition of Src-dependent signaling. In line with the previous study, here we examined if a Src family inhibitor (PP1) could potentiate tumor-suppressive effect of Cx32 in Caki-2 cell from human renal cell carcinoma. In order to clarify the potentialization of PP1, using Cx32-transfected Caki-2 cells and mock-transfected Caki-2 cells, we estimated difference in cytotoxic effect of PP1 on the two cell clones in vitro as well as in vivo. PP1 showed more cytotoxic effect on Caki-2 cells having Cx32 positive expression than that of Cx32 negative expression at lower doses. This potentialization was also observed in xenograft model of nude mice. The potentialization of the effect mainly depended on the induction of apoptosis but not the control of cell growth. In conjugation with this event, the reduction of anti-apoptotic molecules (Bcl-2 and Bcl-xL) was caused by the combination of Cx32 expression and PP1 treatment in Caki-2 cells. These results suggest that PP1 potentiates tumor-suppressive effect of connexin 32 gene in renal cancer cells through the reduction of anti-apoptotic molecules.
Collapse
Affiliation(s)
- Eriko Fujimoto
- Department of Food Science Research for Health, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; Faculty of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
574
|
Alessandro R, Flugy AM, Russo D, Stassi G, De Leo A, Corrado C, Alaimo G, De Leo G. Identification and phenotypic characterization of a subpopulation of T84 human colon cancer cells, after selection on activated endothelial cells. J Cell Physiol 2005; 203:261-72. [PMID: 15484219 DOI: 10.1002/jcp.20236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The extravasation of metastatic cells is regulated by molecular events involving the initial adhesion of tumor cells to the endothelium and subsequently the migration of the cells in the host connective tissue. The differences in metastatic ability could be attributed to properties intrinsic of the various primary tumor types. Thus, the clonal selection of neoplastic cells during cancer progression results in cells better equipped for survival and formation of colonies in secondary sites. A cell line (T84SF) exhibiting an altered phenotypic appearance was selected from a colon cancer cell line (T84) by repetitive plating on TNFalpha-activated human endothelial cells and subsequent selection for adherent cells. Cell growth, motility, chemoinvasive abilities, tyrosine phosphorylation signaling, and the metastasis formation in nude mice of the two cell lines was compared. T84SF cells displayed in vitro an higher proliferation rate and a more invasive behavior compared to the parental cells while formed in vivo a greater number of metastatic colonies in nude mice. As concerns the signaling underlying the phenotypes of the selected cells, we examined the general tyrosine phosphorylation levels in both cell lines. Our results indicate that T84SF have an increased basal tyrosine phosphorylation of several proteins among which src kinase was identified. Treatment of cells with a specific inhibitor of src activity caused a greater in vitro inhibition of proliferation and invasive properties of T84 parental cells with respect to T84SF cells and diminished metastasis formation in vivo. Altogether, these data provide evidences that this new cell line may be valuable for identifying molecular mechanisms involved in the metastatic progression of colon cancer.
Collapse
Affiliation(s)
- R Alessandro
- Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
575
|
Tan M, Li P, Klos KS, Lu J, Lan KH, Nagata Y, Fang D, Jing T, Yu D. ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis. Cancer Res 2005; 65:1858-67. [PMID: 15753384 DOI: 10.1158/0008-5472.can-04-2353] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of Src kinase plays important roles in the development of many neoplasias. Most of the previous Src studies focused on the deregulation of Src kinase activity. The deregulated Src protein synthesis and stability in mediating malignant phenotypes of cancer cells, however, have been neglected. While investigating the signal transduction pathways contributing to ErbB2-mediated metastasis, we found that ErbB2-activated breast cancer cells that had higher metastatic potentials also had increased Src activity compared with ErbB2 low-expressing cells. The increased Src activity in ErbB2-activated cells paralleled higher Src protein levels, whereas Src RNA levels were not significantly altered. Our studies revealed two novel mechanisms that are involved in Src protein up-regulation and activation by ErbB2: (a) ErbB2 increased Src translation through activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway and (b) ErbB2 increased Src stability most likely through the inhibition of the calpain protease. Furthermore, inhibition of Src activity by a Src-specific inhibitor, PP2, or a Src dominant-negative mutant dramatically reduced ErbB2-mediated cancer cell invasion in vitro and metastasis in an experimental metastasis animal model. Together, activation of ErbB2 and downstream signaling pathways can lead to increased Src protein synthesis and decreased Src protein degradation resulting in Src up-regulation and activation, which play critical roles in ErbB2-mediated breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Ming Tan
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
576
|
Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S, Hippe F, Vatter S, Merz KH, Eisenbrand G, Jove R. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci U S A 2005; 102:5998-6003. [PMID: 15837920 PMCID: PMC1087919 DOI: 10.1073/pnas.0409467102] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stat3 protein has an important role in oncogenesis and is a promising anticancer target. Indirubin, the active component of a traditional Chinese herbal medicine, has been shown previously to inhibit cyclin-dependent kinases, resulting in cell cycle arrest. Here, we show that the indirubin derivatives E564, E728, and E804 potently block constitutive Stat3 signaling in human breast and prostate cancer cells. In addition, E804 directly inhibits Src kinase activity (IC(50) = 0.43 microM) in an in vitro kinase assay. Levels of tyrosyl phosphorylation of c-Src are also reduced in cultured cells 30 min after E804 treatment. Tyrosyl phosphorylation of Stat3, which is known to be phosphorylated by c-Src, was decreased, and constitutive Stat3 DNA binding-activity was suppressed in cells 30 min after E804 treatment. The antiapoptotic proteins Mcl-1 and Survivin, which are encoded in target genes of Stat3, were down-regulated by indirubin derivatives, followed by induction of apoptosis. These results demonstrate that E804 directly blocks the Src-Stat3 signaling pathway, suggesting that the antitumor activity of indirubin compounds is at least partially due to inhibition of this pathway.
Collapse
Affiliation(s)
- Sangkil Nam
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
577
|
Furumoto Y, Gonzalez-Espinosa C, Gomez G, Kovarova M, Odom S, Parravicini V, Ryana JJ, Rivera J. Rethinking the role of Src family protein tyrosine kinases in the allergic response: new insights on the functional coupling of the high affinity IgE receptor. Immunol Res 2005; 30:241-53. [PMID: 15477664 DOI: 10.1385/ir:30:2:241] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antigen-induced cross-linking of immunoglobulin E (IgE) antibodies bound to the high-affinity IgE receptor (FcepsilonRI), on mast cells results in the release of mediators that initiate an inflammatory response. This normal immune response has been abducted by immunological adaptation, through the production of IgE antibodies to normally innocuous substances, to cause allergic disease. Therefore, understanding the molecular requirements in IgE-dependent mast-cell activation holds promise for therapeutic intervention in disease. Recent investigation on the functional coupling of FcepsilonRI to the intracellular signaling apparatus has provided paradigm-altering insights on the importance and function of Src family protein tyrosine kinases (Src PTK) in mast-cell activation. In this synopsis, we review the current knowledge on the role of the Src PTKs, Fyn and Lyn, in mast-cell activation and discuss the implications of our findings on allergic disease.
Collapse
Affiliation(s)
- Yasuko Furumoto
- Molecular Inflammation Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
578
|
Trtková K, Plachý J. Deletions in the DNA-binding domain of the TP53 gene in v-src-transformed chicken cells. In Vitro Cell Dev Biol Anim 2005; 40:285-92. [PMID: 15723564 DOI: 10.1290/0312091.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have examined the chicken TP53 tumor suppressor gene in v-src-transformed chicken tumor cells by reverse transcriptase-polymerase chain reaction and deoxyribonucleic acid (DNA) sequencing. Initially, we have detected frequent deletions of variable length in both DNA-binding and oligomerization domains of the TP53 in late as well as early in vitro passages of the chicken tumor cell line PR9692. This tumor cell line shows an immortal phenotype and acquires a metastatic potential that is unique in our experimental model of v-src-induced tumors in congenic chickens. Deletions in TP53 were also detected in an early passage of parallel in vivo subculture of the original v-src-induced tumor. In this case, tumor cells underwent replicative senescence later in tissue culture. Our results suggest that extensive deletions are efficient mechanisms of TP53 inactivation, occurring as early events during the immortalization of v-src-transformed chicken cells. Tumor cells with altered TP53 might, however, still be susceptible to growth control mechanisms, leading to withdrawal from the mitotic cycle in the early stage of the tumor lifeline.
Collapse
Affiliation(s)
- Katerina Trtková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 37 Prague, Czech Republic
| | | |
Collapse
|
579
|
McCarty MF. Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy. Integr Cancer Ther 2005; 3:349-80. [PMID: 15523106 DOI: 10.1177/1534735404270757] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aberrant behavior of cancer reflects upregulation of certain oncogenic signaling pathways that promote proliferation, inhibit apoptosis, and enable the cancer to spread and evoke angiogenesis. Theoretically, it should be feasible to decrease the activity of these pathways-or increase the activity of pathways that oppose them-with noncytotoxic agents. Since multiple pathways are dysfunctional in most cancers, and cancers accumulate new oncogenic mutations as they progress, the greatest and most durable therapeutic benefit will likely be achieved with combination regimens that address several targets. Thus, a multifocal signal modulation therapy (MSMT) of cancer is proposed. This concept has already been documented by researchers who have shown that certain combinations of signal modulators-of limited utility when administered individually-can achieve dramatic suppression of tumor growth in rodent xenograft models. The present essay attempts to guide development of MSMTs for prostate cancer. Androgen ablation is a signal-modulating measure already in standard use in the management of delocalized prostate cancer. The additional molecular targets considered here include the type 1 insulin-like growth factor receptor, the epidermal growth factor receptor, mammalian target of rapamycin, NF-kappaB, hypoxia-inducible factor-1alpha, hsp90, cyclooxygenase-2, protein kinase A type I, vascular endothelial growth factor, 5-lipoxygenase, 12-lipoxygenase, angiotensin II receptor type 1, bradykinin receptor type 1, c-Src, interleukin-6, ras, MDM2, bcl-2/bclxL, vitamin D receptor, estrogen receptor-beta, and PPAR-. Various nutrients and phytochemicals suspected to have potential utility in prostate cancer prevention and therapy, but whose key molecular targets are still unknown, might reasonably be incorporated into MSMTs for prostate cancer; these include lycopene, selenium, green tea polyphenols, genistein, and silibinin. MSMTs can be developed systematically by testing various combinations of signal-modulating agents, in concentrations that can feasibly be achieved and maintained clinically, on human prostate cancer cell lines; combinations that appear promising can then be tested in xenograft models and, ultimately, in the clinic. Some signal modulators can increase response to cytotoxic drugs by upregulating effectors of apoptosis. When MSMTs fail to raise the spontaneous apoptosis rate sufficiently to achieve tumor stasis or regression, incorporation of appropriate cytotoxic agents into the regimen may improve the clinical outcome.
Collapse
|
580
|
Christine R, Sylvie R, Erik B, Geneviève P, Amélie R, Gérard R, Marc B, Christian G, Samir A. Implication of STAT3 Signaling in Human Colonic Cancer Cells during Intestinal Trefoil Factor 3 (TFF3) – and Vascular Endothelial Growth Factor–Mediated Cellular Invasion and Tumor Growth. Cancer Res 2005. [DOI: 10.1158/0008-5472.195.65.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Signal transducer and activator of transcription (STAT) 3 is overexpressed or activated in most types of human tumors and has been classified as an oncogene. In the present study, we investigated the contribution of the STAT3s to the proinvasive activity of trefoil factors (TFF) and vascular endothelial growth factor (VEGF) in human colorectal cancer cells HCT8/S11 expressing VEGF receptors. Both intestinal trefoil peptide (TFF3) and VEGF, but not pS2 (TFF1), activate STAT3 signaling through Tyr705 phosphorylation of both STAT3α and STAT3β isoforms. Blockade of STAT3 signaling by STAT3β, depletion of the STAT3α/β isoforms by RNA interference, and pharmacologic inhibition of STAT3α/β phosphorylation by cucurbitacin or STAT3 inhibitory peptide abrogates TFF- and VEGF-induced cellular invasion and reduces the growth of HCT8/S11 tumor xenografts in athymic mice. Differential gene expression analysis using DNA microarrays revealed that overexpression of STAT3β down-regulates the VEGF receptors Flt-1, neuropilins 1 and 2, and the inhibitor of DNA binding/differentiation (Id-2) gene product involved in the neoplastic transformation. Taken together, our data suggest that TFF3 and the essential tumor angiogenesis regulator VEGF165 exert potent proinvasive activity through STAT3 signaling in human colorectal cancer cells. We also validate new therapeutic strategies targeting STAT3 signaling by pharmacologic inhibitors and RNA interference for the treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Rivat Christine
- 1Institut National de la Sante et de la Recherche Medicale U482, Hôpital Saint-Antoine, Paris, France
| | - Rodrigues Sylvie
- 1Institut National de la Sante et de la Recherche Medicale U482, Hôpital Saint-Antoine, Paris, France
| | - Bruyneel Erik
- 2Laboratory of Experimental Cancerology, University Hospital, Gent, Belgium; and
| | | | | | - Redeuilh Gérard
- 1Institut National de la Sante et de la Recherche Medicale U482, Hôpital Saint-Antoine, Paris, France
| | - Bracke Marc
- 1Institut National de la Sante et de la Recherche Medicale U482, Hôpital Saint-Antoine, Paris, France
| | - Gespach Christian
- 1Institut National de la Sante et de la Recherche Medicale U482, Hôpital Saint-Antoine, Paris, France
| | - Attoub Samir
- 1Institut National de la Sante et de la Recherche Medicale U482, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
581
|
Wu SS, Yamauchi K, Rozengurt E. Bombesin and angiotensin II rapidly stimulate Src phosphorylation at Tyr-418 in fibroblasts and intestinal epithelial cells through a PP2-insensitive pathway. Cell Signal 2005; 17:93-102. [PMID: 15451029 DOI: 10.1016/j.cellsig.2004.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
Src is activated in response to a variety of growth factors and hormones that bind G protein-coupled receptors (GPCRs), and its activity is regulated by phosphorylation at key sites, including the autophosphorylation site Tyr-418 and the inhibitory site Tyr-529. To better understand the mechanisms controlling Src activation, we examined Src phosphorylation in Swiss 3T3 fibroblasts stimulated with bombesin and in IEC-18 intestinal epithelial cells stimulated with angiotensin II (Ang II). Phosphorylation at Src Tyr-418, the activation loop site, was rapidly and markedly increased after GPCR agonist addition in both cell types. However, treatment of intact cells with the selective Src family kinase inhibitor PP2, at concentrations which abolished Src-mediated phosphorylation of focal adhesion kinase (FAK) at Tyr-577, unexpectedly led to increased phosphorylation at Src Tyr-418 and diminished phosphorylation at Tyr-529. In Swiss 3T3 cells, PP2 enhanced Tyr-418 phosphorylation after 1 min of bombesin stimulation, while in IEC-18 cells, PP2 increased Ang II-stimulated Tyr-418 phosphorylation at all times tested. These results imply that a distinct, non-Src family kinase may be responsible for phosphorylating Src at Tyr-418 in intact fibroblasts and epithelial cells stimulated by GPCR agonists.
Collapse
Affiliation(s)
- Steven S Wu
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
582
|
Heiska L, Carpén O. Src phosphorylates ezrin at tyrosine 477 and induces a phosphospecific association between ezrin and a kelch-repeat protein family member. J Biol Chem 2004; 280:10244-52. [PMID: 15623525 DOI: 10.1074/jbc.m411353200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ezrin, a linker between plasma membrane and actin cytoskeleton possesses morphogenic properties and can promote dissemination of tumor cells. Ezrin is phosphorylated on tyrosine, but a detailed picture of the signaling pathways involved in this modification is lacking. The transforming tyrosine kinase Src has various cytoskeletal substrates and is involved in regulation of cellular adhesion. We studied the role of Src in tyrosine phosphorylation of ezrin in adherent cells. We show that ezrin is phosphorylated in human embryonic kidney 293 cells in a Src family-dependent way. In SYF cells lacking Src, Yes, and Fyn, ezrin was not tyrosine-phosphorylated but reintroduction of wild-type Src followed by Src activation or introduction of active Src restored phosphorylation. Mapping of the Src-catalyzed tyrosine in vitro and in vivo by site-directed mutagenesis demonstrated Tyr(477) as the primary target residue. We generated a pTyr(477)-phosphospecific antibody, which confirmed that Tyr(477) becomes phosphorylated in cells in a Src-dependent manner. Tyr(477) phosphorylation did not affect ezrin head-to-tail association or phosphorylation of ezrin on threonine 566, indicating that the function of Tyr(477) phosphorylation is not related to the intramolecular regulation of ezrin. A modified yeast two-hybrid screen in which ezrin bait was phosphorylated by Src identified a novel interaction with a kelch-repeat protein family member, KBTBD2 (Kelch-repeat and BTB/POZ domain containing 2). The Src dependence of the interaction was further verified by affinity precipitation assays. Identification of a functional interplay with Src opens novel avenues for further characterization of the biological activities of ezrin.
Collapse
Affiliation(s)
- Leena Heiska
- Department of Pathology, Neuroscience Program, Biomedicum Helsinki, University of Helsinki and Helsinki University Hospital, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
583
|
Schenone S, Bruno O, Ranise A, Bondavalli F, Brullo C, Fossa P, Mosti L, Menozzi G, Carraro F, Naldini A, Bernini C, Manetti F, Botta M. New pyrazolo[3,4-d]pyrimidines endowed with A431 antiproliferative activity and inhibitory properties of Src phosphorylation. Bioorg Med Chem Lett 2004; 14:2511-7. [PMID: 15109642 DOI: 10.1016/j.bmcl.2004.03.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 02/23/2004] [Accepted: 03/01/2004] [Indexed: 11/30/2022]
Abstract
New 4-aminopyrazolo[3,4-d]pyrimidines bearing various substituents at the position 1 and 6, were synthesized. The new compounds showed antiproliferative activity toward A431 cells, were found to be inhibitors of Src phosphorylation, and induced apoptotic cell death. In particular, 2h was a better inhibitor of Src phosphorylation than the reference compound PP2.
Collapse
Affiliation(s)
- S Schenone
- Dipartimento di Scienze Farmaceutiche, Università di Genova, Viale Benedetto XV, I-16132 Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
584
|
Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res 2004; 10:2307-18. [PMID: 15073106 DOI: 10.1158/1078-0432.ccr-1183-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We tested the hypotheses that Src tyrosine kinase overactivity represents a chemoresistance mechanism and that Src inhibition may enhance gemcitabine cytotoxicity in pancreatic adenocarcinoma cells. EXPERIMENTAL DESIGN Pancreatic adenocarcinoma cells PANC1, MiaPaCa2, Capan2, BxPC3, and PANC1(GemRes), a stably gemcitabine-resistant subline of PANC1, were exposed to combinations of gemcitabine and Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Src expression, phosphorylation (Tyr-416), and activity were analyzed by immunoblotting and in vitro kinase assay. Expression of the M2 subunit of ribonucleotide reductase (RRM2), a putative chemoresistance enzyme, was quantified by Northern and Western blot. Cellular proliferation was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was characterized by YO-PRO-1/propidium iodide staining, fluorometric caspase profiling, and caspase inhibition (Z-Val-Ala-Asp-fluoromethyl ketone). The effects of constitutively active and dominant negative Src were determined. The therapeutic efficacy of PP2 in combination with gemcitabine was tested in nude mice orthotopically xenografted with PANC1(GemRes). RESULTS Greater gemcitabine resistance was associated with higher Src phosphorylation and activity, both of which were higher in PANC1(GemRes), relative to PANC1; total Src levels were alike. PANC1(GemRes) overexpressed RRM2. PP2 enhanced inherent gemcitabine chemosensitivity and attenuated gemcitabine resistance in PANC1(GemRes). Constitutively active Src increased gemcitabine chemoresistance; dominant negative Src impaired gemcitabine chemoresistance. PP2 augmented gemcitabine-induced caspase-mediated apoptosis, suppressed RRM2 expression, and decreased activity of the RRM2-regulating transcription factor E2F1 in PANC1(GemRes). PP2 and gemcitabine in combination substantially decreased tumor growth and inhibited metastasis in vivo. CONCLUSIONS Increased Src tyrosine kinase activity represents a potential chemoresistance mechanism and a promising therapeutic target warranting further investigation in gemcitabine-resistant pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Mark S Duxbury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
585
|
Moroni M, Soldatenkov V, Zhang L, Zhang Y, Stoica G, Gehan E, Rashidi B, Singh B, Ozdemirli M, Mueller SC. Progressive loss of Syk and abnormal proliferation in breast cancer cells. Cancer Res 2004; 64:7346-54. [PMID: 15492255 DOI: 10.1158/0008-5472.can-03-3520] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor gene Syk tyrosine kinase is absent or reduced in invasive breast cancer tissues and cell lines; its loss in breast tissues is linked to poor prognosis and metastasis. Also, evidence shows that in vitro Syk is involved in regulating proliferation. Here, we show by in situ hybridization on breast tissue sections that the loss of Syk expression is progressive during tumor development. Strikingly, Syk is already partially lost in normal epithelial tissue adjacent to the cancer lesion. In vivo, cell proliferation (as measured by the proliferative index Ki67) increased from normal to ductal carcinoma in situ to invasive, whereas Syk in situ staining in the same tissues decreased. In vitro, the presence of Syk was associated with reduced cell proliferation in an epidermal growth factor receptor-overexpressing breast cancer cell line, BT549, whereas changes in apoptosis were undetected. Concomitantly, the kinase activity of the proto-oncogene Src was reduced by approximately 30%. A 5-fold increase in abnormal mitoses was observed in the Syk-transfected cells compared with vector control. We propose that Syk is involved in the regulation of cell proliferation, possibly by controlling mechanisms of mitosis and cytokinesis via Src signal transduction pathway(s). Because of its progressive and early loss during tumor onset and development, monitoring of Syk loss in breast epithelial cells by noninvasive techniques such as ductal lavage may be a powerful tool for screening purposes.
Collapse
Affiliation(s)
- Maria Moroni
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
586
|
Dehm SM, Bonham K. SRC gene expression in human cancer: the role of transcriptional activation. Biochem Cell Biol 2004; 82:263-74. [PMID: 15060621 DOI: 10.1139/o03-077] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human pp60c-Src (or c-Src) is a 60 kDa nonreceptor tyrosine kinase encoded by the SRC gene and is the cellular homologue to the potent transforming v-Src viral oncogene. c-Src functions at the hub of a vast array of signal transduction cascades that influence cellular proliferation, differentiation, motility, and survival. c-Src activation has been documented in upwards of 50% of tumors derived from the colon, liver, lung, breast, and pancreas. Therefore, a major focus has been to understand the mechanisms of c-Src activation in human cancer. Early studies concentrated on post-translational mechanisms that lead to increased c-Src kinase activity, which often correlated with overexpression of c-Src protein. More recently, the discovery of an activating SRC mutation in a small subset of advanced colon tumors has been reported. In addition, elevated SRC transcription has been identified as yet another mechanism contributing significantly to c-Src activation in a subset of human colon cancer cell lines. Interestingly, histone deacetylase (HDAC) inhibitors, agents with well-documented anti-cancer activity, repress SRC transcription in a wide variety of human cancer cell lines. Analysis of the mechanisms behind HDAC inhibitor mediated repression could be utilized in the future to specifically inhibit SRC gene expression in human cancer.
Collapse
Affiliation(s)
- Scott M Dehm
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada.
| | | |
Collapse
|
587
|
Shah YM, Rowan BG. The Src kinase pathway promotes tamoxifen agonist action in Ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor (alpha) promoter interaction and elevated steroid receptor coactivator 1 activity. Mol Endocrinol 2004; 19:732-48. [PMID: 15528270 DOI: 10.1210/me.2004-0298] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tamoxifen is the most widely used selective estrogen receptor modulator for breast cancer in clinical use today. However, tamoxifen agonist action in endometrium remains a major hurdle for tamoxifen therapy. Activation of the nonreceptor tyrosine kinase src promotes tamoxifen agonist action, although the mechanisms remain unclear. To examine these mechanisms, the effect of src kinase on estrogen and tamoxifen signaling in tamoxifen-resistant Ishikawa endometrial adenocarcinoma cells was assessed. A novel connection was identified between src kinase and serine 167 phosphorylation in estrogen receptor (ER)-alpha via activation of AKT kinase. Serine 167 phosphorylation stabilized ER interaction with endogenous ER-dependent promoters. Src kinase exhibited the additional function of potentiating the transcriptional activity of Gal-steroid receptor coactivator 1 (SRC-1) and Gal-cAMP response element binding protein-binding protein in endometrial cancer cells while having no effect on Gal-p300-associated factor and Gal fusions of the other p160 coactivators glucocorticoid-interacting protein 1 (transcriptional intermediary factor 2/nuclear coactivator-2/SRC-2) and amplified in breast cancer 1 (receptor-associated coactivator 3/activator of transcription of nuclear receptor/SRC-3). Src effects on ER phosphorylation and SRC-1 activity both contributed to tamoxifen agonist action on ER-dependent gene expression in Ishikawa cells. Taken together, these data demonstrate that src kinase potentiates tamoxifen agonist action through serine 167-dependent stabilization of ER promoter interaction and through elevation of SRC-1 and cAMP response element binding protein-binding protein coactivation of ER.
Collapse
MESH Headings
- Antineoplastic Agents, Hormonal/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Cyclic AMP/metabolism
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/pathology
- Estradiol/pharmacology
- Female
- Genes, Dominant
- Genes, Reporter
- HeLa Cells
- Histone Acetyltransferases
- Humans
- Luciferases/metabolism
- Models, Biological
- Nuclear Receptor Coactivator 1
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Small Interfering/metabolism
- Receptors, Estrogen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serine/chemistry
- Tamoxifen/agonists
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Yatrik M Shah
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Ave., Toledo, Ohio 43614-5804, USA
| | | |
Collapse
|
588
|
Roskoski R. Src protein–tyrosine kinase structure and regulation. Biochem Biophys Res Commun 2004; 324:1155-64. [PMID: 15504335 DOI: 10.1016/j.bbrc.2004.09.171] [Citation(s) in RCA: 414] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Indexed: 11/30/2022]
Abstract
Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPalpha displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the alphaD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu(4)Tyr).
Collapse
Affiliation(s)
- Robert Roskoski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA 70119, USA.
| |
Collapse
|
589
|
Dehm SM, Bonham K. Regulation of alternative SRC promoter usage in HepG2 hepatocellular carcinoma cells. Gene 2004; 337:141-50. [PMID: 15276210 DOI: 10.1016/j.gene.2004.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 03/25/2004] [Accepted: 04/22/2004] [Indexed: 10/26/2022]
Abstract
Alternative promoters allow for increased spatial and temporal diversity in expression patterns for a single gene. The human SRC gene, encoding the non-receptor c-Src tyrosine kinase, is regulated by two alternative promoters separated by approximately 1 kb. The distal SRC1alpha promoter is tissue-restricted, while expression of the proximal SRC1A promoter appears to be ubiquitous. A barrier to elucidating the mechanisms of SRC transcriptional regulation has been the finding that the individual strengths of the SRC promoters in isolation do not match their relative strength of use seen in vivo. For example, in HepG2 hepatocellular carcinoma cells, SRC1A is significantly stronger in isolation than SRC1alpha, despite SRC1alpha being the predominant promoter used in this cell line. Previously, we have shown that HepG2 cells, as well as various colon cancer cell lines, display activated SRC transcription, which is linked to the elevated c-Src expression and activity necessary for growth and survival of these cells. These findings thus highlight the importance of understanding the mechanisms of SRC transcriptional regulation in human cancer. We hypothesize the discrepancy between individual SRC promoter strength and relative usage in vivo stems from a lack of linked promoter context. Therefore, we have developed and validated a novel dual SRC promoter reporter strategy to allow the simultaneous mechanistic study of both SRC promoters in their natural linked context. This approach has yielded evidence that SRC activation proceeds through genomic element(s) outside the promoter region in HepG2 cells. Therefore, we performed a preliminary study of DNaseI hypersensitive (DH) site composition within the SRC locus. This approach identified a HepG2-specific DH site that displayed activating potential towards the SRC1alpha promoter. These results thus provide important insight to the mechanism of SRC transcriptional activation in liver cancer cells.
Collapse
Affiliation(s)
- Scott M Dehm
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, Canada.
| | | |
Collapse
|
590
|
Abstract
Src family nonreceptor protein tyrosine kinases transduce signals that control normal cellular processes such as cell proliferation, adhesion and motility. Normally, cellular Src is held in an inactive state, but in several cancer types, abnormal events lead to elevated kinase activity of the protein and cause pleiotropic cellular responses inducing transformation and metastasis. A prerequisite of the ability of a cancer cell to undergo metastasis into distant tissues is to penetrate surrounding extracellular matrices. These processes are facilitated by the integrin family of cell adhesion molecules. As is the case with Src, altered integrin activity or substrate affinity can contribute to the neoplastic phenotype. Therefore, understanding the interplay between Src and integrin function has been of intense interest over the past few years. This review focuses on the role of Src and integrin signaling in normal cells and how this is deregulated in human cancer. We will identify the key players in the integrin-mediated signaling pathways involved in cell motility and apoptosis, such as FAK, paxillin and p130(CAS), and discuss how Src signaling affects the formation of focal adhesions and the extracellular matrix.
Collapse
Affiliation(s)
- Martin P Playford
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
591
|
Yang Z, Bagheri-Yarmand R, Wang RA, Adam L, Papadimitrakopoulou VV, Clayman GL, El-Naggar A, Lotan R, Barnes CJ, Hong WK, Kumar R. The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 (Iressa) suppresses c-Src and Pak1 pathways and invasiveness of human cancer cells. Clin Cancer Res 2004; 10:658-67. [PMID: 14760089 DOI: 10.1158/1078-0432.ccr-0382-03] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Abnormalities in the expression and signaling pathways downstream of the epidermal growth factor receptor (EGFR) contribute to the progression, invasion, and maintenance of the malignant phenotype in human cancers, including those of the head and neck and breast. Accordingly, agents such as the EGFR tyrosine kinase inhibitor (EGFR-TKI) ZD1839 (Iressa) are promising, biologically based treatments that are in various stages of preclinical and clinical development. The process of tumor progression requires, among other steps, increased transformation, directional migration, and enhanced cell survival; this study explored the effect of ZD1839 on the stimulation of c-Src and p21-activated kinase 1 (Pak1), which are vital for transformation, directional motility, and cell survival of cancer cells. EXPERIMENTAL DESIGN We examined the effect of ZD1839 on biochemical and functional assays indicative of directional motility and cell survival, using human head and neck squamous cancer cells and breast cancer cells. RESULTS ZD1839 effectively inhibited c-Src activation and Pak1 activity in exponentially growing cancer cells. In addition, ZD1839 suppressed EGF-induced stimulation of EGFR autophosphorylation on Y1086 and Grb2-binding Y1068 sites, c-Src phosphorylation on Y215, and Pak1 activity. ZD1839 also blocked EGF-induced cytoskeleton remodeling, redistribution of activated EGFR, and in vitro invasiveness of cancer cells. CONCLUSIONS These studies suggest that the EGFR-TKI ZD1839 may cause potent inhibition of the Pak1 and c-Src pathways and, therefore, have potential to affect the invasiveness of human cancer cells deregulated in these growth factor receptor pathways.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Molecular and Cellular Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
592
|
Gatesman A, Walker VG, Baisden JM, Weed SA, Flynn DC. Protein kinase Calpha activates c-Src and induces podosome formation via AFAP-110. Mol Cell Biol 2004; 24:7578-97. [PMID: 15314167 PMCID: PMC506973 DOI: 10.1128/mcb.24.17.7578-7597.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We report that the actin filament-associated protein AFAP-110 is required to mediate protein kinase Calpha (PKCalpha) activation of the nonreceptor tyrosine kinase c-Src and the subsequent formation of podosomes. Immunofluorescence analysis demonstrated that activation of PKCalpha by phorbol 12-myristate 13-acetate (PMA), or ectopic expression of constitutively activated PKCalpha, directs AFAP-110 to colocalize with and bind to the c-Src SH3 domain, resulting in activation of the tyrosine kinase. Activation of c-Src then directs the formation of podosomes, which contain cortactin, AFAP-110, actin, and c-Src. In a cell line (CaOV3) that has very little or no detectable AFAP-110, PMA treatment was unable to activate c-Src or effect podosome formation. Ectopic expression of AFAP-110 in CaOV3 cells rescued PKCalpha-mediated activation of c-Src and elevated tyrosine phosphorylation levels and subsequent formation of podosomes. Neither expression of activated PKCalpha nor treatment with PMA was able to induce these changes in CAOV3 cells expressing mutant forms of AFAP-110 that are unable to bind to, or colocalize with, c-Src. We hypothesize that one major function of AFAP-110 is to relay signals from PKCalpha that direct the activation of c-Src and the formation of podosomes.
Collapse
Affiliation(s)
- Amanda Gatesman
- The Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | |
Collapse
|
593
|
Sisci D, Aquila S, Middea E, Gentile M, Maggiolini M, Mastroianni F, Montanaro D, Andò S. Fibronectin and type IV collagen activate ERα AF-1 by c-Src pathway: effect on breast cancer cell motility. Oncogene 2004; 23:8920-30. [PMID: 15467744 DOI: 10.1038/sj.onc.1208098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The expression of estrogen receptor alpha (ERalpha) is generally associated with a less invasive and aggressive phenotype in breast carcinoma. In an attempt to understand the role of ERalpha in regulating breast cancer cells invasiveness, we have demonstrated that cell adhesion on fibronectin (Fn) and type IV Collagen (Col) induces ERalpha-mediated transcription and reduces cell migration in MCF-7 and in MDA-MB-231 cell lines expressing ERalpha. Analysis of deleted mutants of ERalpha indicates that the transcriptional activation function (AF)-1 is required for ERalpha-mediated transcription as well as for the inhibition of cell migration induced by cell adhesion on extracellular matrix (ECM) proteins. In addition, the nuclear localization signal region and some serine residues in the AF-1 of the ERalpha are both required for the regulation of cell invasiveness as we have observed in HeLa cells. It is worth noting that c-Src activation is coincident with adhesion of cells to ECM proteins and that the inhibition of c-Src activity by PP2 or the expression of a dominant-negative c-Src abolishes ERalpha-mediated transcription and partially reverts the inhibition of cell invasiveness in ERalpha-positive cancer cells. These findings address the integrated role of ECM proteins and ERalpha in influencing breast cancer cell motility through a mechanism that involves c-Src and seems not to be related to a specific cell type.
Collapse
Affiliation(s)
- Diego Sisci
- Dipartimento Farmaco-Biologico, Università della Calabria, Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | |
Collapse
|
594
|
Donninger H, Bonome T, Radonovich M, Pise-Masison CA, Brady J, Shih JH, Barrett JC, Birrer MJ. Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene 2004; 23:8065-77. [PMID: 15361855 DOI: 10.1038/sj.onc.1207959] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ovarian cancer is the most lethal type of gynecologic cancer in the Western world. The high case fatality rate is due in part because most ovarian cancer patients present with advanced stage disease which is essentially incurable. In order to obtain a whole genome assessment of aberrant gene expression in advanced ovarian cancer, we used oligonucleotide microarrays comprising over 40,000 features to profile 37 advanced stage papillary serous primary carcinomas. We identified 1191 genes that were significantly (P < 0.001) differentially regulated between the ovarian cancer specimens and normal ovarian surface epithelium. The microarray data were validated using real time RT-PCR on 14 randomly selected differentially regulated genes. The list of differentially expressed genes includes ones that are involved in cell growth, differentiation, adhesion, apoptosis and migration. In addition, numerous genes whose function remains to be elucidated were also identified. The microarray data were imported into PathwayAssist software to identify signaling pathways involved in ovarian cancer tumorigenesis. Based on our expression results, a signaling pathway associated with tumor cell migration, spread and invasion was identified as being activated in advanced ovarian cancer. The data generated in this study represent a comprehensive list of genes aberrantly expressed in serous papillary ovarian adenocarcinoma and may be useful for the identification of potentially new and novel markers and therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Howard Donninger
- Department of Cell and Cancer Biology, National Cancer Institute, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
595
|
Abstract
The proto-oncogene c-src is rarely mutated in human cancers, and when overexpressed in normal cells is non- or weakly oncogenic. These observations have raised doubts about the involvement of c-src in the etiology of human tumors. However, recent studies have shown that c-Src, a non-receptor tyrosine kinase, exhibits elevated protein levels and activity in numerous types of human cancers. Furthermore, it has been found to be a critical component of multiple signaling pathways that regulate proliferation, survival, metastasis, and angiogenesis. Because of its important role in these oncogenic processes, it represents a therapeutic target ripe for exploitation.
Collapse
Affiliation(s)
- Rumey Ishizawar
- Cancer Center and Department of Microbiology, University of Virginia Health System, P.O. Box 800734, Charlottesville, VA 22908, USA
| | | |
Collapse
|
596
|
Read RD, Bach EA, Cagan RL. Drosophila C-terminal Src kinase negatively regulates organ growth and cell proliferation through inhibition of the Src, Jun N-terminal kinase, and STAT pathways. Mol Cell Biol 2004; 24:6676-89. [PMID: 15254235 PMCID: PMC444864 DOI: 10.1128/mcb.24.15.6676-6689.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Src family kinases regulate multiple cellular processes including proliferation and oncogenesis. C-terminal Src kinase (Csk) encodes a critical negative regulator of Src family kinases. We demonstrate that the Drosophila melanogaster Csk ortholog, dCsk, functions as a tumor suppressor: dCsk mutants display organ overgrowth and excess cellular proliferation. Genetic analysis indicates that the dCsk(-/-) overgrowth phenotype results from activation of Src, Jun kinase, and STAT signal transduction pathways. In particular, blockade of STAT function in dCsk mutants severely reduced Src-dependent overgrowth and activated apoptosis of mutant tissue. Our data provide in vivo evidence that Src activity requires JNK and STAT function.
Collapse
Affiliation(s)
- Renee D Read
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
597
|
Moran AE, Hunt DH, Javid SH, Redston M, Carothers AM, Bertagnolli MM. Apc deficiency is associated with increased Egfr activity in the intestinal enterocytes and adenomas of C57BL/6J-Min/+ mice. J Biol Chem 2004; 279:43261-72. [PMID: 15294912 DOI: 10.1074/jbc.m404276200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) and its increased tyrosine kinase activity are implicated in colorectal cancer (CRC) development and malignant progression. The C57BL/6J-Min/+ (Min/+) mouse is a model for CRC and develops numerous intestinal adenomas. We analyzed the normal mucosa of Min/+ and Apc+/+ (WT) littermate mice together with Apc-null adenomas to gain insight into the roles of Egfr in these intestinal tissues. Protein analyses showed that Egfr activity was highest in the tumors, and also up-regulated in Min/+ relative to WT enterocytes. Expression of ubiquitylated Egfr (Egfr-Ub) was increased in Min/+ enterocytes and tumors. Tumors exhibited increased association of Egfr with clathrin heavy chain (CHC), Gab1, and p85alpha, the regulatory subunit of phosphoinositide 3-kinase (PI3K), and tumors also overexpressed c-Src, PDK1, and Akt. Immunohistochemistry for Akt-p-Ser473 revealed a low level of this active kinase in Min/+ and WT enterocytes and its strong presence in tumors. Prostaglandin E2 (PGE2) is a product of cyclooxygenase-2 (Cox-2) activity that is up-regulated in Min/+ tumors and transactivates Egfr. PGE2 expression was significantly higher in untreated Min/+ tumors and reduced by treatment with the Cox-2 inhibitor, celecoxib. Dietary administration of this NSAID also inhibited Egfr activity in tumors. Increased activation of the EGFR-PI3K-Akt signaling pathway in tumors relative to Apc+/+ and ApcMin/+ enterocytes provides potential opportunities for therapeutic interventions to differentially suppress tumor formation, promotion, progression, and/or recurrence.
Collapse
Affiliation(s)
- Amy E Moran
- Department of Surgery, Weill College of Medicine of Cornell University, and Strang Cancer Prevention Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
598
|
Silver DL, Naora H, Liu J, Cheng W, Montell DJ. Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res 2004; 64:3550-8. [PMID: 15150111 DOI: 10.1158/0008-5472.can-03-3959] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Constitutive activation of the Janus-activated kinase/signal transducer and activator of transcription (STAT) pathway promotes the proliferation and survival of cancer cells in culture and is associated with various cancers, including those of the ovary. We found that constitutively activated STAT3 levels correlated with aggressive clinical behavior of ovarian carcinoma specimens. Furthermore, inhibition of STAT3 reduced the motility of ovarian cancer cells in vitro. Surprisingly, we found that activated STAT3 localized not only to nuclei but also to focal adhesions in these cells. Activated STAT3 coimmunoprecipitated with phosphorylated paxillin and focal adhesion kinase and required paxillin and Src for its localization to focal adhesions. These results suggest that Janus-activated kinase/STAT signaling may contribute to ovarian cancer cell invasiveness.
Collapse
Affiliation(s)
- Debra L Silver
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
599
|
Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity. J Am Coll Surg 2004; 198:953-9. [PMID: 15194078 DOI: 10.1016/j.jamcollsurg.2004.01.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 01/20/2004] [Indexed: 02/08/2023]
Abstract
BACKGROUND The c-Src tyrosine kinase is a determinant of malignant cellular behavior in a variety of human cancers. We sought to determine the effect of suppressing c-Src expression on pancreatic adenocarcinoma chemosensitivity to gemcitabine. STUDY DESIGN PANC1, MIAPaCa2, BxPC3, and Capan2 pancreatic adenocarcinoma cell lines were studied. Expression of c-Src was determined by Western blot analysis. c-Src kinase activity was determined by in vitro kinase assay. RNA interference was used to suppress c-Src expression. Gemcitabine-induced cytotoxicity was determined by tetrazolium reduction assay and caspase profiling was performed. The effect of Src-specific siRNA on Akt activity was quantified. RESULTS Src expression and kinase activity in cell lines were directly correlated with gemcitabine chemoresistance. c-Src-specific siRNA suppressed c-Src expression and kinase activity. c-Src-specific siRNA increased gemcitabine-induced, caspase-mediated apoptosis. Akt activity was decreased by suppression of c-Src expression. CONCLUSIONS c-Src is a determinant of pancreatic adenocarcinoma chemoresistance and represents a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Mark S Duxbury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
600
|
Affiliation(s)
- Timothy J Yeatman
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA.
| |
Collapse
|