551
|
Gong S, Ware JS, Walsh R, Cook SA. NECTAR: a database of codon-centric missense variant annotations. Nucleic Acids Res 2013; 42:D1013-9. [PMID: 24297257 PMCID: PMC3965063 DOI: 10.1093/nar/gkt1245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
NECTAR (Non-synonymous Enriched Coding muTation ARchive; http://nectarmutation.org) is a database and web application to annotate disease-related and functionally important amino acids in human proteins. A number of tools are available to facilitate the interpretation of DNA variants identified in diagnostic or research sequencing. These typically identify previous reports of DNA variation at a given genomic location, predict its effects on transcript and protein sequence and may predict downstream functional consequences. Previous reports and functional annotations are typically linked by the genomic location of the variant observed. NECTAR collates disease-causing variants and functionally important amino acid residues from a number of sources. Importantly, rather than simply linking annotations by a shared genomic location, NECTAR annotates variants of interest with details of previously reported variation affecting the same codon. This provides a much richer data set for the interpretation of a novel DNA variant. NECTAR also identifies functionally equivalent amino acid residues in evolutionarily related proteins (paralogues) and, where appropriate, transfers annotations between them. As well as accessing these data through a web interface, users can upload batches of variants in variant call format (VCF) for annotation on-the-fly. The database is freely available to download from the ftp site: ftp://ftp.nectarmutation.org.
Collapse
Affiliation(s)
- Sungsam Gong
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, UK, National Heart and Lung Institute, Imperial College, London SW3 6LY, UK, National Heart Centre Singapore, Singapore 168752, Singapore and Cardiovascular & Metabolic Disorders, Duke National University of Singapore, Singapore 169857, Singapore
| | | | | | | |
Collapse
|
552
|
Wu Z, Zheng W, Xu J, Sun F, Chen H, Li P, Chen S, Shen M, Zhang W, You X, Wu Q, Zhang F, Li Y. IL10 polymorphisms associated with Behçet's disease in Chinese Han. Hum Immunol 2013; 75:271-6. [PMID: 24269690 DOI: 10.1016/j.humimm.2013.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE IL-10 is a potent anti-inflammatory cytokine that plays important roles in the pathogenesis of Behçet's disease (BD). Two genome-wide association studies have identified IL10 as a potential risk factor for BD. Here, we investigated the association between IL10 polymorphisms and BD in Chinese Han. METHODS 407 BD patients and 679 healthy controls were enrolled, and genotyped by Sequenom MassArray system (Sequenom iPLEX assay, San Diego, CA). RESULTS The frequency of risk allele of rs1800871 was notably higher in BD patients than in controls (71.9% vs. 66.2%, OR: 1.30, 95%CI: 1.08-1.58, pc=0.024). Similarly, rs1518111, which showed strong linkage disequilibrium (r(2)=1) with allele rs1800871, was also associated with BD (pc=0.026). Rs3021094 was in association with BD in a dominant model (pc=0.035), and the haplotype (GACC) formed by rs1518111, rs3021094, rs3790622, and rs1800871 was associated with BD (pc=0.023). Results obtained from meta-analysis combined with our data showed that rs1800871 and rs1518111 were associated with BD. CONCLUSION IL10 may be the susceptibility gene for BD in Chinese Han population.
Collapse
Affiliation(s)
- Ziyan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Juanjuan Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Fei Sun
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Ping Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Si Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Ming Shen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qingjun Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Yongzhe Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| |
Collapse
|
553
|
Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, Madrigal P, Taslim C, Zhang J. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol 2013; 9:e1003326. [PMID: 24244136 PMCID: PMC3828144 DOI: 10.1371/journal.pcbi.1003326] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mapping the chromosomal locations of transcription factors, nucleosomes, histone modifications, chromatin remodeling enzymes, chaperones, and polymerases is one of the key tasks of modern biology, as evidenced by the Encyclopedia of DNA Elements (ENCODE) Project. To this end, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is the standard methodology. Mapping such protein-DNA interactions in vivo using ChIP-seq presents multiple challenges not only in sample preparation and sequencing but also for computational analysis. Here, we present step-by-step guidelines for the computational analysis of ChIP-seq data. We address all the major steps in the analysis of ChIP-seq data: sequencing depth selection, quality checking, mapping, data normalization, assessment of reproducibility, peak calling, differential binding analysis, controlling the false discovery rate, peak annotation, visualization, and motif analysis. At each step in our guidelines we discuss some of the software tools most frequently used. We also highlight the challenges and problems associated with each step in ChIP-seq data analysis. We present a concise workflow for the analysis of ChIP-seq data in Figure 1 that complements and expands on the recommendations of the ENCODE and modENCODE projects. Each step in the workflow is described in detail in the following sections.
Collapse
Affiliation(s)
- Timothy Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- * E-mail: (TB); (PM)
| | - Pawel Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Istvan Ladunga
- Department of Statistics, Beadle Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Celine Lefebvre
- Inserm U981, Cancer Institute Gustave Roussy, Villejuif, France
| | - Qunhua Li
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
| | - Tao Liu
- Department of Biochemistry, University at Buffalo, Buffalo, New York, United States of America
| | - Pedro Madrigal
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
- * E-mail: (TB); (PM)
| | - Cenny Taslim
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jie Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
554
|
Flemr M, Malik R, Franke V, Nejepinska J, Sedlacek R, Vlahovicek K, Svoboda P. A Retrotransposon-Driven Dicer Isoform Directs Endogenous Small Interfering RNA Production in Mouse Oocytes. Cell 2013; 155:807-16. [DOI: 10.1016/j.cell.2013.10.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/17/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
|
555
|
Cotton AM, Chen CY, Lam LL, Wasserman WW, Kobor MS, Brown CJ. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains. Hum Mol Genet 2013; 23:1211-23. [PMID: 24158853 PMCID: PMC4051349 DOI: 10.1093/hmg/ddt513] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome.
Collapse
|
556
|
Bragin E, Chatzimichali EA, Wright CF, Hurles ME, Firth HV, Bevan AP, Swaminathan GJ. DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res 2013; 42:D993-D1000. [PMID: 24150940 PMCID: PMC3965078 DOI: 10.1093/nar/gkt937] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The DECIPHER database (https://decipher.sanger.ac.uk/) is an accessible online repository of genetic variation with associated phenotypes that facilitates the identification and interpretation of pathogenic genetic variation in patients with rare disorders. Contributing to DECIPHER is an international consortium of >200 academic clinical centres of genetic medicine and ≥1600 clinical geneticists and diagnostic laboratory scientists. Information integrated from a variety of bioinformatics resources, coupled with visualization tools, provides a comprehensive set of tools to identify other patients with similar genotype–phenotype characteristics and highlights potentially pathogenic genes. In a significant development, we have extended DECIPHER from a database of just copy-number variants to allow upload, annotation and analysis of sequence variants such as single nucleotide variants (SNVs) and InDels. Other notable developments in DECIPHER include a purpose-built, customizable and interactive genome browser to aid combined visualization and interpretation of sequence and copy-number variation against informative datasets of pathogenic and population variation. We have also introduced several new features to our deposition and analysis interface. This article provides an update to the DECIPHER database, an earlier instance of which has been described elsewhere [Swaminathan et al. (2012) DECIPHER: web-based, community resource for clinical interpretation of rare variants in developmental disorders. Hum. Mol. Genet., 21, R37–R44].
Collapse
Affiliation(s)
- Eugene Bragin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK and Cambridge University Department of Medical Genetics, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | | | | | | | | | | | | |
Collapse
|
557
|
Cieślik M, Hoang SA, Baranova N, Chodaparambil S, Kumar M, Allison DF, Xu X, Wamsley JJ, Gray L, Jones DR, Mayo MW, Bekiranov S. Epigenetic coordination of signaling pathways during the epithelial-mesenchymal transition. Epigenetics Chromatin 2013; 6:28. [PMID: 24004852 PMCID: PMC3847279 DOI: 10.1186/1756-8935-6-28] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/11/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is a de-differentiation process required for wound healing and development. In tumors of epithelial origin aberrant induction of EMT contributes to cancer progression and metastasis. Studies have begun to implicate epigenetic reprogramming in EMT; however, the relationship between reprogramming and the coordination of cellular processes is largely unexplored. We have previously developed a system to study EMT in a canonical non-small cell lung cancer (NSCLC) model. In this system we have shown that the induction of EMT results in constitutive NF-κB activity. We hypothesized a role for chromatin remodeling in the sustained deregulation of cellular signaling pathways. RESULTS We mapped sixteen histone modifications and two variants for epithelial and mesenchymal states. Combinatorial patterns of epigenetic changes were quantified at gene and enhancer loci. We found a distinct chromatin signature among genes in well-established EMT pathways. Strikingly, these genes are only a small minority of those that are differentially expressed. At putative enhancers of genes with the 'EMT-signature' we observed highly coordinated epigenetic activation or repression. Furthermore, enhancers that are activated are bound by a set of transcription factors that is distinct from those that bind repressed enhancers. Upregulated genes with the 'EMT-signature' are upstream regulators of NF-κB, but are also bound by NF-κB at their promoters and enhancers. These results suggest a chromatin-mediated positive feedback as a likely mechanism for sustained NF-κB activation. CONCLUSIONS There is highly specific epigenetic regulation at genes and enhancers across several pathways critical to EMT. The sites of these changes in chromatin state implicate several inducible transcription factors with critical roles in EMT (NF-κB, AP-1 and MYC) as targets of this reprogramming. Furthermore, we find evidence that suggests that these transcription factors are in chromatin-mediated transcriptional feedback loops that regulate critical EMT genes. In sum, we establish an important link between chromatin remodeling and shifts in cellular reprogramming.
Collapse
Affiliation(s)
- Marcin Cieślik
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Stephen A Hoang
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Natalya Baranova
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Sanjay Chodaparambil
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Manish Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - David F Allison
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Xiaojiang Xu
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - J Jacob Wamsley
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Lisa Gray
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - David R Jones
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA.,Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, P.O. Box 800733, Charlottesville, VA 22908, USA
| |
Collapse
|
558
|
Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, Stein L, Holmes IH, Elsik CG, Lewis SE. Web Apollo: a web-based genomic annotation editing platform. Genome Biol 2013; 14:R93. [PMID: 24000942 PMCID: PMC4053811 DOI: 10.1186/gb-2013-14-8-r93] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/30/2013] [Indexed: 01/11/2023] Open
Abstract
Web Apollo is the first instantaneous, collaborative genomic annotation editor available on the web. One of the natural consequences following from current advances in sequencing technology is that there are more and more researchers sequencing new genomes. These researchers require tools to describe the functional features of their newly sequenced genomes. With Web Apollo researchers can use any of the common browsers (for example, Chrome or Firefox) to jointly analyze and precisely describe the features of a genome in real time, whether they are in the same room or working from opposite sides of the world.
Collapse
|
559
|
Lain AR, Creighton CJ, Conneely OM. Research resource: progesterone receptor targetome underlying mammary gland branching morphogenesis. Mol Endocrinol 2013; 27:1743-61. [PMID: 23979845 DOI: 10.1210/me.2013-1144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Progesterone (P4)-activated progesterone receptors (PRs) play an essential role in driving pregnancy-associated mammary ductal side-branching morphogenesis and alveologenesis. However, the global cistromic and transcriptome responses that are required to elicit P4-dependent branching morphogenesis have not been elucidated. By combining chromatin immunoprecipitation followed by deep sequencing to identify genome-wide PR-binding sites in PR-positive luminal epithelial cells with global gene expression signatures acutely regulated by PRs in the mammary gland, we have identified a mammary epithelial PR targetome associated with active P4-dependent branching morphogenesis in vivo. We demonstrate that P4-induced side-branching is initiated by epithelial cell rearrangement into a multilayered epithelium that sprouts laterally from quiescent ducts via a mechanism requiring P4-dependent activation of Rac-GTPase signaling. We identify effectors of Rac-GTPases as direct transcriptional targets of PRs, and we demonstrate that disruption of the P4-activated Rac-GTPase signaling axis is sufficient to eliminate P4-dependent side-branching. Our data reveal that the molecular mediators of P4-dependent ductal side-branching overlap with those implicated in breast cancer.
Collapse
Affiliation(s)
- Ashlee R Lain
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030.
| | | | | |
Collapse
|
560
|
Zhang H, Meltzer P, Davis S. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics 2013; 14:244. [PMID: 23937229 PMCID: PMC3765848 DOI: 10.1186/1471-2105-14-244] [Citation(s) in RCA: 533] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/07/2013] [Indexed: 01/03/2023] Open
Abstract
Background Circos is a Perl language based software package for visualizing similarities and differences of genome structure and positional relationships between genomic intervals. Running Circos requires extra data processing procedures to prepare plot data files and configure files from datasets, which limits its capability of integrating directly with other software tools such as R. Recently published R Bioconductor package ggbio provides a function to display genomic data in circular layout based on multiple other packages, which increases its complexity of usage and decreased the flexibility in integrating with other R pipelines. Results We implemented an R package, RCircos, using only R packages that come with R base installation. The package supports Circos 2D data track plots such as scatter, line, histogram, heatmap, tile, connectors, links, and text labels. Each plot is implemented with a specific function and input data for all functions are data frames which can be objects read from text files or generated with other R pipelines. Conclusion RCircos package provides a simple and flexible way to make Circos 2D track plots with R and could be easily integrated into other R data processing and graphic manipulation pipelines for presenting large-scale multi-sample genomic research data. It can also serve as a base tool to generate complex Circos images.
Collapse
Affiliation(s)
- Hongen Zhang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 6138, 37 Convent Drive, Bethesda, MD 20892-4265, USA.
| | | | | |
Collapse
|
561
|
Binia A, Van Stiphout N, Liang L, Michel S, Bhavsar PK, Fan Chung K, Brightling CE, Barnes PJ, Kabesch M, Bush A, Cookson WOC, Moffatt MF. A polymorphism affecting MYB binding within the promoter of the PDCD4 gene is associated with severe asthma in children. Hum Mutat 2013; 34:1131-9. [PMID: 23606399 PMCID: PMC4296222 DOI: 10.1002/humu.22340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
Abstract
A previous genome-wide association study in asthma revealed putative associations that merit further investigation. In this study, the genome-wide significant associations of SNPs at the 5% false discovery rate were examined in independent groups of severe asthmatics. The panel consisted of 397 severe asthmatic adults, 116 severe asthmatic children, and a collection of 207 family-trios with an asthmatic proband. Three SNPs in the PDCD4 gene (rs6585018:G>A, rs1322997:C>A, and rs34104444:G>A) were significantly associated with severe childhood asthma (P values: 0.003, 0.002, 0.004) and total immunoglobulin E (IgE) levels (P values: 0.034, 0.041, 0.052). In an independent group of 234 asthmatic children and 652 controls, PDCD4 SNPs rs1407696:T>G and rs11195360:T>C were associated with total IgE levels (P values: 0.006, 0.014). In silico analysis of PDCD4 locus showed that rs6585018:G>A had the potential to affect MYB transcription factor binding, shown to act as a PDCD4-transcription inducer. Electromobility shift assays and reporter assays revealed that rs6585018:G>A alters MYB binding thereby influencing the expression of PDCD4. SNPs within MYB itself confer susceptibility to eosinophilia and asthma. Our association between a variant MYB binding site in PDCD4 and the severest form of childhood asthma therefore suggests that PDCD4 is a novel molecule of importance to asthmatic inflammatory responses.
Collapse
Affiliation(s)
- Aristea Binia
- Molecular Genetics and Genomics Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
562
|
Analysis of unannotated equine transcripts identified by mRNA sequencing. PLoS One 2013; 8:e70125. [PMID: 23922931 PMCID: PMC3726457 DOI: 10.1371/journal.pone.0070125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/16/2013] [Indexed: 02/01/2023] Open
Abstract
Sequencing of equine mRNA (RNA-seq) identified 428 putative transcripts which do not map to any previously annotated or predicted horse genes. Most of these encode the equine homologs of known protein-coding genes described in other species, yet the potential exists to identify novel and perhaps equine-specific gene structures. A set of 36 transcripts were prioritized for further study by filtering for levels of expression (depth of RNA-seq read coverage), distance from annotated features in the equine genome, the number of putative exons, and patterns of gene expression between tissues. From these, four were selected for further investigation based on predicted open reading frames of greater than or equal to 50 amino acids and lack of detectable homology to known genes across species. Sanger sequencing of RT-PCR amplicons from additional equine samples confirmed expression and structural annotation of each transcript. Functional predictions were made by conserved domain searches. A single transcript, expressed in the cerebellum, contains a putative kruppel-associated box (KRAB) domain, suggesting a potential function associated with zinc finger proteins and transcriptional regulation. Overall levels of conserved synteny and sequence conservation across a 1MB region surrounding each transcript were approximately 73% compared to the human, canine, and bovine genomes; however, the four loci display some areas of low conservation and sequence inversion in regions that immediately flank these previously unannotated equine transcripts. Taken together, the evidence suggests that these four transcripts are likely to be equine-specific.
Collapse
|
563
|
Gregor A, Oti M, Kouwenhoven E, Hoyer J, Sticht H, Ekici A, Kjaergaard S, Rauch A, Stunnenberg H, Uebe S, Vasileiou G, Reis A, Zhou H, Zweier C. De novo mutations in the genome organizer CTCF cause intellectual disability. Am J Hum Genet 2013; 93:124-31. [PMID: 23746550 PMCID: PMC3710752 DOI: 10.1016/j.ajhg.2013.05.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/24/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022] Open
Abstract
An increasing number of genes involved in chromatin structure and epigenetic regulation has been implicated in a variety of developmental disorders, often including intellectual disability. By trio exome sequencing and subsequent mutational screening we now identified two de novo frameshift mutations and one de novo missense mutation in CTCF in individuals with intellectual disability, microcephaly, and growth retardation. Furthermore, an individual with a larger deletion including CTCF was identified. CTCF (CCCTC-binding factor) is one of the most important chromatin organizers in vertebrates and is involved in various chromatin regulation processes such as higher order of chromatin organization, enhancer function, and maintenance of three-dimensional chromatin structure. Transcriptome analyses in all three individuals with point mutations revealed deregulation of genes involved in signal transduction and emphasized the role of CTCF in enhancer-driven expression of genes. Our findings indicate that haploinsufficiency of CTCF affects genomic interaction of enhancers and their regulated gene promoters that drive developmental processes and cognition.
Collapse
Affiliation(s)
- Anne Gregor
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin Oti
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Evelyn N. Kouwenhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Susanne Kjaergaard
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8603 Schwerzenbach, Switzerland
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, the Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
564
|
Broos S, Soete A, Hooghe B, Moran R, van Roy F, De Bleser P. PhysBinder: Improving the prediction of transcription factor binding sites by flexible inclusion of biophysical properties. Nucleic Acids Res 2013; 41:W531-4. [PMID: 23620286 PMCID: PMC3692127 DOI: 10.1093/nar/gkt288] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/24/2013] [Accepted: 03/31/2013] [Indexed: 01/12/2023] Open
Abstract
The most important mechanism in the regulation of transcription is the binding of a transcription factor (TF) to a DNA sequence called the TF binding site (TFBS). Most binding sites are short and degenerate, which makes predictions based on their primary sequence alone somewhat unreliable. We present a new web tool that implements a flexible and extensible algorithm for predicting TFBS. The algorithm makes use of both direct (the sequence) and several indirect readout features of protein-DNA complexes (biophysical properties such as bendability or the solvent-excluded surface of the DNA). This algorithm significantly outperforms state-of-the-art approaches for in silico identification of TFBS. Users can submit FASTA sequences for analysis in the PhysBinder integrative algorithm and choose from >60 different TF-binding models. The results of this analysis can be used to plan and steer wet-lab experiments. The PhysBinder web tool is freely available at http://bioit.dmbr.ugent.be/physbinder/index.php.
Collapse
Affiliation(s)
- Stefan Broos
- Department for Molecular Biomedical Research, VIB and Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Arne Soete
- Department for Molecular Biomedical Research, VIB and Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Bart Hooghe
- Department for Molecular Biomedical Research, VIB and Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Raymond Moran
- Department for Molecular Biomedical Research, VIB and Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Frans van Roy
- Department for Molecular Biomedical Research, VIB and Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Pieter De Bleser
- Department for Molecular Biomedical Research, VIB and Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
565
|
Hahn Y. Evidence for the dissemination of cryptic non-coding RNAs transcribed from intronic and intergenic segments by retroposition. Bioinformatics 2013; 29:1593-9. [PMID: 23652427 DOI: 10.1093/bioinformatics/btt258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Insertion of DNA segments is one mechanism by which genomes evolve. The bulk of genomic segments are now known to be transcribed into long and short non-coding RNAs (ncRNAs), promoter-associated transcripts and enhancer-templated transcripts. These various cryptic ncRNAs are thought to be dispersed in the human and other genomes by retroposition. RESULTS In this study, I report clear evidence for dissemination of cryptic ncRNAs transcribed from intronic and intergenic segments by retroposition. I used highly stringent conditions to find recently retroposed ncRNAs that had a poly(A) tract and were flanked by target site duplication. I identified 73 instances of retroposition in the human, mouse, and rat genomes (12, 36 and 25 instances, respectively). The inserted segments, in some cases, served as a novel exon or promoter for the associated gene, resulting in novel transcript variants. Some disseminated sequences showed sequence conservation across animals, implying a possible regulatory role. My results indicate that retroposition is one of the mechanisms for dispersion of ncRNAs. I propose that these newly inserted segments may play a role in genome evolution by potentially functioning as novel exons, promoters or enhancers. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
566
|
Zhou L, Watzlaf V, Abdelhak M. Flexible approaches for teaching computational genomics in a health information management program. PERSPECTIVES IN HEALTH INFORMATION MANAGEMENT 2013; 10:1b. [PMID: 23861672 PMCID: PMC3709875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The astonishing improvement of high-throughput biotechnologies in recent years makes it possible to access a huge amount of genomic data. The association between genomic data and genetic disease has already been and will continue to be applied to personalized healthcare. Health information management (HIM) professionals are the ones who will handle personal genetic information and provide solid evidence to support physicians' diagnoses and personalized treatment strategies, and therefore they will need to have the knowledge and skills to process genomic data. In this paper, we describe flexible approaches for teaching a computational genomics course in the HIM program at the University of Pittsburgh. HIM programs at other universities may choose an appropriate approach to fit into their own curriculum.
Collapse
Affiliation(s)
- Leming Zhou
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
567
|
He X, Chatterjee R, John S, Bravo H, Sathyanarayana BK, Biddie SC, FitzGerald PC, Stamatoyannopoulos JA, Hager GL, Vinson C. Contribution of nucleosome binding preferences and co-occurring DNA sequences to transcription factor binding. BMC Genomics 2013; 14:428. [PMID: 23805837 PMCID: PMC3700821 DOI: 10.1186/1471-2164-14-428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/10/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Chromatin plays a critical role in regulating transcription factors (TFs) binding to their canonical transcription factor binding sites (TFBS). Recent studies in vertebrates show that many TFs preferentially bind to genomic regions that are well bound by nucleosomes in vitro. Co-occurring secondary motifs sometimes correlated with functional TFBS. RESULTS We used a logistic regression to evaluate how well the propensity for nucleosome binding and co-occurrence of a secondary motif identify which canonical motifs are bound in vivo. We used ChIP-seq data for three transcription factors binding to their canonical motifs: c-Jun binding the AP-1 motif (TGA(C)/(G)TCA), GR (glucocorticoid receptor) binding the GR motif (G-ACA---(T)/(C)GT-C), and Hoxa2 (homeobox a2) binding the Pbx (Pre-B-cell leukemia homeobox) motif (TGATTGAT). For all canonical TFBS in the mouse genome, we calculated intrinsic nucleosome occupancy scores (INOS) for its surrounding 150-bps DNA and examined the relationship with in vivo TF binding. In mouse mammary 3134 cells, c-Jun and GR proteins preferentially bound regions calculated to be well-bound by nucleosomes in vitro with the canonical AP-1 and GR motifs themselves contributing to the high INOS. Functional GR motifs are enriched for AP-1 motifs if they are within a nucleosome-sized 150-bps region. GR and Hoxa2 also bind motifs with low INOS, perhaps indicating a different mechanism of action. CONCLUSION Our analysis quantified the contribution of INOS and co-occurring sequence to the identification of functional canonical motifs in the genome. This analysis revealed an inherent competition between some TFs and nucleosomes for binding canonical TFBS. GR and c-Jun cooperate if they are within 150-bps. Binding of Hoxa2 and a fraction of GR to motifs with low INOS values suggesting they are not in competition with nucleosomes and may function using different mechanisms.
Collapse
Affiliation(s)
- Ximiao He
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
568
|
Du Z, Fei T, Verhaak RGW, Su Z, Zhang Y, Brown M, Chen Y, Liu XS. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 2013; 20:908-13. [PMID: 23728290 PMCID: PMC3702647 DOI: 10.1038/nsmb.2591] [Citation(s) in RCA: 439] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/17/2013] [Indexed: 02/07/2023]
Abstract
Despite growing appreciations of the importance of long non-coding RNA (lncRNA) in normal physiology and disease, our knowledge of cancer-related lncRNA remains limited. By repurposing microarray probes, we constructed the expression profile of 10,207 lncRNA genes in approximately 1,300 tumors over four different cancer types. Through integrative analysis of the lncRNA expression profiles with clinical outcome and somatic copy number alteration (SCNA), we identified lncRNA that are associated with cancer subtypes and clinical prognosis, and predicted those that are potential drivers of cancer progression. We validated our predictions by experimentally confirming prostate cancer cell growth dependence on two novel lncRNA. Our analysis provided a resource of clinically relevant lncRNA for development of lncRNA biomarkers and identification of lncRNA therapeutic targets. It also demonstrated the power of integrating publically available genomic datasets and clinical information for discovering disease associated lncRNA.
Collapse
Affiliation(s)
- Zhou Du
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
569
|
Valsesia A, Macé A, Jacquemont S, Beckmann JS, Kutalik Z. The Growing Importance of CNVs: New Insights for Detection and Clinical Interpretation. Front Genet 2013; 4:92. [PMID: 23750167 PMCID: PMC3667386 DOI: 10.3389/fgene.2013.00092] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/04/2013] [Indexed: 02/03/2023] Open
Abstract
Differences between genomes can be due to single nucleotide variants, translocations, inversions, and copy number variants (CNVs, gain or loss of DNA). The latter can range from sub-microscopic events to complete chromosomal aneuploidies. Small CNVs are often benign but those larger than 500 kb are strongly associated with morbid consequences such as developmental disorders and cancer. Detecting CNVs within and between populations is essential to better understand the plasticity of our genome and to elucidate its possible contribution to disease. Hence there is a need for better-tailored and more robust tools for the detection and genome-wide analyses of CNVs. While a link between a given CNV and a disease may have often been established, the relative CNV contribution to disease progression and impact on drug response is not necessarily understood. In this review we discuss the progress, challenges, and limitations that occur at different stages of CNV analysis from the detection (using DNA microarrays and next-generation sequencing) and identification of recurrent CNVs to the association with phenotypes. We emphasize the importance of germline CNVs and propose strategies to aid clinicians to better interpret structural variations and assess their clinical implications.
Collapse
Affiliation(s)
- Armand Valsesia
- Genetics Core, Nestlé Institute of Health Sciences Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
570
|
Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLoS Biol 2013; 11:e1001560. [PMID: 23690750 PMCID: PMC3653793 DOI: 10.1371/journal.pbio.1001560] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.
Collapse
Affiliation(s)
| | - Adam C. Herman
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Adrian E. Platts
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Xavier Vekemans
- Laboratoire de Génétique et Évolution des Populations Végétale, Unité Mixte de Recherche 8198, Centre National de Recherches Scientifiques–Université Lille 1, Sciences et Technologies, Cité Scientifique, Villeneuve d'Ascq, France
| | - Daniel J. Schoen
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
571
|
Janzen DM, Cheng D, Schafenacker AM, Paik DY, Goldstein AS, Witte ON, Jaroszewicz A, Pellegrini M, Memarzadeh S. Estrogen and progesterone together expand murine endometrial epithelial progenitor cells. Stem Cells 2013; 31:808-22. [PMID: 23341289 PMCID: PMC3774116 DOI: 10.1002/stem.1337] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/17/2012] [Indexed: 01/27/2023]
Abstract
Synchronous with massive shifts in reproductive hormones, the uterus and its lining the endometrium expand to accommodate a growing fetus during pregnancy. In the absence of an embryo the endometrium, composed of epithelium and stroma, undergoes numerous hormonally regulated cycles of breakdown and regeneration. The hormonally mediated regenerative capacity of the endometrium suggests that signals that govern the growth of endometrial progenitors must be regulated by estrogen and progesterone. Here, we report an antigenic profile for isolation of mouse endometrial epithelial progenitors. These cells are EpCAM(+) CD44(+) ITGA6(hi) Thy1(-) PECAM1(-) PTPRC(-) Ter119(-), comprise a minor subpopulation of total endometrial epithelia and possess a gene expression profile that is unique and different from other cells of the endometrium. The epithelial progenitors of the endometrium could regenerate in vivo, undergo multilineage differentiation and proliferate. We show that the number of endometrial epithelial progenitors is regulated by reproductive hormones. Coadministration of estrogen and progesterone dramatically expanded the endometrial epithelial progenitor cell pool. This effect was not observed when estrogen or progesterone was administered alone. Despite the remarkable sensitivity to hormonal signals, endometrial epithelial progenitors do not express estrogen or progesterone receptors. Therefore, their hormonal regulation must be mediated through paracrine signals resulting from binding of steroid hormones to the progenitor cell niche. Discovery of signaling defects in endometrial epithelial progenitors or their niche can lead to development of better therapies in diseases of the endometrium.
Collapse
Affiliation(s)
- DM Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - D Cheng
- The Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
| | - AM Schafenacker
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - DY Paik
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - AS Goldstein
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - ON Witte
- The Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - A Jaroszewicz
- Department of Molecular, Cell and Developmental Biology
| | - M Pellegrini
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology
| | - S Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- The VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| |
Collapse
|
572
|
Cellier MFM. Cell-Type Specific Determinants of NRAMP1 Expression in Professional Phagocytes. BIOLOGY 2013; 2:233-83. [PMID: 24832660 PMCID: PMC4009858 DOI: 10.3390/biology2010233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 01/10/2023]
Abstract
The Natural resistance-associated macrophage protein 1 (Nramp1 or Solute carrier 11 member 1, Slc11a1) transports divalent metals across the membrane of late endosomes and lysosomes in professional phagocytes. Nramp1 represents an ancient eukaryotic cell-autonomous defense whereas the gene duplication that yielded Nramp1 and Nramp2 predated the origin of Sarcopterygians (lobe-finned fishes and tetrapods). SLC11A1 genetic polymorphisms associated with human resistance to tuberculosis consist of potential regulatory variants. Herein, current knowledge of the regulation of SLC11A1 gene expression is reviewed and comprehensive analysis of ENCODE data available for hematopoietic cell-types suggests a hypothesis for the regulation of SLC11A1 expression during myeloid development and phagocyte functional polarization. SLC11A1 is part of a 34.6 kb CTCF-insulated locus scattered with predicted regulatory elements: a 3' enhancer, a large 5' enhancer domain and four elements spread around the transcription start site (TSS), including several C/EBP and PU.1 sites. SLC11A1 locus ends appear mobilized by ETS-related factors early during myelopoiesis; activation of both 5' and 3' enhancers in myelo-monocytic cells correlate with transcription factor binding at the TSS. Characterizing the corresponding cis/trans determinants functionally will establish the mechanisms involved and possibly reveal genetic variation that impacts susceptibility to infectious or immune diseases.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- Inrs-Institut Armand-Frappier, 531, Bd des prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
573
|
Zheng M, Li Y, Lau YFC. Application of the simple and efficient Mpeak modeling in binding peak identification in ChIP-chip studies. Methods Mol Biol 2013; 1067:185-202. [PMID: 23975793 DOI: 10.1007/978-1-62703-607-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromatin immunoprecipitation and hybridization of high-density promoter microarray (ChIP-chip) is a powerful strategy to identify target genes for specific transcription factors and other DNA-binding nuclear proteins in a genome-wide manner. Services of core facilities have greatly enhanced the accessibility of these technologies to new investigators to the field. The Mpeak modeling is a simple and efficient computer program, capable of identifying chromatin-binding peaks in ChIP-chip datasets. It utilizes advanced statistical computation, but yet offers a simple procedure with user inputs on parameters in its operation. The Mpeak-fitted signals are tabulation in convenient formats and can be visualized in various genome-display graphic programs, including SignalMap and Genome Browser, and analyzed together with other datasets, such as microarray expression patterns. Several research groups have used the Mpeak program in their respective ChIP-chip studies. The various features of Mpeak will be illustrated with ChIP-chip datasets from a study designed to identify the target genes for the sex-determining factor, SRY, in mouse embryonic gonads at the time of sex determination.
Collapse
Affiliation(s)
- Ming Zheng
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
574
|
Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLoS Biol 2013. [PMID: 23690750 DOI: 10.1371/journal.pbio.1001560pbiology-d-12-03507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.
Collapse
|
575
|
Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLoS Biol 2013. [PMID: 23690750 DOI: 10.5061/dryad.mq5ct] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.
Collapse
|
576
|
Castelo-Branco G, Amaral PP, Engström PG, Robson SC, Marques SC, Bertone P, Kouzarides T. The non-coding snRNA 7SK controls transcriptional termination, poising, and bidirectionality in embryonic stem cells. Genome Biol 2013; 14:R98. [PMID: 24044525 PMCID: PMC4053805 DOI: 10.1186/gb-2013-14-9-r98] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pluripotency is characterized by a unique transcriptional state, in which lineage-specification genes are poised for transcription upon exposure to appropriate stimuli, via a bivalency mechanism involving the simultaneous presence of activating and repressive methylation marks at promoter-associated histones. Recent evidence suggests that other mechanisms, such as RNA polymerase II pausing, might be operational in this process, but their regulation remains poorly understood. RESULTS Here we identify the non-coding snRNA 7SK as a multifaceted regulator of transcription in embryonic stem cells. We find that 7SK represses a specific cohort of transcriptionally poised genes with bivalent or activating chromatin marks in these cells, suggesting a novel poising mechanism independent of Polycomb activity. Genome-wide analysis shows that 7SK also prevents transcription downstream of polyadenylation sites at several active genes, indicating that 7SK is required for normal transcriptional termination or control of 3′-UTR length. In addition, 7SK suppresses divergent upstream antisense transcription at more than 2,600 loci, including many that encode divergent long non-coding RNAs, a finding that implicates the 7SK snRNA in the control of transcriptional bidirectionality. CONCLUSIONS Our study indicates that a single non-coding RNA, the snRNA 7SK, is a gatekeeper of transcriptional termination and bidirectional transcription in embryonic stem cells and mediates transcriptional poising through a mechanism independent of chromatin bivalency.
Collapse
Affiliation(s)
- Gonçalo Castelo-Branco
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet,SE-17177 Stockholm, Sweden
| | - Paulo P Amaral
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Pär G Engström
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
- Present address: Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121 Solna, Sweden
| | - Samuel C Robson
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Sueli C Marques
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet,SE-17177 Stockholm, Sweden
| | - Paul Bertone
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
- Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
577
|
Dreos R, Ambrosini G, Cavin Périer R, Bucher P. EPD and EPDnew, high-quality promoter resources in the next-generation sequencing era. Nucleic Acids Res 2012. [PMID: 23193273 PMCID: PMC3531148 DOI: 10.1093/nar/gks1233] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Eukaryotic Promoter Database (EPD), available online at http://epd.vital-it.ch, is a collection of experimentally defined eukaryotic POL II promoters which has been maintained for more than 25 years. A promoter is represented by a single position in the genome, typically the major transcription start site (TSS). EPD primarily serves biologists interested in analysing the motif content, chromatin structure or DNA methylation status of co-regulated promoter subsets. Initially, promoter evidence came from TSS mapping experiments targeted at single genes and published in journal articles. Today, the TSS positions provided by EPD are inferred from next-generation sequencing data distributed in electronic form. Traditionally, EPD has been a high-quality database with low coverage. The focus of recent efforts has been to reach complete gene coverage for important model organisms. To this end, we introduced a new section called EPDnew, which is automatically assembled from multiple, carefully selected input datasets. As another novelty, we started to use chromatin signatures in addition to mRNA 5′tags to locate promoters of weekly expressed genes. Regarding user interfaces, we introduced a new promoter viewer which enables users to explore promoter-defining experimental evidence in a UCSC genome browser window.
Collapse
Affiliation(s)
- René Dreos
- Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|