551
|
Santos-Sierra S, Deshmukh SD, Kalnitski J, Küenzi P, Wymann MP, Golenbock DT, Henneke P. Mal connects TLR2 to PI3Kinase activation and phagocyte polarization. EMBO J 2009; 28:2018-27. [PMID: 19574958 PMCID: PMC2718282 DOI: 10.1038/emboj.2009.158] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 05/22/2009] [Indexed: 02/06/2023] Open
Abstract
The recognition of bacterial lipoproteins by toll-like receptor (TLR) 2 is pivotal for inflammation initiation and control in many bacterial infections. TLR2-dependent signalling is currently believed to essentially require both adaptor proteins MyD88 (myeloid differentiation primary response gene 88) and Mal/TIRAP (MyD88-adapter-like/TIR-domain-containing adaptor protein). TLR2-dependent, but MyD88-independent responses have not been described yet. We report here on a novel-signalling pathway downstream of TLR2, which does not adhere to the established model. On stimulation of the TLR2/6 heterodimer with diacylated bacterial lipoproteins, Mal directly interacts with the regulatory subunit of phosphoinositide 3-kinase (PI3K), p85alpha, in an inducible fashion. The Mal-p85alpha interaction drives PI3K-dependent phosphorylation of Akt, phosphatidylinositol(3,4,5)P3 (PIP(3)) generation and macrophage polarization. MyD88 is not essential for PI3K activation and Akt phosphorylation; however, cooperates with Mal for PIP(3) formation and accumulation at the leading edge. In contrast to TLR2/6, TLR2/1 does not require Mal or MyD88 for Akt phosphorylation. Hence, Mal specifically connects TLR2/6 to PI3K activation, PIP(3) generation and macrophage polarization.
Collapse
Affiliation(s)
- S Santos-Sierra
- Center for Pediatrics and Adolescent Medicine and Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - S D Deshmukh
- Center for Pediatrics and Adolescent Medicine and Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - J Kalnitski
- Center for Pediatrics and Adolescent Medicine and Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - P Küenzi
- Institute of Pharmaceutical Biology, University of Basel, Basel, Switzerland
| | - M P Wymann
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - D T Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Philipp Henneke
- Center for Pediatrics and Adolescent Medicine and Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
552
|
Abstract
The pattern recognition theory proposed by the late Charles Janeway, Jr. 20 years ago provided a conceptual framework for our current understanding of the innate immune recognition and its role in the activation of adaptive immunity. Discovery of several families of pattern recognition receptors and their roles in mammalian immunity provided experimental support for the Janeway's theory. In addition to pattern recognition, there are other forms of innate immune sensing, which presumably work in specific combinations depending on the pathogen class and the type of the immune response they elicit. Here, the development of the Janeway's theory is discussed in the context of the advances made in field of innate immune recognition over the past two decades.
Collapse
Affiliation(s)
- Ruslan Medzhitov
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
553
|
Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 2009; 5:e1000562. [PMID: 19609346 PMCID: PMC2702086 DOI: 10.1371/journal.pgen.1000562] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/16/2009] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases have been paramount among the threats to health and survival throughout human evolutionary history. Natural selection is therefore expected to act strongly on host defense genes, particularly on innate immunity genes whose products mediate the direct interaction between the host and the microbial environment. In insects and mammals, the Toll-like receptors (TLRs) appear to play a major role in initiating innate immune responses against microbes. In humans, however, it has been speculated that the set of TLRs could be redundant for protective immunity. We investigated how natural selection has acted upon human TLRs, as an approach to assess their level of biological redundancy. We sequenced the ten human TLRs in a panel of 158 individuals from various populations worldwide and found that the intracellular TLRs—activated by nucleic acids and particularly specialized in viral recognition—have evolved under strong purifying selection, indicating their essential non-redundant role in host survival. Conversely, the selective constraints on the TLRs expressed on the cell surface—activated by compounds other than nucleic acids—have been much more relaxed, with higher rates of damaging nonsynonymous and stop mutations tolerated, suggesting their higher redundancy. Finally, we tested whether TLRs have experienced spatially-varying selection in human populations and found that the region encompassing TLR10-TLR1-TLR6 has been the target of recent positive selection among non-Africans. Our findings indicate that the different TLRs differ in their immunological redundancy, reflecting their distinct contributions to host defense. The insights gained in this study foster new hypotheses to be tested in clinical and epidemiological genetics of infectious disease. The detrimental effects of microbial infections have led to the evolution of a variety of host defense mechanisms. A vast array of host innate immunity receptors, critical sensors of viruses, bacteria, and fungi, exist to achieve permanent surveillance of intruding pathogens. The best characterized class of microbial sensors is the Toll-like receptor (TLR) family, which elicits inflammatory and antimicrobial responses after activation by microbial products. Here we investigated how microbes have exerted selective pressure on the human TLR family to gain insights on the extent to which they are functionally important in the immune system. By resequencing the ten TLRs in different worldwide populations, we show that intracellular TLRs—principally specialized in viral recognition—evolve under strong purifying selection, indicating their essential role in host survival, while the remaining TLRs display higher levels of immunological redundancy. However, for this latter group of genes, we also show that mutations altering immune responses have been in some cases beneficial for host survival, as attested by the signature of positive selection favoring a reduced TLR1-mediated response in Europeans. Our findings taken together indicate that the different human TLRs differ in their biological relevance and provide clues to be experimentally tested in clinical, immunological, and epidemiological studies.
Collapse
|
554
|
Geddes K, Magalhães JG, Girardin SE. Unleashing the therapeutic potential of NOD-like receptors. Nat Rev Drug Discov 2009; 8:465-79. [PMID: 19483708 DOI: 10.1038/nrd2783] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular sensors that have key roles in innate immunity and inflammation. Whereas some NLRs - including NOD1, NOD2, NAIP (NLR family, apoptosis inhibitory protein) and NLRC4 - detect conserved bacterial molecular signatures within the host cytosol, other members of this family sense 'danger signals', that is, xenocompounds or molecules that when recognized alert the immune system of hazardous environments, perhaps independently of a microbial trigger. In the past few years, remarkable progress has been made towards deciphering the role and the biology of NLRs, which has shown that these innate immune sensors have pivotal roles in providing immunity to infection, adjuvanticity and inflammation. Furthermore, several inflammatory disorders have been associated with mutations in human NLRgenes. Here, we discuss the effect that research on NLRs will have on vaccination, treatment of chronic inflammatory disorders and acute bacterial infections.
Collapse
Affiliation(s)
- Kaoru Geddes
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | |
Collapse
|
555
|
Abstract
PURPOSE OF REVIEW The innate immune system is our first line of defense against infection and injury, and responsible for initiating inflammatory and immune responses to resolve infections and repair injured tissues. This review focuses on the Toll-like receptors (TLRs) of the innate immune system and their role in recognizing infection and injury, and regulating inflammatory responses in the kidney. RECENT FINDINGS There is increasing data to support a role for TLRs in immune complex-mediated glomerulonephritis. TLR7 has emerged as a key regulator of autoantibody production in murine lupus nephritis. In addition, studies have implicated TLR recognition of endogenous molecules released during cellular necrosis as critical regulators of sterile inflammation and injury. Tonic interactions between TLRs and environmental agonists derived from commensal microbes and endogenous sources may also influence autoimmune disease and inflammatory disorders affecting the kidney. CONCLUSION Future studies to decipher the contribution of TLRs and other innate immune receptors in the regulation of inflammation, immune responses, and injury in the kidney will pave the way for novel therapeutic interventions.
Collapse
|
556
|
Nagpal K, Plantinga TS, Wong J, Monks BG, Gay NJ, Netea MG, Fitzgerald KA, Golenbock DT. A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. J Biol Chem 2009; 284:25742-8. [PMID: 19509286 DOI: 10.1074/jbc.m109.014886] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The adapter protein MyD88 adapter-like (Mal), encoded by TIR-domain containing adapter protein (Tirap) (MIM 606252), is the most polymorphic of the five adapter proteins involved in Toll-like receptor signaling, harboring eight non-synonymous single nucleotide polymorphisms in its coding region. We screened reported mutations of Mal for activity in reporter assays to test the hypothesis that variants of Mal existed with altered signaling potential. A TIR domain variant, Mal D96N (rs8177400), was found to be inactive. In reconstituted cell lines, Mal D96N acted as a hypomorphic mutation, with impaired cytokine production and NF-kappaB activation upon lipopolysaccharide or PAM2CSK4 stimulation. Moreover, co-immunoprecipitation studies revealed that Mal D96N is unable to interact with MyD88, a prerequisite for downstream signaling to occur. Computer modeling data suggested that residue 96 resides in the MyD88 binding site, further supporting these findings. Genotyping of Mal D96N in three different cohorts suggested that it is a rare mutation. We, thus, describe a rare variant in Mal that exerts its effect via its inability to bind MyD88.
Collapse
Affiliation(s)
- Kamalpreet Nagpal
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
557
|
Rasmussen SB, Reinert LS, Paludan SR. Innate recognition of intracellular pathogens: detection and activation of the first line of defense. APMIS 2009; 117:323-37. [PMID: 19400860 DOI: 10.1111/j.1600-0463.2009.02456.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The innate immune system constitutes the first line of defense against infections and is also important for initiating the development of an adaptive immune response. The innate immune system recognizes microbial infection through germline-encoded pattern recognition receptors, which are responsible for decoding the microbial fingerprint and activating an appropriate response against the invading pathogen. In this review, we present and discuss current knowledge on how the innate immune system recognizes intracellular pathogens, activates intracellular signaling, induces gene expression, and orchestrates the microbicidal response against pathogens with a habitat within host cells.
Collapse
Affiliation(s)
- Simon B Rasmussen
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark.
| | | | | |
Collapse
|
558
|
Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Proc Natl Acad Sci U S A 2009; 106:10260-5. [PMID: 19506249 DOI: 10.1073/pnas.0812956106] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myeloid differentiating factor 88 (MyD88) and MyD88 adaptor-like (Mal) are adaptor molecules critically involved in the Toll-like receptor (TLR) 4 signaling pathway. While Mal has been proposed to serve as a membrane-sorting adaptor, MyD88 mediates signal transduction from activated TLR4 to downstream components. The Toll/Interleukin-1 receptor (TIR) domain of MyD88 is responsible for sorting and signaling via direct or indirect TIR-TIR interactions between Mal and TLR4. However, the molecular mechanisms involved in multiple interactions of the TIR domain remain unclear. The present study describes the solution structure of the MyD88 TIR domain. Reporter gene assays revealed that 3 discrete surface sites in the TIR domain of MyD88 are important for TLR4 signaling. Two of these sites were shown to mediate direct binding to the TIR domain of Mal. Interestingly, Mal-TIR, but not MyD88-TIR, directly binds to the cytosolic TIR domain of TLR4. These observations suggested that the heteromeric assembly of TIR domains of the receptor and adaptors constitutes the initial step of TLR4 intracellular signal transduction.
Collapse
|
559
|
|
560
|
Roles of NF-kappaB in health and disease: mechanisms and therapeutic potential. Clin Sci (Lond) 2009; 116:451-65. [PMID: 19200055 DOI: 10.1042/cs20080502] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The NF-kappaB (nuclear factor kappaB) family of transcription factors are involved in a myriad of activities, including the regulation of immune responses, maturation of immune cells, development of secondary lymphoid organs and osteoclastogenesis. Fine tuning by positive and negative regulators keeps the NF-kappaB signalling pathway in check. Microbial products and genetic alterations in NF-kappaB and other signalling pathway components can lead to deregulation of NF-kappaB signalling in several human diseases, including cancers and chronic inflammatory disorders. NF-kappaB-pathway-specific therapies are being actively investigated, and these hold promises as interventions of NF-kappaB-related ailments.
Collapse
|
561
|
Gardy JL, Lynn DJ, Brinkman FSL, Hancock REW. Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol 2009; 30:249-62. [PMID: 19428301 DOI: 10.1016/j.it.2009.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 12/15/2022]
Abstract
Immunity is not simply the product of a series of discrete linear signalling pathways; rather it is comprised of a complex set of integrated responses arising from a dynamic network of thousands of molecules subject to multiple influences. Its behaviour often cannot be explained or predicted solely by examining its components. Here, we review recently developed resources for the systems-level investigation of immunity. Although innate immunity is emphasized here, its considerable overlap with adaptive immunity makes many of these resources relevant to both arms of the immune response. We discuss recent studies implementing these approaches and illustrate the potential of systems biology to generate novel insights into the complexities of innate immunity.
Collapse
Affiliation(s)
- Jennifer L Gardy
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
562
|
|
563
|
Philbin VJ, Levy O. Developmental biology of the innate immune response: implications for neonatal and infant vaccine development. Pediatr Res 2009; 65:98R-105R. [PMID: 19918215 PMCID: PMC2795575 DOI: 10.1203/pdr.0b013e31819f195d] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular characterization of mechanisms by which human pattern recognition receptors (PRRs) detect danger signals has greatly expanded our understanding of the innate immune system. PRRs include Toll-like receptors, nucleotide oligomerization domain-like receptors, retinoic acid inducible gene-like receptors, and C-type lectin receptors. Characterization of the developmental expression of these systems in the fetus, newborn, and infant is incomplete but has yielded important insights into neonatal susceptibility to infection. Activation of PRRs on antigen-presenting cells enhances costimulatory function, and thus PRR agonists are potential vaccine adjuvants, some of which are already in clinical use. Thus, study of PRRs has also revealed how previously mysterious immunomodulators are able to mediate their actions, including the vaccine adjuvant aluminum hydroxide that activates a cytosolic protein complex known as the Nacht domain leucine-rich repeat and pyrin domain-containing protein 3 inflammasome leading to interleukin-1beta production. Progress in characterizing PRRs is thus informing and expanding the design of improved adjuvants. This review summarizes recent developments in the field of innate immunity emphasizing developmental expression in the fetus, newborn, and infant and its implications for the design of more effective neonatal and infant vaccines.
Collapse
Affiliation(s)
- Victoria Jane Philbin
- Department of Medicine, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
564
|
Pessach I, Walter J, Notarangelo LD. Recent advances in primary immunodeficiencies: identification of novel genetic defects and unanticipated phenotypes. Pediatr Res 2009; 65:3R-12R. [PMID: 19190530 DOI: 10.1203/pdr.0b013e31819dbe1e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Primary immunodeficiencies (PIDs) have traditionally been defined according to their immunologic phenotype. Far from being concluded, the search for human genes that, when mutated, cause PID is actively being pursued. During the last year, four novel genetic defects that cause severe combined immunodeficiency and severe congenital neutropenia have been identified. At the same time, the immunologic definition of primary immunodeficiencies has been expanded by the recognition that genetic defects affecting innate immunity may result in selective predisposition to certain infections, such as mycobacterial disease, herpes simplex encephalitis, and invasive pneumococcal infections. Studies of genetically determined susceptibility to infections have recently shown that immunologic defects may also account for novel infectious phenotypes, such as malaria or leprosy. Finally, a growing body of evidence indicates that primary immunodeficiencies may present with a noninfectious clinical phenotype that may be restricted to single organs, as in the case of atypical hemolytic uremic syndrome or pulmonary alveolar proteinosis. Overall, these achievements highlight the importance of human models, which often differ from the corresponding animal models.
Collapse
Affiliation(s)
- Itai Pessach
- Division of Immunology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
565
|
Affiliation(s)
- Brahm H Segal
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
566
|
Abstract
Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.
Collapse
Affiliation(s)
- Himanshu Kumar
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
567
|
Unsinger J, McDonough JS, Shultz LD, Ferguson TA, Hotchkiss RS. Sepsis-induced human lymphocyte apoptosis and cytokine production in "humanized" mice. J Leukoc Biol 2009; 86:219-27. [PMID: 19369639 DOI: 10.1189/jlb.1008615] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sepsis is the leading cause of death in critically ill patients in the United States with over 210,000 deaths annually. One stumbling block to an effective therapy of sepsis has been the lack of a clinically relevant animal model. There are important distinctions in the mouse versus human immune system regarding the host response to invading pathogens. These differences may explain the disappointing results in many sepsis clinical trials despite the clear efficacy of these agents in mouse models of sepsis. The purpose of the present study was to develop a "humanized" mouse model of sepsis and to determine if the model recapitulated the major findings of lymphocyte apoptosis and cytokine response that exist in patients with sepsis. Two-day-old NOD-scid IL2rgamma(null) mice received an adoptive transfer of hCD34(+) hematopoietic cord blood stem cells. These mice acquired a functional human innate and adaptive immune system, as evidenced by the development of all lineages of human immune cells as well as by mounting a DTH response. Eight weeks post-transfer, mice were made septic using the highly clinical relevant CLP model of sepsis, and sepsis induced marked elevations in human pro- and anti-inflammatory cytokines as well as a dramatic increase in human T and B cell apoptosis. Collectively, these results show that the humanized mouse model recapitulates many of the classic findings in patients with sepsis. Therefore, it represents an advanced, clinically relevant model for mechanistic studies of sepsis and testing of novel therapies.
Collapse
Affiliation(s)
- Jacqueline Unsinger
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
568
|
Mineo TWP, Benevides L, Silva NM, Silva JS. Myeloid differentiation factor 88 is required for resistance to Neospora caninum infection. Vet Res 2009; 40:32. [PMID: 19341611 PMCID: PMC2695129 DOI: 10.1051/vetres/2009015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 03/27/2009] [Indexed: 12/03/2022] Open
Abstract
Neospora caninum is an intracellular parasite that causes major economic impact on cattle raising farms, and infects a wide range of warm-blooded hosts worldwide. Innate immune mechanisms that lead to protection against this parasite are still unknown. In order to investigate whether myeloid differentiation factor 88 (MyD88) is required for resistance against N. caninum, genetically deficient mice (MyD88−/−) and wild type littermates were infected with live tachyzoites and the resistance to infection was evaluated. We found that sub-lethal tachyzoite doses induced acute mortality of MyD88−/− mice, which succumbed to infection due to uncontrolled parasite replication. Higher parasitism in MyD88−/− mice was associated with the lack of IL-12 production by dendritic cells, delayed IFN-γ responses by NKT, CD4+ and CD8+ T lymphocytes, and production of high levels of IL-10. MyD88−/− mice replenished with IL-12 and IFN-γ abolished susceptibility as the animals survived throughout the experimental period. We conclude that protective IFN-γ-mediated immunity to N. caninum is dependent on initial MyD88 signaling, in a mechanism triggered by production of IL-12 by dendritic cells. Further knowledge on Toll-like receptor recognition of N. caninum antigens is encouraged, since it could generate new prophylactic and therapeutic tools to control parasite burden.
Collapse
Affiliation(s)
- Tiago W P Mineo
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo - Ribeirão Preto, SP, Brazil - Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | | | | |
Collapse
|
569
|
Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009; 21:317-37. [PMID: 19246554 PMCID: PMC2721684 DOI: 10.1093/intimm/dxp017] [Citation(s) in RCA: 1166] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 02/07/2023] Open
Abstract
The mammalian innate immune system detects the presence of microbial infection through germ line-encoded pattern recognition receptors (PRRs). Toll-like receptors, retinoic acid-inducible gene-I-like receptors and nucleotide-binding oligomerization domain-like receptors serve as PRRs that recognize different but overlapping microbial components. They are expressed in different cellular compartments such as the cell surface, endosome, lysosome or cytoplasm and activate specific signaling pathways that lead to expression of genes that tailor immune responses to particular microbes. This review summarizes recent insights into pathogen sensing by these PRRs and their signaling pathways.
Collapse
Affiliation(s)
- Taro Kawai
- Laboratory of Host Defense, World Premier International Research Center, Osaka University, Suita, Osaka , Japan
| | | |
Collapse
|
570
|
Hong M, Ryan KR, Arkwright PD, Gennery AR, Costigan C, Dominguez M, Denning DW, McConnell V, Cant AJ, Abinun M, Spickett GP, Swan DC, Gillespie CS, Young DA, Lilic D. Pattern recognition receptor expression is not impaired in patients with chronic mucocutanous candidiasis with or without autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. Clin Exp Immunol 2009; 156:40-51. [PMID: 19196253 PMCID: PMC2673740 DOI: 10.1111/j.1365-2249.2009.03873.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2008] [Indexed: 12/30/2022] Open
Abstract
Patients with chronic mucocutaneous candidiasis (CMC) have an unknown primary immune defect and are unable to clear infections with the yeast Candida. CMC includes patients with AIRE gene mutations who have autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), and patients without known mutations. CMC patients have dysregulated cytokine production, suggesting that defective expression of pattern recognition receptors (PRRs) may underlie disease pathogenesis. In 29 patients with CMC (13 with APECED) and controls, we assessed dendritic cell (DC) subsets and monocyte Toll-like receptor (TLR) expression in blood. We generated and stimulated monocyte-derived (mo)DCs with Candida albicans, TLR-2/6 ligand and lipopolysaccharide and assessed PRR mRNA expression by polymerase chain reaction [TLR-1-10, Dectin-1 and -2, spleen tyrosine kinase (Syk) and caspase recruitment domain (CARD) 9] in immature and mature moDCs. We demonstrate for the first time that CMC patients, with or without APECED, have normal blood levels of plasmocytoid and myeloid DCs and monocyte TLR-2/TLR-6 expression. We showed that in immature moDCs, expression levels of all PRRs involved in anti-Candida responses (TLR-1, -2, -4, -6, Dectin-1, Syk, CARD9) were comparable to controls, implying that defects in PRR expression are not responsible for the increased susceptibility to Candida infections seen in CMC patients. However, as opposed to healthy controls, both groups of CMC patients failed to down-regulate PRR mRNA expression in response to Candida, consistent with defective DC maturation, as we reported recently. Thus, impaired DC maturation and consequent altered regulation of PRR signalling pathways rather than defects in PRR expression may be responsible for inadequate Candida handling in CMC patients.
Collapse
Affiliation(s)
- M Hong
- Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
571
|
Activation of critical, host-induced, metabolic and stress pathways marks neutrophil entry into cystic fibrosis lungs. Proc Natl Acad Sci U S A 2009; 106:5779-83. [PMID: 19293384 DOI: 10.1073/pnas.0813410106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) patients undergo progressive airway destruction caused in part by chronic neutrophilic inflammation. While opportunistic pathogens infecting CF airways can cause inflammation, we hypothesized that host-derived metabolic and stress signals would also play a role in this process. We show that neutrophils that have entered CF airways have increased phosphorylation of the eukaryotic initiation factor 4E and its partner the 4E-binding protein 1; 2 key effectors in the growth factor- and amino acid-regulated mammalian target of rapamycin (mTOR) pathway. Furthermore CF airway neutrophils display increased phosphorylation of the cAMP response element binding protein (CREB), a major transcriptional coactivator in stress signaling cascades. These active intracellular pathways are associated with increased surface expression of critical adaptor molecules, including the growth factor receptor CD114 and the receptor for advanced glycation end-products (RAGE), a CREB inducer and sensor for host-derived damage-associated molecular patterns (DAMPs). Most CF airway fluids lack any detectable soluble RAGE, an inhibitory decoy receptor for DAMPs. Concomitantly, CF airway fluids displayed high and consequently unopposed levels of S100A12; a potent mucosa- and neutrophil-derived DAMP. CF airway neutrophils also show increased surface levels of 2 critical CREB targets, the purine-recycling enzyme CD39 and the multifunctional, mTOR-inducing CXCR4 receptor. This coordinated set of events occurs in all patients, even in the context of minimal airway inflammation and well-preserved lung function. Taken together, our data demonstrate an early and sustained activation of host-responsive metabolic and stress pathways upon neutrophil entry into CF airways, suggesting potential targets for therapeutic modulation.
Collapse
|
572
|
Jenkins KA, Mansell A. TIR-containing adaptors in Toll-like receptor signalling. Cytokine 2009; 49:237-44. [PMID: 19264502 DOI: 10.1016/j.cyto.2009.01.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/22/2009] [Accepted: 01/27/2009] [Indexed: 12/20/2022]
Abstract
While the Toll-like receptors (TLRs) are responsible for the recognition and response to pathogen ligands, increasing evidence suggests that the family of five cytosolic Toll/IL-1 receptor (TIR) adaptor proteins also play a crucial role in the specificity of the response. Genetic studies in mice, and increasingly in human polymorphic populations, have given us a greater understanding the role these adaptors play in orchestrating and coordinating the multifaceted immune response to multiple exogenous threats. Importantly, with growing evidence of the critical role TLRs play in responses to host danger signals and autoimmune disease, a more comprehensive understanding and appreciation of the role these adaptors play in disease progression may provide future targets for therapeutic intervention in human disease. Importantly, growing evidence supports the concept of pathway specific and inflammatory control by a better understanding of how these adaptors interact with other signalling mediators, where they localise within the cell and the inflammatory programs they initiate as a way of manipulating immune responses. This review deals with our current understanding of these TIR-containing adaptor proteins and how mutagenesis of specific residues and domains has increased our knowledge of their function in TLR immune responses.
Collapse
Affiliation(s)
- Kristie A Jenkins
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Vic., Australia
| | | |
Collapse
|
573
|
Identification of potential pathway mediation targets in Toll-like receptor signaling. PLoS Comput Biol 2009; 5:e1000292. [PMID: 19229310 PMCID: PMC2634968 DOI: 10.1371/journal.pcbi.1000292] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 01/07/2009] [Indexed: 01/01/2023] Open
Abstract
Recent advances in reconstruction and analytical methods for signaling networks have spurred the development of large-scale models that incorporate fully functional and biologically relevant features. An extended reconstruction of the human Toll-like receptor signaling network is presented herein. This reconstruction contains an extensive complement of kinases, phosphatases, and other associated proteins that mediate the signaling cascade along with a delineation of their associated chemical reactions. A computational framework based on the methods of large-scale convex analysis was developed and applied to this network to characterize input–output relationships. The input–output relationships enabled significant modularization of the network into ten pathways. The analysis identified potential candidates for inhibitory mediation of TLR signaling with respect to their specificity and potency. Subsequently, we were able to identify eight novel inhibition targets through constraint-based modeling methods. The results of this study are expected to yield meaningful avenues for further research in the task of mediating the Toll-like receptor signaling network and its effects. The human innate immune system, as the first line of defense against pathogens, is a vital component of our survival. One component of the innate immune system is the Toll-like receptor signaling network, which is responsible for transmitting activation signals from the outside of the cell to molecular machinery inside the cell. The innate immune system must be properly balanced, as excessive activation can lead to potentially lethal septic shock. Therefore, there is much interest in developing drugs that can mediate Toll-like receptor signaling so as to alleviate effects of excess activation. We present an in silico reconstruction of the Toll-like receptor signaling network and convert it into a mathematical framework that is suitable for constraint-based modeling and analysis. This approach leads to the identification of potential candidates for drug-based mediation. In addition to identifying targets for drug mediation of the Toll-like receptor network, we also supply a network model that may be continually updated and maintained.
Collapse
|
574
|
Abstract
Inbred mice have been an extremely successful tool for basic immunology, but much less so as models of disease. Thus, to maximize the use of immunologic approaches to improve human health, we need more strategically directed efforts in human immunology. This would also open up new opportunities for basic research.
Collapse
|
575
|
Egan CE, Sukhumavasi W, Butcher BA, Denkers EY. Functional aspects of Toll-like receptor/MyD88 signalling during protozoan infection: focus on Toxoplasma gondii. Clin Exp Immunol 2009; 156:17-24. [PMID: 19161444 DOI: 10.1111/j.1365-2249.2009.03876.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Toll-like receptor (TLR)/MyD88 signalling has emerged as a major pathway of pathogen recognition in the innate immune system. Here, we review recent data that begin to show how this pathway controls the immune response to protozoan infection, with particular emphasis on the opportunistic pathogen Toxoplasma gondii. The various ways that the parasite activates and suppresses TLR/MyD88 signalling defines several key principals that illuminate the complexities of the host-pathogen interaction. We also speculate how TLR/MyD88 signalling might be exploited to provide protection against Toxoplasma, as well as other protozoa and infection in general.
Collapse
Affiliation(s)
- C E Egan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
576
|
Affiliation(s)
- Nicholas Valiante
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
577
|
Abstract
The innate immune system employs a number of pattern recognition receptor families in response to DNAs and RNAs, either from invading microbes or within the hosts. These include the Toll-like receptors (TLRs), the retinoic acid inducible gene I (RIG-I) like receptors (RLRs), and the nucleotide-binding domain leucine-rich repeat/NOD-like receptor (NLRs), among other potential sensors in the cytoplasm. These receptors are composed of modular domain architecture, with ligand binding/sensing domains and signaling domains regulated either through dimerization/oligomerization, or conformational changes directed by enzymatic activities. Signaling pathways from different families of receptors converge on their respective common adapter proteins and lead to activation of transcription factors or caspases. Many of these receptors induce orchestrated responses to similar ligands from different cell types, resulting in redundant and complementary immunity to infections. This highly efficient defense system is a double-edged sword: inappropriate reaction to host ligands leads to compromised innate tolerance and autoimmune diseases. Structural studies of innate immune receptors and their signaling pathways are essential in our understanding of pattern recognition mechanisms and design of more efficient vaccine adjuvants.
Collapse
Affiliation(s)
- Tsan Xiao
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Drive, Building 4, Room 138, Bethesda, MD 20892-0430, USA.
| |
Collapse
|
578
|
Isnardi I, Ng YS, Srdanovic I, Motaghedi R, Rudchenko S, von Bernuth H, Zhang SY, Puel A, Jouanguy E, Picard C, Garty BZ, Camcioglu Y, Doffinger R, Kumararatne D, Davies G, Gallin JI, Haraguchi S, Day NK, Casanova JL, Meffre E. IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity 2008; 29:746-57. [PMID: 19006693 PMCID: PMC2666307 DOI: 10.1016/j.immuni.2008.09.015] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/25/2008] [Accepted: 09/17/2008] [Indexed: 11/17/2022]
Abstract
Most autoreactive B cells are normally counterselected during early B cell development. To determine whether Toll-like receptors (TLRs) regulate the removal of autoreactive B lymphocytes, we tested the reactivity of recombinant antibodies from single B cells isolated from patients deficient for interleukin-1 receptor-associated kinase 4 (IRAK-4), myeloid differentiation factor 88 (MyD88), and UNC-93B. Indeed, all TLRs except TLR3 require IRAK-4 and MyD88 to signal, and UNC-93B-deficient cells are unresponsive to TLR3, TLR7, TLR8, and TLR9. All patients suffered from defective central and peripheral B cell tolerance checkpoints, resulting in the accumulation of large numbers of autoreactive mature naive B cells in their blood. Hence, TLR7, TLR8, and TLR9 may prevent the recruitment of developing autoreactive B cells in healthy donors. Paradoxically, IRAK-4-, MyD88-, and UNC-93B-deficient patients did not display autoreactive antibodies in their serum or develop autoimmune diseases, suggesting that IRAK-4, MyD88, and UNC-93B pathway blockade may thwart autoimmunity in humans.
Collapse
Affiliation(s)
- Isabelle Isnardi
- Laboratory of Biochemistry and Molecular Immunology,
Hospital for Special Surgery, New York, NY 10021, USA
| | - Yen-Shing Ng
- Laboratory of Biochemistry and Molecular Immunology,
Hospital for Special Surgery, New York, NY 10021, USA
| | - Iva Srdanovic
- Laboratory of Biochemistry and Molecular Immunology,
Hospital for Special Surgery, New York, NY 10021, USA
| | - Roja Motaghedi
- Department of Pediatrics, New York, NY 10021, USA
- Weill Medical College of Cornell University, New York, NY
10021, USA
| | - Sergei Rudchenko
- Weill Medical College of Cornell University, New York, NY
10021, USA
- Flow Cytometry Facility, Hospital for Special Surgery,
Université Paris René Descartes, INSERM, U550,
Faculté de Médecine Necker, Paris 75015, France, EU
| | - Horst von Bernuth
- Laboratoire de Génétique Humaine
des Maladies Infectieuses, Université Paris René Descartes,
INSERM, U550, Faculté de Médecine Necker, Paris 75015,
France, EU
| | - Shen-Ying Zhang
- Laboratoire de Génétique Humaine
des Maladies Infectieuses, Université Paris René Descartes,
INSERM, U550, Faculté de Médecine Necker, Paris 75015,
France, EU
| | - Anne Puel
- Laboratoire de Génétique Humaine
des Maladies Infectieuses, Université Paris René Descartes,
INSERM, U550, Faculté de Médecine Necker, Paris 75015,
France, EU
| | - Emmanuelle Jouanguy
- Laboratoire de Génétique Humaine
des Maladies Infectieuses, Université Paris René Descartes,
INSERM, U550, Faculté de Médecine Necker, Paris 75015,
France, EU
| | - Capucine Picard
- Laboratoire de Génétique Humaine
des Maladies Infectieuses, Université Paris René Descartes,
INSERM, U550, Faculté de Médecine Necker, Paris 75015,
France, EU
| | - Ben-Zion Garty
- Department of Pediatrics, Schneider Children’s
Medical Center of Israel, Petah Tigva 49202, Israel
| | - Yildiz Camcioglu
- Department of Pediatrics, Cerrahpasa Medical School,
University of Istanbul, Istanbul 3403, Turkey
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology,
Addenbrookes Hospital, Cambridge, UK
| | - Dinakantha Kumararatne
- Department of Clinical Biochemistry and Immunology,
Addenbrookes Hospital, Cambridge, UK
| | - Graham Davies
- Immunology Department, Great Ormond Street Hospital,
London, UK
| | - John I. Gallin
- Laboratory of Host Defenses, National Institutes of
Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike,
Bethesda, MD 20892, USA
| | - Soichi Haraguchi
- Department of Pediatrics, Division of Allergy and
Immunology, University of South Florida and All Children’s Hospital, St.
Petersburg, FL 33701, USA
| | - Noorbibi K. Day
- Department of Pediatrics, Division of Allergy and
Immunology, University of South Florida and All Children’s Hospital, St.
Petersburg, FL 33701, USA
| | - Jean-Laurent Casanova
- Laboratoire de Génétique Humaine
des Maladies Infectieuses, Université Paris René Descartes,
INSERM, U550, Faculté de Médecine Necker, Paris 75015,
France, EU
| | - Eric Meffre
- Laboratory of Biochemistry and Molecular Immunology,
Hospital for Special Surgery, New York, NY 10021, USA
- Weill Medical College of Cornell University, New York, NY
10021, USA
| |
Collapse
|
579
|
|
580
|
Research highlights. Nat Genet 2008. [DOI: 10.1038/ng0908-1045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|