551
|
Shao W, Seth DM, Prieto MC, Kobori H, Navar LG. Activation of the renin-angiotensin system by a low-salt diet does not augment intratubular angiotensinogen and angiotensin II in rats. Am J Physiol Renal Physiol 2013; 304:F505-14. [PMID: 23303412 DOI: 10.1152/ajprenal.00587.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In angiotensin II (ANG II) infusion hypertension, there is an augmentation of intratubular angiotensinogen (AGT) and ANG II leading to increased urinary AGT and ANG II excretion rates associated with tissue injury. However, the changes in urinary AGT and ANG II excretion rates and markers of renal injury during physiologically induced stimulation of the renin-angiotensin system (RAS) by a low-salt diet remain unclear. Male Sprague-Dawley rats received a low-salt diet (0.03% NaCl; n = 6) and normal-salt diet (0.3% NaCl, n = 6) for 13 days. Low-salt diet rats had markedly higher plasma renin activity and plasma ANG II levels. Kidney cortex renin mRNA, kidney AGT mRNA, and AGT immunoreactivity were not different; however, medullary renin mRNA, kidney renin content, and kidney ANG II levels were significantly elevated by the low-salt diet. Kidney renin immunoreactivity was also markedly increased in juxtaglomerular apparati and in cortical and medullary collecting ducts. Urinary AGT excretion rates and urinary ANG II excretion rates were not augmented by the low-salt diet. The low-salt diet caused mild renal fibrosis in glomeruli and the tubulointerstitium, but no other signs of kidney injury were evident. These results indicate that, in contrast to the response in ANG II infusion hypertension, the elevated plasma and intrarenal ANG II levels caused by physiological stimulation of RAS are not reflected by increased urinary AGT or ANG II excretion rates or the development of renal injury.
Collapse
Affiliation(s)
- Weijian Shao
- Dept. of Physiology, SL39, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
552
|
Karaman M, Balta S, Seyit Ahmet AY, Cakar M, Naharci I, Demirkol S, Celik T, Arslan Z, Kurt O, Kocak N, Sarlak H, Demirbas S, Bulucu F, Bozoglu E. The comparative effects of valsartan and amlodipine on vWf levels and N/L ratio in patients with newly diagnosed hypertension. Clin Exp Hypertens 2013; 35:516-22. [PMID: 23289969 DOI: 10.3109/10641963.2012.758734] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High levels of circulating Von Willebrand factor (vWf) and increased neutrophil to lymphocyte (N/L) ratio may reflect vascular inflammation in hypertensive patients. In present study, we aimed to investigate the effects of valsartan as an angiotensin II receptor antagonist and amlodipine as a calcium channel blocker on the vWf levels and N/L ratio in patients with essential hypertension. Patients were randomized to one of the following intervention protocols: calcium channel blocker (amlodipine, 5-10 mg/day) as group A (n = 20 mean age = 51.85 ± 11.32 y) and angiotensine II receptor blocker (valsartan, 80-320 mg/day) as group B (n = 26 mean age = 49.12 ± 14.12 y). Endothelial dysfunction and vascular inflammation were evaluated with vWf levels and N/L ratio in hypertensive patients before treatment and after treatment in the 12th week. No statistically significant differences were found among the groups in terms of age, sex, and body mass index (BMI). There was a significant decrease in vWf levels (P < .001) and N/L ratio after treatment (P = .04, P < .001, respectively) in both the groups. Von Willebrand factor levels and N/L ratio are very important markers having a role in vascular inflammation and antihypertensive treatment with amlodipine and valsartan may improve cardiovascular outcomes by decreasing these biomarkers.
Collapse
Affiliation(s)
- Murat Karaman
- Department of Internal Medicine, Gulhane Medical Academy , Ankara , Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
553
|
McBryde FD, Abdala AP, Hendy EB, Pijacka W, Marvar P, Moraes DJA, Sobotka PA, Paton JFR. The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun 2013; 4:2395. [PMID: 24002774 DOI: 10.1038/ncomms3395] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/02/2013] [Indexed: 01/19/2023] Open
Abstract
In the spontaneously hypertensive (SH) rat, hyperoxic inactivation of the carotid body (CB) produces a rapid and pronounced fall in both arterial pressure and renal sympathetic nerve activity (RSA). Here we show that CB de-afferentation through carotid sinus nerve denervation (CSD) reduces the overactive sympathetic activity in SH rats, providing an effective antihypertensive treatment. We demonstrate that CSD lowers RSA chronically and that this is accompanied by a depressor response in SH but not normotensive rats. The drop in blood pressure is not dependent on renal nerve integrity but mechanistically accompanied by a resetting of the RSA-baroreflex function curve, sensitization of the cardiac baroreflex, changes in renal excretory function and reduced T-lymphocyte infiltration. We further show that combined with renal denervation, CSD remains effective, producing a summative response indicative of an independent mechanism. Our findings indicate that CB de-afferentation is an effective means for robust and sustained sympathoinhibition, which could translate to patients with neurogenic hypertension.
Collapse
Affiliation(s)
- Fiona D McBryde
- School of Physiology and Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, England
| | | | | | | | | | | | | | | |
Collapse
|
554
|
Guan Z, Giddens MI, Osmond DA, Cook AK, Hobbs JL, Zhang S, Yamamoto T, Pollock JS, Pollock DM, Inscho EW. Immunosuppression preserves renal autoregulatory function and microvascular P2X(1) receptor reactivity in ANG II-hypertensive rats. Am J Physiol Renal Physiol 2012; 304:F801-7. [PMID: 23269644 DOI: 10.1152/ajprenal.00286.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autoregulation is critical for protecting the kidney against arterial pressure elevation and is compromised in some forms of hypertension. Evidence indicates that activated lymphocytes contribute importantly to cardiovascular injury in hypertension. We hypothesized that activated lymphocytes contribute to renal vascular dysfunction by impairing autoregulation and P2X(1) receptor signaling in ANG II-infused hypertensive rats. Male Sprague-Dawley rats receiving ANG II infusion were treated with a lymphocyte proliferation inhibitor, mycophenolate mofetil (MMF) for 2 wk. Autoregulation was assessed in vitro and in vivo using the blood-perfused juxtamedullary nephron preparation and anesthetized rats, respectively. ANG II-treated rats exhibited impaired autoregulation. At the single vessel level, pressure-mediated afferent arteriolar vasoconstriction was significantly blunted (P < 0.05 vs. control rats). At the whole kidney level, renal blood flow passively decreased as renal perfusion pressure was reduced. MMF treatment did not alter the ANG II-induced hypertensive state; however, MMF did preserve autoregulation. The autoregulatory profiles in both in vitro or in vivo settings were similar to the responses from control rats despite persistent hypertension. Autoregulatory responses are linked to P2X(1) receptor activation. Accordingly, afferent arteriolar responses to ATP and the P2X(1) receptor agonist β,γ-methylene ATP were assessed. ATP- or β,γ-methylene ATP-induced vasoconstriction was significantly attenuated in ANG II-infused hypertensive rats but was normalized by MMF treatment. Moreover, MMF prevented elevation of plasma transforming growth factor-β1 concentration and lymphocyte and macrophage infiltration in ANG II-infused kidneys. These results suggest that anti-inflammatory treatment with MMF prevents lymphocyte infiltration and preserves autoregulation in ANG II-infused hypertensive rats, likely by normalizing P2X(1) receptor activation.
Collapse
Affiliation(s)
- Zhengrong Guan
- Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
555
|
Nguyen H, Chiasson VL, Chatterjee P, Kopriva SE, Young KJ, Mitchell BM. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res 2012; 97:696-704. [PMID: 23263331 DOI: 10.1093/cvr/cvs422] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS Elevated levels of pro-inflammatory cytokine interleukin-17A (IL-17) are associated with hypertensive autoimmune diseases; however, the connection between IL-17 and hypertension is unknown. We hypothesized that IL-17 increases blood pressure by decreasing endothelial nitric oxide production. METHODS AND RESULTS Acute treatment of endothelial cells with IL-17 caused a significant increase in phosphorylation of the inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495). Of the kinases known to phosphorylate eNOS Thr495, only inhibition of Rho-kinase prevented the IL-17-induced increase. IL-17 caused a threefold increase in the Rho-kinase activator RhoA, and this was prevented by an IL-17 neutralizing antibody. In isolated mouse aortas, IL-17 significantly increased eNOS Thr495 phosphorylation, induced RhoA expression, and decreased NO-dependent relaxation responses, all of which were prevented by either an IL-17 neutralizing antibody or inhibition of Rho-kinase. In mice, IL-17 treatment for 1 week significantly increased systolic blood pressure and this was associated with decreased aortic NO-dependent relaxation responses, increased eNOS Thr495 phosphorylation, and increased RhoA expression. Inhibition of Rho-kinase prevented the hypertension caused by IL-17. CONCLUSION These data demonstrate that IL-17 activates RhoA/Rho-kinase leading to endothelial dysfunction and hypertension. Inhibitors of IL-17 or Rho-kinase may prove useful as anti-hypertensive drugs in IL-17-associated autoimmune diseases.
Collapse
Affiliation(s)
- Hoanglan Nguyen
- Division of Nephrology & Hypertension, Department of Internal Medicine, Texas A&M Health Science Center College of Medicine/Scott & White Memorial Hospital, 702 SW HK Dodgen Loop, Temple, TX 76504, USA
| | | | | | | | | | | |
Collapse
|
556
|
Zhang M, Wang G, Wang A, Tong W, Zhang Y. Association of hypertension with coexistence of abnormal metabolism and inflammation and endothelial dysfunction. Blood Press 2012; 22:151-7. [DOI: 10.3109/08037051.2012.745226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
557
|
Vasdev S, Stuckless J, Richardson V. Role of the immune system in hypertension: modulation by dietary antioxidants. Int J Angiol 2012. [PMID: 23204821 DOI: 10.1055/s-0031-1288941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypertension is a major health problem worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease, and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Insulin resistance is a common feature of hypertension in both humans and animal models affecting glucose and lipid metabolism producing excess aldehydes including methylglyoxal. These aldehydes react with proteins to form conjugates called advanced glycation end products (AGEs). This alters protein structure and function and can affect vascular and immune cells leading to their activation and secretion of inflammatory cytokines. AGEs also act via receptors for advanced glycation end products on these cells altering the function of antioxidant and metabolic enzymes, and ion channels. This results in an increase in cytosolic free calcium, decrease in nitric oxide, endothelial dysfunction, oxidative stress, peripheral vascular resistance, and infiltration of vascular and kidney tissue with inflammatory cells leading to hypertension. Supplementation with dietary antioxidants including vitamins C, E, or B(6), thiols such as cysteine and lipoic acid, have been shown to lower blood pressure and plasma inflammatory cytokines in animal models and humans with essential hypertension. A well-balanced diet rich in antioxidants that includes vegetables, fruits, low fat dairy products, low salt, and includes whole grains, poultry, fish and nuts, lowers blood pressure and vascular inflammation. These antioxidants may achieve their antihypertensive and anti-inflammatory/immunomodulatory effects by reducing AGEs and improving insulin resistance and associated alterations. Dietary supplementation with antioxidants may be a beneficial, inexpensive, front-line alterative treatment modality for hypertension.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
558
|
Suliburska J, Bogdanski P, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose values in the serum of obese patients. Biol Trace Elem Res 2012; 149:315-22. [PMID: 22581111 PMCID: PMC3501173 DOI: 10.1007/s12011-012-9448-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/03/2012] [Indexed: 12/23/2022]
Abstract
The consumption of green tea has been associated with cardiovascular and metabolic diseases. There have been some studies on the influence of green tea on the mineral status of obese subjects, but they have not yielded conclusive results. The aim of the present study is to examine the effects of green tea extract on the mineral, body mass, lipid profile, glucose, and antioxidant status of obese patients. A randomized, double-blind, placebo-controlled study was conducted. Forty-six obese patients were randomly assigned to receive either 379 mg of green tea extract, or a placebo, daily for 3 months. At baseline, and after 3 months of treatment, the anthropometric parameters, blood pressure, and total antioxidant status were assessed, as were the levels of plasma lipids, glucose, calcium, magnesium, iron, zinc, and copper. We found that 3 months of green tea extract supplementation resulted in decreases in body mass index, waist circumference, and levels of total cholesterol, low-density cholesterol, and triglyceride. Increases in total antioxidant level and in zinc concentration in serum were also observed. Glucose and iron levels were lower in the green tea extract group than in the control, although HDL-cholesterol and magnesium were higher in the green tea extract group than in the placebo group. At baseline, a positive correlation was found between calcium and body mass index, as was a negative correlation between copper and triglycerides. After 3 months, a positive correlation between iron and body mass index and between magnesium and HDL-cholesterol, as well as a negative correlation between magnesium and glucose, were observed. The present findings demonstrate that green tea influences the body's mineral status. Moreover, the results of this study confirm the beneficial effects of green tea extract supplementation on body mass index, lipid profile, and total antioxidant status in patients with obesity.
Collapse
Affiliation(s)
- Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31 Str, 60-624 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
559
|
|
560
|
Unlu M, Karaman M, Ay SA, Balta S, Cakar M, Demirkol S, Celik T, Arslan E, Demirbas S, Turker T, Yaman H, Bulucu F, Sağlam K. The comparative effects of valsartan and amlodipine on vascular microinflammation in newly diagnosed hypertensive patients. Clin Exp Hypertens 2012; 35:418-23. [PMID: 23148500 DOI: 10.3109/10641963.2012.739237] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pentraxin 3 (PTX3) is a new candidate immunoinflammatory marker that has been reported to be associated with cardiometabolic risk factors. We aimed to investigate the effects of valsartan and amlodipine on the PTX3 and C-reactive protein (CRP) levels in patients with essential hypertension. Patients with a newly diagnosed essential hypertension were admitted to our internal medicine outpatient clinic. Patients were randomized to one of the following intervention protocols: calcium channel blocker (amlodipine, 5-10 mg/day) as group A (n = 22; mean age ± standard deviation [SD]: 52 ± 11 year) and angiotensine II receptor blocker (valsartan, 80-320 mg/day) as group B (n = 28; mean age ± SD: 50 ± 14 year). Endothelial dysfunction and systemic inflammation were evaluated with PTX3 and CRP. There was a significant decrease in the level of PTX3 after treatment in two groups (P < .05). Although there was a significant decrease in the level of CRP after treatment in amlodipine group, there was no significant decrease in the levels of PTX3 and CRP after treatment in two groups. There were no significant differences in the systolic and diastolic blood pressure reduction between the two treatment groups. In the treatment of hypertension, prior knowledge of the level of plasma PTX3 could be important in antihypertensive drug choice. C-reactive protein and PTX3 are the markers that have role in vascular inflammation and are found associated with the prognosis of cardiovascular outcomes in many trials. In our study, PTX and CRP levels were decreased when compared to baseline levels.
Collapse
Affiliation(s)
- Murat Unlu
- Department of Cardiology, Beytepe Hospital , Ankara , Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
561
|
Wiria AE, Djuardi Y, Supali T, Sartono E, Yazdanbakhsh M. Helminth infection in populations undergoing epidemiological transition: a friend or foe? Semin Immunopathol 2012; 34:889-901. [PMID: 23129304 DOI: 10.1007/s00281-012-0358-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/21/2012] [Indexed: 12/21/2022]
Abstract
Helminth infections are highly prevalent in developing countries, especially in rural areas. With gradual development, there is a transition from living conditions that are dominated by infection, poor sanitation, manual labor, and traditional diet to a situation where burden of infections is reduced, infrastructure is improved, sedentary lifestyle dominates, and processed food forms a large proportion of the calorie intake. The combinations of some of the changes in lifestyle and environment are expected to result in alteration of the landscape of diseases, which will become dominated by non-communicable disorders. Here we review how the major helminth infections affect a large proportion of the population in the developing world and discuss their impact on the immune system and the consequences of this for other infections which are co-endemic in the same areas. Furthermore, we address the issue of decreasing helminth infections in many parts of the world within the context of increasing inflammatory, metabolic, and cardiovascular diseases.
Collapse
|
562
|
McNeill E, Channon KM. The role of tetrahydrobiopterin in inflammation and cardiovascular disease. Thromb Haemost 2012; 108:832-9. [PMID: 23052970 PMCID: PMC5238931 DOI: 10.1160/th12-06-0424] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/21/2012] [Indexed: 12/11/2022]
Abstract
The cofactor tetrahydrobiopterin (BH4) is required for nitric oxide (NO) production by all nitric oxide synthase (NOS) enzymes and is a key regulator of cellular redox signalling. When BH4 levels become limiting NOS enzymes become 'uncoupled' and produce superoxide rather than NO. Endothelial cell BH4 is required for the maintenance of vascular function through NO production, and reduced BH4 levels are associated with vascular dysfunction. Evidence increasingly points to important roles for BH4 and NOS enzymes in other vascular cell types. Leukocytes have a fundamental role in atherosclerosis, and new evidence points to a role in the control of hypertension. Leukocytes are a major site of iNOS expression, and the regulation of this isoform is another mechanism by which BH4 availability may modulate disease. This review provides an overview of BH4 control of NOS function in both endothelial cells and leukocytes in the context of vascular disease and current therapeutic evaluations.
Collapse
Affiliation(s)
- Eileen McNeill
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
563
|
Manner IW, Trøseid M, Oektedalen O, Baekken M, Os I. Low nadir CD4 cell count predicts sustained hypertension in HIV-infected individuals. J Clin Hypertens (Greenwich) 2012; 15:101-6. [PMID: 23339727 DOI: 10.1111/jch.12029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypertension is associated with cardiovascular disease in the human immunodeficiency virus (HIV)-infected population. The authors aimed to test the hypothesis whether advanced immunosuppression with low nadir CD4 lymphocyte cell count is a predictor of sustained hypertension in HIV-infected individuals. In a longitudinal study of an HIV cohort of 434 patients (43±11 years, 72% men, 71% Caucasians), standardized blood pressure was measured in duplicate during 3 clinical visits both at baseline and after 3.4±0.8 years. The lowest CD4 cell count in the individual history was recorded as nadir CD4. Both nadir CD4 cell count<50 cells/μL and duration of antiretroviral therapy (ART) were associated with sustained hypertension, and the highest proportion of hypertensive patients was observed in those who had both nadir CD4 cell count<50 cells/μL and prolonged ART duration. Nadir CD4 cell-count<50 cells/μL was an independent predictor of hypertension (adjusted odds ratio [OR], 2.48; 95% confidence interval [CI], 1.27-4.83), as was ART duration (adjusted OR, 1.13; 95% CI, 1.03-1.24). The predictive power of ART duration was more pronounced in patients with nadir CD4 cell count<50 cells/μL. Delaying ART initiation until a state of advanced immunosuppression might add to and even fuel the cardiovascular risk associated with ART.
Collapse
Affiliation(s)
- Ingjerd W Manner
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, and the Department of Nephrology, Oslo University Hospital, Ullevål, Oslo, Norway.
| | | | | | | | | |
Collapse
|
564
|
Pons H, Ferrebuz A, Quiroz Y, Romero-Vasquez F, Parra G, Johnson RJ, Rodriguez-Iturbe B. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am J Physiol Renal Physiol 2012; 304:F289-99. [PMID: 23097471 DOI: 10.1152/ajprenal.00517.2012] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypertension affects one-third of the adult population of the world. The causes of hypertension are incompletely understood, but relative impairment of sodium excretion is central to its pathogenesis. Immune cell infiltration in the kidney is a constant finding in hypertension that in association with local angiotensin and oxidants causes a defect in sodium excretion. However, it is unclear if the T cell influx into the kidney responds to nonspecific chemokine cues or is due to antigen-driven immune attraction. We found that T cells in experimentally induced salt-driven hypertension present a CD4 clonal response to heat shock protein 70 (HSP70) that is overexpressed in the kidney. We used a highly preserved amino acid sequence within the HSP molecule to induce immune tolerance associated with the generation of IL-10 producing regulatory T cells. Immune tolerant rats to HSP70 developed minimal renal inflammation and were protected from the development of salt-sensitive hypertension. Adoptive transfer of T lymphocytes isolated from spleen of tolerized rats also reversed hypertension. HSP70 gene delivery to the renal vein of the kidneys of rats sensitized to HSP70 caused an increment in blood pressure in response to a high-salt diet. The HSP70 peptide used in this work induces a strong proliferative response in peripheral blood lymphocytes of patients with essential hypertension. These studies provide evidence that autoimmunity plays a role in salt-sensitive hypertension and identifies HSP70 expressed in the kidney as one key antigen. These findings raise the possibility of novel approaches to the treatment of this condition.
Collapse
Affiliation(s)
- Héctor Pons
- Hospital Universitario y Universidad del Zulia, Maracaibo, Venezuela
| | | | | | | | | | | | | |
Collapse
|
565
|
Jun JY, Zubcevic J, Qi Y, Afzal A, Carvajal JM, Thinschmidt JS, Grant MB, Mocco J, Raizada MK. Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension. Hypertension 2012; 60:1316-23. [PMID: 23045460 DOI: 10.1161/hypertensionaha.112.199547] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status, and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus of the hypothalamus, is driven by mitochondrial reactive oxygen species and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the paraventricular nucleus. This was associated with 46% decrease in bone marrow (BM)-derived EPCs and 250% increase in BM ICs, resulting in 5-fold decrease of EPC/IC ratio in the BM. Treatment with mitochondrial-targeted antioxidant, a scavenger of mitochondrial O(2)(-·), intracerebroventricularly but not subcutaneously attenuated angiotensin II-induced hypertension, decreased activation of microglia in the paraventricular nucleus, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with green fluorescent protein-tagged pseudorabies virus. Administration of green fluorescent protein-tagged pseudorabies virus into the BM resulted in predominant labeling of paraventricular nucleus neurons within 3 days, with some fluorescence in the nucleus tractus solitarius, the rostral ventrolateral medulla, and subfornical organ. Taken together, these data demonstrate that inhibition of mitochondrial reactive oxygen species attenuates angiotensin II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension.
Collapse
Affiliation(s)
- Joo Yun Jun
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
566
|
Chen Z, Zhang J, Hatta K, Lima PDA, Yadi H, Colucci F, Yamada AT, Croy BA. DBA-lectin reactivity defines mouse uterine natural killer cell subsets with biased gene expression. Biol Reprod 2012; 87:81. [PMID: 22875907 DOI: 10.1095/biolreprod.112.102293] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endometrial decidualization, a process essential for blastocyst implantation in species with hemochorial placentation, is accompanied by an enormous but transient influx of natural killer (NK) cells. Mouse uterine NK (uNK) cell subsets have been defined by diameter and cytoplasmic granule number, reflecting stage of maturity, and by histochemical reactivity with Periodic Acid Schiff (PAS) reagent with or without co-reactivity with Dolichos biflorus agglutinin (DBA) lectin. We asked whether DBA- and DBA+ mouse uNK cells were equivalent using quantitative RT-PCR analyses of flow-separated, midpregnancy (Gestation Day [gd] 10) cells and immunohistochemistry. CD3E (CD3)-IL2RB (CD122)+DBA cells were identified as the dominant Ifng transcript source. Skewed IFNG production by uNK cell subsets was confirmed by analysis of uNK cells from eYFP-tagged IFNG-reporter mice. In contrast, CD3E-IL2RB+DBA+ uNK cells expressed genes compatible with significantly greater potential for IL22 synthesis, angiogenesis, and participation in regulation mediated by the renin-angiotensin system (RAS). CD3E-IL2RB+DBA+ cells were further divided into VEGFA+ and VEGFA- subsets. CD3E-IL2RB+DBA+ uNK cells but not CD3E-IL2RB+DBA- uNK cells arose from circulating, bone marrow-derived progenitor cells by gd6. These findings indicate the heterogeneous nature of mouse uNK cells and suggest that studies using only DBA+ uNK cells will give biased data that does not fully represent the uNK cell population.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
567
|
Quiroz Y, Johnson RJ, Rodríguez-Iturbe B. The role of T cells in the pathogenesis of primary hypertension. Nephrol Dial Transplant 2012; 27 Suppl 4:iv2-5. [PMID: 23036901 DOI: 10.1093/ndt/gfs421] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence indicates that T cells play an important role in the pathogenesis of hypertension. Here we review the investigations that have shown that T cells are infiltrating the kidney in hypertension. Interstitial accumulation of immune cells is associated with increments in oxidative stress and renal angiotensin II activity that result in the impairment in pressure natriuresis. The severity of salt-sensitive hypertension is directly correlated with the intensity of immune cell infiltration in the kidney. Reducing the renal infiltration of T cells prevents or ameliorates hypertension and the induction of tubulointerstitial inflammation results in salt-sensitive hypertension. The potential participation of autoimmune mechanisms in the renal infiltration of immune competent cells is discussed.
Collapse
Affiliation(s)
- Yasmir Quiroz
- Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela
| | | | | |
Collapse
|
568
|
Sagan A, Mrowiecki W, Mikolajczyk TP, Urbanski K, Siedlinski M, Nosalski R, Korbut R, Guzik TJ. Local inflammation is associated with aortic thrombus formation in abdominal aortic aneurysms. Relationship to clinical risk factors. Thromb Haemost 2012; 108:812-23. [PMID: 22955940 DOI: 10.1160/th12-05-0339] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/26/2012] [Indexed: 01/11/2023]
Abstract
Intraluminal thrombus formation in aortic abdominal aneurysms (AAA) is associated with adverse clinical prognosis. Interplay between coagulation and inflammation, characterised by leukocyte infiltration and cytokine production, has been implicated in AAA thrombus formation. We studied leukocyte (CD45+) content by flow cytometry in AAA thrombi from 27 patients undergoing surgical repair. Luminal parts of thrombi were leukocyte-rich, while abluminal segments showed low leukocyte content. CD66b+ granulocytes were the most prevalent, but their content was similar to blood. Monocytes (CD14+) and T cells (CD3+) were also abundant, while content of B lymphocytes (CD19+) and NK cells (CD56+CD16+) were low. Thrombi showed comparable content of CD14highCD16- monocytes and lower CD14highCD16+ and CD14dimCD16+, than blood. Monocytes were activated with high CD11b, CD11c and HLA-DR expression. Total T cell content was decreased in AAA thrombus compared to peripheral blood but CD8 and CD3+CD4-CD8- (double negative T cell) contents were increased in thrombi. CD4+ cells were lower but highly activated (high CD69, CD25 and HLA-DR). No differences in T regulatory (CD4+CD25+FoxP3+) cell or pro-atherogenic CD4+CD28null lymphocyte content were observed between thrombi and blood. Thrombus T cells expressed high levels of CCR5 receptor for chemokine RANTES, commonly released from activated platelets. Leukocyte or T cell content in thrombi was not correlated with aneurysm size. However, CD3+ content was significantly associated with smoking in multivariate analysis taking into account major risk factors for atherosclerosis. In conclusion, intraluminal AAA thrombi are highly inflamed, predominantly with granulocytes, CD14highCD16- monocytes and activated T lymphocytes. Smoking is associated with T cell infiltration in AAA intraluminal thrombi.
Collapse
Affiliation(s)
- Agnieszka Sagan
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, J Dietl Hospital, Ul Skarbowa 1, 31-121 Cracow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
569
|
Marvar PJ, Harrison DG. Stress-dependent hypertension and the role of T lymphocytes. Exp Physiol 2012; 97:1161-7. [PMID: 22941978 DOI: 10.1113/expphysiol.2011.061507] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypertension is a significant global health burden that is associated with an increased risk of stroke, atherosclerosis and other cardiovascular diseases. Several risk factors, including high dietary salt, obesity, genetics and race, as well as behavioural and psychological factors, contribute to development of this complex disease. Various hypertensive stimuli enhance sympathetic drive and promote autonomic dysfunction leading to elevated blood pressure. As our understanding of the pathogenesis and end-organ damage associated with hypertension increases, mounting evidence also highlights the role of inflammation in this process and, in particular, the role of the adaptive immune system and T cells. This review discusses recent findings regarding the role of the central nervous system, T lymphocytes and the impact of cardiovascular risk factors, such as psychological stress, in hypertension.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.
| | | |
Collapse
|
570
|
Murakami M, Sakurai T. Role of fibroblast growth factor signaling in vascular formation and maintenance: orchestrating signaling networks as an integrated system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:615-29. [PMID: 22930472 DOI: 10.1002/wsbm.1190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular system has begun to be perceived as a dynamic organ actively controlling a wide variety of physiological processes. The structural and functional integrity of blood vessels, regulated by signaling activities finely modulating cell-cell and cell-matrix interactions, is crucial for vessel physiology, as well as basic functionality of the tissue. Throughout the process of new vessel formation, while blood vessels are actively reorganized and remodeled with migration and proliferation of vascular cells, maintenance of vascular barrier function is essentially important. These conflicting properties, i.e., dynamic cellular mobilization and maintenance of barrier integrity, are simultaneously achieved through the interaction of highly organized signaling networks governing coordinated cell-cell interplay. Recent evidence suggests that the fibroblast growth factor (FGF) system plays a regulatory role in several physiological conditions in the vascular system. In this article, we will attempt to summarize current knowledge in order to understand the mechanism of this coordination and evaluate the pivotal role of FGF signaling in integrating a diverse range of signaling events in vascular growth and maintenance.
Collapse
Affiliation(s)
- Masahiro Murakami
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
571
|
Schiffrin EL. The immune system: role in hypertension. Can J Cardiol 2012; 29:543-8. [PMID: 22902155 DOI: 10.1016/j.cjca.2012.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/30/2012] [Accepted: 06/12/2012] [Indexed: 11/26/2022] Open
Abstract
Over the past 20 years it has become recognized that low-grade inflammation plays a role in cardiovascular disease. More recently, participation of the innate and the adaptive immune response in mechanisms that contribute to inflammation in cardiovascular disease has been reported in atherosclerosis and hypertension. Different subsets of lymphocytes and their cytokines are involved in vascular remodelling and hypertensive renal disease as well as heart disease. Effector T cells including T-helper (Th) 1 (interferon-γ-producing) and Th2 lymphocytes (interleukin-4 producing), as well as Th17 (which produce interleukin-17), and T suppressor lymphocytes such as T regulatory cells, which express the transcription factor forkhead box P3, participate respectively as pro- and anti-inflammatory cells, and mediate effects of angiotensin II and mineralocorticoids. Involvement of immune mechanisms in cardiac, vascular, and renal changes in hypertension has been demonstrated in many experimental models, an example being the Dahl-salt sensitive rat and the spontaneously hypertensive rat. How activation of immunity is triggered remains unknown, but neoantigens could be generated by elevated blood pressure through damage-associated molecular pattern receptors or other mechanisms. When activated, Th1 may contribute to blood pressure elevation by affecting the kidney, vascular remodelling of blood vessels directly via effects of the cytokines produced, or through their effects on perivascular fat. T regulatory cells protect from blood pressure elevation acting on similar targets. These novel findings may open the way for new therapeutic approaches to improve outcomes in hypertension and cardiovascular disease in humans.
Collapse
Affiliation(s)
- Ernesto L Schiffrin
- Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
572
|
Matusik P, Guzik B, Weber C, Guzik TJ. Do we know enough about the immune pathogenesis of acute coronary syndromes to improve clinical practice? Thromb Haemost 2012; 108:443-56. [PMID: 22872109 DOI: 10.1160/th12-05-0341] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/17/2012] [Indexed: 11/05/2022]
Abstract
Morbidities related to atherosclerosis, such as acute coronary syndromes (ACS) including unstable angina and myocardial infarction, remain leading causes of mortality. Unstable plaques are inflamed and infiltrated with macrophages and T lymphocytes. Activated dendritic cells interact with T cells, yielding predominantly Th1 responses involving interferon-gamma (IFN-γ) and tumour necrosis factor-alpha (TNF-α), while the role of interleukin 17 (IL-17) is questionable. The expansion of CD28nullCD4 or CD8 T cells as well as pattern recognition receptors activation (especially Toll-like receptors; TLR2 and TLR4) is characteristic for unstable plaque. Inflammation modifies platelet and fibrin clot characteristics, which are critical for ACS. Understanding of the inflammatory mechanisms of atherothrombosis, bridging inflammation, oxidative stress and immune regulation, will allow for the detection of subjects at risk, through the use of novel biomarkers and imaging techniques including intravascular ultrasound, molecular targeting, magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). Moreover, understanding the specific inflammatory pathways of plaque rupture and atherothrombosis may allow for immunomodulation of ACS. Statins and anti-platelet drugs are anti-inflammatory, but importance of immune events in ACS warrants the introduction of novel, specific treatments directed either on cytokines, TLRs or inflammasomes. While the prime time for the introduction of immunologically inspired diagnostic tests and treatments for atherosclerosis have not come yet, we are closer than ever before to finally being able to benefit from this vast body of experimental and clinical evidence. This paper provides a comprehensive review of the role of the immune system and inflammation in ACS.
Collapse
Affiliation(s)
- Pawel Matusik
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Kracow, Poland
| | | | | | | |
Collapse
|
573
|
Beitelshees AL, Aquilante CL, Allayee H, Langaee TY, Welder GJ, Schofield RS, Zineh I. CXCL5 polymorphisms are associated with variable blood pressure in cardiovascular disease-free adults. Hum Genomics 2012; 6:9. [PMID: 23245743 PMCID: PMC3505480 DOI: 10.1186/1479-7364-6-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 12/20/2022] Open
Abstract
Objective Leukocyte count has been associated with blood pressure, hypertension, and hypertensive complications. We hypothesized that polymorphisms in the CXCL5 gene, which encodes the neutrophilic chemokine ENA-78, are associated with blood pressure in cardiovascular disease (CVD)-free adults and that these polymorphisms are functional. Methods and results A total of 192 community-dwelling participants without CVD or risk equivalents were enrolled. Two CXCL5 polymorphisms (−156 G > C (rs352046) and 398 G > A (rs425535)) were tested for associations with blood pressure. Allele-specific mRNA expression in leukocytes was also measured to determine whether heterozygosity was associated with allelic expression imbalance. In −156 C variant carriers, systolic blood pressure (SBP) was 7 mmHg higher than in −156 G/G wild-type homozygotes (131 ± 17 vs. 124 ± 14 mmHg; P = 0.008). Similarly, diastolic blood pressure (DBP) was 4 mmHg higher in −156 C variant carriers (78 ± 11 vs. 74 ± 11 mmHg; P = 0.013). In multivariate analysis of SBP, age, sex, body mass index, and the −156 G > C polymorphism were identified as significant variables. Age, sex, and the −156 G > C SNP were further associated with DBP, along with white blood cells. Allelic expression imbalance and significantly higher circulating ENA-78 concentrations were noted for variant carriers. Conclusion CXCL5 gene polymorphisms are functional and associated with variable blood pressure in CVD-free individuals. The role of CXCL5 as a hypertension- and CVD-susceptibility gene should be further explored.
Collapse
Affiliation(s)
- Amber L Beitelshees
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
574
|
Blædel M, Raun K, Boonen HCM, Sheykhzade M, Sams A. Early onset inflammation in pre-insulin-resistant diet-induced obese rats does not affect the vasoreactivity of isolated small mesenteric arteries. Pharmacology 2012; 90:125-32. [PMID: 22832366 DOI: 10.1159/000340054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/13/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obesity is an increasing burden affecting developed and emerging societies since it is associated with an increased risk of diabetes and consequent cardiovascular complications. Increasing evidence points towards a pivotal role of inflammation in the etiology of vascular dysfunction. Our study aimed to investigate signs of inflammation and their relation to vascular dysfunction in rats receiving a high fat diet. METHODS Diet-induced obese (DIO) rats were used as a model since these rats exhibit a human pre-diabetic pathology. Oral glucose and insulin tolerance tests were conducted on DIO rats and their controls prior to the development of insulin resistance. Furthermore, the plasma contents of selected cytokines [macrophage chemoattractant protein (MCP-1), interleukin-6 (IL-6), and interleukin-1 (IL-1)] and the concentration of adiponectin were measured. Using wire myography, we tested the vascular function of isolated small mesenteric arteries. RESULTS DIO animals had significantly (p < 0.05) increased body weight (721.2 ± 6.3 g) compared to age- and sex-matched controls (643.4 ± 14.6 g), as well as a significant increase (p < 0.01) in body fat percentage (29.7 ± 1.7% and 22.7 ± 0.97%, respectively). No significant difference in fasting plasma insulin levels could be detected between the two groups (chow-fed group 141.5 ± 15.1 pmol/l; high fat-fed group 125.9 ± 18.8 pmol/l). However, the levels of MCP-1 (89.7 ± 4.2 pg/ml vs. 60.8 ± 7.7 pg/ml) and IL-6 (61.6 ± 3.1 pg/ml vs. 41.6 ± 7.4 pg/ml) were significantly elevated in DIO animals (p < 0.05) as compared to controls. Adiponectin levels were also significantly increased (p < 0.01) in DIO rats (10.8 ± 0.7 ng/ml) versus controls (6.9 ± 0.5 ng/ml). No difference in vascular or endothelial function was evident as determined by responses to acetylcholine, sodium nitroprusside, endothelin-1, and calcitonin gene-related peptide. CONCLUSION In DIO rats, which have not yet developed hyperinsulinaemia or glucose intolerance, the levels of inflammatory mediators MCP-1 and Il-6 are significantly increased without concomitant vascular dysfunction. The results show that inflammation and obesity are tightly associated, and that inflammation is manifested prior to significant insulin resistance and vascular dysfunction.
Collapse
Affiliation(s)
- Martin Blædel
- Hagedorn Research Institute, Novo Nordisk, Gentofte, Denmark.
| | | | | | | | | |
Collapse
|
575
|
Wang X, Wang Q, Sun Z. Normal IgG downregulates the intracellular superoxide level and attenuates migration and permeability in human aortic endothelial cells isolated from a hypertensive patient. Hypertension 2012; 60:818-26. [PMID: 22777940 DOI: 10.1161/hypertensionaha.112.199281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The normal IgG, a circulating antibody, is maintained at a constant level in humans. However, little is known regarding whether normal IgG has effects on the function of vascular endothelial cells. The purpose of this study was to investigate whether IgG affects superoxide (O(2)(·-)) generation and cell permeability in human aortic endothelial cells (HAECs) isolated from a hypertensive patient. The effect of normal human IgG on endothelial cell function was investigated in cultured HAECs isolated from a hypertensive patient who died of stroke. The results demonstrated, for the first time, that normal IgG attenuated the intracellular O(2)(·-) level and decreased cell migration, cell permeability, and stress fiber formation in HAECs. IgG significantly decreased Rac1 activity and NADPH oxidase activity but upregulated Mn superoxide dismutase expression in HAECs, which may contribute to the IgG-induced decrease in O(2)(·-) level. It is noted that AMP-activated protein kinase (AMPK) was activated by IgG, as evidenced by increased phosphorylation of AMPK. Interestingly, inhibition of AMPK by an AMPK inhibitor abolished IgG-induced decreases in Rac1 and NADPH oxidase activities and IgG-induced increases in Mn superoxide dismutase expression, suggesting that AMPK is an important mediator of the IgG-induced regulation of these enzymes. Importantly, inhibition of AMPK activity also prevented the IgG-induced decrease in O(2)(·-) levels, cell migration, cell permeability, and stress fiber formation. Therefore, normal human IgG may protect HAECs via activation of AMPK and subsequent decreases in intracellular O(2)(·-). These findings reveal a previously unidentified role of normal IgG in regulating AMPK and endothelial cell function.
Collapse
Affiliation(s)
- Xiuqing Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, 940 SL Young Blvd, Oklahoma City, OK 73126-0901, USA
| | | | | |
Collapse
|
576
|
Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have greater renal anti-inflammatory T lymphocyte infiltration than males. Am J Physiol Regul Integr Comp Physiol 2012; 303:R359-67. [PMID: 22761180 DOI: 10.1152/ajpregu.00246.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T cells contribute to hypertension in male experimental models; data in females is lacking even though women are more likely to develop immune disorders. The goal of this study was to determine whether immune cells contribute to hypertension in female spontaneously hypertensive rats (SHR) and define the T cell profile in whole blood and kidneys of male and female SHR. We hypothesized that inflammatory cells contribute to hypertension in female SHR; however, male SHR have a higher blood pressure so we hypothesize they will have a heightened inflammatory profile. The lymphocyte inhibitor mycophenolate mofetil (MMF) was administered in a dose-dependent manner to SHR. At the highest dose (50 mg·kg(-1)·day(-1)), blood pressure was significantly decreased in both sexes, yet the percent decrease in blood pressure was greater in females (female: 12 ± 1%; males: 7 ± 1%, P = 0.01). Circulating and renal T cell profiles were defined using analytical flow cytometry. Female SHR had more circulating CD3(+), CD4(+), and pro-inflammatory CD3(+)CD4(+)RORγ(+) Th17 cells, whereas males had more immune-suppressive CD3(+)CD4(+)Foxp3(+) T regulatory cells. In the kidney, females had greater numbers of CD8(+) and T regulatory cells than males, whereas males had greater CD4(+) and Th17 cell infiltration. MMF decreased circulating and renal T cells in both sexes (P < 0.0001), although the effect of MMF on T cell subtypes was sex specific with females having greater sensitivity to MMF-induced decreases in lymphocytes. In conclusion, there is a lymphocyte contribution to the maintenance of hypertension in the female SHR and sex of the animal impacts the T cell profile.
Collapse
Affiliation(s)
- Ashlee J Tipton
- Department of Medicine, Georgia Health Sciences University, Augusta, USA
| | | | | |
Collapse
|
577
|
Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res 2012; 32:421-7. [PMID: 22749178 DOI: 10.1016/j.nutres.2012.05.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/12/2012] [Accepted: 05/18/2012] [Indexed: 12/14/2022]
Abstract
Green tea (GT) consumption is known to be associated with enhanced cardiovascular and metabolic health. The purpose of this study is to examine the hypothesis that supplementation with GT alters insulin resistance and associated cardiovascular risk factors in obese, hypertensive patients. In a double-blind, placebo-controlled trial, 56 obese, hypertensive subjects were randomized to receive a daily supplement of 1 capsule that contained either 379 mg of GT extract (GTE) or a matching placebo, for 3 months. At baseline and after 3 months of treatment, the anthropometric parameters, blood pressure, plasma lipid levels, glucose levels, creatinine levels, tumor necrosis factor α levels, C-reactive protein levels, total antioxidant status, and insulin levels were assessed. Insulin resistance was evaluated according to the homeostasis model assessment-insulin resistance protocol. After 3 months of supplementation, both systolic and diastolic blood pressures had significantly decreased in the GTE group as compared with the placebo group (P < .01). Considerable (P < .01) reductions in fasting serum glucose and insulin levels and insulin resistance were observed in the GTE group when compared with the placebo group. Serum tumor necrosis factor α and C-reactive protein were significantly lower, whereas total antioxidant status increased in the GTE group compared with the placebo (P < .05). Supplementation also contributed to significant (P < .05) decreases in the total and low-density lipoprotein cholesterol and triglycerides, but an increase in high-density lipoprotein cholesterol. In conclusion, daily supplementation with 379 mg of GTE favorably influences blood pressure, insulin resistance, inflammation and oxidative stress, and lipid profile in patients with obesity-related hypertension.
Collapse
Affiliation(s)
- Pawel Bogdanski
- Department of Internal Medicine, Metabolic Disorders and Hypertension, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
578
|
Gupte SA, Wolin MS. Relationships between vascular oxygen sensing mechanisms and hypertensive disease processes. Hypertension 2012; 60:269-75. [PMID: 22710643 DOI: 10.1161/hypertensionaha.112.190702] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sachin A Gupte
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | | |
Collapse
|
579
|
Zhang Y, Cuevas S, Asico LD, Escano C, Yang Y, Pascua AM, Wang X, Jones JE, Grandy D, Eisner G, Jose PA, Armando I. Deficient dopamine D2 receptor function causes renal inflammation independently of high blood pressure. PLoS One 2012; 7:e38745. [PMID: 22719934 PMCID: PMC3375266 DOI: 10.1371/journal.pone.0038745] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
Renal dopamine receptors participate in the regulation of blood pressure. Genetic factors, including polymorphisms of the dopamine D(2) receptor gene (DRD2) are associated with essential hypertension, but the mechanisms of their contribution are incompletely understood. Mice lacking Drd2 (D(2)-/-) have elevated blood pressure, increased renal expression of inflammatory factors, and renal injury. We tested the hypothesis that decreased dopamine D(2) receptor (D(2)R) function increases vulnerability to renal inflammation independently of blood pressure, is an immediate cause of renal injury, and contributes to the subsequent development of hypertension. In D(2)-/- mice, treatment with apocynin normalized blood pressure and decreased oxidative stress, but did not affect the expression of inflammatory factors. In mouse RPTCs Drd2 silencing increased the expression of TNFα and MCP-1, while treatment with a D(2)R agonist abolished the angiotensin II-induced increase in TNF-α and MCP-1. In uni-nephrectomized wild-type mice, selective Drd2 silencing by subcapsular infusion of Drd2 siRNA into the remaining kidney produced the same increase in renal cytokines/chemokines that occurs after Drd2 deletion, increased the expression of markers of renal injury, and increased blood pressure. Moreover, in mice with two intact kidneys, short-term Drd2 silencing in one kidney, leaving the other kidney undisturbed, induced inflammatory factors and markers of renal injury in the treated kidney without increasing blood pressure. Our results demonstrate that the impact of decreased D(2)R function on renal inflammation is a primary effect, not necessarily associated with enhanced oxidant activity, or blood pressure; renal damage is the cause, not the result, of hypertension. Deficient renal D(2)R function may be of clinical relevance since common polymorphisms of the human DRD2 gene result in decreased D(2)R expression and function.
Collapse
Affiliation(s)
- Yanrong Zhang
- Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
580
|
Chen JK, Zhao T, Ni M, Li DJ, Tao X, Shen FM. Downregulation of alpha7 nicotinic acetylcholine receptor in two-kidney one-clip hypertensive rats. BMC Cardiovasc Disord 2012; 12:38. [PMID: 22682236 PMCID: PMC3507811 DOI: 10.1186/1471-2261-12-38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/18/2012] [Indexed: 01/11/2023] Open
Abstract
Background Inflammation processes are important participants in the pathophysiology of hypertension and cardiovascular diseases. The role of the alpha7 nicotinic acetylcholine receptor (α7nAChR) in inflammation has recently been identified. Our previous study has demonstrated that the α7nAChR-mediated cholinergic anti-inflammatory pathway is impaired systemically in the genetic model of hypertension. In this work, we investigated the changes of α7nAChR expression in a model of secondary hypertension. Methods The 2-kidney 1-clip (2K1C) hypertensive rat model was used. Blood pressure, vagus nerve function, serum tumor necrosis factor-α (TNF-α) and both the mRNA and protein levels of α7nAChR in tissues from heart, kidney and aorta were measured at 4, 8 and 20 weeks after surgery. Results Compared with age-matched control, it was found that vagus nerve function was significantly decreased in 2K1C rats with the development of hypertension. Serum levels of TNF-α were greater in 2K1C rats than in age-matched control at 4, 8 and 20 weeks. α7nAChR mRNA in the heart was not altered in 2K1C rats. In the kidney of 2K1C rats, α7nAChR expression was significantly decreased at 8 and 20 weeks, but markedly increased at 4 weeks. α7nAChR mRNA was less in aorta of 2K1C rats than in age-matched control at 4, 8 and 20 weeks. These findings were confirmed at the protein levels of α7nAChR. Conclusions Our results suggested that secondary hypertension may induce α7nAChR downregulation, and the decreased expression of α7nAChR may contribute to inflammation in 2K1C hypertension.
Collapse
Affiliation(s)
- Ji-Kuai Chen
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | | | |
Collapse
|
581
|
de Jong HJI, Vandebriel RJ, Saldi SRF, van Dijk L, van Loveren H, Cohen Tervaert JW, Klungel OH. Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and the risk of developing rheumatoid arthritis in antihypertensive drug users. Pharmacoepidemiol Drug Saf 2012; 21:835-43. [PMID: 22674737 DOI: 10.1002/pds.3291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/09/2012] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are effective in the treatment of cardiovascular disease. Next to effects on hypertension and cardiac function, these drugs have anti-inflammatory and immunomodulating properties which may either facilitate or protect against the development of autoimmunity, potentially resulting in autoimmune diseases. Therefore, we determined in the current study the association between ACE inhibitor and ARB use and incident rheumatoid arthritis (RA). METHODS A matched case-control study was conducted among patients treated with antihypertensive drugs using the Netherlands Information Network of General Practice (LINH) database in 2001-2006. Cases were patients with a first-time diagnosis of RA. Each case was matched to five controls for age, sex, and index date, which was selected 1 year before the first diagnosis of RA. ACE inhibitor and ARB exposure was considered to be any prescription issued in the period before index date. Logistic regression analysis was used to estimate odds ratios (ORs) and their 95% confidence intervals (CI). RESULTS Our study included 211 cases and 667 matched controls. After controlling for potential confounders, ever use of ACE inhibitors or ARBs was not associated with incident RA (adjusted ORs [95%CI], 0.99 [0.55-1.79] and 1.02 [0.67-1.56], respectively). The adjusted ORs (95%CI) for current and past use of ACE inhibitors were 1.18 (0.75-1.85) and 0.61 (0.28-1.35). For current and past use of ARBs, these adjusted ORs (95%CI) were 1.40 (0.80-2.45) and 0.29 (0.05-1.67), respectively. No duration and dose-effect relationship was observed. CONCLUSIONS ACE inhibitor or ARB use is not associated with incident RA.
Collapse
Affiliation(s)
- Hilda J I de Jong
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
582
|
Manner IW, Baekken M, Oektedalen O, Os I. Hypertension and antihypertensive treatment in HIV-infected individuals. A longitudinal cohort study. Blood Press 2012; 21:311-9. [DOI: 10.3109/08037051.2012.680742] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
583
|
Middleton JP, Crowley SD. Prehypertension and chronic kidney disease: the ox or the plow? Kidney Int 2012; 81:229-32. [PMID: 22241558 DOI: 10.1038/ki.2011.393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nearly ten years ago, practice recommendations supported use of the clinical classification of 'prehypertension' for people with systolic blood pressure of 120-139 mm Hg or diastolic pressure of 80-89 mm Hg. This recommendation was based on observations that these ranges of blood pressure were associated with enhanced cardiovascular and cerebrovascular risks compared with blood pressure less than 120/80 mm Hg. Recent observations, including the report by Yano and colleagues, also suggest that prehypertension is an important risk factor for the development of chronic kidney disease.
Collapse
Affiliation(s)
- John P Middleton
- Division of Nephrology, Duke University, Durham, North Carolina 27705, USA.
| | | |
Collapse
|
584
|
Marvar PJ, Vinh A, Thabet S, Lob HE, Geem D, Ressler KJ, Harrison DG. T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biol Psychiatry 2012; 71:774-82. [PMID: 22361077 PMCID: PMC3354001 DOI: 10.1016/j.biopsych.2012.01.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/20/2011] [Accepted: 01/13/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Psychological stress is a significant risk factor for hypertension and also directly affects the immune system. We have previously reported that T lymphocytes are essential for development of hypertension and that the central nervous system contributes to peripheral T-lymphocyte activation and vascular inflammation in this disease; however, the role of T-cell activation in stress-related hypertension remains unclear. METHODS Wild-type and T-cell-deficient (RAG-1(-/-)) mice were subjected to daily episodes of stress and blood pressure was measured. Circulating T-cell activation markers and vascular infiltration of immune cells were analyzed, as were stress hormone levels and gene expression changes in the brain. The effects angiotensin II infusion in the presence of chronic stress was also studied. RESULTS Repeated daily stress contributed to acute elevations in blood pressure that were associated with increased activation of circulating T cells and increased vascular infiltration of T cells. Repeated stress increased blood pressure in wild-type but not RAG-1(-/-) mice. Adoptive transfer of T cells to RAG-1(-/-) mice restored blood pressure elevation in response to stress. Stress-related hypertension and vascular infiltration of T cells was markedly enhanced by angiotensin II. Moreover, angiotensin II-infused mice exposed to chronic stress exhibited greater blood pressure reactivity to an episode of acute stress. CONCLUSIONS These data demonstrate that stress-dependent hypertension triggers an inflammatory response that raises blood pressure at baseline and augments the hypertension caused by angiotensin II. These data provide insight as to how psychological stress contributes to hypertension.
Collapse
Affiliation(s)
- Paul J. Marvar
- Emory University School of Medicine Department of Psychiatry and the Center of Behavioral Sciences
| | - Antony Vinh
- Department of Pharmacology Monash University
| | - Salim Thabet
- Division of Clinical Pharmacology and Department of Medicine, Vanderbilt University School of Medicine
| | | | - Duke Geem
- Emory University Department of Pediatrics
| | - Kerry J. Ressler
- Emory University School of Medicine Department of Psychiatry and the Center of Behavioral Sciences,Howard Hughes Medical Institute
| | - David G. Harrison
- Division of Clinical Pharmacology and Department of Medicine, Vanderbilt University School of Medicine
| |
Collapse
|
585
|
Nishida Y, Tandai-Hiruma M, Kemuriyama T, Hagisawa K. Long-term blood pressure control: is there a set-point in the brain? J Physiol Sci 2012; 62:147-61. [PMID: 22302247 PMCID: PMC10717488 DOI: 10.1007/s12576-012-0192-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 01/11/2023]
Abstract
Mean arterial pressure fluctuates depending on physical or psychological activity, but should be stable at rest at around 100 mmHg throughout an entire life in human. The causes of hypertension and the blood pressure regulation mechanisms have been discussed for a long time, and many aspects have recently become more clear. Circulatory shock or short-term hypotension can be treated based on what is now known, but chronic hypertension is still difficult to treat thoroughly. The exact mechanisms for long-term blood pressure regulation have yet not been elucidated. Neuro–humoral interaction has been suggested as one of the mechanisms. Then, from the 1990s, paracrine hormones like nitric oxide or endothelins have been extensively researched in order to develop endothelial local control mechanisms for blood pressure, which have some relationships to long-term control. Although these new ideas and mechanisms are newly developed, no clear explanation for long-term control has yet been discussed, except for renal abnormality. Recently, a central set-point theory has begun to be discussed. This review will discuss the mechanisms for long-term blood pressure control, based on putative biological missions of circulatory function for life support.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Department of Physiology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan.
| | | | | | | |
Collapse
|
586
|
Fan FL, Dart AM. Anti-inflammatory treatment in patients after percutaneous coronary intervention: another potential use for berberine? Clin Exp Pharmacol Physiol 2012; 39:404-5. [DOI: 10.1111/j.1440-1681.2012.05695.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Anthony M Dart
- BakerIDI Heart and Diabetes Institute and Heart Centre; Alfred Hospital; Melbourne; Victoria; Australia
| |
Collapse
|
587
|
Emergency management of hypertension in children. Int J Nephrol 2012; 2012:420247. [PMID: 22577545 PMCID: PMC3345222 DOI: 10.1155/2012/420247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/13/2011] [Accepted: 01/12/2012] [Indexed: 12/18/2022] Open
Abstract
Systemic arterial hypertension in children has traditionally been thought to be secondary in origin. Increased incidence of risk factors like obesity, sedentary life-styles, and faulty dietary habits has led to increased prevalence of the primary arterial hypertension (PAH), particularly in adolescent age children. PAH has become a global epidemic worldwide imposing huge economic constraint on health care. Sudden acute increase in systolic and diastolic blood pressure can lead to hypertensive crisis. While it generally pertains to secondary hypertension, occurrence of hypertensive crisis in PAH is however rare in children. Hypertensive crisis has been further subclassified depending on presence or absence of end-organ damage into hypertensive emergency or urgency. Both hypertensive emergencies and urgencies are known to cause significant morbidity and mortality. Increasing awareness among the physicians, targeted at investigation of the pathophysiology of hypertension and its complications, better screening methods, generation, and implementation of novel treatment modalities will impact overall outcomes. In this paper, we discuss the etiology, pathogenesis, and management of hypertensive crisis in children. An extensive database search using keywords was done to obtain the information.
Collapse
|
588
|
Sasaki N, Yamashita T, Takeda M, Hirata KI. Regulatory T cells in atherogenesis. J Atheroscler Thromb 2012; 19:503-15. [PMID: 22498766 DOI: 10.5551/jat.10934] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Atherosclerosis is believed to be an inflammatory condition of the arterial wall. It has become apparent that various types of cells of innate and adaptive immunity participate in atherogenesis. T cells are of particular interest because they mediate pathogenic immune responses involved in the acceleration of atherosclerosis. Recent studies from several independent groups indicated that subsets of regulatory T cells (Tregs) actively mediate immunologic tolerance and inhibit atherosclerosis development or progression through the down-regulation of effector T-cell responses. It is likely that there is an imbalance between pathogenic effector T cells and Tregs under atherosclerotic conditions. Recent evidence suggests that in addition to the thymus, gut-associated lymphoid tissues are the main sites for the generation of several subsets of peripherally inducible Tregs. This indicates that intervention in the gut environment to promote an endogenous regulatory immune response may serve as a possible therapeutic approach to suppress atherosclerotic diseases. In this review, we discuss not only the possible role of Tregs in the prevention of atherosclerosis, but also promising strategies to prevent or cure atherosclerotic diseases by promoting an endogenous regulatory immune response, particularly by oral immune modulation.
Collapse
Affiliation(s)
- Naoto Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | |
Collapse
|
589
|
Lu J, Li M, Zhang R, Hu C, Wang C, Jiang F, Yu W, Qin W, Tang S, Jia W. A common genetic variant of FCN3/CD164L2 is associated with essential hypertension in a Chinese population. Clin Exp Hypertens 2012; 34:377-82. [PMID: 22471352 DOI: 10.3109/10641963.2012.665538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ficolin-3, encoded by FCN3, is the predominant recognition molecule of lectin pathway for the activation of complement component 3 (C3), which is an important risk factor for the development of hypertension. In our previous study, we found the complement system including ficolin-3 was overrepresented in the serum of type 2 diabetic patients. Since type 2 diabetes shares some pathogenic components, including excessive serum C3, with hypertension, this study aims to test the hypothesis that common variants at FCN3 might be associated with essential hypertension in our Chinese population. A total of 1797 subjects were recruited. Of them, 573 were with essential hypertension. Based on HapMap data, three tagging single nucleotide polymorphisms (rs2504778, rs10794501, and rs3813800) in FCN3/CD164L2 region were selected for genotyping by using MassARRAY. Logistic regression analysis was performed to evaluate the genetic effects on the prevalence of hypertension after adjusting for covariates. rs2504778, which locates in the upstream of FCN3 and in the intron of CD164L2, was found to be significantly associated with hypertension after adjusting for covariates (OR = 1.28, 95% CI: 1.05, 1.55, P = .015). Correction for multiple testing did not remarkably attenuate the significance (empirical P = .042 with 10 000 permutations). rs2504778 also showed a nominal association with systolic blood pressure (P = .044) in the quantitative trait analysis. No evidence of correlation with hypertension and blood pressure was observed for rs10794501 and rs3813800. We found that a common variant of FCN3/CD164L2 is associated with hypertension in our Chinese population. More studies with larger sample size are needed to confirm this finding.
Collapse
Affiliation(s)
- Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
590
|
Kriska T, Cepura C, Magier D, Siangjong L, Gauthier KM, Campbell WB. Mice lacking macrophage 12/15-lipoxygenase are resistant to experimental hypertension. Am J Physiol Heart Circ Physiol 2012; 302:H2428-38. [PMID: 22467300 DOI: 10.1152/ajpheart.01120.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mouse arteries, Alox15 [leukocyte-type 12/15-lipoxygenase (LO)] is assumed to regulate vascular function by metabolizing arachidonic acid (AA) to dilator eicosanoids that mediate the endothelium-dependent relaxations to AA and acetylcholine (ACh). We used Alox15(-/-) mice, made by targeted disruption of the Alox15 gene, to characterize its role in the regulation of blood pressure and vascular tone. Systolic blood pressures did not differ between wild-type (WT) and Alox15(-/-) mice between 8-12 wk of age, but Alox15(-/-) mice exhibited resistance toward both N(G)-nitro-L-arginine-methyl ester (L-NAME)- and deoxycorticosterone acetate (DOCA)/high-salt-induced hypertension. ACh relaxed mesenteric arteries and abdominal aortas of WT and Alox15(-/-) mice to an identical extent. The LO inhibitor nordihydroguaiaretic acid attenuated the ACh relaxations by 35% in arteries from both WT and Alox15(-/-) mice. Reverse-phase HPLC analysis of [(14)C]AA metabolites in aorta and peritoneal macrophages (PM) revealed differences. Unlike PM, aorta tissue did not produce detectable amounts of 15-hydroxyeicosatetraenoic acid. Although Alox15 mRNA was detected in aorta, high-resolution gel electrophoresis with immunodetection revealed no Alox15 protein expression. Unlike aorta, Alox15 protein was detected in PM, intestine, fat, lung, spleen, and skin from WT, but not Alox15(-/-), mice. Injection of WT PM, a primary source of Alox15 protein, into Alox15(-/-) mice abolished their resistance toward L-NAME-induced hypertension. On the other hand, WT mice acquired resistance to L-NAME-induced hypertension after depletion of macrophages by clodronate injection. These studies indicate that Alox15 is involved in development of experimental hypertension by altering macrophage functions but not via synthesis of the vasoactive LO metabolites in mouse arteries.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | | | | | | | | | | |
Collapse
|
591
|
Abstract
Inflammation plays an important role in the pathogenesis of hypertension. Innate and adaptive immune response may contribute to this process. The mechanisms implicating immune response in hypertension are still elusive. To date, the evidence originates in three major areas of data: cytokine production, central nervous system (CNS) stimulation, and kidney damage. The cytokine microenvironment can become proinflammatory and propagate low-grade inflammation, which may contribute to vascular injury and end-organ damage in hypertension. In addition, stimulation of the CNS by some stimuli (e.g., angiotensin II) causes mild hypertension that may modulate peripheral immune responses leading to aggravation of blood pressure elevation. The immune response can induce kidney injury and also interfere with sodium excretion, further contributing to elevation of blood pressure. The purpose of this review is to discuss recent data regarding the contribution of the different immune cell subsets and their response and mechanism of action in promoting hypertension and target-organ damage.
Collapse
Affiliation(s)
- Avshalom Leibowitz
- Lady Davis Institute for Medical Research, McGill University, Montreal, PQ, Canada
| | | |
Collapse
|
592
|
Feng D, Yang C, Geurts AM, Kurth T, Liang M, Lazar J, Mattson DL, O'Connor PM, Cowley AW. Increased expression of NAD(P)H oxidase subunit p67(phox) in the renal medulla contributes to excess oxidative stress and salt-sensitive hypertension. Cell Metab 2012; 15:201-8. [PMID: 22326221 PMCID: PMC3280886 DOI: 10.1016/j.cmet.2012.01.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/15/2011] [Accepted: 01/06/2012] [Indexed: 12/15/2022]
Abstract
NAD(P)H oxidase has been shown to be important in the development of salt-sensitive hypertension. Here, we show that the expression of a subunit of NAD(P)H oxidase, p67(phox), was increased in response to a high-salt diet in the outer renal medulla of the Dahl salt-sensitive (SS) rat, an animal model for human salt-sensitive hypertension. The higher expression of p67(phox), not the other subunits observed, was associated with higher NAD(P)H oxidase activity and salt sensitivity in SS rats compared with a salt-resistant strain. Genetic mutations of the SS allele of p67(phox) were found in the promoter region and contributed to higher promoter activity than that of the salt-resistant strain. To verify the importance of p67(phox), we disrupted p67(phox) in SS rats using zinc-finger nucleases. These rats exhibited a significant reduction of salt-sensitive hypertension and renal medullary oxidative stress and injury. p67(phox) could represent a target for salt-sensitive hypertension therapy.
Collapse
Affiliation(s)
- Di Feng
- Physiology Department, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
593
|
Abstract
The Dahl salt-sensitive rat is a 50-year-old enigma in hypertension research. How does salt increase blood pressure? One hypothesis put forward is the involvement of reactive oxygen species produced in the renal outer medulla. A novel rat gene-deletion model in this issue of Cell Metabolism supports this argument.
Collapse
Affiliation(s)
- Friedrich C Luft
- Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
594
|
Textor SC, Lerman LO. Inflammatory cell markers as indicators of atherosclerotic renovascular disease. Clin J Am Soc Nephrol 2012; 7:193-5. [PMID: 22241820 DOI: 10.2215/cjn.12641211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
595
|
Zhao H, Li M, Wang L, Su Y, Fang H, Lin J, Mohabeer N, Li D. Angiotensin II Induces TSLP via an AT1 Receptor/NF-KappaB Pathway, Promoting Th17 Differentiation. Cell Physiol Biochem 2012; 30:1383-97. [DOI: 10.1159/000343327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 12/28/2022] Open
|
596
|
Ong FS, Lin CX, Campbell DJ, Okwan-Duodu D, Chen X, Blackwell WLB, Shah KH, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Bernstein KE. Increased angiotensin II-induced hypertension and inflammatory cytokines in mice lacking angiotensin-converting enzyme N domain activity. Hypertension 2011; 59:283-90. [PMID: 22203735 DOI: 10.1161/hypertensionaha.111.180844] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
-Angiotensin-converting enzyme (ACE) is composed of the N- and C-terminal catalytic domains. To study the role of the ACE domains in the inflammatory response, N-knockout (KO) and C-KO mice, models lacking 1 of the 2 ACE domains, were analyzed during angiotensin II-induced hypertension. At 2 weeks, N-KO mice have systolic blood pressures that averaged 173±4.6 mm Hg, which is more than 25 mm Hg higher than the blood pressures observed in wild-type or C-KO mice (146±3.2 and 147±4.2 mm Hg). After 3 weeks, blood pressure differences between N-KO, C-KO, and wild-type were even more pronounced. Macrophages from N-KO mice have increased expression of tumor necrosis factor α after stimulation with either lipopolysaccharide (about 4-fold) or angiotensin II (about 2-fold), as compared with C-KO or wild-type mice. Inhibition of the enzyme prolyl oligopeptidase, responsible for the formation of acetyl-SerAspLysPro and other peptides, eliminated the blood pressure difference and the difference in tumor necrosis factor α expression between angiotensin II-treated N-KO and wild-type mice. However, this appears independent of acetyl-SerAspLysPro. These data establish significant differences in the inflammatory response as a function of ACE N- or C-domain catalytic activity. They also indicate a novel role of prolyl oligopeptidase in the cytokine regulation and in the blood pressure response to experimental hypertension.
Collapse
Affiliation(s)
- Frank S Ong
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
597
|
Zhang J, Adams MA, Croy BA. Alterations in maternal and fetal heart functions accompany failed spiral arterial remodeling in pregnant mice. Am J Obstet Gynecol 2011; 205:485.e1-16. [PMID: 21831352 DOI: 10.1016/j.ajog.2011.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/29/2011] [Accepted: 06/02/2011] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Our goal was to define mechanisms that protect murine pregnancies deficient in spiral arterial remodeling from hypertension, hypoxia, and intrauterine growth restriction. STUDY DESIGN Microultrasound analyses were conducted on virgin, gestation day 2, 4, 7, 9, 10, 12, 14, 16, 18, and postpartum BALB/c (wild type) mice and BALB/c-Rag2(-/-)/Il2rg(-/-) mice, an immunodeficient strain lacking spiral arterial remodeling. RESULTS Rag2(-/-)/Il2rg(-/-) dams had normal spiral arterial flow velocities, greatly elevated uterine artery flow velocities between gestational day 10-16 and smaller areas of placental flow from gestational day 14 to term than controls. Maternal heart weight and output increased transiently. Conceptus alterations included higher flow velocities in the umbilical-placental circulation that became normal before term and bradycardia persistent to term. CONCLUSION Transient changes in maternal heart weight and function accompanied by fetal circulatory changes successfully compensate for deficient spiral arterial modification in mice. Similar compensations may contribute to the elevated risk for cardiovascular diseases seen in women and their children who experience preeclamptic pregnancies.
Collapse
|
598
|
Wu CC, Schwartzman ML. The role of 20-HETE in androgen-mediated hypertension. Prostaglandins Other Lipid Mediat 2011; 96:45-53. [PMID: 21722750 PMCID: PMC3248593 DOI: 10.1016/j.prostaglandins.2011.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/25/2022]
Abstract
Androgen plays an important role in blood pressure regulation. Epidemiological studies have shown that men have a higher prevalence for developing hypertension than aged-matched, premenopausal women. Interestingly, postmenopausal women and women with polycystic ovary syndrome, both of which have increased endogenous androgen production, have elevated risks for hypertension suggesting that androgen may contribute to its development. Studies from our laboratory and others have provided substantial evidence that 20-hydroxyeicosatetraenoic acid (20-HETE) mediates the hypertension seen in rodents treated with androgen. 20-HETE is the cytochrome P450 (CYP)-derived ω-hydroxylated metabolite of arachidonic acid. 20-HETE plays a complex role in blood pressure regulation. In the kidney tubules, 20-HETE decreases blood pressure by promoting natriuresis, while in the microvasculature it has a pressor effect. In the microcirculation, 20-HETE participates in the regulation of vascular tone by sensitizing the smooth muscle cells to constrictor stimuli and contributes to myogenic, mitogenic and angiogenic responses. In addition, 20-HETE acts on the endothelium to promote endothelial dysfunction and endothelial activation. Recently, we have demonstrated that 20-HETE induces endothelial ACE thus setting forth a potential feed forward mechanism through activation of the renin-angiotensin-aldosterone system. In this review, we will discuss the pro-hypertensive effects of 20-HETE and its role in androgen-induced vascular dysfunction and hypertension.
Collapse
Affiliation(s)
- Cheng-Chia Wu
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA. chengchia
| | | |
Collapse
|
599
|
Nguyen Dinh Cat A, Touyz RM. A new look at the renin-angiotensin system--focusing on the vascular system. Peptides 2011; 32:2141-50. [PMID: 21945916 DOI: 10.1016/j.peptides.2011.09.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS), critically involved in the control of blood pressure and volume homeostasis, is a dual system comprising a circulating component and a local tissue component. The rate limiting enzyme is renin, which in the circulating RAS derives from the kidney to generate Ang II, which in turn regulates cardiovascular function by binding to AT(1) and AT(2) receptors on cardiac, renal and vascular cells. The tissue RAS can operate independently of the circulating RAS and may be activated even when the circulating RAS is suppressed or normal. A functional tissue RAS has been identified in brain, kidney, heart, adipose tissue, hematopoietic tissue, gastrointestinal tract, liver, endocrine system and blood vessels. Whereas angiotensinsinogen, angiotensin converting enzyme (ACE), Ang I and Ang II are synthesized within these tissues, there is still controversy as to whether renin is produced locally or whether it is taken up from the circulation, possibly by the (pro)renin receptor. This is particularly true in the vascular wall, where expression of renin is very low. The exact function of the vascular RAS remains elusive, but may contribute to fine-tuning of vascular tone and arterial structure and may amplify vascular effects of the circulating RAS, particularly in pathological conditions, such as in hypertension, atherosclerosis and diabetes. New concepts relating to the vascular RAS have recently been elucidated including: (1) the presence of functionally active Ang-(1-7)-Mas axis in the vascular system, (2) the importance of the RAS in perivascular adipose tissue and cross talk with vessels, and (3) the contribution to vascular RAS of Ang II derived from immune and inflammatory cells within the vascular wall. The present review highlights recent progress in the RAS field, focusing on the tissue system and particularly on the vascular RAS.
Collapse
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
600
|
Senchenkova EY, Russell J, Kurmaeva E, Ostanin D, Granger DN. Role of T lymphocytes in angiotensin II-mediated microvascular thrombosis. Hypertension 2011; 58:959-65. [PMID: 21911709 DOI: 10.1161/hypertensionaha.111.173856] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clinical trials and animal studies have revealed a role for the renin-angiotensin system in the enhanced thrombus development that is associated with hypertension. Because T lymphocytes have been implicated in the vascular dysfunction and blood pressure elevation associated with increased angiotensin II (Ang II) levels, we evaluated the role of the adaptive immune system in mediating the enhanced thrombosis during Ang II-induced hypertension. Light/dye-induced thrombosis was induced in cremaster arterioles of wild-type, immunodeficient Rag-1(-/-), CD8(+), or CD4(+) lymphocyte-deficient and NADPH oxidase (gp91(phox))-deficient mice implanted with an Ang II-loaded pump for 2 weeks. Chronic Ang II infusion enhanced arteriolar thrombosis in wild-type mice but not in Rag-1(-/-), CD4(+) T-cell-deficient, or gp91(phox-/-) mice. CD8(+) T-cell(-/-) mice exhibited partial protection. Adoptive transfer of T cells derived from wild-type or gp91(phox-/-) mice into Rag-1(-/-) restored the prothrombotic phenotype induced by Ang II. T lymphocytes (CD4(+) and, to a lesser extent, CD8(+)) play a major role in mediating the accelerated microvascular thrombosis associated with Ang II-induced hypertension. NADPH oxidase-derived reactive oxygen species, produced by cells other than T lymphocytes, also appear critical for the Ang II-enhanced, T cell-dependent thrombosis response.
Collapse
Affiliation(s)
- Elena Y Senchenkova
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, 1501 Kings Hwy, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|