551
|
Theocharides APA, Jin L, Cheng PY, Prasolava TK, Malko AV, Ho JM, Poeppl AG, van Rooijen N, Minden MD, Danska JS, Dick JE, Wang JCY. Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. ACTA ACUST UNITED AC 2012; 209:1883-99. [PMID: 22945919 PMCID: PMC3457732 DOI: 10.1084/jem.20120502] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibition of macrophage SIRPα–CD47 interactions mediates phagocytosis and clearance of acute myeloid leukemia stem cells. Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition to bulk cells. In this study, we report that leukemia stem cell function in xenotransplant models of acute myeloid leukemia (AML) depends on SIRPα-mediated inhibition of macrophages through engagement with its ligand CD47. We generated mice expressing SIRPα variants with differential ability to bind human CD47 and demonstrated that macrophage-mediated phagocytosis and clearance of AML stem cells depend on absent SIRPα signaling. We obtained independent confirmation of the genetic restriction observed in our mouse models by using SIRPα-Fc fusion protein to disrupt SIRPα–CD47 engagement. Treatment with SIRPα-Fc enhanced phagocytosis of AML cells by both mouse and human macrophages and impaired leukemic engraftment in mice. Importantly, SIRPα-Fc treatment did not significantly enhance phagocytosis of normal hematopoietic targets. These findings support the development of therapeutics that antagonize SIRPα signaling to enhance macrophage-mediated elimination of AML.
Collapse
Affiliation(s)
- Alexandre P A Theocharides
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
552
|
Shiozawa Y, Taichman RS. Getting blood from bone: an emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche. Exp Hematol 2012; 40:685-94. [PMID: 22640993 PMCID: PMC3419274 DOI: 10.1016/j.exphem.2012.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/03/2012] [Accepted: 05/15/2012] [Indexed: 12/20/2022]
Abstract
Blood and bone are dynamic tissues that are continuously renewed throughout life. Early observations based upon the proximity of bone and hematopoietic progenitor populations in marrow suggested that interactions between skeletal and hematopoietic elements are likely to be crucial in the development and function of each system. As a result of these morphologic observations, several groups have demonstrated that the osteoblasts play an important role in hematopoiesis by serving as a specific local microenvironment, or niche, for hematopoietic stem cells. Significant new developments in this area of active investigation have emerged since our last examination of this area in 2005. Here we discuss these new insights into the function and morphology of the hematopoietic stem cell niche, with a particular focus on cells of the osteoblastic lineage.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.
| | | |
Collapse
|
553
|
Winkler IG, Bendall LJ, Forristal CE, Helwani F, Nowlan B, Barbier V, Shen Y, Cisterne A, Sedger LM, Levesque JP. B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2. Haematologica 2012; 98:325-33. [PMID: 22929978 DOI: 10.3324/haematol.2012.069260] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoblasts are necessary to B lymphopoiesis and mobilizing doses of G-CSF or cyclophosphamide inhibit osteoblasts, whereas AMD3100/Plerixafor does not. However, the effect of these mobilizing agents on B lymphopoiesis has not been reported. Mice (wild-type, knocked-out for TNF-α and TRAIL, or over-expressing Bcl-2) were mobilized with G-CSF, cyclophosphamide, or AMD3100. Bone marrow, blood, spleen and lymph node content in B cells was measured. G-CSF stopped medullar B lymphopoiesis with concomitant loss of B-cell colony-forming units, pre-pro-B, pro-B, pre-B and mature B cells and increased B-cell apoptosis by an indirect mechanism. Overexpression of the anti-apoptotic protein Bcl2 in transgenic mice rescued B-cell colony forming units and pre-pro-B cells in the marrow, and prevented loss of all B cells in marrow, blood and spleen. Blockade of endogenous soluble TNF-α with Etanercept, or combined deletion of the TNF-α and TRAIL genes did not prevent B lymphopoiesis arrest in response to G-CSF. Unlike G-CSF, treatments with cyclophosphamide or AMD3100 did not suppress B lymphopoiesis but caused instead robust B-cell mobilization. G-CSF, cyclophosphamide and AMD3100 have distinct effects on B lymphopoiesis and B-cell mobilization with: 1) G-CSF inhibiting medullar B lymphopoiesis without mobilizing B cells in a mechanism distinct from the TNF-α-mediated loss of B lymphopoiesis observed during inflammation or viral infections; 2) CYP mobilizing B cells but blocking their maturation; and 3) AMD3100 mobilizing B cells without affecting B lymphopoiesis. These results suggest that blood mobilized with these three agents may have distinct immune properties.
Collapse
Affiliation(s)
- Ingrid G Winkler
- Mater Research at the Translational Research Institute, Woolloongabba, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
554
|
Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice. Blood 2012; 120:3425-35. [PMID: 22859604 DOI: 10.1182/blood-2011-11-395418] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adult hematopoiesis occurs primarily in the BM space where hematopoietic cells interact with stromal niche cells. Despite this close association, little is known about the specific roles of osteoblastic lineage cells (OBCs) in maintaining hematopoietic stem cells (HSCs), and how conditions affecting bone formation influence HSC function. Here we use a transgenic mouse model with the ColI(2.3) promoter driving a ligand-independent, constitutively active 5HT4 serotonin receptor (Rs1) to address how the massive increase in trabecular bone formation resulting from increased G(s) signaling in OBCs impacts HSC function and blood production. Rs1 mice display fibrous dysplasia, BM aplasia, progressive loss of HSC numbers, and impaired megakaryocyte/erythrocyte development with defective recovery after hematopoietic injury. These hematopoietic defects develop without compensatory extramedullary hematopoiesis, and the loss of HSCs occurs despite a paradoxical expansion of stromal niche cells with putative HSC-supportive activity (ie, endothelial, mesenchymal, and osteoblastic cells). However, Rs1-expressing OBCs show decreased expression of key HSC-supportive factors and impaired ability to maintain HSCs. Our findings indicate that long-term activation of G(s) signaling in OBCs leads to contextual changes in the BM niche that adversely affect HSC maintenance and blood homeostasis.
Collapse
|
555
|
Huang MM, Zhu J. The regulation of normal and leukemic hematopoietic stem cells by niches. CANCER MICROENVIRONMENT 2012; 5:295-305. [PMID: 23055016 DOI: 10.1007/s12307-012-0114-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022]
Abstract
The origin and propagation of normal and leukemic hematopoietic cells critically depend on their interplays with the hematopoietic microenvironment (or so-called niche), which represent important biological models for understanding organogenesis and tumorigenesis. Nevertheless, the anatomic and functional characterizations of the niche cells for normal hematopoietic stem cells (HSCs) have proved a formidable task. It is uncertain whether the combinational effects of a few sets of molecular niche elements, behind the long-sought cellular architectures with preferred anatomic locations, actually meets the functional definition of HSC niche. Moreover, even much less is known about the niche components for numerous types of leukemia-stem cells (LSCs) that originate via discrete cellular and molecular transforming mechanisms. However, one interesting scenario is emerging, i.e., the leukemia cells can positively remodel the hematopoietic microenvironment favorable for their competition over the normal hematopoiesis that co-exists within the same eco-system. This property probably represents a previously unappreciated essential trait of a functional LSC. Obviously, the further exploration into how the hematopoietic microenvironment interplay with normal or malignant hematopoiesis will shed light onto the designing of novel types of niche-targeting therapies for leukemia.
Collapse
Affiliation(s)
- Meng-Meng Huang
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | | |
Collapse
|
556
|
Shi C. Recent progress toward understanding the physiological function of bone marrow mesenchymal stem cells. Immunology 2012; 136:133-8. [PMID: 22321024 DOI: 10.1111/j.1365-2567.2012.03567.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored as regenerative therapeutics. Cultured MSCs secrete various modulatory factors, which contribute to the immunosuppressive effects of transplanted MSCs as a therapy. Although the in vitro phenotype of MSCs has been well characterized, identification of MSCs in vivo is made difficult by the lack of specific markers. Current advances in murine MSC research provide valuable tools for studying the localization and function of MSCs in vivo. Recent findings suggest that MSCs exert diverse functions depending on tissue context and physiological conditions. This review focuses on bone marrow MSCs and their roles in haematopoiesis and immune responses.
Collapse
Affiliation(s)
- Chao Shi
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
557
|
Belnoue E, Tougne C, Rochat AF, Lambert PH, Pinschewer DD, Siegrist CA. Homing and adhesion patterns determine the cellular composition of the bone marrow plasma cell niche. THE JOURNAL OF IMMUNOLOGY 2012; 188:1283-91. [PMID: 22262758 DOI: 10.4049/jimmunol.1103169] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
According to commonly held concepts, plasma cell (PC) longevity in bone marrow (BM) depends upon their access to survival niches. These are thought to exist in nursery cell types, which support PCs by secreting PC survival factors. To better define PC survival niches and their functioning, we adoptively transferred traceable Blimp-1-(GFP) PCs into recipient mice lacking a proliferation-inducing ligand (APRIL), IL-6, or macrophage migration inhibitory factor. Transferred BMPCs were preferentially associated with Ly-6C(high) monocytes (normalized colocalization index: 9.84), eosinophils (4.29), and megakaryocytes (2.12). Although APRIL was essential for BMPC survival, PC recruitment into the proximity of nursery cells was unimpaired in APRIL-deficient mice, questioning the concept that the same factors account for attraction/retention of PCs as for their local survival. Rather, the order of colocalization with BMPCs (monocytes > eosinophils > megakaryocytes) reflected these cells' relative expression of CXCR4, VLA-4, and LFA-1, the homing and adhesion molecules that direct/retain PCs in the BM. This suggests a scenario wherein the cellular composition of the BMPC niche is defined by a common pattern of attraction/retention on CXCL12-abundant reticular docking cells. Thereby, PCs are directed to associate in a functional BM niche with hematopoietic CXCR4(+)VLA-4(+)LFA-1(+) nursery cells, which provide PC survival factors.
Collapse
Affiliation(s)
- Elodie Belnoue
- Department of Pathology-Immunology, World Health Organization Collaborating Center for Vaccinology and Neonatal Immunology, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
558
|
Joshi PA, Di Grappa MA, Khokha R. Active allies: hormones, stem cells and the niche in adult mammopoiesis. Trends Endocrinol Metab 2012; 23:299-309. [PMID: 22613704 DOI: 10.1016/j.tem.2012.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 01/17/2023]
Abstract
Adult stem cells are recruited in response to specific physiological demands to regenerate, repair or maintain essential cellular components of tissues, while preserving self-renewal capacity. Signals that activate adult stem cells are not simply cell autonomous and stem cells are part of a larger dynamic framework, the stem cell 'niche', which integrates systemic and local cues to sustain stem cell functionality. The mammary stem cell niche responds readily to hormonal stimuli, generating pertinent signals that activate stem cells, culminating in stem cell expansion and tissue growth. We review here current knowledge of the mammary stem cell niche with attention to the potent stimulation rendered by ovarian hormones, relevant cellular and molecular players, and the implication of a deregulated niche, for breast cancer risk.
Collapse
Affiliation(s)
- Purna A Joshi
- Ontario Cancer Insitute, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | | | | |
Collapse
|
559
|
Abstract
Intercellular communication within the bone microenvironment is critical for the maintenance of normal bone structure. Osteoblast-lineage cells at all stages of differentiation, from pluripotent precursors to matrix-embedded osteocytes, produce regulatory factors that modulate the differentiation and activity of both bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoclasts can also release factors that feed back to regulate osteoblast activity. Intercellular cross-talk within the bone microenvironment is not restricted only to these bone cells. Other cells within the bone marrow microenvironment, including adipocytes, T cells, and macrophages, play key roles that influence the processes of bone formation and resorption. This review discusses recent work that provides new insights into some of these communication networks and the factors involved, including osteocytic production of receptor activator of nuclear factor-κB ligand (RANKL) and sclerostin, osteoblastic production of interleukin-33, osteoclast-derived Semaphorin 4D, ephrin signaling, and signals from T helper cells and resident osteal macrophages (osteomacs).
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research and The University of Melbourne, 9 Princes Street, Fitzroy, 3065, Melbourne, Victoria, Australia.
| | | |
Collapse
|
560
|
Qian H, Le Blanc K, Sigvardsson M. Primary mesenchymal stem and progenitor cells from bone marrow lack expression of CD44 protein. J Biol Chem 2012; 287:25795-807. [PMID: 22654106 DOI: 10.1074/jbc.m112.339622] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Despite significant progress in our understanding of mesenchymal stem cell (MSC) biology during recent years, much of the information is based on experiments using in vitro culture-selected stromal progenitor cells. Therefore, the natural cellular identity of MSCs remains poorly defined. Numerous studies have reported that CD44 expression is one of the characteristics of MSCs in both humans and mice; however, we here have prospectively isolated bone marrow stromal cell subsets from both human and mouse bone marrow by flow cytometry and characterized them by gene expression analysis and function assays. Our data provide functional and molecular evidence suggesting that primary mesenchymal stem and progenitor cells of bone marrow reside in the CD44(-) cell fraction in both mice and humans. The finding that these CD44(-) cells acquire CD44 expression after in vitro culture provides an explanation for the previous misconceptions concerning CD44 expression on MSCs. In addition, the other previous reported MSC markers, including CD73, CD146, CD271, and CD106/VCAM1, are also differentially expressed on those two cell types. Our microarray data revealed a distinct gene expression profile of the freshly isolated CD44(-) cells and the cultured MSCs generated from these cells. Thus, we conclude that bone marrow MSCs physiologically lack expression of CD44, highlighting the natural phenotype of MSCs and opening new possibilities to prospectively isolate MSCs from the bone marrow.
Collapse
Affiliation(s)
- Hong Qian
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden.
| | | | | |
Collapse
|
561
|
Kim J, Denu RA, Dollar BA, Escalante LE, Kuether JP, Callander NS, Asimakopoulos F, Hematti P. Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br J Haematol 2012; 158:336-46. [PMID: 22583117 DOI: 10.1111/j.1365-2141.2012.09154.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/27/2012] [Indexed: 02/05/2023]
Abstract
Multiple myeloma (MM) is characterized by almost exclusive tropism of malignant cells for the bone marrow (BM) milieu. The survival and proliferation of malignant plasma cells have been shown to rely on interactions with nonmalignant stromal cells, in particular mesenchymal stromal cells (MSCs), in the BM microenvironment. However, the BM microenvironment is composed of a diverse array of cell types. This study examined the role of macrophages, an abundant component of BM stroma, as a potential niche component that supports malignant plasma cells. We investigated the proliferation of MM tumour cell lines when cultured alone or together with MSCs, macrophages, or a combination of MSCs and macrophages, using the carboxyfluorescein succinimidyl ester assay. Consistently, we observed increased proliferation of MM cell lines in the presence of either MSCs or macrophages compared to cell line-only control. Furthermore, the combined co-culture of MSCs plus macrophages induced the greatest degree of proliferation of myeloma cells. In addition to increased proliferation, MSCs and macrophages decreased the rate of apoptosis of myeloma cells. Our in vitro studies provide evidence that highlights the role of macrophages as a key component of the BM microenvironment facilitating the growth of malignant plasma cells in MM.
Collapse
Affiliation(s)
- Jaehyup Kim
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
| | | | | | | | | | | | | | | |
Collapse
|
562
|
Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells. Leukemia 2012; 26:2375-83. [PMID: 22543963 PMCID: PMC3410045 DOI: 10.1038/leu.2012.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proliferation and differentiation of hematopoietic stem/progenitor cells (HSPC) within bone marrow (BM) niches are regulated by adhesion molecules and cytokines produced by mesenchymal stem/progenitor cells (MPC) and osteoblasts (OB). HSPCs that egresses to peripheral blood are widely used for transplant and granulocyte-colony stimulating factor_(G-CSF) is used clinically to induce mobilization. The mechanisms, through which G-CSF regulates HSPC trafficking however, are not completely understood. Herein we show that G-CSF driven neutrophil expansion alters the BM niche that leads to HSPC mobilization. Alcam−Sca-1+MPC and Alcam+Sca-1− OB are reduced coincident with mobilization, which correlates inversely with BM neutrophil expansion. In mice made neutropenic by the neutrophil specific anti-Ly6G antibody, G-CSF mediated reduction in MPC and OB is attenuated and mobilization reduced without an effect on monocytes/macrophages. Neutrophils, expanded in response to G-CSF induce MPC and OB apoptosis leading to reduced production of BM HSPC retention factors including stromal cell derived factor-1 (SDF-1), stem cell factor (SCF) and vascular cell adhesion molecule-1(VCAM-1). Blockade of neutrophil reactive oxygen species (ROS) attenuates G-CSF mediated MPC and OB apoptosis. These data show that the expansion of BM neutrophils by G-CSF contributes to the transient degradation of retention mechanisms within the BM niche, facilitating enhanced HSPC egress/mobilization.
Collapse
|
563
|
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 2012; 12:383-96. [PMID: 22531326 DOI: 10.1038/nri3209] [Citation(s) in RCA: 727] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multipotent mesenchymal stromal cells (MSCs) have unique immunoregulatory and regenerative properties that make them an attractive tool for the cellular treatment of autoimmunity and inflammation. Their underlying molecular mechanisms of action together with their clinical benefit - for example, in autoimmunity - are being revealed by an increasing number of clinical trials and preclinical studies of MSCs. However, autoimmunity and therapy-related alloimmunity are not only triggered and sustained by responses of the adaptive immune system; there is growing evidence that components of the innate immune system also have a key role. It is therefore important to study the crosstalk between MSCs and innate immunity, which ranges from the bone marrow niche to injured tissue.
Collapse
Affiliation(s)
- Katarina Le Blanc
- Department of Medicine, Karolinska Institutet, Haematology Centre, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
564
|
Janowska-Wieczorek A, Marquez-Curtis LA, Shirvaikar N, Ratajczak MZ. The role of complement in the trafficking of hematopoietic stem/progenitor cells. Transfusion 2012; 52:2706-16. [PMID: 22486360 DOI: 10.1111/j.1537-2995.2012.03636.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
565
|
Teti A. Osteoclasts and hematopoiesis. BONEKEY REPORTS 2012; 1:46. [PMID: 23951448 DOI: 10.1038/bonekey.2012.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/19/2012] [Indexed: 01/04/2023]
Abstract
The skeletal tissue is closely associated with the hematopoietic tissue lodged in its inner cavities. Besides the well-known role of the endosteal osteoblasts in the maintenance of the hematopoietic stem cell (HSC) niche, it is an emerging concept that osteoclasts are involved in the regulation of hematopoiesis as well, although published data are still incomplete and somehow controversial. We reviewed the literature, and report here our perspective on the close relationship between bone resorption and HSC permanence in bone or egress to the circulation. We discussed the pressure that bone diseases exert on the development of hematological alterations, as well as the role of calcium and osteoclast enzymes in the regulation of HSC homeostasis. Genetic studies and preclinical experiments are described, which unveiled how bone disorders and treatments aimed at restoring the bone mass affect hematopoiesis, with consequent clinical implications. We conclude that this new field of investigation must be extended to unequivocally establish the role of osteoclasts in myelopoiesis and lymphopoiesis, and to envision treatments that can help hematological failures to be cured along with the associated bone alterations.
Collapse
Affiliation(s)
- Anna Teti
- Department of Experimental Medicine, University of L'Aquila , L'Aquila, Italy
| |
Collapse
|
566
|
Lo Celso C, Scadden DT. The haematopoietic stem cell niche at a glance. J Cell Sci 2012; 124:3529-35. [PMID: 22083139 DOI: 10.1242/jcs.074112] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Cristina Lo Celso
- Imperial College London, Division of Cell and Molecular Biology, Sir Alexander Fleming building, South Kensington Campus, London SW7 2AZ, UK.
| | | |
Collapse
|
567
|
Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood 2012; 119:3962-5. [PMID: 22422821 DOI: 10.1182/blood-2011-07-367102] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms mediating hematopoietic stem and progenitor cell (HSPC) mobilization by G-CSF are complex. We have found previously that G-CSF-enforced mobilization is controlled by peripheral sympathetic nerves via norepinephrine (NE) signaling. In the present study, we show that G-CSF likely alters sympathetic tone directly and that methods to increase adrenergic activity in the BM microenvironment enhance progenitor mobilization. Peripheral sympathetic nerve neurons express the G-CSF receptor and ex vivo stimulation of peripheral sympathetic nerve neurons with G-CSF reduced NE reuptake significantly, suggesting that G-CSF potentiates the sympathetic tone by increasing NE availability. Based on these data, we investigated the NE reuptake inhibitor desipramine in HSPC mobilization. Whereas desipramine did not by itself elicit circulating HSPCs, it increased G-CSF-triggered mobilization efficiency significantly and rescued mobilization in a model mimicking "poor mobilizers." Therefore, these data suggest that blockade of NE reuptake may be a novel therapeutic target to increase stem cell yield in patients.
Collapse
|
568
|
Myeloproliferation and hematopoietic stem cell dysfunction due to defective Notch receptor modification by O-fucose glycans. Semin Immunopathol 2012; 34:455-69. [DOI: 10.1007/s00281-012-0303-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 02/24/2012] [Indexed: 02/01/2023]
|
569
|
Temme S, Bönner F, Schrader J, Flögel U. 19
F magnetic resonance imaging of endogenous macrophages in inflammation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:329-43. [DOI: 10.1002/wnan.1163] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
570
|
Mansour A, Abou-Ezzi G, Sitnicka E, Jacobsen SEW, Wakkach A, Blin-Wakkach C. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. ACTA ACUST UNITED AC 2012; 209:537-49. [PMID: 22351931 PMCID: PMC3302238 DOI: 10.1084/jem.20110994] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Osteoclasts promote the formation of the HSC niche by inducing the differentiation of osteoblastic cells from mesenchymal stem cells. Formation of the hematopoietic stem cell (HSC) niche in bone marrow (BM) is tightly associated with endochondral ossification, but little is known about the mechanisms involved. We used the oc/oc mouse, a mouse model with impaired endochondral ossification caused by a loss of osteoclast (OCL) activity, to investigate the role of osteoblasts (OBLs) and OCLs in the HSC niche formation. The absence of OCL activity resulted in a defective HSC niche associated with an increased proportion of mesenchymal progenitors but reduced osteoblastic differentiation, leading to impaired HSC homing to the BM. Restoration of OCL activity reversed the defect in HSC niche formation. Our data demonstrate that OBLs are required for establishing HSC niches and that osteoblastic development is induced by OCLs. These findings broaden our knowledge of the HSC niche formation, which is critical for understanding normal and pathological hematopoiesis.
Collapse
Affiliation(s)
- Anna Mansour
- Université de Nice Sophia Antipolis, 06000 Nice, France
| | | | | | | | | | | |
Collapse
|
571
|
Poncin G, Beaulieu A, Humblet C, Thiry A, Oda K, Boniver J, Defresne MP. Characterization of spontaneous bone marrow recovery after sublethal total body irradiation: importance of the osteoblastic/adipocytic balance. PLoS One 2012; 7:e30818. [PMID: 22363493 PMCID: PMC3281884 DOI: 10.1371/journal.pone.0030818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/21/2011] [Indexed: 12/16/2022] Open
Abstract
Many studies have already examined the hematopoietic recovery after irradiation but paid with very little attention to the bone marrow microenvironment. Nonetheless previous studies in a murine model of reversible radio-induced bone marrow aplasia have shown a significant increase in alkaline phosphatase activity (ALP) prior to hematopoietic regeneration. This increase in ALP activity was not due to cell proliferation but could be attributed to modifications of the properties of mesenchymal stem cells (MSC). We thus undertook a study to assess the kinetics of the evolution of MSC correlated to their hematopoietic supportive capacities in mice treated with sub lethal total body irradiation. In our study, colony-forming units – fibroblasts (CFU-Fs) assay showed a significant MSC rate increase in irradiated bone marrows. CFU-Fs colonies still possessed differentiation capacities of MSC but colonies from mice sacrificed 3 days after irradiation displayed high rates of ALP activity and a transient increase in osteoblastic markers expression while pparγ and neuropilin-1 decreased. Hematopoietic supportive capacities of CFU-Fs were also modified: as compared to controls, irradiated CFU-Fs significantly increased the proliferation rate of hematopoietic precursors and accelerated the differentiation toward the granulocytic lineage. Our data provide the first evidence of the key role exerted by the balance between osteoblasts and adipocytes in spontaneous bone marrow regeneration. First, (pre)osteoblast differentiation from MSC stimulated hematopoietic precursor's proliferation and granulopoietic regeneration. Then, in a second time (pre)osteoblasts progressively disappeared in favour of adipocytic cells which down regulated the proliferation and granulocytic differentiation and then contributed to a return to pre-irradiation conditions.
Collapse
Affiliation(s)
- Géraldine Poncin
- Department of Cytology & Histology, University of Liège, CHU-B23, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
572
|
Zhou B, Tsaknakis G, Coldwell KE, Khoo CP, Roubelakis MG, Chang CH, Pepperell E, Watt SM. A novel function for the haemopoietic supportive murine bone marrow MS-5 mesenchymal stromal cell line in promoting human vasculogenesis and angiogenesis. Br J Haematol 2012; 157:299-311. [PMID: 22324374 DOI: 10.1111/j.1365-2141.2012.09050.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/05/2012] [Indexed: 12/17/2022]
Abstract
The bone marrow contains specific microenvironmental stem cell niches that maintain haemopoiesis. CXCL12-expressing mesenchymal stromal cells are closely associated with the bone marrow sinusoidal endothelia, forming key elements of the haemopoietic stem cell niche, yet their ability to regulate endothelial function is not clearly defined. Given that the murine nestin(+) cell line, MS-5, provides a clonal surrogate bone marrow stromal niche capable of regulating both murine and human primitive haemopoietic stem/progenitor cell (HSC/HPC) fate in vitro, we hypothesized that MS-5 cells might also support new blood vessel formation and function. Here, for the first time, we demonstrate that this is indeed the case. Using proteome arrays, we identified HSC/HPC active angiogenic factors that are preferentially secreted by haemopoietic supportive nestin(+) MS-5 cells, including CXCL12 (SDF-1), NOV (CCN3), HGF, Angiopoietin-1 and CCL2 (MCP-1). Concentrating on CXCL12, we confirmed its presence in MS-5 conditioned media and demonstrated that its antagonist in receptor binding, AMD-3100, which mobilizes HSC/HPCs and endothelial progenitors from bone marrow, could significantly reduce MS-5 mediated human vasculogenesis in vitro, principally by regulating human endothelial cell migration. Thus, the clonal nestin(+) MS-5 murine bone marrow stromal cell line not only promotes human haemopoiesis but also induces human vasculogenesis, with CXCL12 playing important roles in both processes.
Collapse
Affiliation(s)
- Bob Zhou
- Stem Cell Research Laboratory, NHS Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
573
|
N-cadherin in osteolineage cells is not required for maintenance of hematopoietic stem cells. Blood 2012; 120:295-302. [PMID: 22323481 DOI: 10.1182/blood-2011-09-377457] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is evidence suggesting that N-cadherin expression on osteoblast lineage cells regulates hematopoietic stem cell (HSC) function and quiescence. To test this hypothesis, we conditionally deleted N-cadherin (Cdh2) in osteoblasts using Cdh2(flox/flox) Osx-Cre mice. N-cadherin expression was efficiently ablated in osteoblast lineage cells as assessed by mRNA expression and immunostaining of bone sections. Basal hematopoiesis is normal in these mice. In particular, HSC number, cell cycle status, long-term repopulating activity, and self-renewal capacity were normal. Moreover, engraftment of wild-type cells into N-cadherin-deleted recipients was normal. Finally, these mice responded normally to G-CSF, a stimulus that mobilizes HSCs by inducing alterations to the stromal micro-environment. In conclusion, N-cadherin expression in osteoblast lineage cells is dispensable for HSC maintenance in mice.
Collapse
|
574
|
Do microRNAs regulate bone marrow stem cell niche physiology? Gene 2012; 497:1-9. [PMID: 22306262 DOI: 10.1016/j.gene.2012.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 12/24/2022]
Abstract
The adult bone marrow, situated within the bone cavity, comprises three distinct stem cell populations: hematopoietic stem cells (HSCs), mesenchymal stromal/stem cells (MSCs) and endothelial progenitor/stem cells (EPCs). HSCs are a well-characterized population of self-renewing cells that give rise to all blood cells. The definition of MSCs is more complex due to the limited understanding of MSC properties. In general, MSCs are considered multipotent stromal cells that are able to differentiate into various cell types, including osteoblasts, chondrocytes and adipocytes. Compared to HSCs and MSCs, EPCs are a newly discovered population of stem/progenitor cells with the capacity to differentiate into endothelial cells, the cells forming the inner lining of a blood vessel. Although functionally different, HSCs, MSCs and EPCs, like stem cells in general, share the ability to self-renew and differentiate into one or more cell types. The homeostasis inside the bone marrow and within the entire body is sustained by an intricate network of growth factors and transcription factors that orchestrate the proliferation and differentiation of these multipotent stem/progenitor cells. Increasing evidence indicates that microRNAs (miRNAs), small non-coding RNAs, are among the key players of this concert. This review summarizes the current insights into miRNA-mediated regulation of bone marrow stem/progenitor cell maintenance and differentiation. Furthermore, the potential contribution of miRNAs in bone marrow stem cell niches is discussed.
Collapse
|
575
|
A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol 2012; 13:103-14. [PMID: 22266760 DOI: 10.1038/nrm3272] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems.
Collapse
|
576
|
Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia 2012; 26:1594-601. [PMID: 22266913 DOI: 10.1038/leu.2012.17] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CXCR4 antagonist AMD3100 is progressively replacing cyclophosphamide (CYP) as adjuvant to granulocyte colony-stimulating factor (G-CSF) to mobilize hematopoietic stem cells (HSC) for autologous transplants in patients who failed prior mobilization with G-CSF alone. It has recently emerged that G-CSF mediates HSC mobilization and inhibits bone formation via specific bone marrow (BM) macrophages. We compared the effect of these three mobilizing agents on BM macrophages, bone formation, osteoblasts, HSC niches and HSC reconstitution potential. Both G-CSF and CYP suppressed niche-supportive macrophages and osteoblasts, and inhibited expression of endosteal cytokines resulting in major impairment of HSC reconstitution potential remaining in the mobilized BM. In sharp contrast, although AMD3100 was effective at mobilizing HSC, it did not suppress osteoblasts, endosteal cytokine expression or reconstitution potential of HSC remaining in the mobilized BM. In conclusion, although G-CSF, CYP and AMD3100 efficiently mobilize HSC into the blood, their effects on HSC niches and bone formation are distinct with both G-CSF and CYP targeting HSC niche function and bone formation, whereas AMD3100 directly targets HSC without altering niche function or bone formation.
Collapse
|
577
|
Ratajczak MZ, Kim C. The use of chemokine receptor agonists in stem cell mobilization. Expert Opin Biol Ther 2012; 12:287-97. [PMID: 22263752 DOI: 10.1517/14712598.2012.657174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Pharmacological mobilization has been exploited as a means to obtain hematopoietic stem progenitor cells (HSPCs) for hematopoietic reconstitution. HSPCs mobilized from bone marrow into peripheral blood (PB) are a preferred source of stem cells for transplantation, because they are easily accessible and evidence indicates that they engraft faster after transplantation than HSPCs directly harvested from bone marrow (BM) or umbilical cord blood (UCB). AREAS COVERED Since chemokine-chemokine receptor axes are involved in retention of HSPCs in the BM microenvironment, chemokine receptor agonists have been proposed as therapeutics to facilitate the mobilization process. These compounds include agonists of the CXCR4 receptor expressed on HSPCs (CTCE-0021 and ATI-2341) or chemokines binding to chemokine receptors expressed on granuclocytes and monocytes (e.g., CXCL2, also known as the growth-related oncogene protein-beta (Gro-β); CCL3, also known as macrophage inflammatory protein-1α (MIP-1α); or CXCL8, also known as IL-8) could be employed alone or in combination with other mobilizing agents (e.g., G-CSF or Plerixafor (AMD3100)). We discuss the current state of knowledge about chemokine receptor agonists and the rationale for their application in mobilization protocols. EXPERT OPINION Evidence is accumulating that CXCR4 receptor agonists could be employed alone or with other agents as mobilizing drugs. In particular they may provide an alternative for patients that are poor mobilizers.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- University of Louisville, Stem Cell Institute at James Graham Brown Cancer Center, 500 S. Floyd Street, Room. 107, Louisville, KY 40202, USA.
| | | |
Collapse
|
578
|
Abstract
This review evaluates the latest information on the mobilisation of haemopoietic stem cells for transplantation, with the focus on what is the current best practice and how new understanding of the bone marrow stem cell niche provides new insights into optimising mobilisation regimens. The review then looks at the mobilisation of mesenchymal stromal cells, immune cells as well as malignant cells and what clinical implications there are.
Collapse
|
579
|
Gur-Cohen S, Lapid K, Lapidot T. Quantifying hematopoietic stem and progenitor cell mobilization. Methods Mol Biol 2012; 904:15-35. [PMID: 22890919 DOI: 10.1007/978-1-61779-943-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Allogeneic donor blood cells and autologous peripheral blood leukocytes (PBL), obtained following -clinical mobilization procedures, are routinely used as a major source of hematopoietic stem and progenitor cells (HSPC) for transplantation protocols. It is, therefore, essential to evaluate and to quantify the extent by which the HSPC are mobilized and enriched in the circulation in correlation with their long-term hematopoietic reconstitution capacity. In this chapter, we describe quantitative methods that measure the number of mobilized HSPC according to specific criteria, as well as their functional properties in vitro and in vivo. The described assays are useful for assessment of progenitor cell mobilization as applied to both human and murine HSPC.
Collapse
Affiliation(s)
- Shiri Gur-Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
580
|
Bonig H, Papayannopoulou T. Mobilization of hematopoietic stem/progenitor cells: general principles and molecular mechanisms. Methods Mol Biol 2012; 904:1-14. [PMID: 22890918 PMCID: PMC3676430 DOI: 10.1007/978-1-61779-943-3_1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Hematopoietic stem/progenitor cell mobilization can be achieved by a variety of bone marrow niche modifications, although efficient mobilization requires simultaneous expansion of the stem/progenitor cell pool and niche modification. Many of the mechanisms involved in G-CSF-induced mobilization have been described. With regard to mobilization of hematopoietic stem/progenitor cells, challenges for the future include the analysis of genetic factors responsible for the great variability in mobilization responses, and the identification of predictors of mobilization efficiency, as well as the development of mobilizing schemes for poor mobilizers. Moreover, improved regimens for enhanced or even preferential mobilization of nonhematopoietic stem/progenitor cell types, and their therapeutic potential for endogenous tissue repair will be questions to be vigorously pursued in the near future.
Collapse
Affiliation(s)
- Halvard Bonig
- Department of Medicine/Hematology, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
581
|
Rettig MP, Ansstas G, DiPersio JF. Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 2012; 26:34-53. [PMID: 21886173 PMCID: PMC3514440 DOI: 10.1038/leu.2011.197] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 03/31/2011] [Accepted: 05/23/2011] [Indexed: 12/29/2022]
Abstract
Successful hematopoietic stem cell transplant requires the infusion of a sufficient number of hematopoietic stem/progenitor cells (HSPCs) that are capable of homing to the bone marrow cavity and regenerating durable trilineage hematopoiesis in a timely manner. Stem cells harvested from peripheral blood are the most commonly used graft source in HSCT. Although granulocyte colony-stimulating factor (G-CSF) is the most frequently used agent for stem cell mobilization, the use of G-CSF alone results in suboptimal stem cell yields in a significant proportion of patients. Both the chemokine receptor CXCR4 and the integrin α(4)β(1) (very late antigen 4 (VLA-4)) have important roles in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of CXCR4 or VLA-4 with their ligands results in the rapid and reversible mobilization of hematopoietic stem cells into the peripheral circulation and is synergistic when combined with G-CSF. In this review, we discuss the development of small-molecule CXCR4 and VLA-4 inhibitors and how they may improve the utility and convenience of peripheral blood stem cell transplantation.
Collapse
Affiliation(s)
- M P Rettig
- Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
582
|
Barbier V, Winkler IG, Lévesque JP. Mobilization of hematopoietic stem cells by depleting bone marrow macrophages. Methods Mol Biol 2012; 904:117-38. [PMID: 22890928 DOI: 10.1007/978-1-61779-943-3_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An important factor contributing to hematopoietic stem cell (HSC) mobilization is the ability of mobilizing cytokines and chemotherapy to disturb the cellular components of HSC niches, particularly osteoblasts and their progenitors, and to inhibit the production of HSC supportive cytokines and chemokines. Although the mechanisms by which niche cells are inhibited by mobilizing treatments is still incompletely understood, it has recently emerged that bone marrow macrophages play a critical role in maintaining osteoblasts, bone formation, and the expression of CXCL12, KIT ligand, and angiopoietin-1 necessary to HSC maintenance. In this chapter, we describe how to mobilize HSC into the blood in mice by depleting macrophages with clodronate-loaded liposomes and compare this mode of mobilization to mobilization induced by granulocyte colony-stimulating factor and cyclophosphamide. Detailed methods to analyze mobilization of phenotypic and functional reconstituting HSC are described with examples.
Collapse
Affiliation(s)
- Valérie Barbier
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, QLD, Australia
| | | | | |
Collapse
|
583
|
Harris SE, MacDougall M, Horn D, Woodruff K, Zimmer SN, Rebel VI, Fajardo R, Feng JQ, Heinrich-Gluhak J, Harris MA, Werner SA. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone 2012; 50:42-53. [PMID: 21958845 PMCID: PMC3374485 DOI: 10.1016/j.bone.2011.09.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/26/2011] [Accepted: 09/10/2011] [Indexed: 12/29/2022]
Abstract
CSF-1, a key regulator of mononuclear phagocyte production, is highly expressed in the skeleton by osteoblasts/osteocytes and in a number of nonskeletal tissues such as uterus, kidney and brain. The spontaneous mutant op/op mouse has been the conventional model of CSF-1 deficiency and exhibits a pleiotropic phenotype characterized by osteopetrosis, and defects in hematopoiesis, fertility and neural function. Studies to further delineate the biologic effect of CSF-1 within various tissues have been hampered by the lack of suitable models. To address this issue, we generated CSF-1 floxed/floxed mice and demonstrate that Cre-mediated recombination using Meox2Cre, a Cre line expressed in epiblast during early embryogenesis, results in mice with ubiquitous CSF-1 deficiency (CSF-1KO). Homozygous CSF-1KO mice lacked CSF-1 in all tissues and displayed, in part, a similar phenotype to op/op mice that included: failure of tooth eruption, osteopetrosis, reduced macrophage densities in reproductive and other organs and altered hematopoiesis with decreased marrow cellularity, circulating monocytes and B cell lymphopoiesis. In contrast to op/op mice, CSF-1KO mice showed elevated circulating and splenic T cells. A striking feature in CSF-1KO mice was defective osteocyte maturation, bone mineralization and osteocyte-lacunar system that was associated with reduced dentin matrix protein 1 (DMP1) expression in osteocytes. CSF-1KO mice also showed a dramatic reduction in osteomacs along the endosteal surface that may have contributed to the hematopoietic and cortical bone defects. Thus, our findings show that ubiquitous CSF-1 gene deletion using a Cre-based system recapitulates the expected osteopetrotic phenotype. Moreover, results point to a novel link between CSF-1 and osteocyte survival/function that is essential for maintaining bone mass and strength during skeletal development.
Collapse
Affiliation(s)
- Stephen E. Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Mary MacDougall
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Diane Horn
- Department of Pathology, University of Texas Health Science Center at San Antonio
| | - Kathleen Woodruff
- Department of Pathology, University of Texas Health Science Center at San Antonio
| | - Stephanie N. Zimmer
- Department of Cellular and Structural Biology and Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio
| | - Vivienne I. Rebel
- Department of Cellular and Structural Biology and Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio
| | - Roberto Fajardo
- Department of Orthopedics, University of Texas Health Science Center at San Antonio
| | - Jian Q. Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Dallas, TX 75246
| | - Jelica Heinrich-Gluhak
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Marie A. Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Sherry Abboud Werner
- Department of Pathology, University of Texas Health Science Center at San Antonio
- Correspondence addressed to: (), phone: 210-567-1913, fax: 210-567-4918
| |
Collapse
|
584
|
Mercier FE, Ragu C, Scadden DT. The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 2011; 12:49-60. [PMID: 22193770 DOI: 10.1038/nri3132] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progenitor cells that are the basis for all blood cell production share the bone marrow with more mature elements of the adaptive immune system. Specialized niches within the bone marrow guide and, at times, constrain the development of haematopoietic stem and progenitor cells (HSPCs) and lineage-restricted immune progenitor cells. Specific niche components are organized into distinct domains to create a diversified landscape in which specialized cell differentiation or population expansion programmes proceed. Local cues that reflect the tissue and organismal state affect cellular interactions to alter the production of a range of cell types. Here, we review the organization of regulatory elements in the bone marrow and discuss how these elements provide a dynamic means for the host to modulate stem cell and adaptive immune cell responses to physiological challenges.
Collapse
Affiliation(s)
- Francois E Mercier
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Christine Ragu
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David T Scadden
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
585
|
Mercier FE, Ragu C, Scadden DT. The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 2011. [PMID: 22193770 DOI: 10.1038/nri4132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progenitor cells that are the basis for all blood cell production share the bone marrow with more mature elements of the adaptive immune system. Specialized niches within the bone marrow guide and, at times, constrain the development of haematopoietic stem and progenitor cells (HSPCs) and lineage-restricted immune progenitor cells. Specific niche components are organized into distinct domains to create a diversified landscape in which specialized cell differentiation or population expansion programmes proceed. Local cues that reflect the tissue and organismal state affect cellular interactions to alter the production of a range of cell types. Here, we review the organization of regulatory elements in the bone marrow and discuss how these elements provide a dynamic means for the host to modulate stem cell and adaptive immune cell responses to physiological challenges.
Collapse
Affiliation(s)
- Francois E Mercier
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Christine Ragu
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David T Scadden
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
586
|
Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 2011; 119:1810-20. [PMID: 22186992 DOI: 10.1182/blood-2011-09-379214] [Citation(s) in RCA: 549] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophage-colony stimulating factor (CSF-1) signaling through its receptor (CSF-1R) promotes the differentiation of myeloid progenitors into heterogeneous populations of monocytes, macrophages, dendritic cells, and bone-resorbing osteoclasts. In the periphery, CSF-1 regulates the migration, proliferation, function, and survival of macrophages, which function at multiple levels within the innate and adaptive immune systems. Macrophage populations elicited by CSF-1 are associated with, and exacerbate, a broad spectrum of pathologies, including cancer, inflammation, and bone disease. Conversely, macrophages can also contribute to immunosuppression, disease resolution, and tissue repair. Recombinant CSF-1, antibodies against the ligand and the receptor, and specific inhibitors of CSF-1R kinase activity have been each been tested in a range of animal models and in some cases, in patients. This review examines the potential clinical uses of modulators of the CSF-1/CSF-1R system. We conclude that CSF-1 promotes a resident-type macrophage phenotype. As a treatment, CSF-1 has therapeutic potential in tissue repair. Conversely, inhibition of CSF-1R is unlikely to be effective in inflammatory disease but may have utility in cancer.
Collapse
|
587
|
Abstract
Stem cells differ from other cells of the body in their potential for multilineage differentiation and their continued proliferation without substantial loss of potential (so-called self-renewal). These properties are maintained and regulated by a specific microenvironment referred to as "niche." This term has been used to indicate the specific location of stem cells within tissues, as well as the cellular and molecular components that critically determine stem cell behavior. Whereas other, perhaps less complex, stem cell niches (e.g., Drosophila germarium) have been more clearly dissected in the 30 years that have passed since these observations, the hematopoietic stem cell (HSC) niche has proven challenging due to the difficulty to detect HSCs under normal conditions and the dynamism of HSCs and other cells of the bone marrow that influence HSC behavior. This article reviews the recent development of the HSC niche field with emphasis on prospective integrative mechanisms within bone marrow homeostasis and multisystem physiology. For that purpose, we will first highlight anatomical and histological features of the bone marrow of relevance for HSC behavior; then, we will summarize the principal findings concerning different cell types and potential mechanisms by which they critically regulate HSC function.
Collapse
Affiliation(s)
- Joan Isern
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares Carlos CNIC, Calle Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | | |
Collapse
|
588
|
Abstract
Considerable information has accumulated about components of BM that regulate the survival, self-renewal, and differentiation of hematopoietic cells. In the present study, we investigated Wnt signaling and assessed its influence on human and murine hematopoiesis. Hematopoietic stem/progenitor cells (HSPCs) were placed on Wnt3a-transduced OP9 stromal cells. The proliferation and production of B cells, natural killer cells, and plasmacytoid dendritic cells were blocked. In addition, some HSPC characteristics were maintained or re-acquired along with different lineage generation potentials. These responses did not result from direct effects of Wnt3a on HSPCs, but also required alterations in the OP9 cells. Microarray, PCR, and flow cytometric experiments revealed that OP9 cells acquired osteoblastic characteristics while down-regulating some features associated with mesenchymal stem cells, including the expression of angiopoietin 1, the c-Kit ligand, and VCAM-1. In contrast, the production of decorin, tenascins, and fibromodulin markedly increased. We found that at least 1 of these extracellular matrix components, decorin, is a regulator of hematopoiesis: upon addition of this proteoglycan to OP9 cocultures, decorin caused changes similar to those caused by Wnt3a. Furthermore, hematopoietic stem cell numbers in the BM and spleen were elevated in decorin-knockout mice. These findings define one mechanism through which canonical Wnt signaling could shape niches supportive of hematopoiesis.
Collapse
|
589
|
Marquez-Curtis LA, Turner AR, Sridharan S, Ratajczak MZ, Janowska-Wieczorek A. The ins and outs of hematopoietic stem cells: studies to improve transplantation outcomes. Stem Cell Rev Rep 2011; 7:590-607. [PMID: 21140298 DOI: 10.1007/s12015-010-9212-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deciphering the mechanisms of hematopoietic stem/progenitor cell (HSPC) mobilization and homing is important for the development of strategies to enhance the efficacy of HSPC transplantation and achieve the full potential of HSPC-based cellular therapy. Investigation of these mechanisms has revealed interdependence among the various molecules, pathways and cellular components involved, and underscored the complex nature of these two processes. This review summarizes recent progress in identifying the specific factors implicated in HSPC mobilization and homing, with emphasis on our own work. Particularly, we will discuss our studies on stromal cell-derived factor-1 and its interaction with its receptor CXCR4, proteases (matrix metalloproteinases and carboxypeptidase M), complement proteins (C1q, C3a, C5a, membrane attack complex), sphingosine-1-phosphate, and pharmacologic agents such as the histone deacetylase inhibitor valproic acid and hyaluronic acid.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Research & Development, Canadian Blood Services, CBS Edmonton Centre, 8249-114 St. NW, Edmonton, T6G 2R8, Alberta, Canada
| | | | | | | | | |
Collapse
|
590
|
Brennan T, Adapala NS, Barbe MF, Yingling V, Sanjay A. Abrogation of Cbl-PI3K interaction increases bone formation and osteoblast proliferation. Calcif Tissue Int 2011; 89:396-410. [PMID: 21952831 PMCID: PMC3191294 DOI: 10.1007/s00223-011-9531-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 08/30/2011] [Indexed: 01/07/2023]
Abstract
Cbl is an adaptor protein and E3 ligase that plays both positive and negative roles in several signaling pathways that affect various cellular functions. Tyrosine 737 is unique to Cbl and phosphorylated by Src family kinases. Phosphorylated CblY737 creates a binding site for the p85 regulatory subunit of phosphatidylinositol 3 kinase (PI3K) that also plays an important role in the regulation of bone homeostasis. To investigate the role of Cbl-PI3K interaction in bone homeostasis, we examined knock-in mice in which the PI3K binding site on Cbl was ablated due to the substitution of tyrosine 737 to phenylalanine (Cbl(YF/YF), YF mice). We previously reported that bone volume in these mice is increased due to decreased osteoclast function (Adapala et al., J Biol Chem 285:36745-36758, 19). Here, we report that YF mice also have increased bone formation and osteoblast numbers. In ex vivo cultures bone marrow-derived YF osteoblasts showed increased Col1A expression and their proliferation was also significantly augmented. Moreover, proliferation of MC3T3-E1 cells was increased after treatment with conditioned medium generated by culturing YF bone marrow stromal cells. Expression of stromal derived factor-1 (SDF-1) was increased in YF bone marrow stromal cells compared to wild type. Increased immunostaining of SDF-1 and CXCR4 was observed in YF bone marrow stromal cells compared to wild type. Treatment of YF condition medium with neutralizing anti-SDF-1 and anti-CXCR4 antibodies attenuated MC3T3-E1 cell proliferation. Cumulatively, these results show that abrogation of Cbl-PI3K interaction perturbs bone homeostasis, affecting both osteoclast function and osteoblast proliferation.
Collapse
Affiliation(s)
- Tracy Brennan
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA USA
| | - Naga Suresh Adapala
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA USA
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, 263 Farmington Avenue, Farmington, CT USA
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA USA
| | - Vanessa Yingling
- Department of Kinesiology, Temple University School of Medicine, Philadelphia, PA USA
| | - Archana Sanjay
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA USA
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, 263 Farmington Avenue, Farmington, CT USA
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA USA
| |
Collapse
|
591
|
Lilly AJ, Johnson WE, Bunce CM. The haematopoietic stem cell niche: new insights into the mechanisms regulating haematopoietic stem cell behaviour. Stem Cells Int 2011; 2011:274564. [PMID: 22135682 PMCID: PMC3205662 DOI: 10.4061/2011/274564] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/27/2011] [Indexed: 12/17/2022] Open
Abstract
The concept of the haematopoietic stem cell (HSC) niche was formulated by Schofield in the 1970s, as a region within the bone marrow containing functional cell types that can maintain HSC potency throughout life. Since then, ongoing research has identified numerous cell types and a plethora of signals that not only maintain HSCs, but also dictate their behaviour with respect to homeostatic requirements and exogenous stresses. It has been proposed that there are endosteal and vascular niches within the bone marrow, which are thought to regulate different HSC populations. However, recent data depicts a more complicated picture, with functional crosstalk between cells in these two regions. In this review, recent research into the endosteal/vascular cell types and signals regulating HSC behaviour are considered, together with the possibility of a single subcompartmentalised niche.
Collapse
Affiliation(s)
- Andrew J. Lilly
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - William E. Johnson
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Christopher M. Bunce
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
592
|
Abstract
Abstract
Transplantation with 2-5 × 106 mobilized CD34+cells/kg body weight lowers transplantation costs and mortality. Mobilization is most commonly performed with recombinant human G-CSF with or without chemotherapy, but a proportion of patients/donors fail to mobilize sufficient cells. BM disease, prior treatment, and age are factors influencing mobilization, but genetics also contributes. Mobilization may fail because of the changes affecting the HSC/progenitor cell/BM niche integrity and chemotaxis. Poor mobilization affects patient outcome and increases resource use. Until recently increasing G-CSF dose and adding SCF have been used in poor mobilizers with limited success. However, plerixafor through its rapid direct blockage of the CXCR4/CXCL12 chemotaxis pathway and synergy with G-CSF and chemotherapy has become a new and important agent for mobilization. Its efficacy in upfront and failed mobilizers is well established. To maximize HSC harvest in poor mobilizers the clinician needs to optimize current mobilization protocols and to integrate novel agents such as plerixafor. These include when to mobilize in relation to chemotherapy, how to schedule and perform apheresis, how to identify poor mobilizers, and what are the criteria for preemptive and immediate salvage use of plerixafor.
Collapse
|
593
|
Abstract
PURPOSE OF REVIEW Blood cell production is maintained by hematopoietic stem cells (HSCs) that reside in specialized niches within bone marrow. Treatment with granulocyte-colony stimulating factor (G-CSF) causes HSC egress from bone marrow niches and trafficking to the peripheral blood, a process termed 'mobilization'. Although the mobilization phenomenon has been known for some time and is utilized clinically to acquire HSC for transplant, the mechanisms mediating HSC release are not completely understood. We discuss recent advances and controversies in defining the mechanisms responsible for G-CSF-induced mobilization. RECENT FINDINGS New reports define a role for resident monocytes/macrophages in maintaining niche cells, which is diminished after G-CSF treatment, suggesting a new mechanism for mobilization. Although osteoblasts have been reported to be a primary component of the HSC niche, new results suggest a unique niche composed of innervated mesenchymal stem cells. Modulating bioactive lipid signaling also facilitates mobilization, and may define a future therapeutic strategy. SUMMARY Hematopoietic mobilization by G-CSF is primarily mediated by alterations to the bone marrow niche by both direct and indirect mechanisms, rather than directly altering HSC function. Further understanding of the processes mediating mobilization will advance our understanding on the cellular and molecular components of the HSC niche.
Collapse
|
594
|
Schroeder MA, DiPersio JF. Mobilization of hematopoietic stem and leukemia cells. J Leukoc Biol 2011; 91:47-57. [PMID: 22028335 DOI: 10.1189/jlb.0210085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HSC mobilization is an essential homeostatic process during inflammation and for the maintenance of hematopoietic progenitors. It has been exploited for the therapeutic application of HSC transplantation. Recent evidence suggests that leukemic cells share surface molecules in common with stem cells and may be mobilized under similar conditions. This effect could be used for therapeutic interventions. In this review, we will provide evidence showing that leukemia cells and stem cells traffic similarly and may share a common niche. Studies are discussed comparing and contrasting the mechanism of normal stem cells and leukemic cell mobilization through the CXCR4/CXCL12 axis and other key intermediaries.
Collapse
Affiliation(s)
- Mark A Schroeder
- Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
595
|
Zheng J, Song C, Zhang CC. A new chapter: hematopoietic stem cells are direct players in immunity. Cell Biosci 2011; 1:33. [PMID: 21978817 PMCID: PMC3198676 DOI: 10.1186/2045-3701-1-33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 10/06/2011] [Indexed: 02/04/2023] Open
Abstract
Several lines of evidence support the hypothesis that hematopoietic stem cells (HSCs) directly interact with the immune system and have potential for immune privilege. Although the microenvironment or niche provides protection for HSCs from immune attack, HSCs are also capable of interacting with the immune system as signal "providers" and signal "receivers". On the one hand, HSCs display surface immune inhibitory molecules to evade the attack from the innate and adaptive immune systems; on the other hand, HSCs are capable of directly sensing the signals from the immune system through their surface receptors. Thus, HSCs are important direct players in the immune system.
Collapse
Affiliation(s)
- Junke Zheng
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.
| | | | | |
Collapse
|
596
|
Lawal RA, Calvi LM. The niche as a target for hematopoietic manipulation and regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:415-22. [PMID: 21902610 DOI: 10.1089/ten.teb.2011.0197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs), rare primitive cells capable of reconstituting all blood cell lineages, are the only stem cells currently routinely used for therapeutic purposes. Clinical experience has shown that HSC number is an important limiting factor in treatment success. Strategies to expand HSCs are of great clinical appeal, as they would improve therapeutic use of these cells in stem cell transplantation and in conditions of bone marrow failure. The microenvironment in which HSCs reside, known as the niche, has long been considered a critical regulator of HSCs. Data accumulated over the past decade strongly confirm the importance of the niche in HSC behavior. A number of niche components as well as signaling pathways, such as Notch, have been implicated in the interaction of the microenvironment with HSCs and continue to be genetically evaluated in the hope of defining the critical elements that are required and which, if modified, can initiate HSC behaviors. In this review, we highlight the known characteristics of HSCs, challenges in their expansion, the niche phenomenon, and explain why niche stimulated HSC expansion is of utmost interest in the field, while beginning to bring to the fore potential caveats of niche manipulation. Lastly, the potential pitfalls of avoiding malignancy and controlling self-renewal versus differentiation will be briefly reviewed.
Collapse
|
597
|
Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol 2011; 11:685-92. [PMID: 21904387 DOI: 10.1038/nri3062] [Citation(s) in RCA: 436] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cells of the innate and adaptive immune systems are the progeny of a variety of haematopoietic precursors, the most primitive of which is the haematopoietic stem cell. Haematopoietic stem cells have been thought of generally as dormant cells that are only called upon to divide under extreme conditions, such as bone marrow ablation through radiation or chemotherapy. However, recent studies suggest that haematopoietic stem cells respond directly and immediately to infections and inflammatory signals. In this Review, we summarize the current literature regarding the effects of infection on haematopoietic stem cell function and how these effects may have a pivotal role in directing the immune response from the bone marrow.
Collapse
|
598
|
Abstract
In adult mammals, hematopoietic stem cells (HSCs) reside in the bone marrow (BM) and are maintained in a quiescent and undifferentiated state through adhesive interactions with specialized microenvironmental niches. Although junctional adhesion molecule-C (JAM-C) is expressed by HSCs, its function in adult hematopoiesis remains elusive. Here, we show that HSCs adhere to JAM-B expressed by BM stromal cells in a JAM-C dependent manner. The interaction regulates the interplay between HSCs and BM stromal cells as illustrated by the decreased pool of quiescent HSCs observed in jam-b deficient mice. We further show that this is probably because of alterations of BM stromal compartments and changes in SDF-1α BM content in jam-b(-/-) mice, suggesting that JAM-B is an active player in the maintenance of the BM stromal microenvironment.
Collapse
|
599
|
Singbrant S, Askmyr M, Purton LE, Walkley CR. Defining the hematopoietic stem cell niche: the chicken and the egg conundrum. J Cell Biochem 2011; 112:1486-90. [PMID: 21503954 DOI: 10.1002/jcb.23085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding the in vivo regulation of hematopoietic stem cells (HSCs) will be critical to identifying key factors involved in the regulation of HSC self-renewal and differentiation. The niche (microenvironment) in which HSCs reside has recently regained attention accompanied by a dramatic increase in the understanding of the cellular constituents of the bone marrow HSC niche. The use of sophisticated genetic models allowing modulation of specific lineages has demonstrated roles for mesenchymal-derived elements such as osteoblasts and adipocytes, vasculature, nerves, and a range of hematopoietic progeny of the HSC as being participants in the regulation of the bone marrow microenvironment. Whilst providing significant insight into the cellular composition of the niche, is it possible to manipulate any given cell lineage in vivo without impacting, knowingly or unknowingly, on those that remain?
Collapse
Affiliation(s)
- Sofie Singbrant
- St. Vincent's Institute of Medical Research, Department of Medicine at St. Vincent's Hospital, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
600
|
Abstract
Stem cells are central to developing new treatment options for tissue regeneration and constructing controllable models for biological research. Bioengineered cell culture environments that combine microenvironmental control with tissue-specific transport and signaling are critical tools in our efforts to study tissue development, regeneration, and disease under conditions that predict the human in vivo context. We propose that experimentation at the interfaces of biology, engineering, and medical sciences is critical for unlocking the full potential of stem cells. Here, we focus on the design and utilization of in vitro platforms that recapitulate the environments associated with tissue development, disease, and regeneration.
Collapse
|