601
|
Fulda S, Pervaiz S. Apoptosis signaling in cancer stem cells. Int J Biochem Cell Biol 2010; 42:31-8. [DOI: 10.1016/j.biocel.2009.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 12/18/2022]
|
602
|
Abstract
Stem cells are rare and unique precursor cells that participate in the building and rebuilding of tissues and organs during embryogenesis, postnatal growth, and injury repair. Stem cells are distinctively endowed with the ability to both self-renew and differentiate, such that they can replenish the stem cell pool while continuing to produce the differentiated daughter cells that are essential for tissue function. Stem cell self-renewal/differentiation decisions must be carefully controlled during organogenesis, tissue homeostasis, and regeneration, as failure in stem cell maintenance or activation can lead to progressive tissue wasting, while unchecked self-renewal is a hallmark of many cancers. Here, we review evidence implicating the Notch signaling pathway, an evolutionarily conserved cell fate determinant with widespread roles in a variety of tissues and organisms, as a crucial regulator of stem cell behavior. As discussed below, this pathway plays varied and critical roles at multiple stages of organismal development, in lineage-specific differentiation of pluripotent embryonic stem cells, and in controlling stem cell numbers and activity in the context of age-related tissue degeneration, injury-induced tissue repair, and malignancy.
Collapse
|
603
|
Bowen NJ, Walker LD, Matyunina LV, Logani S, Totten KA, Benigno BB, McDonald JF. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med Genomics 2009; 2:71. [PMID: 20040092 PMCID: PMC2806370 DOI: 10.1186/1755-8794-2-71] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/29/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that somatic stem cells undergo mutagenic transformation into cancer initiating cells. The serous subtype of ovarian adenocarcinoma in humans has been hypothesized to arise from at least two possible classes of progenitor cells: the ovarian surface epithelia (OSE) and/or an as yet undefined class of progenitor cells residing in the distal end of the fallopian tube. METHODS Comparative gene expression profiling analyses were carried out on OSE removed from the surface of normal human ovaries and ovarian cancer epithelial cells (CEPI) isolated by laser capture micro-dissection (LCM) from human serous papillary ovarian adenocarcinomas. The results of the gene expression analyses were randomly confirmed in paraffin embedded tissues from ovarian adenocarcinoma of serous subtype and non-neoplastic ovarian tissues using immunohistochemistry. Differentially expressed genes were analyzed using gene ontology, molecular pathway, and gene set enrichment analysis algorithms. RESULTS Consistent with multipotent capacity, genes in pathways previously associated with adult stem cell maintenance are highly expressed in ovarian surface epithelia and are not expressed or expressed at very low levels in serous ovarian adenocarcinoma. Among the over 2000 genes that are significantly differentially expressed, a number of pathways and novel pathway interactions are identified that may contribute to ovarian adenocarcinoma development. CONCLUSIONS Our results are consistent with the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as the origin of ovarian adenocarcinoma. While our findings do not rule out the possibility that ovarian cancers may also arise from other sources, they are inconsistent with claims that ovarian surface epithelia cannot serve as the origin of ovarian cancer initiating cells.
Collapse
Affiliation(s)
- Nathan J Bowen
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
604
|
Fernandez-Capetillo O. Intrauterine programming of ageing. EMBO Rep 2009; 11:32-6. [PMID: 20010800 DOI: 10.1038/embor.2009.262] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 11/19/2009] [Indexed: 01/22/2023] Open
Abstract
Ageing is an unavoidable corollary to being alive; the most intuitive interpretation of ageing being that it is the consequence of progressive body degeneration. In agreement with this, current models propose that ageing occurs through a stepwise accumulation of DNA damage, which ultimately limits the regenerative capacity of tissues. On the other hand, there is increasing evidence that fetal distress can influence the development of disease in adult life, a phenomenon known as 'intrauterine programming'. The extent to which an intrauterine exposure to DNA damage can compromise lifespan remains unclear. My group has recently generated a murine model of a human syndrome linked to defective DNA repair and observed that these animals age prematurely, but the accumulation of DNA damage is restricted mostly to the embryonic period. Here, I discuss the implications of this finding and propose that ageing can be influenced by fetal distress.
Collapse
Affiliation(s)
- Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre, Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain.
| |
Collapse
|
605
|
Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. J Neurosci 2009; 29:14394-407. [PMID: 19923274 DOI: 10.1523/jneurosci.3836-09.2009] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Proliferation in the subependymal zone (SEZ) and neurogenesis in the olfactory bulb decline in the forebrain of telomerase-deficient mice. The present work reveals additional effects of telomere shortening on neuronal differentiation, as adult multipotent progenitors with critically short telomeres yield reduced numbers of neurons that, furthermore, exhibit underdeveloped neuritic arbors. Genetic data indicate that the tumor suppressor protein p53 not only mediates the adverse effects of telomere attrition on proliferation and self-renewal but it is also involved in preventing normal neuronal differentiation of adult progenitors with dysfunctional telomeres. Interestingly, progenitor cells with short telomeres obtained from fetal brains do not exhibit any replicative defects but also fail to acquire a fully mature neuritic arbor, demonstrating cell cycle-independent effects of telomeres on neuronal differentiation. The negative effect of p53 on neuritogenesis is mechanistically linked to its cooperation with the Notch pathway in the upregulation of small GTPase RhoA kinases, Rock1 and Rock2, suggesting a potential link between DNA damage and the Notch signaling pathway in the control of neuritogenesis. We also show that telomerase expression is downregulated in the SEZ of aging mice leading to telomere length reductions in neurosphere-forming cells and deficient neurogenesis and neuritogenesis. Our results suggest that age-related deficits could be caused partly by dysfunctional telomeres and demonstrate that p53 is a central modulator of adult neurogenesis, regulating both the production and differentiation of postnatally generated olfactory neurons.
Collapse
|
606
|
Abstract
Cellular and tissue regeneration in the gastrointestinal tract and liver depends on stem cells with properties of longevity, self-renewal and multipotency. Progress in stem cell research and the identification of potential esophageal, gastric, intestinal, colonic, hepatic and pancreatic stem cells provides hope for the use of stem cells in regenerative medicine and treatments for disease. Embryonic stem cells and induced pluripotent stem cells have the potential to give rise to any cell type in the human body, but their therapeutic application remains challenging. The use of adult or tissue-restricted stem cells is emerging as another possible approach for the treatment of gastrointestinal diseases. The same self-renewal properties that allow stem cells to remain immortal and generate any tissue can occasionally make their proliferation difficult to control and make them susceptible to malignant transformation. This Review provides an overview of the different types of stem cell, focusing on tissue-restricted adult stem cells in the fields of gastroenterology and hepatology and summarizing the potential benefits and risks of using stems cells to treat gastroenterological and liver disorders.
Collapse
|
607
|
Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2009; 2:ra75. [PMID: 19934433 DOI: 10.1126/scisignal.2000559] [Citation(s) in RCA: 495] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Age-related declines in hematopoietic stem cell (HSC) function may contribute to anemia, poor response to vaccination, and tumorigenesis. Here, we show that mammalian target of rapamycin (mTOR) activity is increased in HSCs from old mice compared to those from young mice. mTOR activation through conditional deletion of Tsc1 in the HSCs of young mice mimicked the phenotype of HSCs from aged mice in various ways. These included increased abundance of the messenger RNA encoding the CDK inhibitors p16(Ink4a), p19(Arf), and p21(Cip1); a relative decrease in lymphopoiesis; and impaired capacity to reconstitute the hematopoietic system. In old mice, rapamycin increased life span, restored the self-renewal and hematopoiesis of HSCs, and enabled effective vaccination against a lethal challenge with influenza virus. Together, our data implicate mTOR signaling in HSC aging and show the potential of mTOR inhibitors for restoring hematopoiesis in the elderly.
Collapse
Affiliation(s)
- Chong Chen
- 1Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
608
|
Abstract
Transforming growth factor beta (TGFbeta) pathways are implicated in metazoan development, adult homeostasis and disease. TGFbeta ligands signal via receptor serine/threonine kinases that phosphorylate, and activate, intracellular Smad effectors as well as other signaling proteins. Oligomeric Smad complexes associate with chromatin and regulate transcription, defining the biological response of a cell to TGFbeta family members. Signaling is modulated by negative-feedback regulation via inhibitory Smads. We review here the mechanisms of TGFbeta signal transduction in metazoans and emphasize events crucial for embryonic development.
Collapse
|
609
|
Cheng L, Ramesh AV, Flesken-Nikitin A, Choi J, Nikitin AY. Mouse models for cancer stem cell research. Toxicol Pathol 2009; 38:62-71. [PMID: 19920280 DOI: 10.1177/0192623309354109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cancer stem cell concept assumes that cancers are mainly sustained by a small pool of neoplastic cells, known as cancer stem cells or tumor initiating cells, which are able to reproduce themselves and produce phenotypically heterogeneous cells with lesser tumorigenic potential. Cancer stem cells represent an appealing target for development of more selective and efficient therapies. However, direct testing of the cancer stem cell concept and assessment of its therapeutic implications in human cancers have been complicated by the use of immunocompromised mice. Genetically defined immunocompetent autochthonous mouse models of human cancer provide a valuable tool to address this problem. Furthermore, they allow for a better understanding of the relevance of mechanisms controlling normal stem cell compartment to carcinogenesis. Advantages and disadvantages of some of the existing mouse models are reviewed, and future challenges in cancer stem cell research are outlined.
Collapse
Affiliation(s)
- Le Cheng
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
610
|
Abstract
Stress can activate tumor-suppressive mechanisms, causing the loss of adult stem cell function with age. In this issue of Cell Stem Cell and in Nature, Castilho et al. (2009) and Harrison et al. (2009) highlight the importance of mTOR signaling in stem cell exhaustion and mammalian aging, respectively.
Collapse
|
611
|
Donehower LA. Using mice to examine p53 functions in cancer, aging, and longevity. Cold Spring Harb Perspect Biol 2009; 1:a001081. [PMID: 20457560 DOI: 10.1101/cshperspect.a001081] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The p53 tumor suppressor is a multifaceted transcription factor that responds to a diverse array of stresses that include DNA damage and aberrant oncogene signaling. On activation, p53 prevents the emergence of cancer cells by initiating cell cycle arrest, senescence (terminal cell cycle arrest), or apoptosis. Although its role in assuring longevity by suppressing cancer is well established, recent studies obtained largely from genetically engineered mouse models suggest that p53 may regulate longevity and aging. In some contexts, it appears that altered p53 activity may enhance longevity, and in others, it appears to suppress longevity and accelerate aging phenotypes. Here, we discuss how genetically engineered mouse models have been used to explore antiproliferative functions of p53 in cancer suppression and how mouse models with altered aging phenotypes have shed light on how p53 might influence the aging process.
Collapse
Affiliation(s)
- Lawrence A Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
612
|
Paradoxical down-regulation of p16 mRNA with advancing age in acute myeloid leukemia. Aging (Albany NY) 2009; 1:949-53. [PMID: 20157576 PMCID: PMC2815746 DOI: 10.18632/aging.100096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/21/2009] [Indexed: 01/08/2023]
Abstract
Aging is generally considered to be the consequence of stem cell attrition caused by the activity of tumor suppressor pathways that censor potentially malignant clones by eliciting apoptosis or senescence. An important effector of aging is the cyclindependent kinase inhibitor p16(INK4a), which is also a known suppressor of cancer. The expression of p16(INK4a) is very low or absent in young organisms but increases with advancing age. We recently showed that, unlike healthy cells, acute myeloid leukemia (AML) derived blasts show a down-regulation of p16(INK4a) mRNA with increasing age. Based on this observation we hypothesize that suppression of defense mechanisms which protect older cells against cellular and DNA damage might facilitate oncogenesis in older individuals.
Collapse
|
613
|
Heng TSP, Dudakov JA, Khong DMP, Chidgey AP, Boyd RL. Stem cells—meet immunity. J Mol Med (Berl) 2009; 87:1061-9. [DOI: 10.1007/s00109-009-0539-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 08/31/2009] [Accepted: 09/15/2009] [Indexed: 12/28/2022]
|
614
|
Sigvardsson M. New light on the biology and developmental potential of haematopoietic stem cells and progenitor cells. J Intern Med 2009; 266:311-24. [PMID: 19765177 DOI: 10.1111/j.1365-2796.2009.02154.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though stem cells have been identified in several tissues, one of the best understood somatic stem cells is the bone marrow residing haematopoietic stem cell (HSC). These cells are able to generate all types of blood cells found in the periphery over the lifetime of an animal, making them one of the most profound examples of tissue-restricted stem cells. HSC therapy also represents one of the absolutely most successful cell-based therapies applied both in the treatment of haematological disorders and cancer. However, to fully explore the clinical potential of HSCs we need to understand the molecular regulation of cell maturation and lineage commitment. The extensive research effort invested in this area has resulted in a rapid development of the understanding of the relationship between different blood cell lineages and increased understanding for how a balanced composition of blood cells can be generated. In this review, several of the basic features of HSCs, as well as their multipotent and lineage-restricted offspring, are addressed, providing a current view of the haematopoietic development tree. Some of the basic mechanisms believed to be involved in lineage restriction events including activities of permissive and instructive external signals are also discussed, besides transcription factor networks and epigenetic alterations to provide an up-to-date view of early haematopoiesis.
Collapse
Affiliation(s)
- M Sigvardsson
- The Institution for Clinical and Experimental Research, Linköping University, Sweden.
| |
Collapse
|
615
|
AML at older age: age-related gene expression profiles reveal a paradoxical down-regulation of p16INK4A mRNA with prognostic significance. Blood 2009; 114:2869-77. [DOI: 10.1182/blood-2009-03-212688] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) has a different clinical and biologic behavior in patients at older age. To gain further insight into the molecular differences, we examined a cohort of 525 adults to compare gene expression profiles of the one-third of youngest cases (n = 175; median age 31 years) with the one-third of oldest cases (n = 175; median age 59 years). This analysis revealed that 477 probe sets were up-regulated and 492 probe sets were down-regulated with increasing age at the significance level of P < .00001. After validation with 2 independent AML cohorts, the 969 differentially regulated probe sets on aging could be pointed to 41 probe sets, including the tumor-suppressor gene CDKN2A (encoding p16INK4A). In contrast to the induced p16INK4A expression that is associated with physiologic aging, p16INK4A is down-regulated in AML samples of patients with increasing age. However, this was only noticed in the intermediate- and unfavorable-risk group and not in the favorable-risk group and the molecularly defined subset “NPM1 mutant without FLT3-ITD.” Multivariate analysis revealed p16INK4A, besides cytogenetic risk groups, as an independent prognostic parameter for overall survival in older patients. We conclude that, in addition to altered clinical and biologic characteristics, AML presenting at older age shows different gene expression profiles.
Collapse
|
616
|
Abstract
An integrative approach to the combined challenges of aging, cancer and stress is a necessary part of a global vision of wellness. Recent research into the mechanisms of aging, cancer and stress has established the biological links between these processes. Understanding these links is an important stepping-stone for developing approaches and therapies that ensure wellness throughout all stages of aging. This paper will consider the most recent developments in research into the molecular mechanisms common to aging and cancer and will discuss the effectiveness of natural approaches for preventing disease. Metabolic regulators as well as nutrient and energy sensors are involved in the processes of aging and cancer, and these are open to external manipulation and control. It is now becoming possible to demonstrate how nutrition, physical activity and stress control can lead to disease-free aging.
Collapse
Affiliation(s)
- Katya Chobotova
- Wolfson College, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
617
|
Groner B, Vafaizadeh V, Brill B, Klemmt P. Mammary epithelial and breast cancer stem cells. Eur J Cancer 2009; 45 Suppl 1:186-93. [DOI: 10.1016/s0959-8049(09)70032-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
618
|
Gene expression changes in normal haematopoietic cells. Best Pract Res Clin Haematol 2009; 22:249-69. [PMID: 19698932 DOI: 10.1016/j.beha.2009.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexity of the healthy haematopoietic system is immense, and as such, one must understand the biology driving normal haematopoietic expression profiles when designing experiments and interpreting expression data that involve normal cells. This article seeks to present an organised approach to the use and interpretation of gene profiling in normal haematopoiesis and broadly illustrates the challenges of selecting appropriate controls for high-throughput expression studies.
Collapse
|
619
|
Kirouac DC, Madlambayan GJ, Yu M, Sykes EA, Ito C, Zandstra PW. Cell-cell interaction networks regulate blood stem and progenitor cell fate. Mol Syst Biol 2009; 5:293. [PMID: 19638974 PMCID: PMC2724979 DOI: 10.1038/msb.2009.49] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 06/18/2009] [Indexed: 12/18/2022] Open
Abstract
Communication networks between cells and tissues are necessary for homeostasis in multicellular organisms. Intercellular (between cell) communication networks are particularly relevant in stem cell biology, as stem cell fate decisions (self-renewal, proliferation, lineage specification) are tightly regulated based on physiological demand. We have developed a novel mathematical model of blood stem cell development incorporating cell-level kinetic parameters as functions of secreted molecule-mediated intercellular networks. By relation to quantitative cellular assays, our model is capable of predictively simulating many disparate features of both normal and malignant hematopoiesis, relating internal parameters and microenvironmental variables to measurable cell fate outcomes. Through integrated in silico and experimental analyses, we show that blood stem and progenitor cell fate is regulated by cell–cell feedback, and can be controlled non-cell autonomously by dynamically perturbing intercellular signalling. We extend this concept by demonstrating that variability in the secretion rates of the intercellular regulators is sufficient to explain heterogeneity in culture outputs, and that loss of responsiveness to cell–cell feedback signalling is both necessary and sufficient to induce leukemic transformation in silico.
Collapse
Affiliation(s)
- Daniel C Kirouac
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
620
|
Abstract
Despite major therapeutic advances, most mature B-cell malignancies remain incurable. Compelling evidence suggests that crosstalk with accessory stromal cells in specialized tissue microenvironments, such as the bone marrow and secondary lymphoid organs, favors disease progression by promoting malignant B-cell growth and drug resistance. Therefore, disrupting the crosstalk between malignant B cells and their milieu is an attractive novel strategy for treating selected mature B-cell malignancies. Here we summarize the current knowledge about the cellular and molecular interactions between neoplastic B lymphocytes and accessory cells that shape a supportive microenvironment, and the potential therapeutic targets that are emerging, together with the new problems they raise. We discuss clinically relevant aspects and provide an outlook into future biologically oriented therapeutic strategies. We anticipate a paradigm shift in the treatment of selected B-cell malignancies, moving from targeting primarily the malignant cells toward combining cytotoxic drugs with agents that interfere with the microenvironment's proactive role. Such approaches hopefully will help eliminating residual disease, thereby improving our current therapeutic efforts.
Collapse
|
621
|
A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat Genet 2009; 41:891-8. [PMID: 19620979 DOI: 10.1038/ng.420] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 06/23/2009] [Indexed: 01/01/2023]
Abstract
Although DNA damage is considered a driving force for aging, the nature of the damage that arises endogenously remains unclear. Replicative stress, a source of endogenous DNA damage, is prevented primarily by the ATR kinase. We have developed a mouse model of Seckel syndrome characterized by a severe deficiency in ATR. Seckel mice show high levels of replicative stress during embryogenesis, when proliferation is widespread, but this is reduced to marginal amounts in postnatal life. In spite of this decrease, adult Seckel mice show accelerated aging, which is further aggravated in the absence of p53. Together, these results support a model whereby replicative stress, particularly in utero, contributes to the onset of aging in postnatal life, and this is balanced by the replicative stress-limiting role of the checkpoint proteins ATR and p53.
Collapse
|
622
|
Abstract
Hydra are remarkable because they are immortal. Much of immortality can be ascribed to the asexual mode of reproduction by budding, which requires a tissue consisting of stem cells with continuous self-renewal capacity. Emerging novel technologies and the availability of genomic resources enable for the first time to analyse these cells in vivo. Stem cell differentiation in Hydra is governed through the coordinated actions of conserved signaling pathways. Studies of stem cells in Hydra, therefore, promise critical insights of general relevance into stem cell biology including cellular senescence, lineage programming and reprogramming, the role of extrinsic signals in fate determination and tissue homeostasis, and the evolutionary origin of these cells. With these new facts as a backdrop, this review traces the history of studying stem cells in Hydra and offers a view of what the future may hold.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
623
|
Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet 2009; 41:783-92. [PMID: 19503090 PMCID: PMC2887745 DOI: 10.1038/ng.389] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 05/05/2009] [Indexed: 11/09/2022]
Abstract
Targeting of cancer stem cells is believed to be essential for curative therapy of cancers, but supporting evidence is limited. Few selective target genes in cancer stem cells have been identified. Here we identify the arachidonate 5-lipoxygenase (5-LO) gene (Alox5) as a critical regulator for leukemia stem cells (LSCs) in BCR-ABL-induced chronic myeloid leukemia (CML). In the absence of Alox5, BCR-ABL failed to induce CML in mice. This Alox5 deficiency caused impairment of the function of LSCs but not normal hematopoietic stem cells (HSCs) through affecting differentiation, cell division, and survival of long-term LSCs (LT-LSCs), consequently causing a depletion of LSCs and a failure of CML development. Treatment of CML mice with a 5-LO inhibitor also impaired the function of LSCs similarly by affecting LT-LSCs, and prolonged survival. These results demonstrate that a specific target gene can be found in cancer stem cells and its inhibition can completely inhibit the function of these stem cells.
Collapse
|
624
|
McDonald SAC, Graham TA, Schier S, Wright NA, Alison MR. Stem cells and solid cancers. Virchows Arch 2009; 455:1-13. [PMID: 19499244 DOI: 10.1007/s00428-009-0783-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/22/2009] [Accepted: 04/28/2009] [Indexed: 02/06/2023]
Abstract
Recently, there have been significant advances in our knowledge of stem cells found in tissues that can develop solid tumours. In particular, novel stem cell markers have been identified for the first time identifying multipotential cells: a required characteristic of a stem cell. The scarcity of cancer stem cells has been questioned. Current dogma states that they are rare, but novel research has suggested that this may not be the case. Here, we review the latest literature on stem cells, particularly cancer stem cells within solid tumours. We discuss current thinking on how stem cells develop into cancer stem cells and how they protect themselves from doing so and do they express unique markers that can be used to detect stem cells. We attempt to put into perspective these latest advances in stem cell biology and their potential for cancer therapy.
Collapse
Affiliation(s)
- Stuart A C McDonald
- Centre for Gastroenterology, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Blizard Building, 4 Newark Street, Whitechapel, London, E1 2AT, UK.
| | | | | | | | | |
Collapse
|
625
|
Simonnet AJ, Nehmé J, Vaigot P, Barroca V, Leboulch P, Tronik-Le Roux D. Phenotypic and Functional Changes Induced in Hematopoietic Stem/Progenitor Cells After Gamma-Ray Radiation Exposure. Stem Cells 2009; 27:1400-9. [DOI: 10.1002/stem.66] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
626
|
Korsten H, Ziel-van der Made A, Ma X, van der Kwast T, Trapman J. Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model. PLoS One 2009; 4:e5662. [PMID: 19461893 PMCID: PMC2680948 DOI: 10.1371/journal.pone.0005662] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/28/2009] [Indexed: 12/17/2022] Open
Abstract
The PSA-Cre;Pten-loxP/loxP mouse prostate cancer model displays clearly defined stages of hyperplasia and cancer. Here, the initial stages of hyperplasia development are studied. Immunohistochemical staining showed that accumulated pAkt+ hyperplastic cells overexpress luminal epithelial cell marker CK8, and progenitor cell markers CK19 and Sca-1, but not basal epithelial cell markers. By expression profiling we identified novel hyperplastic cell markers, including Tacstd2 and Clu. Further we showed that at young age prostates of targeted Pten knockout mice contained in the luminal epithelial cell layer single pAkt+ cells, which overexpressed CK8, Sca-1, Tacstd2 and Clu; basal epithelial cells were always pAkt−. Importantly, in the luminal epithelial cell layer of normal prostates we detected rare Clu+Tacstd2+Sca-1+ progenitor cells. These novel cells are candidate tumor initiating cells in Pten knockout mice. Remarkably, all luminal epithelial cells in the proximal region of normal prostates were Clu+Tacstd2+Sca-1+. However, in PSA-Cre;Pten-loxP/loxP mice, the proximal prostate does not contain hyperplastic foci. Small hyperplastic foci in prostates of PSA-Cre;Pten-loxP/+ mice found at old age, showed complete Pten inactivation and a progenitor marker profile. Finally, we present a novel model of prostate development and renewal, including lineage-specific luminal epithelial progenitor cells. It is proposed that Pten deficiency induces a shift in the balance of differentiation to proliferation in these cells.
Collapse
Affiliation(s)
- Hanneke Korsten
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | | | - Xiaoqian Ma
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Theo van der Kwast
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Jan Trapman
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
627
|
Hematopoietic stem cell aging is associated with functional decline and delayed cell cycle progression. Biochem Biophys Res Commun 2009; 383:210-5. [DOI: 10.1016/j.bbrc.2009.03.153] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/30/2009] [Indexed: 01/01/2023]
|
628
|
Nomura J, Maruyama M, Katano M, Kato H, Zhang J, Masui S, Mizuno Y, Okazaki Y, Nishimoto M, Okuda A. Differential Requirement for Nucleostemin in Embryonic Stem Cell and Neural Stem Cell Viability. Stem Cells 2009; 27:1066-76. [DOI: 10.1002/stem.44] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
629
|
The p53 tumor suppressor network in cancer and the therapeutic modulation of cell death. Apoptosis 2009; 14:336-47. [PMID: 19229632 DOI: 10.1007/s10495-009-0327-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The molecular subversion of cell death is acknowledged as a principal contributor to the development and progression of cancer. The p53 tumor suppressor protein is among the most commonly altered proteins in human cancer. The p53 protein mediates critical functions within cells including the response to genotoxic stress, differentiation, senescence, and cell death. Loss of p53 function can result in enhanced rates of cell proliferation, resistance to cell death stimuli, genomic instability, and metastasis. The community of cancer scientists is now in possession of a vast repository of information regarding the frequency, specific mechanisms, and clinical context of cell death deregulation in cancer. This information has enabled the design of therapeutic agents to target proteins, including p53. The feasibility and impact of targeting cell death signaling proteins has been established in preclinical models of human cancer. The appropriate application of these targeted agents is now being established in clinical trials.
Collapse
|
630
|
Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 2009; 459:387-392. [PMID: 19404261 DOI: 10.1038/nature08040] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 04/08/2009] [Indexed: 12/13/2022]
Abstract
Mice deficient in the Polycomb repressor Bmi1 develop numerous abnormalities including a severe defect in stem cell self-renewal, alterations in thymocyte maturation and a shortened lifespan. Previous work has implicated de-repression of the Ink4a/Arf (also known as Cdkn2a) locus as mediating many of the aspects of the Bmi1(-/-) phenotype. Here we demonstrate that cells derived from Bmi1(-/-) mice also have impaired mitochondrial function, a marked increase in the intracellular levels of reactive oxygen species and subsequent engagement of the DNA damage response pathway. Furthermore, many of the deficiencies normally observed in Bmi1(-/-) mice improve after either pharmacological treatment with the antioxidant N-acetylcysteine or genetic disruption of the DNA damage response pathway by Chk2 (also known as Chek2) deletion. These results demonstrate that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicate that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.
Collapse
|
631
|
Attema JL, Pronk CJH, Norddahl GL, Nygren JM, Bryder D. Hematopoietic stem cell ageing is uncoupled from p16INK4A-mediated senescence. Oncogene 2009; 28:2238-43. [DOI: 10.1038/onc.2009.94] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
632
|
Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 2009; 114:290-8. [PMID: 19357397 DOI: 10.1182/blood-2008-12-195644] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aged hematopoietic stem cells (HSCs) are impaired in supporting hematopoiesis. The molecular and cellular mechanisms of stem cell aging are not well defined. HSCs interact with nonhematopoietic stroma cells in the bone marrow forming the niche. Interactions of hematopoietic cells with the stroma/microenvironment inside bone cavities are central to hematopoiesis as they regulate cell proliferation, self-renewal, and differentiation. We recently hypothesized that one underlying cause of altered hematopoiesis in aging might be due to altered interactions of aged stem cells with the microenvironment/niche. We developed time-lapse 2-photon microscopy and novel image analysis algorithms to quantify the dynamics of young and aged hematopoietic cells inside the marrow of long bones of mice in vivo. We report in this study that aged early hematopoietic progenitor cells (eHPCs) present with increased cell protrusion movement in vivo and localize more distantly to the endosteum compared with young eHPCs. This correlated with reduced adhesion to stroma cells as well as reduced cell polarity upon adhesion of aged eHPCs. These data support a role of altered eHPC dynamics and altered cell polarity, and thus altered niche biology in mechanisms of mammalian aging.
Collapse
|
633
|
Signer RAJ, Montecino-Rodriguez E, Witte ON, Dorshkind K. Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev 2009; 22:3115-20. [PMID: 19056891 DOI: 10.1101/gad.1715808] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lymphoid progenitors exhibit severe growth defects during aging while myelopoiesis is relatively unperturbed. These effects are due in part to the preferential expression of p16(Ink4a) and Arf in aged lymphoid progenitors. Their increased expression contributes to reduced growth and survival of lymphoid progenitors and makes them refractory to malignant transformation. Down-regulation of p16(Ink4a) and Arf in aged lymphoid progenitors reverted the senescent phenotype and restored susceptibility to transformation. These data provide a molecular explanation for the preferential effects of aging on lymphopoiesis, suggest that inhibiting p16(Ink4a) and Arf expression can rejuvenate B lymphopoiesis, and link aging and cancer resistance.
Collapse
Affiliation(s)
- Robert A J Signer
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
634
|
Flores I, Blasco MA. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS One 2009; 4:e4934. [PMID: 19295915 PMCID: PMC2654505 DOI: 10.1371/journal.pone.0004934] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 02/05/2009] [Indexed: 12/17/2022] Open
Abstract
Telomere maintenance is essential to ensure proper size and function of organs with a high turnover. In particular, a dwarf phenotype as well as phenotypes associated to premature loss of tissue regeneration, including the skin (hair loss, hair graying, decreased wound healing), are found in mice deficient for telomerase, the enzyme responsible for maintaining telomere length. Coincidental with the appearance of these phenotypes, p53 is found activated in several tissues from these mice, where is thought to trigger cellular senescence and/or apoptotic responses. Here, we show that p53 abrogation rescues both the small size phenotype and restitutes the functionality of epidermal stem cells (ESC) of telomerase-deficient mice with dysfunctional telomeres. In particular, p53 ablation restores hair growth, skin renewal and wound healing responses upon mitogenic induction, as well as rescues ESCmobilization defects in vivo and defective ESC clonogenic activity in vitro. This recovery of ESC functions is accompanied by a downregulation of senescence markers and an increased proliferation in the skin and kidney of telomerase-deficient mice with critically short telomeres without changes in apoptosis rates. Together, these findings indicate the existence of a p53-dependent senescence response acting on stem/progenitor cells with dysfunctional telomeres that is actively limiting their contribution to tissue regeneration, thereby impinging on tissue fitness.
Collapse
Affiliation(s)
- Ignacio Flores
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
635
|
Goldschmidt-Clermont PJ. Jay and Jeanie Schottenstein prize in cardiovascular science: predicting cardiovascular illnesses for the 21(st) century, and the unpredictable.. Antioxid Redox Signal 2009; 11:401-6. [PMID: 19035844 PMCID: PMC2933575 DOI: 10.1089/ars.2008.2381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in our society such as the increasing cost of retirement and age redistribution toward a larger elderly population will require humans to remain highly functional until an advanced age. As a consequence, chronic illnesses that are primarily responsible for reducing functionality and life expectancy will require improved prevention and therapeutic strategies. In a global way, cardiovascular disease and cancer represent the most challenging disorders to maintaining the functional integrity of our fellow humans. A new theory has been derived from recent progress in our understanding of atherosclerosis as a key mechanism for cardiovascular disease and of cancer. Instructively, this theory provides a bridge at the stem cell level, linking most chronic disorders.
Collapse
|
636
|
Thein M, Ershler WB, Artz AS, Tecson J, Robinson BE, Rothstein G, Liede A, Gylys-Colwell I, Lu ZJ, Robbins S. Diminished quality of life and physical function in community-dwelling elderly with anemia. Medicine (Baltimore) 2009; 88:107-114. [PMID: 19282701 PMCID: PMC2893336 DOI: 10.1097/md.0b013e31819d89d5] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The occurrence of anemia in older adults has been associated with adverse outcomes including functional decline, disability, morbidity, and mortality. It is not clear to what extent these outcomes are the result of the anemia or concurrent illness. We performed a cross-sectional, observational study to determine whether lower hemoglobin concentrations in older adults are associated with reduced health-related quality of life, functional status, depression, disability, and physical strength, independent of chronic disease. Three sites participated in this research: an academic geriatric practice, a hospital-based geriatric outpatient unit, and a community-based multispecialty internal medicine group. Health-related quality of life and functional status were measured using the Short Form-36 Health Survey (SF-36) and the Functional Assessment of Chronic Illness Therapy-Anemia (FACIT-An). Disability and depression were assessed using the Instrumental Activities of Daily Living (IADL) and the Geriatric Depression Scale (GDS) questionnaires, respectively. Handgrip strength was used as a physical performance measure. Anemia was defined as hemoglobin <13 g/dL for men or <12 g/dL for women. The mean SF-36 physical health component summary scores were 38.9 (with anemia) and 44.1 (without anemia) (p<0.001). Anemia was associated with greater fatigue (p < 0.001), lower handgrip strength (p = 0.014), increased number of disabilities (p=0.005), and more depressive symptoms (p = 0.002). Multivariate regression analysis, adjusted for demographic and clinical characteristics, demonstrated strong associations for reduced hemoglobin, even within the "normal" range, and poorer health-related quality of life across multiple domains. Thus, anemia was independently associated with clinically significant impairments in multiple domains of health-related quality of life, especially in measures of functional limitation. Mildly low hemoglobin levels, even when above the World Health Organization (WHO) anemia threshold, were associated with significant declines in quality of life among the elderly.
Collapse
Affiliation(s)
- Mya Thein
- Institute for Advanced Studies in Aging & Geriatric Medicine, Washington, DC
| | - William B Ershler
- Institute for Advanced Studies in Aging & Geriatric Medicine, Washington, DC
- Clinical Research Branch, National Institute on Aging, Baltimore, MD
| | - Andrew S. Artz
- Institute for Advanced Studies in Aging & Geriatric Medicine, Washington, DC
- University of Chicago Hospitals, Chicago, IL
| | - Josephine Tecson
- Institute for Advanced Studies in Aging & Geriatric Medicine, Washington, DC
| | | | | | | | | | | | | |
Collapse
|
637
|
Yamashita Y. Asymmetric stem cell division and pathology: insights from Drosophila stem cell systems. J Pathol 2009; 217:181-5. [PMID: 19040208 DOI: 10.1002/path.2470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adult stem cells maintain many tissues and organs throughout the life of an organism by serving as renewable sources of differentiated cells. While stem cells remain in a relatively undifferentiated state, their daughters can commit to differentiation to acquire distinct cell fates. Therefore, a stem cell's choice between self-renewal and commitment to differentiation is of critical importance to the maintenance of functional tissues and organs. Many adult stem cells can divide asymmetrically to produce one self-renewed stem cell and one differentiated daughter, preserving the critical balance between stem cell and differentiated cell populations. Stem cell dysfunction and/or malfunction have been proposed to lead to several human pathologies, including tumourigenesis and tissue degeneration, yet whether a failure of asymmetric division is a primary cause of stem cell-related pathologies remains largely uninvestigated. Here, I discuss the implications of asymmetric stem cell division in pathology.
Collapse
Affiliation(s)
- Y Yamashita
- Life Sciences Institute, Center for Stem Cell Biology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
638
|
Nehlin JO, Barington T. Strategies for future histocompatible stem cell therapy. Biogerontology 2009; 10:339-76. [PMID: 19219637 DOI: 10.1007/s10522-009-9213-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 01/19/2009] [Indexed: 02/07/2023]
Abstract
Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within a developmental lineage, would facilitate the transplantation of organ/tissue-specific adult stem cells or terminally differentiated somatic cells to improve the function of diseased organs or tissues in an individual. Here, we present an overview of various experimental cell therapy technologies based on the use of patient-histocompatible stem cells, the pending issues needed to be dealt with before clinical trials can be initiated, evidence for the loss and/or aging of the stem cell pool and some of the possible uses of human pluripotent stem cell-derivatives aimed at curing disease and improving health.
Collapse
Affiliation(s)
- Jan O Nehlin
- Center for Stem Cell Treatment, Department of Clinical Immunology, University of Southern Denmark, Denmark.
| | | |
Collapse
|
639
|
Distinct roles of stress-activated protein kinases in Fanconi anemia-type C-deficient hematopoiesis. Blood 2009; 113:2655-60. [PMID: 19168785 DOI: 10.1182/blood-2008-09-181420] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The underlying molecular mechanisms that promote bone marrow failure in Fanconi anemia are incompletely understood. Evidence suggests that enhanced apoptosis of hematopoietic precursors is a major contributing factor. Previously, enhanced apoptosis of Fanconi anemia type C-deficient (Fancc(-/-)) progenitors was shown to involve aberrant p38 MAPK activation. Given the importance of c-Jun N-terminal kinase (JNK) in the stress response, we tested whether enhanced apoptosis of Fancc(-/-) cells also involved altered JNK activation. In Fancc(-/-) murine embryonic fibroblasts, tumor necrosis factor alpha (TNF-alpha) induced elevated JNK activity. In addition, JNK inhibition protected Fancc(-/-) murine embryonic fibroblasts and c-kit(+) bone marrow cells from TNF-alpha-induced apoptosis. Importantly, hematopoietic progenitor assays demonstrated that JNK inhibition enhanced Fancc(-/-) colony formation in the presence of TNF-alpha. Competitive repopulation assays showed that Fancc(-/-) donor cells cultured with the JNK inhibitor had equivalent levels of donor chimerism compared with Fancc(-/-) donor cells cultured with vehicle control. In contrast, culturing Fancc(-/-) cells with a p38 MAPK inhibitor significantly increased repopulating ability, supporting an integral role of p38 MAPK in maintaining Fancc(-/-) hematopoietic stem cell function. Taken together, these data suggest that p38 MAPK, but not JNK, has a critical role in maintaining the engraftment of Fancc(-/-)-reconstituting cells under conditions of stress.
Collapse
|
640
|
Vogt G. How to minimize formation and growth of tumours: potential benefits of decapod crustaceans for cancer research. Int J Cancer 2009; 123:2727-34. [PMID: 18823008 DOI: 10.1002/ijc.23947] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tumours have only rarely been observed in the decapod crustaceans, a large animal group of more than 10,000 species that includes the commercially important and well investigated shrimp, lobsters, crayfish and crabs. Analysis of the literature and information from cancer and diseases data bases revealed a total of 15 incidences, some of them being questionable. Even in the long-lived species, which can reach life spans of almost 100 years, neoplasias are virtually unknown. The data published so far suggest that the strikingly different frequencies of carcinogenesis between decapods and other well investigated animal groups like mammals, fish, insects and molluscs is based on differences of the metabolic pathways for carcinogens, the immune systems, and the regulation of stem cells. Therefore, representatives of the Decapoda may serve as useful models to study how organisms can successfully prevent or control spontaneously and environmentally induced cell proliferation. A particularly promising candidate for in-depth investigation of these topics is the marbled crayfish, a rather new clonal lineage that is presently being introduced as a laboratory model in development and epigenetics.
Collapse
Affiliation(s)
- Günter Vogt
- Department of Zoology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
641
|
Mosaic analysis of stem cell function and wound healing in the mouse corneal epithelium. BMC DEVELOPMENTAL BIOLOGY 2009; 9:4. [PMID: 19128502 PMCID: PMC2639382 DOI: 10.1186/1471-213x-9-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/07/2009] [Indexed: 12/19/2022]
Abstract
Background The mouse corneal epithelium is a continuously renewing 5–6 cell thick protective layer covering the corneal surface, which regenerates rapidly when injured. It is maintained by peripherally located limbal stem cells (LSCs) that produce transient amplifying cells (TACs) which proliferate, migrate centripetally, differentiate and are eventually shed from the epithelial surface. LSC activity is required both for normal tissue maintenance and wound healing. Mosaic analysis can provide insights into LSC function, cell movement and cell mixing during tissue maintenance and repair. The present study investigates cell streaming during corneal maintenance and repair and changes in LSC function with age. Results The initial pattern of corneal epithelial patches in XLacZ+/- X-inactivation mosaics was replaced after birth by radial stripes, indicating activation of LSCs. Stripe patterns (clockwise, anticlockwise or midline) were independent between paired eyes. Wound healing in organ culture was analysed by mosaic analysis of XLacZ+/- eyes or time-lapse imaging of GFP mosaics. Both central and peripheral wounds healed clonally, with cells moving in from all around the wound circumference without significant cell mixing, to reconstitute striping patterns. Mosaic analysis revealed that wounds can heal asymmetrically. Healing of peripheral wounds produced stripe patterns that mimicked some aberrant striping patterns observed in unwounded corneas. Quantitative analysis provided no evidence for an uneven distribution of LSC clones but showed that corrected corneal epithelial stripe numbers declined with age (implying declining LSC function) but stabilised after 39 weeks. Conclusion Striping patterns, produced by centripetal movement, are defined independently and stochastically in individual eyes. Little cell mixing occurs during the initial phase of wound healing and the direction of cell movement is determined by the position of the wound and not by population pressure from the limbus. LSC function declines with age and this may reflect reduced LSCs numbers, more quiescent LSCs or a reduced ability of older stem cells to maintain tissue homeostasis. The later plateau of LSC function might indicate the minimum LSC function that is sufficient for corneal epithelial maintenance. Quantitative and temporal mosaic analyses provide new possibilities for studying stem cell function, tissue maintenance and repair.
Collapse
|
642
|
Viatour P, Somervaille TC, Venkatasubrahmanyam S, Kogan S, McLaughlin ME, Weissman IL, Butte AJ, Passegué E, Sage J. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 2008; 3:416-28. [PMID: 18940733 DOI: 10.1016/j.stem.2008.07.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 04/22/2008] [Accepted: 07/16/2008] [Indexed: 12/12/2022]
Abstract
Individual members of the retinoblastoma (Rb) tumor suppressor gene family serve critical roles in the control of cellular proliferation and differentiation, but the extent of their contributions is masked by redundant and compensatory mechanisms. Here we employed a conditional knockout strategy to simultaneously inactivate all three members, Rb, p107, and p130, in adult hematopoietic stem cells (HSCs). Rb family triple knockout (TKO) mice develop a cell-intrinsic myeloproliferation that originates from hyperproliferative early hematopoietic progenitors and is accompanied by increased apoptosis in lymphoid progenitor populations. Loss of quiescence in the TKO HSC pool is associated with an expansion of these mutant stem cells but also with an enhanced mobilization and an impaired reconstitution potential upon transplantation. The presence of a single p107 allele is sufficient to largely rescue these defects. Thus, Rb family members collectively maintain HSC quiescence and the balance between lymphoid and myeloid cell fates in the hematopoietic system.
Collapse
Affiliation(s)
- Patrick Viatour
- Department of Pediatrics, Stanford Medical School, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
643
|
Biteau B, Hochmuth CE, Jasper H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 2008; 3:442-55. [PMID: 18940735 DOI: 10.1016/j.stem.2008.07.024] [Citation(s) in RCA: 434] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 06/12/2008] [Accepted: 07/24/2008] [Indexed: 01/28/2023]
Abstract
Metazoans employ cytoprotective and regenerative strategies to maintain tissue homeostasis. Understanding the coordination of these strategies is critical to developing accurate models for aging and associated diseases. Here we show that cytoprotective Jun N-terminal kinase (JNK) signaling influences regeneration in the Drosophila gut by directing proliferation of intestinal stem cells (ISCs). Interestingly, this function of JNK contributes to the loss of tissue homeostasis in old and stressed intestines by promoting the accumulation of misdifferentiated ISC daughter cells. Ectopic Delta/Notch signaling in these cells causes their abnormal differentiation but also limits JNK-induced proliferation. Protective JNK signaling and control of cell proliferation and differentiation by Delta/Notch signaling thus have to be carefully balanced to ensure tissue homeostasis. Our findings suggest that this balance is lost in old animals, increasing the potential for neoplastic transformation.
Collapse
Affiliation(s)
- Benoît Biteau
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | | | | |
Collapse
|
644
|
Shen C, Zhou Y, Zhan J, Reske SN, Buck AK. Chromosome instability and tumor lethality suppression in carcinogenesis. J Cell Biochem 2008; 105:1327-41. [DOI: 10.1002/jcb.21937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
645
|
Abstract
Among the elderly, anemia occurs with increasing frequency with each advancing decade. Unlike when anemia occurs in younger adults, the cause of anemia in the elderly is oftentimes not readily apparent or attributable to a single cause. However, this commonly observed form of anemia in the elderly (termed unexplained anemia [UA]) can generally be dissected to its root causes, which include renal insufficiency, inflammation, testosterone deficiency, and stem cell proliferative decline. Myelodysplasia (MDS) occurs commonly in this age group but can and should, for both diagnostic and therapeutic considerations, be distinguished from UA.
Collapse
Affiliation(s)
- Sasan Makipour
- Clinical Research Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | |
Collapse
|
646
|
Lorusso G, Rüegg C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 2008; 130:1091-103. [PMID: 18987874 DOI: 10.1007/s00418-008-0530-8] [Citation(s) in RCA: 360] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Cancer cells acquire cell-autonomous capacities to undergo limitless proliferation and survival through the activation of oncogenes and inactivation of tumor suppressor genes. Nevertheless, the formation of a clinically relevant tumor requires support from the surrounding normal stroma, also referred to as the tumor microenvironment. Carcinoma-associated fibroblasts, leukocytes, bone marrow-derived cells, blood and lymphatic vascular endothelial cells present within the tumor microenvironment contribute to tumor progression. Recent evidence indicates that the microenvironment provides essential cues to the maintenance of cancer stem cells/cancer initiating cells and to promote the seeding of cancer cells at metastatic sites. Furthermore, inflammatory cells and immunomodulatory mediators present in the tumor microenvironment polarize host immune response toward specific phenotypes impacting tumor progression. A growing number of studies demonstrate a positive correlation between angiogenesis, carcinoma-associated fibroblasts, and inflammatory infiltrating cells and poor outcome, thereby emphasizing the clinical relevance of the tumor microenvironment to aggressive tumor progression. Thus, the dynamic and reciprocal interactions between tumor cells and cells of the tumor microenvironment orchestrate events critical to tumor evolution toward metastasis, and many cellular and molecular elements of the microenvironment are emerging as attractive targets for therapeutic strategies.
Collapse
Affiliation(s)
- Girieca Lorusso
- Division of Experimental Oncology, Centre Pluridisciplinaire d'Oncologie, Lausanne University Hospital, University of Lausanne, Epalinges sur Lausanne, Switzerland
| | | |
Collapse
|
647
|
Naka K, Muraguchi T, Hoshii T, Hirao A. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal 2008; 10:1883-94. [PMID: 18627347 DOI: 10.1089/ars.2008.2114] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem cells (HSCs) are defined by their ability both to self-renew and to give rise to fresh blood cells throughout the lifetime of an animal. The failure of HSCs to self-renew during aging is believed to depend on several intrinsic (cell-autonomous) and extrinsic (non-cell-autonomous) factors. In this review, we focus on how dysregulation of reactive oxygen species (ROS) and disruptions of genomic stability can impair HSC functions. Recently, it was shown that long-term self-renewing HSCs normally possess low levels of intracellular ROS. However, when intracellular ROS levels become excessive, they cause senescence or apoptosis, resulting in a failure of HSC self-renewal. Repression of intracellular ROS levels in HSCs by treatment with an antioxidant that scavenges ROS can rescue HSC functions, indicating that excess ROS levels are at the root of HSC failure. Products of numerous genes that are involved in either DNA-damage responses or longevity-related signaling contribute to the maintenance of the HSC self-renewal capacity. Further investigations on the molecular mechanisms of ROS regulation and on the manipulation of excess ROS levels could lead to the development of novel therapeutics for hematopoietic diseases, regenerative medicine, and the prevention of leukemia.
Collapse
Affiliation(s)
- Kazuhito Naka
- Division of Molecular Genetics, Center for Cancer and Stem Cell Research, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | |
Collapse
|
648
|
Abstract
The field of stem and progenitor cell biology is expanding. Much of the enthusiasm is based on the potential of using stem and progenitor cells as a cellular therapy for the treatment of human disease. Although the concept of using human embryonic stem cells for therapeutic indications is intriguing, significant challenges face investigators pursuing research in this area. Therefore, renewed scientific energy is focusing on the molecular pathways that differentiate a pluripotent embryonic stem cell from more-committed tissue-specific cells. Molecular mechanisms that govern tissue-specific stem and progenitor cell function are also topics of intense investigation, given that altered function of these cells may promote a variety of human pathologies including aging, vascular disease, and cancer. Considerable progress has been made, but a clear identification of the molecular signatures of stem and progenitor cells remains elusive. A growing body of literature demonstrates that distinct functional characteristics of stem and progenitor cells are under redox regulation. In this Forum Issue, evidence for redox regulation of tissue-specific stem and progenitor cells involved in hematopoiesis and vasculogenesis/angiogenesis is presented.
Collapse
Affiliation(s)
- Laura S. Haneline
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
649
|
FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging. Blood 2008; 112:4485-93. [PMID: 18799725 DOI: 10.1182/blood-2008-05-159848] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stress or aging of tissue-specific stem cells is considered central to the decline of tissue homeostasis in the elderly, although little is known of molecular mechanisms underlying hematopoietic stem cell (HSC) aging and stress resistance. Here, we report that mice lacking the transcription factor forkhead box O3a (FoxO3a) develop neutrophilia associated with inhibition of the up-regulation of negative regulator of cell proliferation, Sprouty-related Ena/VASP homology 1 domain-containing proteins 2 (Spred2) and AKT and ERK activation, in HSCs during hematopoietic recovery following myelosuppressive stress conditions. Compared with aged wild-type mice, more severe neutrophilia was also observed in aged Foxo3a-deficient mice. AKT and ERK activation and inhibition of Spred2 were detected in HSCs from aged FoxO3a-deficient mice. Spred2-deficient mice also developed neutrophilia during hematopoietic recovery following myelosuppressive stress, indicating that FoxO3a plays a pivotal role in maintenance, integrity, and stress resistance of HSCs through negative feedback pathways for proliferation. This will provide new insight into the hematopoietic homeostasis in conditions of aging and stress.
Collapse
|
650
|
Valtieri M, Sorrentino A. The mesenchymal stromal cell contribution to homeostasis. J Cell Physiol 2008; 217:296-300. [PMID: 18615579 DOI: 10.1002/jcp.21521] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adult mesenchymal stromal cells (MSCs) are undifferentiated multi-potent cells predominantly residing in the bone marrow (BM), but also present with similar but not identical features in many other tissues such as blood, placenta, dental pulp, and adipose tissue. MSCs have the potential to differentiate into multiple skeletal phenotypes like osteoblasts, chondrocytes, adipocytes, stromal cells, fibroblasts, and possibly tendons. MSCs differentiation potential, ex vivo expansion capacity, nurturing and immunomodulatory proficiencies oriented these versatile cells in several areas of ongoing clinical applications. However, the absence of MSC-specific markers for isolation and characterization together with the lack of a comprehensive view of the molecular pathways governing their particular biological properties, remains a primary obstacle to their research and application. In this review we discuss some areas of growing interest in MSCs biology: their contribution to the hematopoietic stem cell (HSC) niche, to regenerative medicine, their role in cancer and in therapy as delivery tools and their micro-RNA (miRNA) signatures. Despite rapid progress in the MSC field, it is generally thought that only a fraction of their full potential has been realized thus far.
Collapse
Affiliation(s)
- Mauro Valtieri
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | | |
Collapse
|